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Abstract Social robots should be able to search and track
people in order to help them. In this paper we present two
different techniques for coordinated multi-robot teams for
searching and tracking people. A probability map (belief) of
a target person location is maintained, and to initialize and
update it, two methods were implemented and tested: one
based on a reinforcement learning algorithm and the other
based on a particle filter. The person is tracked if visible,
otherwise an exploration is done by making a balance, for
each candidate location, between the belief, the distance,
and whether close locations are explored by other robots of
the team. The validation of the approach was accomplished
throughout an extensive set of simulations using up to five
agents and a large amount of dynamic obstacles; furthermore,
over three hours of real-life experiments with two robots
searching and tracking were recorded and analysed.

This is one of the several papers published in Autonomous Robots com-
prising the Special Issue on Online Decision Making in Multi-Robot
Coordination.

Work partially supported by the Spanish Ministry of Science and
Innovation under project Rob-In-Coop (DPI2013-42458-P) and EU
FP7 project ARCAS (INFSO-ICT-287617).

B Alex Goldhoorn
agoldhoorn@iri.upc.edu; alex@goldhoorn.net

Anaís Garrell
agarrell@iri.upc.edu

René Alquézar
ralqueza@iri.upc.edu

Alberto Sanfeliu
sanfeliu@iri.upc.edu

1 Institut de Robòtica i Informàtica Industrial (CSIC-UPC),
Llorens Artigas 4-6, 08028 Barcelona, Spain

Keywords Multi-robot coordination · Urban robotics ·
Search-and-track · Decentralized coordination

1 Introduction

Searching and tracking are important behaviors for a mobile
service robot, for example to assist people, to search and
rescue (Marconi et al. 2012; Sheh et al. 2016) or search for
objects (Ferrein and Steinbauer 2016).

The method can be applied to searching objects, but here
we focus on searching and tracking of a person. Even though
searching might be evident for humans, for robots it is
not, since it requires exploring; handling noisy sensors that
also can give false positives or false negatives; coping with
dynamic obstacles, such as other people walking in front of
the robot; and in the case of multiple agents, coordination to
do an efficient search.

In previous studies (Goldhoorn et al. 2014), we described
and evaluated different methods for searching and tracking
a person in urban settings, using a single humanoid service
robot. Thesemethodsmadeuseof the online search algorithm
Partially Observable Monte-Carlo Planning (POMCP; Sil-
ver and Veness 2010), which, in contrast to other previous
approaches, can plan under uncertainty, in large continuous
state space and in real-time.

In this paper, we present two multi-robot approaches (the
Multi-agent HB-CR-POMCP Explorer andMulti-agent HB-
PF Explorer) that can search and track one person, using
one or more agents (robots) that cooperate by communicat-
ing their observations and most probable locations of the
person. Internally, the agents use a probabilitymap of the per-
son’s location, for which we tried two different methods: the
Highest Belief Continuous Real-time Partially Observable
Monte-Carlo Planning (HB-CR-POMCP) and the Highest
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Fig. 1 The robots search and track the person (in the back wearing a
tag to recognize him)while other people arewalking around obstructing
the robots’ vision. In the lower map left, the localization of the robots

can be seen (orange and blue robots), and at the right, the probability
maps of the person’s location of both robots are shown (Color figure
online)

Belief Particle Filter (HB-PF) method, for which the obser-
vations of all agents are used. Thereafter, the most probable
locations are marked and sent to all agents, such that each
agent can choose the best location to explore. In the case of
a visible person, the agents track the person while updating
the probability map, since the observation could be a false
positive. The methods are able to cope with noisy sensors,
false negative detections, and, for a short time, false positive
detections. Furthermore, the methods are able to search and
track with only one agent when no communication is avail-
able. We improve the person location probability map by
also using dynamic obstacles—such as other people walking
around—and a probabilistic visibility check.

Finally, the validation of the approach was accomplished
by an extensive set of simulations and a large amount of real
experiments in an urban campus environment with dynamic
obstacles, using ourmobile social robots Tibi andDabo (Gar-
rell and Sanfeliu 2012), see Fig. 1.

In the remainder of the paper, we start by introducing the
related work of cooperative robotic search in Sect. 2, after
which a global overview of the proposed approach is given.
Next, we explain first the methods used to update the belief
(Sect. 4), then, in Sect. 5, how the goals are selected. In
Sect. 6, the experimental setup is explained, after which the
simulations (Sect. 7) and real-life experiments (Sect. 8) are
shown, and we end with some conclusions in Sect. 9.
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2 Related work

The task of either tracking or searching by amobile robot has
been studied previously, but in few times both are combined
in one method, like in ours; furthermore, we extensively
tested the methods in real-life experiments. A simplification
of the real world problem of finding people is the hide-and-
seek game, where there are one or more agents searching,
and one or more hiding. Hide-and-seek and pursuit-evasion
(Chung et al. 2011) are well-known games which have been
used in a large amount of—mostly theoretical—works to
test and compare planning algorithms. The hide-and-seek
game also requires a high number of cognitive functions such
as: search, navigation, coordination, anticipation and plan-
ning (Johansson and Balkenius 2005). In (Goldhoorn et al.
2013a, b), we focused on the hide-and-seek game in discrete
time and space, using MOMDPs (Mixed Observable Marko-
vian Decision Processes; Ong et al. 2010) to search for a
person. In (Goldhoorn et al. 2014) we extended it to play
in real-time with continuous states (Continuous Real-time
POMCP).

Surveillance also requires tracking, which was done
by (Capitan et al. 2016) with Unmanned Aerial Vehicles
(UAVs). They did tracking of multiple targets and they
assumed them to move independently. Their method used
an MOMDP, with as discrete state space the combination of
the target’s and UAVs’ locations, and as actions four move-
ment directions and one staying on the same position. For
each behavior (target to track), a different POMDP policy is
learned, and the behavior is selected using an auctionmethod.
The policies were learned for a reduced state space (a sin-
gle target for a single UAV), since it is intractable for the
combined state space. They did simulations and experiments
with small UAVs in a small artificial environment.

Volkhardt and Gross (2013) used a service robot to detect
and find people in a scenario with three rooms. To detect a
person they looked at the legs, face, body-shape and motion,
which is a more realistic recognition method than the use of
an artificial tag; however, the tag allowedus to do experiments
in a large outdoor environment. Their search was guided by
a list of predefined guide points, and they assumed there
to be only one person. Challenges like RoboCup (Ferrein
and Steinbauer 2016) try to promote research in Artificial
Intelligence and robotics by organizing competitions in dif-
ferent fields, first they started with soccer competitions, but
they also have a search-and-rescue track (Sheh et al. 2016).
Tracking has been extensively discussed in the SPENCER
project, of which perception and tracking of people (Linder
et al. 2016) was one of the goals. In (Linder et al. 2016),
authors compare different algorithms to track people with a
mobile robot in a busy airport terminal. They found amethod
that uses the nearest neighbour and an extendedKalman filter
to work best. In the SHERPA project (Marconi et al. 2012),

they focused on search-and-rescue activities using a mixed
group of ground and aerial vehicles, and humans.

Many works make use of Particle Filters for tracking
(Thrun et al. 2005), since it is a fast algorithm, its complexity
mainly depends on the number of particles and it allows for
any distribution, unlike a Kalman filter, for example, which
requires aGaussian distribution. In (Montemerlo et al. 2002),
the authors tracked a large distribution of person locations,
conditioned upon a smaller distribution of robot poses over
time. Glas et al. (2015) introduced a tracking algorithm using
individual particle filters to track multiple entities with mul-
tiple robots. Oyama et al. (2013) presented a robot that tracks
visitors’ positions in a museum guide tour. In contrast to the
previous approaches, our method makes use of the coop-
eration of several robots to not only track, but also search,
therefore, we do not need an initial observation of the person.

In (Cui et al. 2008), combined laser scanners and video
images to track multiple people are introduced, to overcome
the limitations of visual trackers; it first detected feet, and
then the person was searched in the video image; however,
they used fixed locations for the laser scanners and cam-
era. Lian et al. (2015) did tracking of a person in a dynamic
environment by trying to maximize the visibility of the tar-
get. First, they used a laser range finder and an extended
Kalman filter, then a look-ahead algorithm (DWA*) to fol-
low the target and avoid obstacles at the same time. None
of these methods explicitly search for a person, nor do they
mention keeping track of people when they have been hidden
for a long time. Ahmad and Lima (2013) tracked a spher-
ical object (ball for the RoboCup soccer challenge) with a
team of robots. They used a particle filter and they shared
the observation, observation confidence and the localization
confidence. The confidences were used as weights to update
the particle filter. The method is similar to our particle fil-
ter method, but we use a fixed observation confidence. We,
however, also share the most probable locations and we do
an explicit search of the person by exploring the most prob-
able locations. Their experiments were done on a RoboCup
soccer field with four mobile robots.

In (Luber et al. 2011), a combined multi-hypothesis track-
ing method is presented; it uses a Kalman Filter with an
on-line detector that has as input color and depth data. Their
experiments were in a crowded indoor environment using
three Microsoft Kinect sensors. Also (Choi et al. 2011) used
Kinect sensors to track people, using a variant of a particle
filter to keep track of several targets. Authors in (Brscic et al.
2013) did tracking of people in large public environments,
where they usedmultiple 3D range sensors mounted at above
the human height, to reduce occlusions. Each tracked person
was assigned an identifier if he/she had been visible as a new
cluster during several steps; if the dispersion of the cluster
got too high, the person got deleted, and was recovered when
the person got detected close to the identifier. Experiments
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in a shopping centre showed good results. Although several
3D sensors, such as the Kinect, give good detection results
indoors, they do not work well outdoors. We have detected
the person, by combining the person legs detection with a
Lidar and the detection of an artificial tag to recognize a
specific person.

To do tracking with multiple agents, the combination of
decentralized techniques and particle filters has led to Dis-
tributed Particle Filters (DPFs) (Sheng et al. 2005; Hlinka
et al. 2013), which have been used by, for example (Vázquez
and Míguez 2017). These works focus on tracking of one
or more people with a Wireless Sensor Network, where they
use a large number of connected sensors. Our method on
the contrary, works with one or more mobile robots, without
depending on a pre-installed fixed sensor network.

Researchers (Sheng et al. 2005) use DPFs to localize
and track several targets with a wireless sensor network,
and in order to reduce the information sent between nodes,
they use a low dimension Gaussian Mixture Model (GMM).
They compared methods that work separately, in sensor
groups, and hierarchically. They worked with a previously
proposed Centralized Particle Filter (CPF) tracking algo-
rithm in which the posterior distribution is updated based
on all measurements, however, Sheng et al. do the update
in groups of sensors. Tests were done in simulations on an
area of 100 × 100 m2 with 25 fixed sensors and two tar-
gets to track. Vázquez and Míguez (2017) presented a DPF
that uses the median posterior probability in order to com-
bine efficiently localBayesian estimators; in simulations they
showed that their method is more robust.

Multi robot teams are also used, as in (Xu et al. 2013),
who tracked a visible target with a decentralized robot team,
thereby learning the utility models of the robots and negoti-
ating with the other robots. They used an Information Filter
(IF), which is a variant of a Kalman filter, with as goal
minimizing the uncertainty and optimizing the information
obtained by the robots. Experiments were done with two
Segway RPM robots, one with 360◦, and another with 180◦
vision.

Hollinger et al. (2010) presented an online decentralized
multi-agent search algorithm that creates a path to find a per-
son on a graph. It generates a scheduler to calculate a search
plan for multiple agents. They tried to optimize the path
based on an adversarial and non-adversarial person model.
Whereas we use a probabilistic approach to keep track of the
probable locations of the person, Hollinger et al. kept track
of a list of contaminated nodes (areas that not yet have been
checked, orwhere the person could have returned to), thereby
assuring the person to be found. However, to assure a person
to be found, a minimum number of search agents are neces-
sary, which depend on the map configuration. Furthermore,
their maps were converted to graphs, where in each node
they assumed full vision, whereas we use a vision probabil-

ity based on distance and obstacles. Next, they did not handle
on-line changes in the environment, where we do take into
account dynamic obstacles. And finally, they only searched
for the person, but our methods also track the person. In
(Hollinger et al. 2015), they focused on data fusion between
the agents, and they kept track of the probability of the person
being in each of the vertices. When there is communication,
they take into account the other agents’ paths, otherwise,
after reconnection the beliefs are fused. They showed two
simulated experiments, one in a map like in the previously
mentioned paper, the second in an underwater sea environ-
ment, where communications disturbance is a real problem.
In our method we do not send the complete belief, but we
send the observations of the agents, and after having locally
updated the probability map (belief), the most probable loca-
tions are sent to the other agents.

Charrow et al. (2013) used a team of robots with range
sensors to localize a fixed radio source. For each robot a
measurement of the distance to the radio source was taken,
which was used as input to a particle filter. The robots had a
reading, butwith noise, dependingonhowmanyobstacles are
between it and the target. They used the entropy to optimize
the control strategy for all the robots, reducing the uncertainty
of the estimation of the target location. They did experiments
with real robots on two environments up to 40 m × 35 m.
In our work, we use sensors that requires the target to be
in the field of view, and within a certain distance in order to
recognize the person, which is amore realistic situation, even
though we make use of a marker to recognize the person.

3 Overview of the approach

This section gives a global overview of the proposed
approach, thereby also mentioning the constraints.

3.1 System architecture

In this work we present a method for multiple mobile robots
to search and track a person autonomously and cooperatively,
which at the same time, allows the robots to operate individu-
ally when there is no communication between them, or when
only a single robot is available. Themethod uses a probability
map (belief ) to represent the probability of the location of the
person. It also requires a map of the environment on which
each robot should be able to localize itself. This map was
created beforehand using the odometry and the laser range
detectors, as explained in Sect. 6.3.

The diagram in Fig. 2 gives an overview of the approach
presented in this work, which consists of four phases. In
the first phase, for Robot Localization, Odometry and Lidar
are used. People Detection is accomplished by a Lidar, and
markers are used to recognise the person (Sect. 6.2). The
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Fig. 2 The schema shows the complete search-and-track approach for
n agents, with the same diagram for each agent and the communicated
data, where the diagram of the first agent is shown in detail. At the left
the phases of the search-and-track method are shown. The blocks are
algorithms or groups of algorithms, the orange bold lined blocks were

created by us. The black arrows show how the output of one algorithm is
used as input for another, and the blue arrows show the communication
between the agents. The sections in which the items are discussed are
shown between parenthesis (Color figure online)

detected people are also taken into account in the Update
Belief algorithm (as dynamic obstacles). Finally, theObser-
vation Filter makes sure that the locations of the person and
robot are legal (i.e. within the map and not in an obstacle),
by taking the closest most probable location. Note that the
Person Localization module can be replaced by any other

detector, in order to search and track a specific object for
example.

Together with the observations of the other agents, the
belief is updated in the Person Localization phase, for which
two algorithms were tried: theMulti-agent HB-CR-POMCP
Explorer (based on Goldhoorn et al. 2014), in which each
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robot uses the probability map of the CR-POMCP to search
and track a person; and the Multi-agent HB-PF Explorer,
which makes use of a particle filter.

In the third phase, the belief and observations are used
to decide on the locations where the robots should search
for the person—which we will call goals. If a robot detects
the person, then Tracking is carried out, otherwise the Explo-
rationmethod is applied. The latter chooses the goals for each
robot from the list of highest belief points of all the robots.
The goals are chosen by taking into account the probability,
the distance to the goal and whether another agent already
has a goal close to it.

Finally, the robot’s path planner (Sect. 6.3) plans and exe-
cutes the path to the chosen goal.

3.2 Problem constraints and model assumptions

This subsection describes the assumptions made for the
model in simulation, and the limitations we came across
while testing our model in real-life scenarios. There are at
least two types of problem constraints: the first derive from
the robot’s perception and actuators; the second are the result
of human behavioural reactions to the robot’s instructions.
The effects of these limitations on our study and the model
assumptions are summarized below:

– For safety reasons the robotswere not allowed to go faster
than around 1 m/s.

– Also for safety, the robots are kept at a minimum distance
of the person, other persons, other robots and anydetected
obstacles.

– The person being followed is asked not to walk too fast
(i.e. less than 1 m/s).

– The map of the environment, i.e. location of obstacles
(walls, doors, objects, etc.) has to be known beforehand
in order to plan and predict, therefore, we use a map of
the environment.

– There are no methods to recognise a person robustly out-
doors from a large distance and from any perspective. For
that reason and because our research is focused on search-
ing and tracking, we make use of an artificial marker
(Sect. 6.2) to recognise the person.

– A 360◦ view is assumed, to reduce the state space, and
therefore, simplify the planning (not taking into account
the orientation and field of view).

– For simplicity, the static obstacles are assumed to occlude
everything and do not allow to let anyone pass.

– Dynamic obstacles occlude like static obstacles, but they
can move and are not present in the map. In simulation
we do allow the agents to collide with them, to prevent
the simulation becoming too complex.

– In simulation we also allow agents to collide with each
other, also to prevent a too complex simulator.

4 Belief update

In this work, we use the probability of the location of the
person on a known map, the probability map is called belief.
Two methods were tried to create the belief: the first is based
on Partially Observable Monte-Carlo Planning (POMCP;
Silver and Veness 2010); the second is based on Particle
Filters (Thrun et al. 2005). Both methods use particles to
represent the belief, but the first uses the belief updatemethod
of the POMCP, whereas the second method uses the standard
Particle Filter update.

To decide where the robots should search for the per-
son, the points with the highest probability, the highest belief
points, are calculated (Sect. 4.4). It also explained how this
information is combined with the other agents’ highest belief
points.

Finally, we explain how the search goals for the robots are
chosen, by selecting the points with the high probability, the
highest belief points. Andwe explain how this information is
combined with the other agents’ highest belief points. After
the highest belief points are calculated, they are used to send
the robots to their goals, as Sect. 5 explains.

4.1 Preliminary

The input of the belief update algorithms is the list of observa-
tions O = {o1, o2, . . . , on} of the different agents, as shown
in Fig. 2. Each observation oi = 〈oagent,i , operson,i , po,i 〉 con-
tains the location of the robot (oagent,i ), the observation of the
person (operson,i , which can be empty) and a correctness prob-
ability po,i . The correctness probability indicates how much
a person detector can be trusted and was estimated based on
experimental results.

Ideally, the observations are sent and received syn-
chronously, however, in the realworld thiswas not the case. In
simulation there was no delay of the observations of the other
agents, but in the real-life experiments there was. Therefore,
we set a time limit for the observation to be used in the other
robots. If the observation was too old (we have used the limit
of 3 s), it was not used. Although asynchronous or delayed
observation messages do result in a difference in the beliefs
of the agents, in a later step they send each other’s highest
belief points.

The methods make use of a known map on which the
location of the person is estimated, and the location of other
visible dynamic obstacles (such as people) is used. The
vision of the agent is limited by static and dynamic obstacles,
the probability of seeing position s1 from position s2 is given
by:
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Table 1 The parameters values
used during the real experiments
and the simulations

Parameter Value Description

Common Parameters

σperson 0.2m Standard deviation of Gaussian noise

pv,max 0.85 Maximum probability visibility (1)

αvis 0.17 Reduction factor (1)

dv,max 3.0m Maximum distance full visibility (1)

po,Tibi 0.3 Trustworthiness of Tibi’s observations

po,Dabo 0.7 Trustworthiness of Dabo’s observations

Multi-agent HB-CR-POMCP Explorer

nsim 2500 Number of simulations

nbelief 2000 Number of belief points

pfalse_pos 0.001 False positive probability

pfalse_neg 0.3 False negative probability

dcons 0.7m Consistency check distance Algorithm 1

Multi-agent HB-PF Explorer

nparticles 2000 Number of particles

σb 1.0 Tune spread of particle weight (3)

wcons 0.001 Weight (3) when observation consistent

winc 0.0001 Weight (3) when obs. inconsistent

Highest Belief

cell size 3.2 m × 3.2 m 2D histogram cell size

nhb 10 Number of highest belief points

tupdate 3 s / 3 steps Wait time to re-calculate goal

Goal Selection

wu 0.4 Utility weight for explorer score (4)

wd 0.4 Distance weight for explorer score (4)

wb 0.2 Belief weight for explorer score (4)

dmax_range 30 m Maximum range of influence score (5)

Pvis(s1, s2)

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if ray(s1, s2) not free

pv,max, else if d < dv,max

max(0, pv,max

−αvis(d − dv,max)), otherwise

(1)

where ray is the raytrace function, which makes use of the
discretemap; d = ‖s1−s2‖; pv,max is themaximumvisibility
probability; dv,max is the distance until which it has a maxi-
mum visibility probability; and αvis is the slope with which
the probability function reduces. The parameter values were
tuned based on real world data and are shown in Table 1. The
time complexity of the raytrace algorithm is linear with the
number of cells, but in practice it is constant, since we cache
the results.

For the multi robot case, the probabilities are combined
to calculate the probability of seeing position s2 from any
position s1 ∈ S:

P̄vis(S, s2) = 1 −
∏

s1∈S
(1 − Pvis(s1, s2)) (2)

4.2 Multi-agent HB-CR-POMCP explorer

POMCP is a reinforcement learning method that is based
on the Partially Observable Markovian Decision Process
(POMDP; Pineau et al. 2003; Kurniawati et al. 2008), and
uses Monte-Carlo simulations instead of finding the optimal
value function—using value iteration (Pineau et al. 2003)
for example. POMDPs have states, observations, actions,
rewards and two probability functions. States, in our case,
are the locations of the person and robot (both continuous);
observations are the robot’s location and the observed loca-
tion of the person (discrete for the policy tree), or hidden if
not visible; and the reward is the negative distance to the per-
son, i.e. higher when closer to the person. There were nine
actions: moving one step in eight directions and staying at
the sameposition. ForPOMDPs twoprobability functions are
defined; one function defines the probability of going from
one state to another with a specific action; the other defines
the probability of an observation given a state and action. For
the POMCP, instead of using the entire probability matrix, a
POMDP simulator (s′, o, r) = G (s, a) is used,which returns
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a new state s′, observation o, and reward r , based on a current
state s, and action a. This results in a computational com-
plexity that mainly depends on the number of simulations
nsim.

Instead of knowing the current state, a belief is main-
tained, which is the probability of being in any of the states.
In POMCPs, the belief is maintained as a list of nbelief pos-
sible states, instead of a probability of each state. Note that
for the POMDPs, normally, states are discrete which lets the
belief be stored per state, whereas for the POMCP the belief
can be continuous, as in the Continuous Real-Time POMCP
(CR-POMCP; Goldhoorn et al. 2014). The system is initial-
ized with a belief b0, which in our problem is based on the
initial observation o0 of the agent. When the person is visible
initially, all belief is located there (with some added noise),
otherwise, it is spread among the not visible locations. For
this we use the map and the probability of visibility (2).

The POMCP algorithm (Silver and Veness 2010) gener-
ates a policy tree—which indicates what action to take to
reach the highest reward. The policy is created by doing a
large number of nsim simulations, using the POMDP simula-
tor G . In (Goldhoorn et al. 2014), the policy tree is generated
real-time and in each step it indicates the best action to take.
The next belief is calculated during the policy generation
phase, and when the action has been executed and the new
observation has been obtained, the new policy tree root is
chosen from the tree itself (using the observation and action).
The new tree root’s belief is extended if necessary, to contain
at least nbelief points.

From the experiments with the robot, however, it was
found that using the actions of the POMCP policy resulted
in an inefficient movement behavior (Goldhoorn et al. 2014).
Therefore, we decided to only use the belief of the POMCP,
from which the highest belief points were chosen as search
locations for the robot.

To cope with sensor noise and actuator noise, Gaussian
noise was added in the POMDP simulator with a standard
deviation of σperson for the person’s movement, and σrobot for
the robot’s movement. Also false negative and false positive
observations were simulated with probabilities pfalse_neg and
pfalse_pos respectively. The list of parameters and their values
is shown in Table 1, and more details about the HB-CR-
POMCP can be found in (Goldhoorn et al. 2014).

4.2.1 Multi-agent POMCP

In the initialization phase the belief is calculated based on
the visibility, like explained earlier. For the multi-robot case
all the observations each have their own probability (po,i ),
which was added to take into account the accuracy and trust-
worthiness of the sensors of specific robots. To generate the
initial belief, nbelief states are generated by randomly picking
observations o = 〈oagent, operson, po〉 ∈ O with probability

Algorithm 1 The belief consistency check function, with as
input the state s and the observation vector O. The function
randp generates a random value between 0 and 1.

1: function ConsistencyCheck(s, O)
2: isVisible = false
3: for o ∈ O do
4: if not operson is hidden then
5: if ‖sperson − operson‖ > dcons then
6: return false
7: else
8: isVisible = true
9: end if
10: end if
11: end for
12: p = P̄vis({oagent|o ∈ O}, sperson)
13: if isVisible then
14: if randp( )> p then return false
15: end if
16: else
17: if randp( )≤ p then return false
18: end if
19: end if
20: return true
21: end function

po and some Gaussian noise added (with standard deviation
σperson). If the person is not visible in that observation, a
random position is chosen, which is not visible to any agent.

After having generated the belief, the POMCP policy tree
is created by doing nsim simulations. Then, the best action is
chosen from the policy tree, and when it has been executed,
the belief update is done.

Before the belief update, all the observations O are
received from all agents, as can be seen in Fig. 2. The belief
is updated with the observation o, which includes only the
informationof the ownagent, because includingother agents’
positions would make the policy tree grow very wide, and
thereby resulting in an exponential growth of the policy
search.

The belief is first updated by choosing the new belief root
from the policy tree. Second, the states in the new belief are
checked for consistency with all the observations. States that
were not found to be consistentwere removed from the belief.
Algorithm 1 shows the consistency check, which is done for
each state in the belief (s ∈ B), using the observations of all
agents O. First, it checks if the observed person locations are
either hidden or close to the belief state s, then (2) is used
to calculate the probability that the person location of the
state should be visible to any of the agents. Finally, a random
function is used to decide the consistency, taking into account
the visibility probability.

As third step, states are added to the belief until it hasnbelief
states. Each new state s is randomly chosen from O, and if
sperson is hidden, then it is set to a random location where the
person is not visible to any of the agents’ locations.
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Algorithm 2 A basic Particle Filter.

1: S̄t = St = ∅
2: for i = 1 to nparticles do
3: sample sit ∼ p(st |sit−1)

4: sit,w = p(o|sit )
5: S̄t = S̄t ∪ {sit }
6: end for
7: for i = 1 to nparticles do
8: sample sit ∈ S̄t with probability sit,w
9: St = St ∪ {sit }
10: end for

4.3 Multi-agent HB-PF explorer

The way we use the CR-POMCP algorithm to track the per-
son resembles the way particle filters (Thrun et al. 2001)
are used to track an agent. In the CR-POMCP algorithm,
the belief contains a list of possible locations, which can be
compared to the particles in a Particle Filter.

Particle filters and Kalman filters have been applied in
many works to localize a robot (Montemerlo et al. 2002;
Glas et al. 2015; Oyama et al. 2013), however, they require
an observation. In our problem we do not always observe the
position of the person, so the Kalman filter and particle filter
only could do a prediction step, which might be sufficient for
very short time periods. For longer periods, the prediction
will get invalid, since the person is not always going straight.
We have chosen to use particle filters, since they have been
proven to work well for tracking, are able to represent differ-
ent types of distributions, are easy to adapt to our problem
and have a low computational complexity.

4.3.1 Particle filters

Particle filters are used to estimate the posterior of the state,
based on observations. Here the state is the position of the
person, andwe focus on searching and tracking the personWe
do not use the samemethod to track the robot’s position, such
as done in (Montemerlo et al. 2002) for example. A standard
particle filter (Thrun et al. 2005) estimates the current state
based on all its observations: p(st |o0:t ). Algorithm 2 shows
that there are different steps, first a prediction step (line 3),
then theweight is calculated basedon the observation (line 4),
and finally, resampling is done (line 8) based on the weight.
The complexity of this method is linear with the number of
particles.

4.3.2 Adaptations for search-and-track

Tracking algorithms normally start with an initial particle
distribution close to the measured location of the person,
in our case however, we do not always know the person’s

Algorithm 3The update step of the search-and-track particle
filter.
1: function Update(O,S,nparticles)
2: ∀s∈S : sw = mino∈O(w(s, o))  get minimum weight
3: ∀s∈S : sw = sw/

∑
k∈S sw  normalize

4: S̄ = ∅
5: for i = 1 to nparticles do
6: sample from s̄ ∈ S with probability s̄w
7: S̄ = S̄ ∪ {s̄}
8: end for
9: S = S̄
10: end function

location. Therefore, when the person is not visible to us, the
nparticles particles are spread on the map over the areas which
are not visible to the agent(s), as explained in Sect. 4.2.1.

The prediction step is a Gaussian movement in a random
direction: st = st−1 + N (1, σperson)[cos θ, sin θ ]T , where
σperson is the standard deviation, and θ a random direction.
The update step is shown in Algorithm 3, where first the
weight is calculated using the following equation:

w(s, o) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, if ¬isValid(s)

e−|operson−s|2/σ 2
b , else if ¬(opers. = hidden)

wcons, else if Pvis(o, s) = 0

winc(1 − Pvis(o, s)), otherwise

(3)

where isValid indicates whether the state is within the map,
and not in an obstacle; σb can be used to tune the area over
which the weight is spread, we set it to 1.0. Pvis (1) gives the
probability of being visible, therefore, if there is no obser-
vation (i.e. hidden), and the particle position is consistent
with the observation, then we assign a constant weight wcons

(0.01). Otherwise, a lower weight winc � wcons is given (we
set it to 0.001).

In Algorithm 3, the weights are calculated for each obser-
vation o ∈ O in line 2, where they are aggregated taking the
minimum. Using themaximumwould cause that inconsisten-
cies are only detected if all agents detect them as inconsistent
[and thus give it a low score, see (3)], otherwise agents
that are far enough not to see the particle, score it higher
(wcons � winc). In this case a minimum should work better,
because it remarks the inconsistency of the particle. Finally,
an average can also work, since it takes into account all
the observations, but it will eliminate inconsistent particles
slower. To verify if both these methods work we have done
simulations, taking the minimum and the average score.

4.4 Highest belief

Finally, to decide a goal for the seeker agent, we can use the
average position of the particles, which makes sense when
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Algorithm 4 The explorer finds the goals gi for all agents i
using the score function (4).
1: for all h ∈ H do
2: Uh = 1
3: end for
4: for all i ∈ Agents do
5: gi = argmaxh∈H expl_score(sperson,i , h)
6: for all h ∈ H do
7: Uh = Uh − P(dist(h, gi ))
8: end for
9: end for

only tracking is done, since the particles will be close to the
target and normally distributed. In our case however, this
will not be the case when the agent has to search the person,
which can be any not visible location. Therefore, we make
use of a 2-dimensional histogram to find the highest probable
location. This method, the Highest Belief, was proposed in
(Goldhoorn et al. 2014).

The 2D histogram is made by counting the number of par-
ticles per cell, and dividing them by the number of particles
(nparticles or nbelief) to get the probability of the person being
there, see Fig. 7 for an example of the histogram. The size of
the cells of the histogram should be large enough to increase
the stability, but small enough to have enough precision. In
our experiments we have used cells of 3.2 m × 3.2 m.

Next, the nhp highest belief points Hi are selected, and are
sent to the other agents. Each h ∈ Hi contains a position hpos,
and a belief hb. The received highest probability points (Hi )
of all agents and of the agent itself are joined by summing
the beliefs for each highest probability point, and thereby
generating the set of all highest belief points H .

5 Goal selection

After the belief is updated and the Highest Belief points
are created, received, and joined, the Goal Decision phase
(Fig. 2) starts, where the robots either tracks the person or
explore the most probable locations. If the person is vis-
ible and the observations are consistent, then the agents
follows the person side-by-side (Garrell et al. 2013; Tracking
in Fig. 2). Otherwise, the agents explore the joined highest
belief locations H , as shown in Algorithm 4, which is based
on the work of (Burgard et al. 2005). Each agent calculates
the goals for all agents, using the joined highest belief points
H . A score is calculated for each highest belief points h ∈ H
per agent location s:

expl_score(s, h) = wuUh + wd
dist(s, h)

dmax
+ wb

bh
bmax

(4)

where Uh is a utility function for highest belief point h, s
the agent’s position, and dist calculates the shortest path

distance. The second and third term are normalized by the
maximum distance dmax and maximum belief bmax, with
respect to the list of potential target locations H . The utility
Uh (Burgard et al. 2005) is initialized with 1 (line 1 of Algo-
rithm 4), and updated before searching the goal of the other
robot (line 4), where gi is the already assigned goal to agent
i , and:

P(d) =
{
1.0 − d

dmax_range
, if d < dmax_range

0, otherwise
(5)

with dmax_range being the range within which we want to
reduce the chance of other agents’ goals being chosen. The
terms of (4) are weighted by wu , wd , and wb, and the values
we found to work well are: wu = 0.4, wd = 0.4, and wb =
0.2.

The order in which the agents are assigned the goals is
important, since the assignment of a goal h to an agent
reduces Uh , and therefore reduces the probability of other
agents being assigned this goal. We chose to assign the agent
with the highest sum of probabilities (

∑
h∈Hp

bh) a goal first,
and the lowest last. Most importantly, the order should be
consistent for all agents such that all agents calculate the same
goals, assuming they have received all highest belief points
Hi . With this method it can occur that an agent a1 is assigned
a goal g1 that is further away than a goal g2 assigned to a2,
because the latest was assigned firstly. Note that finding the
closest goals g ∈ G, such that the sum of the distances with
the agents a ∈ A is minimum: mina∈A

∑
g∈G dist(a, g) has

a complexity of O(‖A‖!). Therefore, we approximate it, by
re-iterating over the calculated goals and assign the closest
goals, in the same order (i.e. on sum of the highest belief).
It can be seen that for agents from which no positions have
been received, no goals are calculated.

Finally, to prevent changing the goal too often, the goal is
only changed every tupdate time, or when the person is visible.

The method explained in this section is only guaranteed
to give the same search goals for all agents if they receive
all the highest belief points of all agents synchronously. If
not all highest belief points are received, the resulting search
goal positions may be close to each other, which results in a
less efficient search.

6 Experimental setup

In this section the used robot and environmental maps are
explained.
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6.1 The robots

For the experiments we have used our mobile service robots,
Tibi and Dabo, which have been created during the URUS
project (Sanfeliu et al. 2010) to interact with people in urban
pedestrian areas. They are based on a two-wheeled Segway
RMP200 platform, which can work as an inverted pendulum
in constant balancing, can rotate on the spot (nonholonomic),
and they have wheel encoders providing odometry and incli-
nometers providing pitch and roll data. To perceive the
environment they are equipped with two Hokuyo UTM-
30LX 2D laser range sensors, used to detect obstacles and
people, giving scans over a local horizontal plane at 40 cm
above the ground, facing forward and backward. The lasers
have a long detection range of 30 m, and a field of view of
270◦, which is limited to 180◦ for each of the lasers because
of the carcass of the robot. Additionally, a distance of about
45 cm between the front and rear laser causes a blind zone.
As video camera Dabo uses a PointGrey Ladybug 2 360◦
camera, located on the top of its head; whereas Tibi uses a
Bumblebee 2 stereo camera at the front and two Flea 2 cam-
eras at the back, which in total cover much less than 360◦,
and therefore has less vision.

As social robots, Tibi and Dabo are meant to interact with
people, and to perform this, theyhave: a touchscreen, speaker,
movable arms and head, and LED illuminated face expres-
sions. Power is supplied by two sets of batteries, one for
the Segway platform and one for the computers and sen-
sors, giving about a 5h of full working autonomy. Two
onboard computers (Intel Core 2 Quad CPU @ 2.66 and
3.00 GHz with 4 GB RAM) manage all the running pro-
cesses and sensor signals. As operating system the systems
run Ubuntu 14.04 with ROS (Robot Operating System), a
middleware.

6.2 People recognition

To detect people, and recognize the target person, both range
laser and vision have been combined. A boosting leg detec-
tor (Arras et al. 2007) provides the position of potential
people in the scene, using the horizontal front and rear range
laser sensors. False positives are reduced by filtering out
detections that are close to, or inside a known obstacle. A
Multiple Hypothesis Tracking For Multiple Targets (Black-
man 2004) keeps the trail of the people and assigns them
identifiers.

A people detection algorithm is not enough, because we
also have to recognize the personwe are looking for. A robust
method is to use AR Markers (Augmented Reality Markers)
(Amor-Martinez et al. 2014), which were worn by the per-
son, see Fig. 1. The AR algorithm gives an estimation of the
pose with respect to the camera. We used an improved ver-
sion of this Pose Estimation algorithm of Amor-Martinez et

al, which in combination with previous local window bina-
rization makes the method more robust to outdoors lighting
issues. On Dabo we use the Ladybug 360◦ camera (which
internally has five cameras) to detect a tag from any direc-
tion, and on Tibi we use four cameras with smaller angles
of view. The AR detection algorithm is run on one computer
for all cameras and ran on average at 4 Hz. False positive
detections of the AR Markers are reduced by accepting only
detections close to a laser detection; which, as side-effect,
generates some false negatives.

6.3 Robot mapping and navigation

Prior to the experiments, a map was generated by the robot
using the range lasers, with the ROS package GMapping,
which implements OpenSlam’s GMapping. This is a highly
efficient Rao-Blackwellized particle filer that learns grid
maps from laser range data (Grisetti et al. 2007). Although
this method can be used for localization and mapping, we
did not want to use it during the experiments, because it also
can mark persons as being obstacles if they stand still for too
long. Instead, we used the Adaptive Monte Carlo Localiza-
tion (AMCL) approach, also available as ROS package, for
localization. This method uses a particle filter to track the
pose of a robot against a known map (Arulampalam et al.
2002).

The robot moved through the environment using a set of
navigation algorithms provided by ROS. A Dijkstra global
planner uses the previously generated map to calculate the
shortest path. To avoid dynamic obstacles, a local Trajec-
tory Roll Out planner is used, which generates and scores
trajectories over a costmap that is updated with range laser
data. The input of the navigation algorithm is the desired goal
coordinates and orientation.

6.4 Environments and maps

Experiments were conducted in the Barcelona Robot Lab
(BRL), Telecos Square of the North Campus of the Univer-
sitat Politècnica de Catalunya (UPC), Barcelona, Spain, see
Figs. 1 and 7. The area has a size of 60 m × 55 m (about
1400 m2 free space), and contains a square with trees, a ter-
race and a covered area with several columns.

7 Simulations

This section explains the setup of the simulations and a
detailed analysis of the results.
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7.1 Setup

The maps contain discrete cells that either are free or contain
a (static) obstacle. The agents cannot see through obstacles
(static or dynamic), and they can not pass through static
obstacles. Tomake the simulation not too complex, the agents
can pass through each other and across dynamic obstacles.
Although the map contains cells, coordinates of the agents
are continuous. And for each iteration the agents do a step of
1 cell distance (also in diagonal, thus not

√
2) in the direction

of its goal. The simulations do not include neither accelera-
tion, nor friction, nor collision, for simplicity.

A ray tracing algorithm is used in simulation to detect
visibility due to obstacles. In contrast to our previous work
(Goldhoorn et al. 2014) we limit the visibility also based on
the distance using a probability function (1) and the parame-
ters (shown in Table 1) were tuned based on real world data.

A crowded environment was simulated by adding a group
of 10 or 100 people (dynamic obstacles) to the scene, who
reduce the robot’s visibility, but they did not block the agents’
paths. The movements of the simulated people (including
the person to be found) were semi-random, they were given
a random goal to which they navigated to, using a shortest
path algorithm; a new random goal was assigned to them
when the goal was reached.

More than 40,000 experiments were done, repeating each
of the conditions at least 250 times. For each run of simula-
tions the robot’s start position, and the person’s start and path
were generated randomly. To make the comparison as fair as
possible, the same positions were used for all the algorithms
and conditions, such that the initial state and the paths of the
person and the dynamic obstacles were the same.

7.2 Simulation goals

In the simulations the two belief update algorithms were
tested: the Multi-agent HB-CR-POMCP Explorer and the
Multi-agent HB-PFExplorer. For the latter, two fusingmeth-
ods were tried for the observations of the different agents in
the update phase: the average and the minimum. As an
upper line we added a best-case algorithm, the See All Fol-
lower, which is a follower that always knows the location
of the person, independent of the distance or any obstacles
being between the seeker and the person.

The goals of the simulations were to see how well the pre-
sented search-and-track methods worked for multiple agents
and under different circumstances. Here we limited the tests
to adding up to 100 dynamic obstacles and using up to five
seekers that either had communication or had not. We split
the simulations in two types: in searching and tracking. For
searching, the person should be found as fast as possible, and
for tracking, the agent should be close to the person as long

as possible while seeing him/her. In all cases the See All
Follower should work best, since it always sees the person.

The searching simulations were started with the person
being hidden to all the seekers and without moving. The
simulations ended when either a robot reached the person at
a distance of 1 cell (0.8m in the used map), or 2000 steps
were reached. The simulations were measured using the time
it took for at least one seeker to see and to be next to the
person. The tracking simulations were done with the person
being visible to one or more of the seekers and continued
for 500 time steps. Another measurement was the distance
between the seeker and the person, hereby taking the lowest
distance over all of the seekers.

Furthermore, a measurement of the belief (probability
map) of the person εb has been introduced, which indicates
the error of the person’s location in the belief with respect to
the real location, which can only be calculated in the simula-
tion. The value εb is aweighted distance between the person’s
location in the probability map and in reality:

εb =
∑

x∈A

bx‖x − p‖ (6)

where A is the discrete map, x represents a grid cell, bx is the
probability of cell x and p is the real (continuous) location
of the person.

7.3 Algorithm parameter values

The values of the parameters used in the simulations and
real experiments, which were explained in Sects. 4 and 5,
are shown in Table 1. The HB-CR-POMCP method updated
its belief every 3 s in the real experiments and every 3 iter-
ations in the simulations; the other parameters for the
HB-CR-POMCP algorithm are explained in more detail in
(Goldhoorn et al. 2014). The parameters po,Tibi and po,Dabo
indicate the trustworthiness of the sensors, and since the
vision of Tibi was less than the 360◦ vision of Dabo, we
gave it a lower probability. All the parameters were tuned
first in simulation, and later while doing tests with the real
robots.

7.4 Results

The results of the search simulations are shown in Fig. 3,
where the average time (discrete steps) it took to find the
person is visualized. The time is measured until one of the
seekers found the person and is next to him/her. The influence
of communication is shown in the rows and the effect of the
number of dynamic obstacles is shown in the columns. Since
none of the datawere normal, we used theWilcoxon ranksum
test, 2-sided to compare the different conditions.
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Fig. 3 Thegraphs show the average (and 95%confidence interval bars)
of the time it took for one or more seekers to find and get close to the
person. In the first row there is communication between the seekers, in

the second there is not. In the columns the number of dynamic obsta-
cles change. As a reference, the See All Follower took 34.7± 0.6 steps
(mean ± standard error)

For all cases the See All Follower was significantly faster
(p < 0.001) than any other algorithm, since it was always
able to see everything. Figure 3 shows that it took more than
four times longer when using one seeker with the particle fil-
termethod.Whenusingonlyone seeker, the particlefilterwas
significantly faster than the CR-POMCP (p < 0.001). For
the multi-agent simulations, the use of communication was
also significantly better (p < 0.05), except for some cases
with the Multi-agent HB-CR-POMCP Explorer. In most of
the cases, the Multi-agent HB-PF Explorer was the fastest
method, and in particular the version that used the average.

For the track phase we want the seeker to stay close to and
have the person visible as long as possible. Figure 4 shows
the average time it took to find the person again after losing
him/her. The See All Follower still was best, but between the
tested methods there was no clear winner, nor did communi-
cation give an advantage for one or another method, which
most probably was because the robots were close to the per-
son already (see Fig. 4). The increasing number of robots
reduced the recovery time significantly, however, we did not
simulate robots blocking each other’s path, which in the real

world would have reduced the efficiency of having multiple
robots in a small area.

The average distance between the person and the closest
agent when tracking is shown in Fig. 5. The particle filter
method resulted in lower distances, and also using commu-
nication resulted in lower tracking distances.

The belief error (6) was calculated for the algorithms that
use a probability map of the location of the person. For the
search simulations the overall average and standard deviation
of the belief errorwere 25.4 ± 8.9mwhen therewas commu-
nication and 27.8±7.5mwithout. Figure 6 shows the average
belief error for the track phase. The lowest belief error for the
search simulations with communication was with theMulti-
agent HB-PF Explorer method, using the minimum weight
combination. Therewas no clear difference in the other cases.

The influence of having more dynamic obstacles is not
clear (i.e. no significant difference for most cases) in the
search time (Fig. 3), because they only block the agents’
vision and not the path, i.e. the robot can go through the
dynamic obstacles. From Fig. 4 can be seen that 10 dynamic
obstacles almost did not influence the recovery time, but 100
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Fig. 4 The graphs show the average (and 95% confidence interval bars) time to discover the person after having lost him/her, due to (dynamic)
obstacles for example

did. Because of the large surface (1400m2), having 10 people
walking around randomly had a low probability of influenc-
ing the vision of the robot, whereas 100 had a much higher
probability. Finally, the influence of dynamic obstacles can
also be seen in the average distance to the person (Fig. 5) and
the belief error (Fig. 6).

To summarize, we found that, as expected, the base line
See All Follower was faster in searching, and it tracked the
person during the longest time. For searching we found the
Multi-agentHB-PFExplorer to be faster than theMulti-agent
HB-CR-POMCP Explorer in most cases, and in general,
there was an improvement when using communication.
Tracking showed no statistical difference between the meth-
ods (except for the See All Follower) in recovery time; it only
showed that having more seeker agents resulted in a better
performance. For the distance to the person while track-
ing, theMulti-agent HB-PF Explorer showed slightly better
results. As weight combination method for the Multi-agent
HB-PF Explorer when searching, the average was found to
be slightly faster, but theminimum resulted in a slightly lower
belief error.

8 Real-life experiments

The simulated experiments were done to know how well
the different methods worked under different circumstances
(dynamic obstacles andwith several seeker agents).We how-
ever, also wanted to verify how well the method worked in
real-life. Therefore, we used our robots Tibi and Dabo to
verify the Multi-agent HB-PF Explorer method in a large
environment, the UPC campus (Telecos Square). We tried
the version that used the minimum scores when using the
observations in the particle filter update phase.

Like in the simulations, for the search behaviour we mea-
sured the time to encounter the person (by the first robot),
and for the track behavior, we measured the recovery time
and average distance to the person. Since we did not have
a ground truth available, we had to use the information
obtained through the sensors of the robots and the videos,
which show the behavior of the robots. This had as conse-
quence that the distance to the person was only measured
when the person was visible.
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Fig. 5 The graphs show the average distance between the person and
the closest seeker when following. The rows show communication or
not, and in the columns the number of dynamic obstacles change. The

See All Follower had the person always in sight and therefore was at a
distance of about 0.88m, i.e. the following distance

8.1 Analysis

Different types of experiments were done: exploration with-
out a person, searching and tracking, and tracking only; they
took several weeks of testing and experimenting, fromwhich
we obtained a total of about 3h of experimental data, and
whereby the robots drove each a total distance of about 3km.
A few persons were used during the experiments in which
they hid behind one of the obstacles, or just stood out in the
open. The robots tried to follow the person at a distance of
1m, and they always tried to maintain a minimum distance
of 1 m to the other robot. The parameters used during the
experiments are shown in Table 1.

Table 2 gives an overview of the different statistics of
all the experiments. The distances shown were measured
using the robot’s sensors, i.e. the robot’s movement, but also
the person’s moved distance, and therefore, is not complete,
since the person was not visible the whole time. The distance
per robot indicates the total distance covered on average by
the robots during the experiments, the measured dist. per-
son indicates the distance which was covered by the person,

while the robot measured it. The visibility indicates the time
the person was visible to a robot, the time connected indi-
cates the time the robots were exchanging data. The average
distance to the person is the distance between the robot and
the person, measured when the person was visible. The num-
ber of dynamic obstacles are the average number of people
which were visible simultaneously. The average time found
is the time it took, on average, for a robot to find the person.
Finally, the average recovery time is the time it took to find
the person after having lost him/her.

In the next subsections we try to compare the results with
the simulations, using the time found for the search exper-
iments, and the recovery time and average distance to the
person. However, in the real experiments the robot some-
times stopped or slowed down (due to obstacles, noisy signals
or the low speed), therefore, the comparisons with the sim-
ulations should be done with the distance. Since the speed
in the simulations was continuous (0.8m per discrete time
step), we can use this to calculate the distance covered, and
then compare the distances to the distance found and recov-
ery distance. Nevertheless, we should take into account that
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Fig. 6 The average belief error [using (6)] when following. The rows show communication or not, and the columns the number of dynamic
obstacles. The See All Follower does not use a belief and is therefore not mentioned

we can not do a statistical comparison of the results, since
this would require many more experiments.

Figure 7 shows two recordings taken during the experi-
ments: the snapshots, the maps with the robot locations, and
the belief maps of both robots. The belief map shows that,
when the person was detected, the localization was relatively
precise (right), but when it was not detected for some time,
the location probability is more spread (left). Further infor-
mation and videos of the experiments can be found on: http://
www.iri.upc.edu/groups/lrobots/search-and-track/ar2016/

First we will explain the three different kind of experi-
ments done, followed by a short discussion.

8.1.1 Exploration only

In these experiments we wanted to have a look at the search
behavior, and therefore no person was present; this can be
seen inTable 2, because there is no persondistance.An explo-
ration/search phase is shown in the left of Fig. 7, where none
of the robots saw the person and both have a different belief.
The experiments showed that the robots clearly explored the
whole environment several times, because the belief slowly
propagated to locations that were not visible to the robot.

8.1.2 Search-and-track

In these experiments a person was present and the robots
started not seeing him/her. The robots kept communi-
cating the observations and therefore, could update their
belief. They also explored in different directions looking
for the person. As soon as one robot saw the person, the
other robot also went there. There were also situations
where the person was lost, because he went faster than the
robot, or because one robot temporarily failed; however, the
belief of the working robot still helped to recover the per-
son.

The distance covered by the robots until a person was
found, was on average 69.3 ± 74.0m, which is close to
the distance covered in simulation, 67.5 ± 66.9m (see
Fig. 3 for the time with 0–10 dynamic obstacles, which
was converted to distance). For the tracking part, the
recovery distance was 8.5 ± 12.3 m, which is also close
to the simulation’s 5.1 ± 7.5 m (converted to distances,
see Fig. 4). The average distance to the person shows
a low value (8.4m on average), because only measure-
ments were taken when the person was detected by the
robot.
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Table 2 Summary of the data
recorded during all the
experiments. The averages (avg)
are shown as
average± standard deviation

Exploration Search & T. Tracking Total

Distance per robot (km) 1.2 1.2 0.7 3.2

Measured dist. person∗ (km) – 0.4 0.5 0.9

Total time (h) 1.1 1.2 0.9 3.2

Avg. visibility (%) 0 16.3 36.4 15.3

Avg. time connected (%) 95.0 79.5 85.8 86.6

Avg. distance to person (m) ∗ – 8.4 ± 6.4 8.4 ± 5.6 8.3 ± 5.9

Avg. number dynamic obst.∗ 2.0 ± 1.5 0.6 ± 1.3 3.9 ± 2.8 1.9 ± 2.2

Avg. time found (s) – 106.8 ± 138.7 23.5 ± 42.5 72.9 ± 117.6

Avg. distance found (m) – 69.3 ± 74.0 6.2 ± 13.6 27.3 ± 53.3

Avg. time recovered (s) – 19.6 ± 39.0 12.0 ± 28.3 15.3 ± 33.6

Avg. distance recovered (m) – 8.5 ± 12.3 3.3 ± 9.3 3.6 ± 9.5

∗Measurements which include the person location were only available when the person was visible to a robot

Fig. 7 Two different scenes during the experiments where the robots
search for and track the person. The large maps show the robots (blue
and orange) and the trajectories they have executed; the red circle indi-
cates that the person has been detected at that location, and awhite circle

means that the person was detected there. The smaller maps represent
the beliefs of Tibi (up) and Dabo (down): black squares are obstacles,
the blue circles are the robots, and the white to red squares refer to a
low to high probability of the person being there (Color figure online)

8.1.3 Tracking

In the tracking experiments the robots started with the per-
son being visible, and then followed him/her, but due to
speed or (dynamic) obstacles they lost the person out of
sight temporarily. Nonetheless, the person was found rela-
tively quickly again, because he/she was tracked using the
belief.

For some of the tracking experiments, the robots had to
detect the person first, which took on average 23.5 s, but only
6.2m, because the person was close. The recovery distance
was 3.3±9.3m,which is also close to the values in simulation
(5.1 ± 7.5m). The average distance to the person was a bit

higher, because the robot was relatively slow, and because
having two robots tracking the person requires them to be at
a minimum safe distance.

In the last experiment the robots searched for the person,
whichwas behind or close to a group of people who occluded
him/her, see Fig. 1. Since there were two robots, they had a
higher probability of seeing the person, but when they did
not see the person, the belief grew in all directions with a
higher probability on areas where the robot probably would
not see anything. Here, the dynamic obstacles (small light
blue circles in the belief map) were taken into account, and
the particles propagated behind fixed obstacles and dynamic
obstacles (which was not done previously). Due to the low
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resolution of the belief map, there was also a belief at the
location of the other people and the robot. Note that the low
resolution of the map was chosen such that we could group
enough particles to create a higher certainty.

8.2 Discussion

The experiments showed that the robots explored the whole
environment, thereby taking into account the location of each
other.Andwhen tracking, itwas also demonstrated thatmain-
taining the belief continuously is important when the person
gets out of sight. Furthermore, the robustness of the multi-
agent method was shown in experiments where one robot
suddenly stopped (because of a hardware or software prob-
lem). Then, the other robot recovered the person’s position,
since it had been receiving the person’s location until the
other robot stopped and it did not receive any information
from the other robot. Therefore, using its own belief and
observation, it only planned the next goal for itself.

False positive detections only occurred a few times, con-
centrating the belief slowly on that location, but—when the
duration of the false positive was not longer than a few
seconds—the belief expanded again, allowing the robots to
continue searching. False negative detections simply delayed
detecting the person.

Finally, we will discuss some issues with the methods
while doing the experiments. First, the robots took the same
path several times when they explored while this—according
to a human point of view—might not be most efficient, since
taking different paths allows them to explore more. Our
exploration algorithms, however, do not take into account the
path, only the goals are optimized such that the robots choose
the closest most probable goal, which is not yet chosen by
the other. To take the path into account, we should change
the navigation algorithm, which might be complex when the
number of seekers is high. Charrow et al. (2013) tried to opti-
mise for maximal information and therefore, indirectly take
the paths into account.

Second, the belief maps of Tibi and Dabo were not always
equal, even though they received the same observations—
if the communication worked—because there is a random
factor in the propagation of the particles, which causes a
different spread of the belief. When the seekers are without
communication, they can only use their ownobservations and
therefore, their beliefs will most likely be different. When
they recover the communication they do not send historical
information, and although this might be a useful feature, it
can be a large amount of information if the amount of seekers
is high. In (Hollinger et al. 2015), the beliefs are fused by
taking a weighted sum of the neighbors’ beliefs.

The robots sometimes were not able to drive up or down
the ramp due to the narrow passage and the inclined position,
whichmade the horizontal lasers detect the floor as an object.

In some cases this caused the planner to avoid the ramp and
take a detour. In order to copewith ramps, a three dimensional
map and navigation method should be used.

9 Conclusion

In this work, we have presented a unified method for search-
ing and tracking a person using a group of mobile robots in a
large continuous urban environment with dynamic obstacles.
The observations are obtained from a leg detection algorithm
that uses laser sensors and a marker detection algorithm in
order to recognise the person. However, our method does
not require a specific sensor type, but requires a location
of the person or an empty observation—if not visible—as
input; moreover, the observations of all other agents are used.
At first, the belief of the person’s location is maintained
using either theMulti-agent HB-CR-POMCPExplorer or the
Multi-agent HB-PF Explorer, then this belief is segmented
in a histogram matrix to obtain the locations with the high-
est probability of the person being there. Thereafter, in the
goal decision phase, the agents are either sent directly to the
location of the person if he/she was visible, otherwise an
exploration is done of the most probable locations.

Simulations were done in a large urban environment,
part of a campus, with up to 100 dynamic obstacles mov-
ing around. For searching, in most cases, the Multi-agent
HB-PF Explorer was fastest in finding the person, and in
particular using the average weight, when using the obser-
vations of all agents.Also communication showed significant
improvement for searching. For tracking we did not find any
significant difference between the methods, neither when
using communication. Furthermore, when looking at the
tracking distance, the Particle Filter method got closer to the
person. And havingmultiple robots communicating, reduced
the average tracking distance. Finally, the belief of the Parti-
cle Filter method was found to be closer to the real position.

The real experiments showed consistent results with the
simulations and demonstrated it to be a pragmatic method to
search and track a person in the real world with two robots.
The search behavior showed an exploration over the field,
whereby both robots were coordinating, and the communi-
cation between them also showed a more robust system, for
example when one robot failed the other continued tracking
the person quickly. Themethodwas also shown to be a robust
tracker when several people (dynamic obstacles) obstructed
the vision of the robot temporarily, because they were able
to find the person quickly again.

9.1 Future work

The exploration can be improved by taking into account the
path which the robots take such that they also explore the
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environment, like (Charrow et al. 2013) for example who try
to maximize the mutual information of the agents.

In our experiments, the robots were able to communi-
cate during most of the time, but when during some time the
communication is not possible, the information of the other
robots is not used to update the belief. To compensate this,
the belief of each robot could be communicated such as in
(Hollinger et al. 2015), but when the number of agents is
high, the network bandwidth might be too high.

Finally, in order to analyse the effects of the communi-
cation delays and to verify the rest of the methods more
simulations and real-life experiments should be done.
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