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Abstract In this paper we propose a novel approach for
intuitive and natural physical human–robot interaction in
cooperative tasks. Through initial learning by demonstra-
tion, robot behavior naturally evolves into a cooperative task,
where the human co-worker is allowed to modify both the
spatial course of motion as well as the speed of execution
at any stage. The main feature of the proposed adapta-
tion scheme is that the robot adjusts its stiffness in path
operational space, defined with a Frenet–Serret frame. Fur-
thermore, the required dynamic capabilities of the robot
are obtained by decoupling the robot dynamics in oper-
ational space, which is attached to the desired trajectory.
Speed-scaled dynamic motion primitives are applied for the
underlying task representation. The combination allows a
human co-worker in a cooperative task to be less precise in
parts of the task that require high precision, as the precision
aspect is learned and provided by the robot. The user can
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also freely change the speed and/or the trajectory by sim-
ply applying force to the robot. The proposed scheme was
experimentally validated on three illustrative tasks. The first
task demonstrates novel two-stage learning by demonstra-
tion, where the spatial part of the trajectory is demonstrated
independently from the velocity part. The second task shows
how parts of the trajectory can be rapidly and significantly
changed in one execution. The final experiment shows two
Kuka LWR-4 robots in a bi-manual setting cooperating with
a human while carrying an object.

Keywords Human robot coordination · Learning by
demonstration · Dynamic motion primitives · Robot
learning · Robot control

1 Introduction

An important aspect for future use of robots in our home
environments as well as in production plants is their abil-
ity to cooperate with humans. Robots dominate over human
capabilities in precision and efficiency while performing
repetitive and monotonous tasks, while human are unbeaten
in adaptation to new situations and upcoming problems
(Faber et al. 2015). Joining both worlds by means of direct
human–robot cooperation brings new advantages and poten-
tially solves many open problems in robotics.

Cooperative task execution in physical human–robot inter-
action can be classified based on the level of control the robot
assumes (Adorno et al. 2011b). Most commonly, the human
and the robot are in master–slave control mode, with the
operator–master–retaining complete control over the evo-
lution of the cooperative task. The interaction is provided
through force or visual feedback (Evrard et al. 2009). Alter-
natively, the task can be controlled by the robot and only

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-017-9676-3&domain=pdf
http://orcid.org/0000-0002-8728-7731
https://doi.org/10.1007/s10514-017-9676-3


1024 Auton Robot (2018) 42:1023–1035

initiated by the human (Soyama et al. 2004). In some appli-
cations, e. g., in rehabilitation robotics (Krebs et al. 1998), the
control over the task evolution is dynamically shared between
the human and the robot (Mortl et al. 2012). The level of
control can also change based on the current situation. For
example, when the human is transferring knowledge to the
robot, the robot will often be controlled differently than dur-
ing the actual execution. The behavior of the robot might also
be personalized to suit each coworker perfectly. The learning
of robot behavior is thus crucial for effective cooperative task
execution.

However, robotic learning can be applied to various
aspects of the task; for example, the position, the velocity, the
level of adaptation and/or autonomy, etc. Furthermore, dif-
ferent feedback options are available through visual, haptic,
or direct physical interaction (Gams 2016). Finally, many of
these aspects and conditions need to be combined in a single,
preferably intuitive, system that allows interaction similar to
that between two humans.

1.1 Problem statement

In this paper we investigate the learning of robot behavior
duringhuman–robot cooperative tasks.Cooperative task con-
trol should allow natural learning and adaptive execution.
Therefore, it must:

– provide physical human–robot interaction,
– allow non-uniform changes of execution speeds,
– enable adaptation of a trajectory during its execution,
without the need to re-plan the whole task when a new
situation arises,

– provide a certain degree of cooperative intelligence, i. e.,
it should be compliant when accuracy is not needed, but
stiff when it is needed,

– it should be applicable to both single arm and bimanual
human–robot cooperation.

pHRI has been heavily investigated in the past (Evrard
et al. 2009; Soyama et al. 2004; Krebs et al. 1998; Calinon
et al. 2010), including for bimanual robot operations (Adorno
et al. 2010; Mortl et al. 2012; Park and Lee 2015). Several
papers explore sub-aspects of the stated problem. For exam-
ple, in a recent paper Ramacciotti et al. (2016) explore shared
control for motion speed and trajectory adaptation. However,
to the best of our knowledge, a complete approach that fulfills
the given problem statement, has not been proposed yet.

In this paper we propose a control architecture, which ful-
fills the above problem statement. Throughout execution, the
robot constantly learns from the interaction with the human.
First, during the initial learning of the task, the control is
completely handled by the human operator. However, during
the task repetition, the task is analyzed and the robot gradu-
ally takes control over the parts with low variance of executed

trajectories. The human can at any time take back the con-
trol over the task execution by again increasing the variance
through physical interaction.

Initial idea at such a framework was published in Nemec
et al. (2016). In this paper we further extend the approach
with (a) passivity based control framework for HRI scheme;
(b) improved speed adaptation scheme; (c) additional exper-
iments, that prove the validity of the proposed concept.

1.2 Related work

The implementation of a pHRI scheme depends primarily
on the underlaying policy representation, which determines
also subsequent methods for learning by demonstration, cal-
culation of the variability distribution and implementation
of non-uniform speed changes. A motor skill necessary to
accomplish the given task does not only comprehend the path
that the robot should follow, but also the variation of coordi-
nation patterns during the movement (Calinon et al. 2012).
A well known paradigm to cope with such requirements is
to encode the task as a dynamical system. Khansari-Zadeh
and Billard (2011) have introduced a method of encoding
motion as a nonlinear autonomous Dynamical System (DS)
and sufficient conditions to ensure global asymptotic stabil-
ity at the target. The method uses several demonstrations
and ensures that all motions follow closely the demonstra-
tions while ultimately reaching and stopping at the target. It
was expanded also for fast motions, for example for catching
objects (Salehian et al. 2016). Themethod relies on Gaussian
mixture model (GMM) representation, which was also used
byCalinon et al. (2014). It sequentially superimposes dynam-
ical systems with varying full stiffness matrices. The method
has been extensively applied, for example also for virtual
guides, where the robot is compliant only in the direction of
the trajectory (Raiola et al. 2015), and for learning of physical
collaborative human–robot actions (Rozo et al. 2016). Other
approaches have been proposed for both interactive tasks and
for learning actions from several demonstrations. Mixture of
interaction primitives has also been proposed (Ewerton et al.
2015). An example of learning from several demonstrations
are the probabilistic motion primitives (ProMP) (Paraschos
et al. 2013). These enable the encoding of stochastic sys-
tem behavior. Modified DMPs to include coupling terms of
different kinds have also been proposed for interaction with
humans in single-arm and bimanual settings (Gams et al.
2014). Although these representations allow speed scaling,
non-uniform speed scaling in its original form is not possi-
ble by either. Recently, interaction tasks have been discussed
in a variation of motor primitives called interaction primi-
tives (Amor et al. 2014), which maintain a distribution over
the DMP parameters and synchronizes phase with exter-
nal agents (e.g. humans) by dynamic time warping. In our
approach we rely on the framework of dynamicmotion prim-
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itives (DMP) (Ijspeert et al. 2013) and its extension to cope
with non-uniform speed changes (Nemec et al. 2013).

This paper is organized as follows. Section 2 outlines the
framework of dynamic movement primitives along with the
speed profile encoding extension. The novelty of the paper is
described inSect. 3,which combines the separate sub-aspects
into a complete algorithm. Applications of the proposed
approach to Learning byDemonstration (LbD) and to biman-
ual physical human–robot cooperation are presented in Sect.
4. A discussion concludes the paper.

2 Learning by demonstration for human–robot
cooperation scheme

In our work we rely on motion representation with dynamic
motion primitives (DMPs) (Ijspeert et al. 2013), extended
for Cartesian space movements (Ude et al. 2014). These
are used to encode the demonstrated cooperative human–
robot task. Kinesthetic guiding can be used to capture the
desired robot motion. The original DMP formulation does
not provide the means to variate the speed of movement in a
non-uniform way without changing the course of movement.
However, in our approach we do need to apply non-uniform
speed changes, prompting the requirement for appropriate
trajectory representation. A suitable representation is Speed-
Scaled Dynamic Motion Primitives (SS-DMPs), which we
originally proposed in (Nemec et al. 2013).

Through kinesthetic guiding we first acquire the initial
movement policy in Cartesian coordinates

G = {pk, qk, ṗk,ωωωk, p̈k, ω̇ωωk, tk}Tk=1. (1)

pk ∈ R
3 are the positions, while qk ∈ S3 are the unit quater-

nions describing orientation, with S3 denoting a unit sphere
in R4. Besides the positions and orientations, we also record
the position and orientation velocities (ṗk, ωωωk) and accelera-
tions (p̈k, ω̇ωωk). k are trajectory samples, and T is the number
of samples.

We parameterize this demonstrated policy with a nonlin-
ear dynamical system that enables the encoding of general
trajectories (Ijspeert et al. 2013; Nemec et al. 2013; Ude et al.
2014). The trajectory can be specified by the following sys-
tem of nonlinear differential equations for positions p and
orientations q

ν(s)τ ż = αz(βz(gp − p) − z + fp(s), (2)

ν(s)τ ṗ = z, (3)

ν(s)τη̇ηη = αz (βz2 log (go ∗ q) − ηηη) + fo(s), (4)

ν(s)τ q̇ = 1

2
ηηη ∗ q, (5)

ν(s)τ ṡ = −αss. (6)

Here s denotes the phase and z and ηηη are auxiliary vari-
ables. The above system (2)–(6) converges to the unique
equilibrium point at p = gp, z = 0, q = go, ηηη = 0, and
s = 0. Asterisk ∗ denotes quaternion multiplication and q̄
quaternion conjugation. Eq. (15) provides the definition of
quaternion logarithm. The nonlinear forcing terms fp(s) and
fo(s) are formed in such away that the response of the second-
order differential equation system (2)–(6) can approximate
any smooth point-to-point trajectory from the initial position
ppp0 and orientation qqq0 to the final position gp and orientation
go. The nonlinear forcing terms are defined as linear combi-
nations of M radial basis functions (RBFs)

fp(s) =
∑M

i=1 wi,p�i (s)
∑M

i=1 �i (s)
s, (7)

fo(s) =
∑M

i=1 wi,o�i (s)
∑M

i=1 �i (s)
s, (8)

�i (s) = exp
(
−hi (s − ci )

2
)

, (9)

where free parameterswi,p, wi,o determine the shape of posi-
tion and orientation trajectories. ci are the centers of RBFs,
evenly distributed along the trajectory, with hi their widths.
By setting αz = 4βz > 0 and αs > 0, the underlying sec-
ond order linear dynamic system (2)–(6) becomes critically
damped.

Compared to Ude et al. (2014) and analogous to Nemec
et al. (2013), we introduced the temporal scaling function
ν(s) which is used to specify variations from the demon-
strated speed profile. Similarly to the forcing terms (7) and
(8), it is encoded as a linear combination of Mv RBFs

ν(s) = 1 +
∑Mv

j=1 v j� j (s)
∑Mv

j=1 � j (s)
, (10)

where v j are the corresponding free parameters (weights).
In order to parameterize the demonstrated control policy

with a DMP, the weights wi,p, wi,o and v j need to be cal-
culated. The shape weights wi,p and wi,o are calculated by
applying standard regression techniques (Ude et al. 2014) and
using the demonstrated trajectory (1) as the target for weight
fitting. For ν we initially set v j = 0, i. e. ν = 1, meaning
that the demonstrated speed profile is left unchanged. v j are
assigned a different value only through the change of the
execution speed.

2.1 Robot control

Position and orientation trajectories, obtained from DMP,
are fed directly to the robot controller as reference values. In
pHRI, safety is the primary concern and the robot controller
should exhibit stable operation in all possible interactions
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with environments and humans, and should not produce
unexpected motions. To achieve this goal we applied the pas-
sivity paradigm for the controller design. It has been widely
used in robotics as it preserves stable operationwith respect to
the feedback and parallel interconnections of passive systems
(Hatanaka 2015; Zhang and Cheah 2015). In our study we
applied the two level passivity based impedance controller for
manipulators with flexible joints in the form (Albu-Schaffer
et al. 2007)

ρc = BB−1
	 u + (I − BB−1

	 )ρ (11)

u = JT(θθθ)Ẍ c + ḡ(θθθ) (12)

whereρc ∈ R
N is the control torque input for themotors, N is

number of robot joints,θθθ ∈ R
N is the joint positionmeasured

at the motor side, J ∈ R
N×6 is the manipulator Jacobian, B

and B	 ∈ R
6×6 denote the positive definite diagonal matrix

of joint and desired joint inertia, respectively. ρ are mea-
sured joint torques and ḡ(θθθ) is the gravity vector estimated
in such a way, that it provides exact gravity compensation in
static case using the signals measured at the motor side (Ott
et al. 2004). Basically, the role of the motor torque controller
(11) is to reduce the motor inertia and to compensate for the
robot non-linear dynamics. Desired impedance and damping
is provided with (12).

The task command input Ẍ c = [p̈T
c , ω̇T

c ]T is chosen as

p̈c = −Dpṗ + Kpep, (13)

ω̇c = −Dqω + Kqeq , (14)

where position and orientation tracking errors are defined
as ep = pd − p and eq = 2 log(qp ∗ qd). The quaternion
logarithm log : S �→ R

3 is given as

log(q) = log(v, u) =
⎧
⎨

⎩

arccos(v)
u

‖u‖ , u �= 0

[0, 0, 0]T, otherwise
. (15)

Its inverse, i. e., the exponential map exp : R
3 �→ S, is

defined as

exp(r) =
⎧
⎨

⎩

cos (‖r‖) + sin (‖r‖) r
‖r‖ , r �= 0

1 + [0, 0, 0]T, otherwise
. (16)

Subscript (.)d denotes the desired values. Variables without a
subscript denote the current values calculated from the robot
joints at themotor side.Kp,Kq ∈ R

3×3 are diagonal, positive
definite positional stiffness and rotational stiffness matrices,
respectively. They specify the properties of the controller in
Cartesian coordinate system. Positional damping and rota-
tional dampingmatricesDp ,Dq ∈ R

3×3 are positive definite,

but not necessary diagonal matrices. Proper damping design
is crucial for preserving stability properties of the controller.
Unlike in classical computed torque robot controller, damp-
ing matrices are configuration dependent. Let’s express total
manipulator inertia in the task coordinates as

�(θθθ) = (J(θθθ)(H(θθθ) + Bθθθ )
−1J(θθθ)T)−1, (17)

where H ∈ R
N×N is the manipulator inertia in joint space.

Next, we factorize task inertia as � = �̄�̄ and proportional
gain matrix as K = K̄K̄. K ∈ R

6×6 is composed of Kp and
Kd . Damping matrix is then calculated as

D = �̄Dξ K̄ + K̄Dξ �̄, (18)

where Dξ ∈ R
6×6 is a diagonal matrix with the desired

damping. Usually it is set to I for critically damped response.
Corresponding Dp and Dq are obtained as upper and lower
part of the D, respectively. More details about the factor-
ization based design of damping matrices can be found in
(Albu-Schaffer et al. 2004)

3 Human–robot cooperation scheme

The operation of the proposed system is as follows. First,
the human operator demonstrates the desired cooperative
human–robot motion by kinesthetically guiding the robot
arms. The demonstratedmotion is then encoded bySS-DMPs
for position andorientation (p, q) as explained inSect. 2. The
demonstration of the motion is typically performed slower
than what is actually the final desired motion, because typ-
ically it is not possible to demonstrate the movement with
both high speed and high accuracy. Hence we should allow
the human operator to non-uniformly speed up or slow down
the execution. In our proposed approach this happens on-
line during the task execution, when the human co-worker is
allowed to modify the motion.

Second, the human operator and the robot iteratively per-
form the task several times. The learning of the course of
motion as well as the learning of the speed profile is based
on the adaptation of the desired trajectory and the estimation
of trajectory variances across task repetitions. As suggested
in Calinon et al. (2010), low variance of motion indicates
that the corresponding part of the task should be executed
with high precision and that no further variations from the
course of motion should be allowed. If little variance occurs
in a few executions of the cooperative task, the robot should
ensure precise trajectory tracking by increasing its stiffness in
the directions perpendicular to the direction of motion. This
allows the human co-worker to decrease his/her own preci-
sion as the stiffer robot provides disturbance rejection. Still,
the human should be able to speed up the trajectory without
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affecting the course of motion. To achieve such behavior,
the robot system has to be compliant in the direction of
motion. To the best of our knowledge, none of the previously
proposed adaptation algorithms can simultaneously address
these issues.

3.1 Trajectory adaptation

Initially, in the first iteration of the cooperative task, the robot
is uniformly compliant in all directions. Consequently, the
commanded trajectory pl in task repetition cycle l is not the
same as the actually executed trajectory pm due to the input
of the human. Here (.)l is the index of the task repetition,
referred to also as learning cycle. Subscript (.)m referrers
to the measured coordinates. The proposed adaptation algo-
rithm updates the desired trajectory (pl(s), ql(s)), l =
1, . . . , L , where the initial SS-DMP is taken from human
demonstration p1, q1, and calculates its variance after each
task execution.

We update the trajectory and associated covariance matrix
using the following formulas

pl+1(s) = ζ�p(s) + pl(s), (19)

��� p,l+1(s) = (1 − ζ )(��� p,l(s) + ζ�p(s)�p(s)T),

�p(s) = pm(s) − pl(s), (20)

where pm(s) denotes the measured position of the robot,
��� p,l(s) is the current cycle covariance of pl(s), all computed
at phase x , and ζ ∈ R

[0,1] is the exponentially weighting
factor that defines the learning speed (Knuth 1997). If we
set ζ = 1, the updated trajectory pl+1 is equal to the mea-
sured trajectory pm . On the other hand, if we set ζ = 0, the
trajectory pl+1 does not change and the system stops learn-
ing. After each learning cycle, the updated trajectory pl+1 is
encoded into SS-DMP. It is used as the reference trajectory to
control the robot in the next cycle.Note that all trajectories are
phase dependent, sampled at x(t), t = t1, . . . , tT . The coef-
ficients of covariance matrix ��� p,l+1 are approximated with
a linear combination of radial basis functions (RBFs). Equa-
tion (19) cannot be used for orientation trajectories. Instead
we apply the following update rule for quaternions

ql+1(s) = exp

(

ζ
ωωω(s)

2

)

∗ ql(s),

ωωω(s) = 2 log(qm(s) ∗ ql(s)). (21)

Similarly, the update rule for variation of orientation trajec-
tories can be expressed with

���q,l+1(s) = (1 − ζ )(���q,l(s) + ζωωωl(s)ωωωl(s)
T). (22)

3.2 Stiffness adaptation

We dynamically set the desired stiffness of the robot in order
to improve the ease of adaptation. It is well known that the
precision and speed of human motion are related—to be pre-
cise, humans reduce their speed (Fitts 1954). While Calinon
et al. (2010) proposed to decrease the stiffness in the parts
of the trajectory with higher variability and vice versa, we
propose to make the change of stiffness dependent not only
on the variance but also on the speed of motion. The idea
here is to make the robot compliant when the typically slow
fine-tuning of the trajectory is required.

Let Rp denote the rotation matrix of the coordinate frame
ξξξ p with x coordinate specified in the desired direction of
motion, i. e., ṗl , and the other two coordinates orthogonal
to it, as illustrated in Fig. 1. This matrix can be obtained
by forming the Frenet–Serret frame (Ravani and Meghdari
2006; Chiaverini et al. 2008) at each sampling time. The
Frenet–Serret frame consists of three orthogonal directions
defined by the path’s tangent (direction of motion), normal,
and binormal. We obtain the following expression for Rp

Rp = [
t n b

]
,

t = ṗl

‖ṗl‖ , b = ṗl × p̈l

‖ṗl × p̈l‖ , n = b × t. (23)

Note that the absolute velocity ṗl and acceleration p̈l are
provided byDMP integration at every phase s, which ensures
smoothness. ‖ṗl‖ < ε or ‖ṗl × p̈l‖ < ε, where ε > 0
is a predefined threshold, means that the motion is slow or
linear. Thus in such caseswe suspend the updating ofRp until
the motion becomes faster again. The same problem might
appear at the beginning of the trajectory, which might start
with zero speed and accelerations. In such a case we have
to integrate SS-DMP a few steps ahead until ‖ṗl × p̈l‖ > ε

and set the corresponding Frenet–Serret frame as the initial
Rp. We also compute the robot’s speed, i. e., v = ‖ṗl‖ and
define scalar v0, which specifies the threshold between the
low and high speed. The appropriate control gain Kp at each
sampling time is computed as follows

Kp(s) = RT
p

⎡

⎢
⎢
⎢
⎢
⎣

kx 0 0

0
koρ

�yy + ε
0

0 0
koρ

�zz + ε

⎤

⎥
⎥
⎥
⎥
⎦

Rp, (24)

where ε > 0 is an empirically chosen constant which sets
the upper bound for the controller gain and kx and ko are
the gain constants in the direction of motion and orthog-
onal to it, respectively. With this choice, the control error
is actually transformed from the global coordinated system
ξξξb to the trajectory operational space ξξξ p, multiplied by the
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Fig. 1 Operational space ξξξ p is defined by path orientation

gains defined in the trajectory operational space and rotated
back to the global coordinate system (Khatib 1987).�yy and
�zz are the second and the third diagonal coefficient of ���,
respectively. Transformation of ��� p,l calculated from errors
measured in global coordinate system ξξξb to the trajectory
coordinate system is done by 1985

��� = Rp��� p,l(s)RT
p. (25)

Scalarρ scales the control gainswith respect to the calculated
velocity v. To assure smooth transition of control gains at low
velocities, it is calculated as

ρ = γ1

(

tanh

(
v − v0

γ3

)

− 1

)

+ γ2. (26)

In the above equation, γ1, γ2, γ3 > 0 determine the range,
lower bound and the speed of transition between the lower
and upper bound of the switching function defined by tanh,
respectively. The initial value for covariance matrix ��� p,1 is
set to s0I, where s0 is specified so that we obtain the desired
initial stiffness orthogonal to the direction of motion. By pre-
multiplying and post-multiplying gains with RT

p and Rp, we
can set significantly different stiffnesses in the direction of
motion and orthogonal to it.

By choosing a constantly low value for kx inKp, the robot
is always compliant in the direction of motion, while the
stiffness orthogonal to this direction is set according to the
learned variance and speed of motion.

3.3 Speed adaptation

Aspreviously explained, lowgain kx enables the humanoper-
ator to freely move the robot in the tangent direction of the
Frenet–Serret frame. At the same time, we would like that
the robot stays on the commanded (learned trajectory) which
means, that the human can only anticipate or lag behind the
commanded trajectory. Obviously, this changes the speed of

the trajectory, which is determined by the speed scaling fac-
tor ν in Eqs. (2–6). Since all signals which determine the
commanded robot pose are phase dependent, our task is to
find the corresponding phase, which minimizes the differ-
ence between the current perturbed robot pose and a pose on
the learned trajectory.

Lets define the tracking error exp = [1 0 0] Rpep, ep =
pl−pm , which is the x component of the tracking error in path
operational space (see Fig. 2). This error then determines the
speed scaling factor, calculated as

ν̇(s) = λν(s)exp, (27)

where λ > 0 is an empirically set constant. This equation is
executed at each sample time in the loop until it converges,
typically in a few samples. The initial value is set to the
speed scaling learned in previous cycles with ν(s) = νl(s).
With this procedure we actually speed up or slow down the
commanded trajectory according to the human interaction.

Note that negative exp means that the actual robot position
is anticipating the desired trajectory. In this case we have
to speed up the desired trajectory by decreasing the scaling
factor ν(s), and vice versa, with positive exp we slow down
the desired trajectory by increasing the scaling factor ν(s).
Values ν = (0, 1) speeds up the demonstrated trajectory,
while ν = (1,∞) slows down the trajectory. To compensate
for this non-linear span, the update rate in (27) is weighted
with the current value ν(s).

After sampling we compute the weights vi that specify
ν(s) defined as in (10). In this way we achieve faster con-
vergence towards the desired trajectory in the direction of
motion. The described procedure calculates the speed scale
factor in the current learning cycle. Based on this we cal-
culate the expected speed scale for the next learning cycle
similar as for the positional part of the trajectory using

νl+1(s) = ζ�ν(s) + νl(s), (28)

�ν(s) = ν(s) − νl(s). (29)

The overall learning and adaptation algorithm is summarized
in Algorithm 1.

4 Experimental evaluation

4.1 LbD with separate learning of spacial policy and
velocity profiles

The proposed human–robot cooperation scheme allows
implementing two phase LbD learning, where the demon-
stration of the spacial part of the trajectory is followed by
the demonstration of the velocity part. As humans can not
be precise and fast at the same time (Fitts 1954), complex
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Fig. 2 Position tracking error ep is projected to the tangential axis of
the Frenet–Serret frame at each sampling instance. Wire frame model
shows the commanded robot pose.Actual robot pose, denotedwith solid
model, is displaced due to the human operator interaction

trajectories can only be demonstrated at low speeds. During
the execution, the learned trajectory needs to be accelerated.
In many cases, this acceleration is non-uniform. Some parts
may be executed faster and some parts not, often due to the
technological requirements, e.g., when applying adhesives,
welding, etc. The main idea is to demonstrate a complex
policy at an arbitrary low speed with an arbitrary velocity
profile. Next, the human demonstrates also the velocity part
of the trajectory, while the robot maintains the learned spa-
cial trajectory. Learning of the spatial part of the trajectory
is performed as usual, e.g. by capturing the desired policy
by kinesthetic guidance as described in Sect. 2 using (2)–
(6). In the next step, Frenet–Serret frames are computed at

Algorithm 1: Human–robot cooperation algorithm

1 Record {p(k), q(k), tk}Tk=1 using kinesthetic guiding and
calculate SS-DMP parameters from the demonstrated data
(p1, q1)

2 Initialize gains kx , ko and set initial covariance matrices
��� p,1 = s0I. Approximate coefficients of��� p,1 with a linear
combination of RBFs.

3 set l = 1
4 while cooperating do
5 set initial phase s = 1
6 while s ≤ smin do
7 integrate SS-DMP to obtain pl (s), ql (s) as well as their

velocities and accelerations
8 calculate path rotation Rp(s) using (23) and speed v(s)
9 calculate Kp(s) and Dp(s) using (24) and (18),

respectively
10 execute control law (12) with pl (s), ql (s) as the desired

trajectory
11 sample new trajectories pl+1(s), ql+1(s), covariance

matrices��� p,l+1(s), and calculate speed scaling factor
νl+1, all at phase s, using (19) – (21), (27)

12 calculate SS-DMP parameters of pl+1, ql+1, including νl+1
13 approximate coefficients of��� p,l+1 with linear combinations

of RBFs
14 set l = l + 1

Fig. 3 Learning of a complex trajectory, where the spatial and the
velocity part of the trajectory were demonstrated separately

0 5 10 15 20 25
time(s)

0

2

4

ν
Fig. 4 Estimated speed scaling factor ν during the demonstration of
the speed profile

each sampling time (23). While learning the velocity part,
the robot is set compliant along the tangential direction of
the Frenet–Serret frames and stiff orthogonal to this direc-
tion by selecting appropriate control gains ky, kz 
 kx in

Kp(s) = RT
p

⎡

⎣
kx 0 0
0 ky 0
0 0 kz

⎤

⎦ Rp. (30)

This allows the human demonstrator to push and pull the
robot end-effector in the direction of the trajectory, which
actually modifies the execution speed. In order to maintain
the previously demonstrated spatial part of the trajectory, the
robot has to set the corresponding previously learned refer-
ence point (pd(s), qd(s)) by determining the speed scaling
factor ν(s) which minimizes the difference between the cur-
rent robot pose and the learned spatial trajectory using (27).
In this way, it learns also the speed scaling. The correspond-
ing weights v j in (10) are then calculated using regression
(Ude et al. 2010).

We implemented the described LbD procedure on a Kuka
LWR-4 robot arm, where the taskwas to follow the gap of the
automotive lamp, as shown in Fig. 3. The exact task was not
an issue in this case, but it might be glue application, grind-
ing, inspection, etc. The spatial part of this complex trajectory
was demonstrated with kinesthetic guiding, where the con-
trol gains were set to Kp = 1 I N/m and Kq = 0.2 I Nm/rd.
The trajectory was captured in Cartesian coordinates. After
that, the captured trajectory was encoded with SS-DMPs,
where the speed scaling factor ν(s) was set to 1. For the
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demonstration of the velocity part of the policy, we raised
the control gains to kx = 500 N/m, ky, kz = 2000 N/m, and
Kq = 200 I Nm/rd. During the speed learning, we calcu-
late Rp at each sampling time by (23), control gains by (30)
and speed scaling by (27). The human operator was able to
guide the robot along the previously learned trajectory with
arbitrary speed with very low physical effort. For practical
reasons, we limited the learned velocity scale factor to the
interval ν = [0.2, 5]. Figure 4 shows learned speed scale
during this experiment.

Video of this experiment is available at http://abr.ijs.si/
upload/1483017570-TwoPhaseLbD.mp4.

4.2 Coaching with variable stiffness and variable
weighting factor

The next experiment demonstrates how to apply the proposed
approach to coaching. The goal of the coaching is to modify
only a part of the previously learned trajectory while leaving
the rest of the trajectory unchanged (Gams 2016). During the
coaching, it is desirable that we could learn a new part of the
trajectory in single pass while obtaining good disturbance
rejection in the part where we would like to preserve the
previously learned trajectory. To achieve this goal, we apply
the compliance adaptation scheme given by the Eqs. (24),
(26) and introduce a variable weighting factor ζ in trajectory
update (19)–(21). We associate ζ with the tracking error,

ζ(k) =

⎧
⎨

⎩

ζmax , ‖ep(k)‖ > d ζmax
ζmin

ζmin, ‖ep(k)‖ < d
ζmin
d ‖ep(k)‖, otherwise

, (31)

where ζmin and ζmax ∈ R
[0,1] are minimal and maximal

exponential weighting factors respectively, and d is the
position error at which point the variable weighting factor
starts to change. In exactly the same way we can associate
the weighting factor to the orientation error. The coaching
works as follows. We drive the robot along the previously
learned trajectory. Low value of the weighing factor ζmin

and high control gains as a consequence of low values of the
covariance matrices �p and �q provide good disturbance
rejection. When we would like to modify the trajectory, we
first decrease the speed below v0 (26). The system drops
the stiffness and allows us to modify the trajectory. Con-
sequently, the weighting factor changes to ζmax . By setting
ζmax ≈ 1 the system learns the new trajectory in a single
pass, as it updates it using the current robot configurations
only.Whenwe re-approach the previously learned trajectory,
Eq. (31) decreases ζ . Note that it is required to slow down
the trajectory below v0 only when we want to initiate coach-
ing. After that, low compliance will be provided by increased
values of the covariance matrices �p and �q . Note also that

Fig. 5 Coaching; the red line is the original trajectory. The blue line
denotes the desired change of the original trajectory (Color figure
online)

it is necessary to calculate the current speed scaling factor
ν(s) using (27) in each sampling interval in order to get the
corresponding trajectory reference values.

The coachingwas tested for a simple case where the initial
trajectory was learned with a single demonstration. Conse-
quently, all of the elements of the covariance matrices �p

and �q were 0 and the system calculated high control gains.
In the next cycle, the operator decreased the speed in order
to decrease the stiffness and demonstrated a new part of the
trajectory. The original and the modified trajectories are pic-
tured in Fig. 5 with red and blue lines respectively. In this
experiment we applied the following settings: ζmin = 0.4,
ζmax = 0.8, v0 = 0.07 m/s, d = 0.02 m. In order to make
the coaching even more efficient, the robot reference was
actually the measured position whenever the ζ = ζmax . This
way, we can apply extensive position and orientation changes
with very little physical effort. Figure 6 shows how the sys-
tem adjusted the control gains and weighting factor ζ during
the coaching. The coaching area is marked with a shaded
background in the corresponding plots. Note that the gains
are expressed in the trajectory coordinate system, i.e. calcu-
lated by (24), before they were pre and post-multiplied with
RT

p and Rp, respectively. Resulting robot trajectories are dis-
played in Fig. 7. In this plot, the initial trajectory is marked in
red. The actual demonstrated trajectory (blue) differs in the
middle part. The learned trajectory is denoted with a black
dotted line. Since ζmax was 0.8, it slightly differs from the
demonstrated one. With ζmax = 1 it would perfectly fol-
low the demonstrated trajectory. However, it would be less
smooth due to the poorer disturbance rejection.

Video of this experiment is available at http://abr.ijs.si/
upload/1494512444-Coaching.mp4.

4.3 Bimanual human robot cooperation in object
transportation

The third experiment involves human robot cooperation
(HRC) in transportation of a (potentially large and heavy)
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Fig. 6 Speed v, controller gains RpKpRT
p and weighting factor ζ dur-

ing the coaching. The shaded area denotes the coaching phase

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Y (m)

0.7

0.6

0.5

X
 (m

)

original
demonstrated
learned

Fig. 7 The original, demonstrated and learned trajectories during the
coaching

object. The task of the robot was to learn how to cooperate
with the human while transporting a rigid plate from the ini-
tial point to the final point and simultaneously avoiding an
obstacle. The final point had to be precisely learned, as it was
necessary to insert a hole in the panel on the vertical rod, as
shown in Fig. 8. Due to the dimensions of the plate, this task
can not be successfully accomplished using a single robot
arm. Therefore, we applied bi-manual robot setup composed
of two 7 degree of freedom Kuka LWR-4 robot arms. For
bi-manual robot control we applied coordinated task-space
framework as presented in Nemec et al. (2016). It fully char-
acterizes a cooperative operational space and allows the user
to specify the task in relative and absolute coordinates, result-
ing in geometrically meaningful motion variables defined at
the position/orientation level (Caccavale et al. 2000). With
a proper choice of relative and absolute coordinates (which
might be also task dependent), both subspaces are decoupled
both on kinematic as well as on dynamics level. Conse-

Fig. 8 Cooperating humanoid robot and human
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Fig. 9 3-D plot of trajectories of absolute coordinates before the ver-
tical rod displacement. The thick line shows the final learned trajectory

quently, we can control each subsystem independently. In
our experiment, the robot firmly holds the shared object.
This means that the corresponding relative coordinates do
not change during the task. However, in order to minimize
internal wrench, it was necessary to control also the relative
coordinates. These coordinates remained unchanged during
entire task. The gains of the relative coordinates control law
were set to 800 I N/m and 300 I N/rd, respectively.

Our human robot task coordination is fully character-
ized with absolute coordinates, which were the subject
of our adaptation scheme (Nemec et al. 2016b). There-
fore, all learning and adaptation procedures are applied to
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Fig. 10 3-D plot of trajectories of absolute coordinates after the ver-
tical rod displacement in y direction. The thick line shows the final
learned trajectory

absolute coordinates only. The cooperation scheme adapts
autonomously. The only parameters we have to set are ini-
tial gains, speed threshold and smoothing coefficients γ1, γ2
and γ3. The initial gains Kp and Kq were set to 100 I N/m
and 80 I Nm/rd, respectively. Thus, the system was initially
very compliant in absolute coordinates. The speed thresh-
old v0, where the system starts adjusting the stiffness, was
empirically set to 0.1 m/s.

After the first cycle, which corresponds to the initial task
demonstration, we performed 8 cooperative repetitions of the
task. The learning factor ζ was set to 0.4. Figure 9 shows the
3-D plot of the trajectories pl in absolute coordinate system.
The execution speed va and the learned gains RpKpRT

p dur-
ing subsequent executions are shown in Fig. 11. Please note
that the control gains in these plots are expressed in the tra-
jectory coordinate system in order to gain better insight into
the behavior of the system. To get the control gains which are
passed to the robot controller, these gains have to be pre and
post-multiplied with RT

p and Rp respectively (see Eq. (24).
Control gains at the initial and final parts of the trajectory are
always low as we start and end with low velocity. Note also
that the control gains calculated from (24) have to be filtered
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in order to prevent jerky movements. For the sake of clarity
only the 4th, 6th and 8th cooperation cycles are displayed.
Note that in this experiment the spatial and the velocity parts
were learned concurrently and not separately as in the first
experiment. From the plots we can see how the speed has
increased during subsequent cycles (Fig. 10).

After 8 repetitions we displaced the vertical rod by 10 cm
in the global y-direction. Thus, the final part of the task had to
be modified. By lowering the speed in that part of the trajec-
tory through interaction, the system immediately decreased
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the stiffness and allowed for the robot to be guided to the new
position. In order to speed up learning of a new part of the
trajectory, we increased weighting factor ζ to 0.9 in a simi-
lar way as in the previous experiment. In a few repetitions,
the system learned the new task and re-set the high stiffness
gains. This enabled the human operator to accomplish the
task by allowing the robot to guide him. Also here, for the
sake of clarity, we show only the 9th, 10th, 12th and 14th
cooperation cycles.

Figure 10 shows the 3-Dplot of trajectoriespl after the dis-
placement. Execution speed v and controller gains RpKpRT

p
are displayed in Fig. 12.

This experiment is shown also in the video available at
http://abr.ijs.si/upload/1483017628-HRC-Plate.mp4.

5 Conclusions

In this work we proposed a new human–robot cooperation
scheme. It can be applied to various tasks, e.g. for (a) two
phase LbD with separate demonstration of the spatial and
velocity part of the trajectory, (b) human robot cooperation
during the transportation of heavy and bulky objects, (c) for
human–robot cooperation during assembly tasks, etc. The
algorithm can be applied to both single arm as well as bi-
manual robotic systems and it doesn’t require force sensing.
The developed algorithm is based on the previously proposed
SS-DMPs (Nemec et al. 2013) and extended cooperative task
approach for bi-manual robots (Likar et al. 2015). There are
several novelties in the proposed approach:

– Speed-scaled DMPs in Cartesian space have been intro-
duced.

– Both spatial movement and the speed of cooperative
motion can be adapted.

– Stiffness of the cooperative task is adjusted taking into
account the variance of motion across several executions
of the task and the current speed of motion. This enables
the human to override the learned high stiffness when
necessary.

– Task compliance is defined with respect to the trajectory
operational space, which allows for varying the dynamic
properties of the system along the direction of motion.

Note that no force sensing is necessary in the proposed
approach, which might decrease the final cost of the setup
and increase the robustness, since force measurement is usu-
ally noisy. Another advantage of the proposed approach is
the possibility to trim the learning speed and the disturbance
rejection with the variable exponential weighting factor ζ .
On the other hand, there are many parameters such as thresh-
old velocities v0 in (26), weighting factor ζ , initial gains k0
and kx in (24), λ in (27) which need careful tuning. In the

future, we will focus on procedures that will either diminish
the number of tuning parameters or learn their values from
previous experience by means of reinforcement learning.

The proposed schemewas experimentally verified in three
exemplary use-cases. The first is a novel two-phase LbD
scheme, which has the potential to be used for learning of
complex tasks in industrial setups aswell as for robots applied
in home environments. With the second experiment we show
how to use the proposed scheme in coaching and how to adapt
the weighting factor ζ in order to obtain an appropriate trade-
off between the learning speed and disturbance rejection.
The third experiment deals with human–robot cooperation
in object transportation, which could be applied in assem-
bly processes in production plants or in civil engineering for
transportation of heavy and bulky objects.
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