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Abstract Learning human–robot interaction logic from
example interaction data has the potential to leverage “big
data” to reduce the effort and time spent on designing inter-
action logic or crafting interaction content. Previouswork has
demonstrated techniques by which a robot can learn motion
and speech behaviors from non-annotated human–human
interaction data, but these techniques only enable a robot to
respond tohuman-initiated inputs, anddonot enable the robot
to proactively initiate interaction. In this work, we propose a
method for learning both human-initiated and robot-initiated
behavior for a social robot from human–human example
interactions, which we demonstrate for a shopkeeper inter-
acting with a customer in a camera shop scenario. This was
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achieved by extending an existing technique by (1) introduc-
ing a concept of a customer yield action, (2) incorporating
interaction history, represented by sequences of discretized
actions, as inputs for training and generating robot behav-
ior, and (3) using an “attention mechanism” in our learning
system for training robot behaviors, that learns which parts
of the interaction history are more important for generat-
ing robot behaviors. The proposed method trains a robot to
generate multimodal actions, consisting of speech and loco-
motion behaviors. We compared this study with the previous
technique in two ways. Cross-validation on the training data
showed higher social appropriateness of predicted behav-
iors using the proposed technique, and a user study of live
interaction with a robot showed that participants perceived
the proposed technique to produce behaviors that were more
proactive, socially-appropriate, and better in overall quality.

Keywords Human–robot interaction ·Data-driven learning ·
Learning by imitation · Social robotics · Service robots ·
Proactive behaviors

1 Introduction

The vision of humanoid robots providing service through
natural conversational interaction, once a dream of sci-
ence fiction, is now closer than ever to becoming a reality
(Satake et al. 2015; Triebel et al. 2016; Jayawardena et al.
2016; Shiomi et al. 2009). With the arrival of commercial
humanoid robot platforms like Pepper, social robots have
begun to appear in commercial and public spaces. How-
ever, the problem of how to develop social interaction logic
for conversational robots, including interactive dialog and
interactive motion planning, is still a relatively young and
unexplored research domain.
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Someworks inHRI have already demonstrated techniques
for learning speech and motion behavior by imitation from
human behavior captured from live interactions (Liu et al.
2016) and online games (Breazeal et al. 2013; Orkin and
Roy 2007). These studies applied data-driven techniques to
learn application logic through imitation of human behavior,
as opposed to using a more traditional approach of manually
designing interaction logic. As the availability of machine
power for learning and the availability of large data sets
increase, we propose that for situations where large amounts
of example human–human interaction data is available, such
data-driven approaches could produce more reliable interac-
tion logic and require less effort than manual programming.

A typical approach to designing interaction logic for
robots is to specify the robot’s behavior in terms of responses
to human actions or commands (Orkin and Roy 2009; Liu
et al. 2016; Breazeal et al. 2013). Such approaches result
in fundamentally passive systems, in which the robot only
responds to explicit commands or actions from the human.
However, many real social situations are mixed-initiative,
and it is important for a robot not only to react to a person’s
actions, but to proactively take initiative aswell. For example,
a good museum guide not only answers questions about an
exhibit, but should also ask questions back and provide inter-
esting anecdotes about the exhibit to the visitor. Likewise, in
a shopping scenario, a proactive shopkeeper would take the
initiative to explain different product features to a customer.

Nevertheless, learning proactive behaviors in a data-
driven way without hand-crafted rules or an explicit model
of user’s intention (Schrempf et al. 2005; Pandey et al. 2013)
can be difficult, as rules for generating reactive versus proac-
tive behavior can have different requirements. For example,
in a shopping scenario, a reactive response to a customer’s
question may depend primarily on the customer’s question
itself, whereas a proactive behavior, in which the shopkeeper
decides to take the initiative to do something (e.g. introduc-
ing a new product) as a result of the customer yielding his
turn, may depend more strongly on interaction history or
context. However, such contextual sensitivity is difficult to
capture, and the naive injection of context information may
introduce unnecessary noise, making the data too sparse and
non-repeatable for the robot to learn an appropriate action.
The question remains open as to how a robot can simulta-
neously and effectively learn the rules for generating both
user-initiative and self-initiated actions.

In this work, we will address the question of how to
learn both reactive and proactive robot behaviors fromhuman
interaction data. In previous work (Liu et al. 2016) we pro-
posed a technique capable of learning social interaction logic
for a robot in response to a human’s speech and motion
actions. However, that system is unable to generate proac-
tive behavior, e.g. the robot does nothing unless the customer
takes an action.

Thus, we propose three extensions to our previous work.
First, we introduce a concept of a “yield action” enabling
the robot to identify opportunities for a proactive action to
be generated. Second, since proactive behaviors are often
sensitive to the context of the interaction,wepropose to incor-
porate interaction history as a training input. Third, we use
an attention mechanism in our learning system, which has
the ability to “attend” and learn which parts of the interaction
history are importantwhen predicting robot behaviors. In this
work we will present this proposed architecture and demon-
strate through offline analysis and live interactions with users
that the proposed system can effectively reproduce proactive
behavior learned from human interaction data.

2 Related work

Since learning both reactive and proactive behaviors for a
social robot is novel, no previous study has reported an inte-
grated method to address its whole process, although parts
of the learning problem have been addressed to some degree.
In this section, we report related works on some aspects of
learning social behaviors.

2.1 Learning social behaviors from data

Several data-driven approaches have been applied to learning
interactive behaviors for social robots. For example, Young
et al. used learning from demonstration to generate real-time
interactive paths for an animated characters and robots to
match the style of interactive motion behaviors, based on a
pattern-matching algorithm (Young et al. 2013, 2014).

Frameworks focused on crowdsourcing have been devel-
oped to enable learning of overall interaction logic from
data collected from simulated environments, such as The
Robot Management System framework (Toris et al. 2014)
and The Mars Escape online game (Breazeal et al. 2013;
Chernova et al. 2011). Remote users can interact collabo-
ratively either in an online game, or through the web, and
the interaction data are logged and used to develop HRI
behaviors in a real autonomous robot.Ourwork complements
these approaches by considering crowd-based data collected
directly from human–human interaction using sensors in
a physical environment, which presents unique challenges
regarding resolving noise from sensor data, abstracting nat-
ural variations of human behavior, and discretizing actions
for a robot to reproduce.

The use of real human interaction data collected from sen-
sors for learning interactive behaviors has been investigated
in some works. The robot JAMES was developed to serve
drinks in a bar setting, in which a number of supervised (i.e.
dialog management) and unsupervised learning techniques
(i.e. clustering of social states) were applied to learn social
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interaction (Keizer et al. 2014). Admoni and Scassellati pro-
posed a model using empirical data from annotated human–
human interactions to generate nonverbal robot behaviors in
a tutoring application. The model can simultaneously predict
the context of a newly observed set of nonverbal behaviors,
and generate a set of nonverbal behaviors given a context
of communication (Admoni and Scassellati 2014). Similar
to these works, we use data from human–human interac-
tion for learning robot behaviors, but we adopt a completely
hands-off approach, with no human annotation needed for
abstraction of social states or for robot behavior generation.

2.2 Proactive robot behaviors

Strategies for generating proactive robot behavior, in part,
have been addressed in other works. In Rozo et al.’s work
(2016), a robotic manipulator learns to complete a pouring
and a handover task, in which they empirically predeter-
mined six states the robot arm should be in. They achieve
this by exploiting the temporal patterns (i.e. sequence of
states) observed in the learning phase using an adaptive
duration semi-Markov Model (ADHSMM) to generate state
sequences and durations for the arm trajectory. Likewise,
Huang et al. investigated proactive and reactive collabora-
tion strategies that take account of real-time awareness of
the task status of its user in performing handover actions
between a human and robot manipulator (Huang et al. 2015).
Otherworks focus on recognition of human intention in order
to proactively decide when to complete the handover task
(Schmid et al. 2007; Schrempf et al. 2005; Awais and Hen-
rich 2012). For the most part, a typical objective for these
foregoingworks is to learn state sequences or durations using
techniques like HMM, where the states are defined a priori
based on domain knowledge of a specific, structured task. In
contrast, ourwork addresses an open-endedproblemof learn-
ing social interaction tasks in an unknown domain, where
actions and states are not predetermined. The technique we
propose begins from the problem of retrieving clusters from
sensor data of unconstrained natural language and motion
trajectories, and learns common transition patterns among
them, including proactive behavior, using a deep neural net-
work (DNN).

In the context of social robots, someworks focus on how to
better equip the robot to initiate interaction in a friendly and
natural manner (Mutlu et al. 2009) or encourage people to
initiate conversation (Robins et al. 2009;Hayashi et al. 2007).
The use of proxemics has also been investigated for initiat-
ing interaction, such as feature representations for analyzing
human spatial behaviors (Bauer et al. 2009) and develop-
ing generative model for approaching people (Satake et al.
2009) and maintaining spatial formation (Shi et al. 2011;
Michalowski et al. 2006). Our work builds upon these studies
by incorporating proxemics models for human–robot inter-

action, using them to support the higher-level goal of learning
overall interaction logic, which combines proxemics, loco-
motion, and dialogue.

2.3 Learning from history

Some techniques have been developed for learning robot
behaviors from history, such as goal-directed and habit-
ual robot behaviors through a Bayesian dynamic working
memory system (Viejo et al. 2015), or incorporating his-
tory in learning for mobile robots (Michaud and Matarić
1998; Mohammad and Nishdia 2012). Although our work
also learns from history, we believe our work is closer to
fields of language or dialog learning, where speech is a major
part of the interaction.

Regarding learning from history for dialog in particu-
lar, many techniques involving deep neural networks have
been developed recently for handling language-related tasks,
which are inherently sequential and require some level of his-
tory or memory. Recurrent neural networks (RNN) (Mikolov
et al. 2010) are often used for tasks like language processing,
and Long Short-Term Memory (LSTM) (Hulme et al. 1991)
techniques are often used for tasks such as word-by-word
machine reading, where the meaning of a sentence must be
interpreted in the context of previously encountered words
(Cheng et al. 2016). A related technique, whichwe use in this
work, is supplementing a neural network with an attention
mechanism, which learns which part of an input sequence is
important for predicting a response (Sukhbaatar et al. 2015;
Bahdanau et al. 2014; Hermann et al. 2015). While several
algorithms have been proposed for learning from history, it
is still unclear how effective they can be in the problem space
of learning human–robot multimodal interaction from noisy
data, which is the main objective of our work.

3 Data collection

This section introduces our scenario for data collection, a
camera shop, as well as the procedure and some observed
behaviors of the participants.

3.1 Scenario

Wechose a camera shop scenario for this study as an example
of the kind of repeatable interaction for which this technique
would be most useful. We set up a simulated camera shop
environment in our laboratory with three camera models on
display, each at a different location (Fig. 1), and we asked
a participant to role-play a proactive shopkeeper. The shop-
keeper interacted with participants role-playing customers,
walking with the customers to different cameras in the shop,
answering questions about camera features, and proactively
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Fig. 1 Environment setup for our study, featuring three camera dis-
plays. Sensors on the ceiling were used for tracking human position,
and smartphones carried by the participants were used to capture speech

introducing new cameras or features when the customers had
no specific questions. We recorded the speech and motion
data of both the shopkeeper and the customers during these
interactions.

3.2 Sensors

To capture the participants’ motion and speech data, we used
a humanposition tracking system to record people’s positions
in the room, and we used a set of handheld smartphones for
speech recognition.

The position tracking system used data from 20Microsoft
Kinect 1 sensors, arranged in opposing rows on the ceiling to
minimize interference, with a lateral spacing of 1.9m. The
arrangement is similar to that shown in Glas et al. (2015).
Particle filters were used to estimate the position of each
person in the room based on point cloud data (Brscic et al.
2013).

Speech was captured via a smartphone with a hands-free
headset, using the Android speech recognition API to rec-
ognize utterances and sending the text to a server via Wi-Fi.
Users were required to touch the mobile screen to indicate
the beginning and end of their speech. Although it would be
ideal to passively collect speech data from microphones in
the environment and automatically detect the start and stop
of speech activity, reliable technologies to do this are not yet
widely available.

Location data for the shopkeeper and the customer were
recorded at a rate of 20Hz. Speech data were recorded at the
start and end of each speech event, as signaled by participants
tapping on their Android phones.

3.3 Participants

The customer participants had varied levels of knowl-
edge about cameras and were selected based only on

English-speaking ability (due to the use of speech recog-
nition in the study). We employed a total of 9 customer
participants (8 male, 1 female, average age 34.1, s.d.
3.9).

To select a participant for the role of a proactive shop-
keeper, we interviewed participants and observed trial inter-
actions. We asked customer participants to provide feedback
in terms of how proactive, helpful, and interested each shop-
keeper was. We selected one shopkeeper participant (male,
age 54) with a naturally outgoing personality and a great
interest in cameras based on our interview with him, as well
as the feedback from the customers. He played the shop-
keeper in all interactions.

3.4 Procedure

For this data collection, the shopkeeper was encouraged to
answer any questions the customer had, and also to take ini-
tiative in assisting the customer, either by introducing new
camera features or presenting a different camera. The cus-
tomer participants were instructed to browse as much or as
little as they liked, and told that they could ask questions
about cameras or simply listen to the shopkeeper’s recom-
mendations.

To create variation in the interactions, customer partici-
pants were asked to role-play in different trials as advanced
or novice camera users, and to ask questions that would be
appropriate for their role. Some camera features were chosen
to be more interesting for novice users (color, weight, etc.)
andothersweremore advanced (High-ISOperformance, sen-
sor size, etc.), although they were not explicitly labeled as
such.

Customer participants were not given a specific target fea-
ture or goal for the interaction, as we were mostly interested
in capturing the shopkeeper’s proactive sales behavior. All
participants were instructed to focus their discussion on the
8–10 features listed on the camera spec sheet, to minimize
the amount of “off-topic” discussion.

Customer participants conducted 24 interactions each
(12 as advanced and 12 as novice) for a total of 216
interactions. 17 interactions were removed due to techni-
cal failures of the data capture system and one participant
who did not follow instructions. The final data set con-
sisted of 199 interactions, with average duration of 3min
and 16s per interaction. This includes a total of 2568 shop-
keeper utterances (with an average of 19.53 words per
utterance) and 2299 customer utterances (with an average
of 10.88 words per utterance). This data set is available
online.1

1 http://www.geminoid.jp/dataset/camerashop/dataset-camerashop.
htm.
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Table 1 An example interaction from the data collection

C: Customer, S: Shopkeeper

(Shopkeeper and Customer talking about Sony)

C: Proably yeah.. I’m looking for something lightweight but good quality.

S: This Sony camera takes pictures that are almost as good as a top-end professional camera but it only has half the weight, please pick it up
and have a try.

C: Yeah actually this weighs alright…how much is it?

S: This is only $550 so it’s a quarter to a fifth of the price of a high-end professional camera

C: (Silence for 5s)

S: the picture quality is almost as good as DSLR because it’s a mirrorless camera …..

3.5 Observed behavior

Overall, the shopkeeper participant followed our sugges-
tions and acted in a very proactive way. He often spoke in
long, descriptive utterances and volunteered extra informa-
tion when answering questions. In cases where a customer
was silent or not asking questions, he frequently pro-
vided additional information about a camera or guided the
customer to a new camera, so we considered his behav-
ior to be fairly proactive and thus appropriate for this
study.

This interaction data differed from that of the previous
study (Liu et al. 2016) in a few ways. First, the shopkeeper’s
utterances tended to be much longer and more complex,
sometimes talking about two or three topics in one sen-
tence. Second, the shopkeeper often proactively spoke if
some silence had elapsed after his last utterance. Third, the
customers demonstratedmore “backchannel” utterances. For
example, a customer might say, “oh, ok,” after listening to an
explanation, but not ask a follow-up question. In such situa-
tions, the shopkeeper in this study often performed proactive
behaviors, such as volunteering more information about the
current camera or continued his previous explanation.

We performed an analysis of the customer utterances to
identify whether an utterance required a response (such as a
question or a request) or did not require a response (such
as a backchannel utterance). We found that 527 (22.8%)
of the customer’s 2299 utterances did not seek a response
from the shopkeeper. There were also 209 instances when
the customer did not speak or move for some time, such as
when reading the spec sheet or playing with the camera, and
the shopkeeper took the initiative to perform some proactive
behavior.

Interaction 
History

Robot Action 
(for Training)

System Elements

History Vectors 
(Input)

Tracking 
System

Speech 
Recognizer

Sensor 
Network

Speech 
data

Tracking 
data

Abstraction of Typical 
Behavior Patterns Joint state 

vector

Sensor Data

C FSU

C FSU
C FSU

C FSUF

Neural Network with Attention Mechanism

U Utterance Vector
S Shopkeeper Motion Elements
C Customer Motion Elements
F Spatial Formation

ID Typical Utterance ID

Yield Action 
Identification

Motion Generation and Speech Synthesis

FPredicted Robot Action

ID

ID

Fig. 2 Overview of the proposed system elements

Table 1 illustrates an example interaction. The customer
first asks about a lightweight camera, prompting the shop-
keeper to show the customer to the Sony camera. The
shopkeeper then answers the customer’s question about the
price. Next, after several seconds of silence, the shopkeeper
proactively presents more information about a different fea-
ture. Similar to the provided example, we observed thatmany
customers used a variation of fillers (e.g. “you know”, “like”)
and backchannel (e.g. “I see”) in their utterances. In addition,
some customers did not just ask direct questions, but also
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provided other information (e.g. “Yeah actually this weighs
alright how much is it?”). For these reasons, we consider the
interaction data to be quite natural and fairly unconstrained.

4 Proposed technique

4.1 Overview

In order to reproduce both reactive and proactive behav-
iors for a robot, we used a sequence of techniques that
enable behavior contents and interaction logic to be directly
learned from noisy sensor data without human intervention.
An overview of the techniques is shown in Fig. 2, which
illustrates how behaviors are learnt from human–human
interaction and generated in human–robot interaction. The
key steps of the techniques are listed here:

1. Abstraction of typical behavior patterns (Sect. 4.2) Con-
tinuous streams of sensor data are abstracted into typical
behavior patterns, and the corresponding joint state vec-
tor and robot action are defined.

2. Defining yield actions (Sect. 4.3) To enable the robot to
generate proactive behavior, we introduce the concept
of a yield action, which represents the moment when an
interactant yields his turn and does nothing, allowing the
robot to take initiative.

3. Incorporating interaction history (Sect. 4.4) We intro-
duce interaction history by concatenating the last k joint
state vectors to provide contextual information for gen-
erating proactive behavior.

4. Learning to attend to history (Sect. 4.5) To improve the
efficiency of learning, we propose the use of an “atten-
tion” mechanism which ascribes weights to the relative
importance of various steps of interaction history as
inputs to learn appropriate behaviors.

In this work, we used the techniques presented in our pre-
vious study (Liu et al. 2016) for Step 1, while Steps 2–4
constitute the novel contributions of this work which enable
proactive behavior generation.

4.2 Abstraction of typical behavior patterns

In order to learn effectively despite the large variation of natu-
ral human behaviors and noisy inputs from the sensor system,
the continuous stream of captured sensor data needs to be
discretized by time into behavior events, and then abstracted
into common behavior patterns. Here we briefly describe our
techniques:

• We used unsupervised clustering and abstraction to
identify utterance vectors, typical utterances, stopping

How much? It’s $68

Joint state vector

5 (“It’s $68”)

F
ID

Robot Action

C
F

S
U

Present Nikon

Stopped (Nikon)

Stopped (Nikon)

Utterance vector of “how much?”

Present Nikon

Fig. 3 Example of abstraction for joint state vector and robot action

locations, motion paths, and spatial formations of both
participants in the environment.

• An interaction is discretized into a sequence of actions,
which are defined whenever: (1) a participant speaks an
utterance and/or (2) a participant’smotion target changes.

• For each action detected, the abstracted state of both par-
ticipants at the time is represented as a joint state vector,
with features consisting of their abstracted motion state
the utterance vector of the current spoken utterance.

• For each observed shopkeeper action, we define a corre-
sponding executable robot action, consisting of a typical
utterance (e.g. ID 5) and a target spatial formation (e.g.
present Nikon). When executed, this would cause the
robot to speak the typical utterance “It’s $68” associ-
ated with utterance ID 5 and execute a motion to attain
the formation of present Nikon.

Figure 3 shows an example of how joint state vector and
robot action are abstracted from the sensor data. These data
processing and abstraction techniques closely follow the pro-
cedure followed in our previous work (Liu et al. 2016), and
additional details are presented in the “Appendix”.

4.3 Definition of yield actions

To enable the robot to predict the timing when a proactive
action should be generated, we define a yield action. A yield
action represents a moment when an interactant is yielding
the floor, providing an opportunity for a proactive behavior
to be executed (Duncan 1974, 1972). In our training data,
the customer was sometimes occupied with playing with the
camera or reading the spec sheet, or sometimes just decided
not to do anything, and thus did not speak or move for some
time, indicating that the customer may have relinquished
his turn. As observed in 209 instances from our training
examples, the shopkeeper often seized the opportunity to do

123



Auton Robot (2018) 42:1067–1085 1073

something proactive, usually by introducing another feature
or camera.

In the training data, we define the customer to have yielded
his turn whenever we observe two consecutive occurrences
of shopkeeper actions, based on the findings presented by
Duncan (1972) and our observation that the shopkeeper
proactively performed another action after his previous
action. For example, after a shopkeeper speech action (e.g.
answering a question), if the subsequent observed action is
another shopkeeper speech action (e.g. talking about a cam-
era feature), we can assume that a customer yield action has
occurred between the two shopkeeper actions. Likewise, this
strategy can be applied for the detection of a shopkeeper yield
action.

The next task is to identify yield actions in the real-time
system. Turn-taking is a complicated problem, involving
gaze, prosodic, linguistic, and gestural signals as well as
timing, but for the current study we make the simplify-
ing assumption that we can detect a yield action using a
timing threshold. This assumption has been made in HRI
(Thomaz and Chao 2011; Chao and Thomaz 2011) and
other spoken dialogue systems as well (Raux and Eske-
nazi 2008). To determine a time threshold for identifying
yield actions, we computed the average amount of time
elapsed between two consecutively observed shopkeeper
actions in the training data. This value was calculated to
be 3.52 s. Thus, in our system, we defined a customer yield
action to occur if the customer did not begin speaking or
moving within 3.52 s after the end of the previous robot
action.

4.4 Incorporating interaction history

Although single-step prediction might be sufficient for
answering questions, there are many situations where con-
text is important. For example, an answer to a customer’s
question such as, “how much does this cost,” can be gener-
ated based on the most recent customer utterance and spatial
location—information from interaction history is not neces-
sary. However, after a customer yield action or a statement
or backchannel utterance such as “Okay,” or “I see”, the cus-
tomer’s action does not contain information which uniquely
determines a robot response. In such cases, an appropriate
proactive shopkeeper action will depend to some degree on
the previous interaction context. Some examples of history-
dependent behavior include the following:

• After a customer yield action, the robot could continue
to provide information about the last feature presented,
or present a new feature not previously discussed. Both
cases are dependent on the robot’s previous utterance.

• There may be an inherent sequence to robot behav-
iors, e.g. first introducing and moving to a new camera,

time
C1 S1 C2 C3 S2 S3

C2

C3 S2

Robot Action

yield S3

yield

yieldC2

S1C1

S2C3

Action sequence from training data

Training inputs for action predictor
Inputs (Interaction History)

yield action yield action

Fig. 4 Example of how actions are identified in the training data. A
yield action is identified whenever two consecutive actions from the
same participant without any action detected in between

then offering for the customer to pick it up and try it,
so the robot’s second action depends on its previous
action.

• When the customer answers a question, e.g. by saying
“yes,” the robot’s next action depends on both the cus-
tomer’s answer and the question that was asked.

To address these cases, we propose the use of interaction
history to enable the robot to determine an appropriate action
for a given context. History can be represented in various
ways, and including more information increases the dimen-
sionality of the input vector and hence the difficulty of the
learning problem. For the amount of training data available
in our study, 3 steps of history seemed to be sufficient to
enable the robot to learn proactive behaviors such as those
described above.

Thus, we include the three most recent discrete actions
as inputs to the classifier. Once an action is detected, a
joint state vector, describing the state of both interactants
at the time, is appended to the interaction history, which
is kept at a fixed size of 3 steps. Figure 4 shows an
example of how customer and shopkeeper actions from the
training data are segmented into sets of 3 action vectors
(actiont−3, actiont−2, actiont−1) to be used as inputs for
training the behavior predictor. The subsequent shopkeeper
action is represented as a robot action vector, and it is used
as the training output for the predictor. In this way, interac-
tion history segments are used to train the robot to predict an
appropriate action.
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4.5 Learning to attend to history

While including interaction history provides valuable context
for predictingproactive behavior, it also increases complexity
and noise, and thus considerably slows the rate of learning
(Cover and Hart 1967). The inclusion of irrelevant infor-
mation may thus hinder the robot’s ability to learn correct
behaviors.

To help the system learn more effectively, we can exploit
the fact that some behaviors are more dependent upon spe-
cific steps of history than others. For example, answering a
customer’s direct question about a camera feature is primar-
ily dependent only on the customer’s most recent utterance,
that is, actiont−1. On the other hand, when a customer yields
the turn and the robot generates a proactive behavior, the
decision is more likely to be dependent upon the robot’s own
previous action, actiont−2, and possibly also the customer’s
previous action, actiont−3. In the case where the customer
says “yes” when the robot asks for confirmation, the deci-
sion may depend most heavily on actiont−2. If the predictor
can be trained to focus only on the most relevant steps of
history, it may be possible to improve the efficiency of learn-
ing.

To achieve this, we applied a recently introduced archi-
tecture in the deep learning field, a feed-forward deep neural
network with an attention mechanism proposed by Raf-
fel and Ellis (2015). For each possible training label,
the attention mechanism takes each input in the sequence
and learns an adaptive weighted average based on each
input. This value can be thought as the “relevance” of
the inputs, according to the context. Thus, this method
has the capability to learn which part of interaction his-
tory is relevant for generating a robot action, and also
the advantage of visualizing into the neural network to
see which part of the history the network is attending
to.

Figure 5a shows the schematic of the deep neural network,
where the training input is the interaction history, consisting
of an input sequence of the three most recent joint state vec-
tors, X = { jsvt−3, jsvt−2, jsvt−1}. The activation value of
neuron j in layer l is defined in Eq. (1)

h(l)
j = σ

(∑
k
w

(l)
j,k · h(l−1)

k + b(l)
j

)
(1)

where b(l)
j , w

(l)
j,k ∈ R are free parameters, h(l−1)

k is the activa-
tion (output) of neuron k in layer l − 1, and σ is a nonlinear
activation function.

The attention mechanism, a j , is computed using a single
layer perceptron and then a softmax operation to nor-
malize the values between zero and one, as expressed in
Eq. (2).

γ j = tanh
(
Wah

(l)
j + ba

)

a j = softmax
(
γ j

)

c =
T∑
t=1

a j h
(l)
j (2)

The idea is that oncewe have an activation value of neuron
j in layer l, h(l)

j , we can query each value asking how relevant
they are to the current computation of the target class assign-
ment. h(l)

j then gets a score of relevance which can be turned
into a probability distribution that sums up to one via the
softmax activation. We can then extract a context vector, c,
that is a weighted summation of the activation value in layer
l depending on how relevant they are to a target robot action
(see Fig. 5b). Thus, the value of a j , describes how much of
each step in the interaction history should be considered for
each robot action. For example, if at−1 is a large number, this
wouldmean that the DNNpays themost attention to themost
recent step of the interaction history, and thus is important
for predicting the robot action.

Here we describe the hyperparameters of our neural net-
work. The dimension of the input layer is three sets of input
neurons of size m (m = 1244) from the joint state vectors,
followed by two leaky rectified hidden layers, an attention
layer, and another leaky rectified hidden layer. The output
layer is a softmax with the number of neurons equal to the
number of possible robot actions (761), which represents
the probability of a robot action given an interaction history
input. The number of neurons for each hidden layer is 800.
There was no pruning or dropout layer applied in our neural
network architecture. The weights of b(l)

j , w
(l)
j,k is optimized

bymomentum-based mini-batch stochastic gradient descent,
with batch size of 128, learning rate of 0.005, andmomentum
coefficient of 0.9, and learning decay is 10−9. Initial weights
for a neuron in layer l are sampled from a normal distribution,
where the biases start at 0.

Figure 6 depicts an example interaction during online
operation of the system. When a speech or yield action is
detected, the interaction history, consisting of three joint state
vectors, is sent as a query to the trained DNN, which updates
an attention value for each input. The neural network then
predicts the probability for each robot action and outputs the
robot action with the highest probability for execution.

4.6 Examples of using the attention mechanism

Here,wewould like to illustrate some examples of our system
with the attention mechanism. One feature of the attention
mechanism is that the value of a (ht ) provides us with a way
to visualize which step of the input sequences the neural net-
work is attending to. The higher the value of a (ht ) for a
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Dataset (Interaction History)
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(b) Details of the attention layer(a) Schematic of the neural network

Fig. 5 a Schematic of the multilayer perception neural network: Inter-
action history is inputted to the neural network as joint state vectors
and robot action as training target for the neural network. The output
dimension of each layer is shown in parenthesis. b Details of the atten-

tion layer: The context vector is a weighted summation of the activation
value in layer l and represents how relevant parts of the input is to
predicating the robot action

How much is this? It has 20 megapixels

Customer Speech Action

time

It’s $68 …

Shopkeeper Speech Action Customer Yield Action

Joint state vector (t-3)

Neural Network with Attention Mechanism

Robot Action Generated

Joint state vector (t-2) Joint state vector (t-1)

Fig. 6 An example of how actions are discretized and represented as joint state vectors in the interaction history during online operation of the
system. A customer yield action is generated when no action has been detected for 3.52 s since the last robot action

certain step in the interaction history, the more it is consid-
ered for predicting a robot action.

Figure 7 shows these values for some example predictions,
in which darker shades of blue represent higher attention val-
ues. For simplicity, only utterances are shown, although our
system uses spatial data as well. These examples were gen-
erated by taking a sequence of three actions from the training
data (customer—shopkeeper—customer) and feeding them
into the trained DNN to predict an output shopkeeper utter-
ance.

Example 1 illustrates a case where the customer asks a
question. The attention model selects the most recent cus-
tomer utterance as the most important factor for predicting
the robot’s answer. InExample 2, the attentionmodel chooses
the customer’s previous utterance as the most relevant when
customer says a “backchannel”. We hypothesize that this
is because the customer’s previous question helps to define
the set of proactive behaviors which would be appropriate
in this context. Lastly, in Example 3, the system detects a
customer yield action, and the attention model chooses the
shopkeeper’s previous utterance as the most relevant input.
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We observed that the robot was able to learn the appro-
priate behavior due to interaction history, which would not
have been possible if the robot was only to predict based on
the most recent customer action, that is, the customer yield
action.

These examples show some successful predictions, but
we are not claiming that the attention mechanism will work
for all situations. These examples were chosen because they
illustrate that an attentionmodel such as this could be a useful
tool for visualizing a black-box system like a DNN.

5 Offline evaluation

Before evaluating our systemwith a live robot, we performed
an offline evaluation of the behavior predictor through cross-
validation with the training data, in order to confirm the
effectiveness of the proposed inclusion of history and atten-
tion in the learning mechanism.

5.1 Evaluation procedure

A multi-fold cross-validation data set was generated by ran-
domly selecting 10% of the data from the dataset, together
with the following shopkeeper behavior which was to be pre-
dicted. The remainder of the training data, 2223 customer–
shopkeeper–customer behavior sequences, excluding the
selected sequences, was used for training the predictors. The
test data from the multiple runs are aggregated together, for
a total of 500 behavior sequences as evaluation data.

Five predictor variants were evaluated. All evaluations
included the proposed detection of yield action, and the con-
ditions differed by the type of classifier, the inclusion of
history, and the use of the attention model.

1. NB-1 A Naïve Bayesian classifier trained on the most
recent single customer action. Thiswas the classifier from
the previous study, so we designated it as the baseline for
comparison.

2. NB-3 A Naïve Bayesian classifier trained with history
(i.e. the most recent three steps of actions: customer–
shopkeeper–customer).

3. DNN-1 A DNN trained on the single most recent cus-
tomer action.

4. DNN-3 A DNN trained with history (i.e. the most recent
three steps of actions: customer–shopkeeper–customer).

5. DNN-3-AM A DNN trained with history, which also
incorporated an attentionmechanism, as described above.

Normalized initiation, described by Ioffe and Szegedy
(2015), was used to initialize the batch inputs of the DNN
in (3)–(5). The networks were trained to minimize the cross

Example 1: Answering questions at Nikon (reactive)

C: [yield action]

S: its only $68 and great camera for all the family anyone can use 
it
C: what color do you have for this camera?

Predicted: “this one comes in purple pink black silver and red.”

Example 2: Presenting unsolicited information (proactive)

C: And what about the color of this camera?

S: It comes in black, white, and silver.

C: I see.

Predicted: “You can upload directly to Facebook 
through a wireless link.”

Example 3: Introducng Nikon at Sony (proactive)

C: [yield action]

S: over here we have the Nikon.

C: [yield action]

Predicted: “picks up and take a few pictures if you like it set up to be 
point and shoot.” (move to Nikon)

Fig. 7 Examples of successful predictions using our attention mecha-
nism technique with a history length of three. Shaded boxes show the
relative weight of a (ht ) from DNN assigned to each action, indicat-
ing its importance in predicting the final prediction. Darker shading
indicates higher weight

entropy loss for 10,000 epochs between the target output and
the observed output for the entire training set.

To perform this comparison, we evaluated the “social
appropriateness” of the predicted behaviors, rather than
simple prediction accuracy, because many equally accept-
able utterance behaviors exist in the data set. For example,
“$2000”, “it’s only $2000”, and “the camera body is only
$2000”, are all valid answers to the question of the price of
one of the cameras. This approach is similar to the procedure
used in Liu et al. (2016) for evaluating appropriateness of
robot behaviors.

A human coder, naïve to the experimental conditions,
rated each prediction as “acceptable” or “unacceptable”.
Unacceptable behaviors included factually incorrect responses,
failures to answer a question, strange behaviors like moving
to a new camera while a person was waiting for a response,
and repetition of the previous behavior if not appropriate to
do so.

As these ratings require subjective judgment, we con-
firmed the consistency of the coder’s evaluations by asking a
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Table 2 Results of manually-coded cross-validation comparison

Classifier Behavior correctness (%) p value

NB-1 (baseline) 56.2 –

NB-3 39.0 < .001

DNN-1 60.2 N.S.

DNN-3 61.8 N.S.

DNN-3-AM 62.4 < .05

The result of DNN-3-AM showed a significant difference when com-
pared with the baseline system

second coder to independently rate the same data set. Their
results were compared, and a Cohen’s Kappa value of 0.80
was calculated, indicating very good interrater reliability, so
we consider the coder’s ratings to be reliable.

5.2 Results

To evaluate statistical significance of differences between
the conditions, a chi-squared test was performed, comparing
each of the classifiers against the NB-1 (baseline) classifier.
The results of this comparison are shown in Table 2.

For theNB-3 classifier, the chi-squared test showed signif-
icance [χ2(1, N = 500) = 28.63, p < .001] indicating that
simply adding history to the Naïve Bayes classifier resulted
in significantly worse performance than simple single-step
prediction. For the DNN-1 classifier, a chi-squared test did
not show statistical significance, [χ2(1, N = 500) = 1.46,
p = .227]. The performance of the DNN-3 classifier again
did not show a significant difference from the baseline in a
chi-squared test, [χ2(1, N = 500) = 2.75, p = .097]. The
proposed DNN-3-AM classifier provided the highest perfor-
mance, and a chi-squared test showed a significant difference
from the baseline, [χ2(1, N = 500) = 4.45, p = .035].

This evaluation shows that simply adding history as inputs
to the original NB-1 classifier resulted in significantly worse
performance, whereas the proposed DNN-3-AM technique
incorporating both history and the attention model, per-
formed significantly better than the baseline predictor.

Although overall performance was lower than we had
hoped, we believe performance would improve significantly
with better speech recognition and more training data.

6 User study

To observe the effect of the new proposed features in live
interaction, we conducted a user-study to compare the two
conditions: (a) proposed, using customer yield actions and
the DNN-3-AM classifier, and (b) baseline, a system using
the NB-1 classifier and not using customer yield actions.

6.1 Hypothesis and prediction

In the evaluation experiment,wemade the followinghypothe-
ses about the effects of our proposed techniques:

1. Identifying customer yield actions will lead to the user
to perceive the proposed system as more proactive, since
the robot is able to identify when it should take an action.

2. Using DNN-3-AM classifier will enable the robot to gen-
erate behaviors that are context-sensitive and therefore
more contingent to the user’s action in the proposed
system, thus the robot will behave in a more socially-
appropriate way.

3. Overall, this will lead users to perceive the interactions to
be better in terms of quality using our proposed system,
since proactive behavior and responding appropriately to
the user’s actions are desirable in service interactions.

6.2 Experiment setup

6.2.1 Participants

A total of 15 paid participants (11 male and 4 female, aver-
age age 31.3, s.d. 2.37) played the role of customer in the
experiments. All of them were fluent English speakers.

6.2.2 Environment

The experiment was conducted in the same camera shop
setting used for the data collection, with three digital cam-
eras displayed in an 8m×11m experiment space. The same
sensor network was used for tracking, and the participants
communicated with the robot using an Android phone for
speech recognition.

6.2.3 Robot platform

For this experiment, we used Robovie 2, a humanoid robot
with a 3-Degree-of-Freedom (DOF) head, two 4-DOF arms,
and a wheeled base capable of moving at 0.7m/s. For motion
planning, the dynamic window approach (DWA) was imple-
mented to avoid obstacles (Fox et al. 1997). The Ximera
speech synthesis system (Kawai et al. 2004) was used to
generate its speech.

Idle motion behavior was implemented in the robot for
both conditions, consisting of small arm and head move-
ments while idling, speaking, and moving (Shi et al. 2010).
Automatic gaze trackingwas also implemented, and the robot
followed the customer with its gaze during all interactions.
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6.2.4 Procedure

We compared the robot’s performance between two condi-
tions: proposed and baseline. For each condition, we asked
participants to role-play for 4 trials. To create variation in the
interactions, the participants were asked to role-play as: (1)
a need-based customer (2 trials): who was looking for fea-
tures as either someone familiar or unfamiliar with cameras,
and (2) a quiet customer (2 trials): who was not looking for
anything in particular and didn’t have much to say, and was
encouraged to read the spec sheets or play with the cameras.
In all trials, they were encouraged to walk around the shop
and show an interest in learning about camera features. The
order of the conditions was counterbalanced and the order of
the trials within each condition was randomized.

As in our data collection, participants were asked to pre-
tend to be a first-time customer in the camera shop for
every trial and the participants performed 2 sample inter-
actions before the experiment to become familiar with the
Android phone interface and confirm their understanding of
the instructions.

After the 4 trials in one condition were completed, the
participant answered a questionnaire. The procedure was
repeated with the remaining condition (baseline or pro-
posed).

6.3 Measurement

Before the experiment, we explained to each participant that
the goal of this project was to create a proactive robot shop-
keeper which could assist customers in a camera shop, and
they were asked to evaluate how well the robot was able to
demonstrate that proactivity. After the experiment, we had
each participant fill out a written questionnaire, rating the
following items on a 1–7 scale (1 being very negative and 7
being very positive):

• How proactive was the robot’s behavior?
• How socially appropriate were the robot’s behaviors?
• Overall evaluation

After the questionnaire was completed, the participants were
interviewed to gain a deeper understanding of their opinions
of the robot’s behavior.

6.4 Results

6.4.1 Questionnaire results

Figure 8 shows questionnaire results from the participants.
To compare each rating between the proposed condition and
the baseline condition, we conducted a repeated-measures
ANOVA for each of the three questions.

1

2

3

4

5

6

7

Proactive Socially-appropriate Overall

Baseline Proposed

┌ *** ┐ 

+ p<.1   *p <.05 **p < .01   *** p<.001

┌  *  ┐ ┌  *  ┐ 

Fig. 8 Results of the robot behaviors in user study evaluation. The bar
in the graph represents standard error

We verified that all of our predictions were supported, as
this analysis found significant differences between the condi-
tions for all ratings: “Proactivity” [F(1, 14) = 28.332, p <

.001], “Social Appropriateness” [F(1, 14) = 5.250, p =

.038], and “Overall evaluation” [F(1, 14) = 7.875, p =

.014].

1. The results support our hypothesis that the participants
would perceive the robot to be more proactive using the
proposed system than the baseline system.

2. The results support our hypothesis that participants
would perceive the robot to be more socially appropriate
with our proposed system than the baseline system.

3. The results supported our hypothesis that the proposed
systemwould lead to a better overall interaction thanwith
a baseline system.

6.4.2 Qualitative observations

We observed a number of qualitative differences between the
behaviors of the proposed robot and the baseline robot.

Approach The proposed robot would typically take the
initiative to approach a customer standing at a camera. In
contrast, the baseline robot typically waited at the service
counter until the customer asked a question.

Introducing features and other cameras The proposed
robot would proactively introduce camera features to the cus-
tomer without being asked, e.g. saying: “pick it up see how
light it is it is only 120 grams”, or proactively lead the cus-
tomer to a new camera. In contrast, the baseline robot would
answer questions, but not take any initiative to talk about
camera features or introduce new cameras. Rather, it stood
silently by the customer when the customer had nothing to
say to the robot.

Context-dependence We observed cases where the pro-
posed robot was able to generate behaviors dependent on
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context or interaction history. For example, in one case the
proposed robot asked a customer who was looking to take
travel pictures, “so you need a camera you can take any-
where use easily”. With the customer’s response of “yes yes
I need that”, the robot then introduced the smallest, most
lightweight camera. We believe this illustrates the value of
incorporating interaction history, as the customer’s utterance
itself contained no information about which camera would
be appropriate.

The example transcript of the proposed robot interacting
with a quiet customer shown in Table 3 illustrates how the
robot was able to answer questions (reactive behavior) and
proactively explain new features (proactive behavior). Addi-
tional examples of human–robot interactions can be seen in
the accompanying video attachment.

6.4.3 Interview results

From our interview results, many participants thought both
proposed and baseline robots were friendly. Many partic-
ipants commented that they felt more engaged with the
proposed robot because it proactively asked them questions
(e.g. “what sort of pictures do you take?”) and talked about
camera features while they were playing with the camera.
One participant said that he liked when the proposed robot
initiated conversation, since he was unsure what to say to a
robot in a shop. Many participants also commented that the
proposed robot seemed more approachable, attentive, and
aware.

It is interesting to note that some participants preferred the
interaction style of the proposed robot more than the baseline
robot. One participant said the baseline robot reminded her
of a surveillance system, where the robot is watching to see if
she has damaged any goods. Another participant felt annoyed
by the baseline robot, as it followed him around the shop,
but did not say anything to him when he was looking at the
cameras.

7 Discussion

7.1 Contribution

In this study, we demonstrated that the robot was able to
generate both reactive and proactive behaviors from exam-
ples of human–human interaction. We showed that the robot
was able to not only answer questions, but also proactively
assist the customer by introducing new features or a new
camera. The robot was also able to respond based on interac-
tion context, evenwhenwhat the customer just said contained
very little information (e.g. “yes please”). Through an offline
evaluation and a user-study evaluation, we demonstrated that
the robot was perceived as more proactive, more socially-

appropriate, and better overall with our proposed techniques,
as compared to a baseline system that did not use our tech-
niques.

7.2 Identifying yield actions in turn-taking

In this study, we demonstrated that proactive behavior can
be generated by identifying yield actions based on a tim-
ing threshold. While we demonstrated this approach to work
well in our situation, we believe that this technique can
be improved by including other ways of identifying yield
actions. For example, nonverbal behaviors such as gaze and
nodding have been investigated as turn-taking signals in both
psychological (Duncan 1974; Gu and Badler 2006) and HRI
studies (Rich et al. 2010; Mutlu et al. 2009). Thus, the detec-
tion of non-verbal feedback for a more natural turn-taking
behavior in a robot could be interesting to explore in future
work.

7.3 History representation

In our scenario, we demonstrated that the robot was able to
reproduce the behaviors of a proactive shopkeeper with a
fixed length of three history steps with our proposed system.
While the choice of three history steps was enough for our
scenario, we expect that additional benefits could be gained
by increasing the length of history or otherwise represent-
ing long-term history in some way. For example, sometimes
the customer would state their goal at the beginning of an
interaction, “I am looking for a camera that is easy to carry
around”. Since only the immediate historywas used for train-
ing and generating robot behavior, this information would be
lost over time.

Choosing a history representation is a difficult problem. If
the interaction history is too long, the robot may learn some
additional context-dependent behavior, but it becomes more
difficult for the system to learn to ignore history for simple
question-answer exchanges. One possible future improve-
ment may be to explicitly model a customer’s intention or
goals to capture this long-term history. Although such ques-
tions can be explored in future work, our current study has
demonstrated that including just the immediate history repro-
duced reasonable proactive behaviors for the datasetwe have.

7.4 Generalizability and scalability

We believe that this data-driven approach can be applied
in domains where repeatable interactions can be captured,
and where proactive behaviors are context-dependent. For
instance, the task of an art museum tour guide robot includes
answering questions about a particular artwork (e.g. facts
about the artist), as well as proactively explaining about other
interesting anecdotes about that piece (e.g. the medium used
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Table 3 An example of the proposed robot interacting with a quiet customer in the user study

(1) [Customer and Robot at Canon]

Customer: “can you tell me a little bit about this camera?”

Robot: “you have full creative control it has every possible manual setting”

(2) Customer picks up the camera and plays with it

Robot: “we have one set up over here with a small zoom lens if you would like to try
using it”

(3) Customer: “ok thank you” [walks to Nikon]

Robot: [moves to Nikon]

Customer reads the spec sheet

Robot:“would you like to take a couple pictures with at first”

(4) Customer: [plays with the camera]

Robot: “here is the optical zoom so you can see the effect it has on your picture too”

Customer: [continue playing with the camera]

Robot: “the two most important things with this kind of cameras that the pictures are
great quality because everybody’s going to look at them and then I can respond very
quickly because it’s all about being out with friends and family”

Customer: “yeah that’s true”

Robot: “it comes in a range of colors it takes fantastic pictures it’s really easy to use so
you can focus on the photograph instead of all the ways that the camera can be set”

(5) Customer: “oh thanks” [walks to Sony]

Robot: [moves to Sony] “good afternoon how can I help”

Customer: [plays with the camera]

Robot: “it’s an excellent camera that takes the same quality pictures as a top-end camera
without the top and price”

(6) Customer: “okay well thanks so much for the information” then leaves the shop

Robot: returns to service counter while saying “no problem have a good afternoon”
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or time period completed). We can also imagine a tourist
center robot, where its tasks could include both answering
questions about a tourist attraction (e.g. operating hours) and
expatiating about other details (e.g. admission cost).

There may be some domains to which our approach can-
not be generalized. These domains might require proactive
behaviors that are dependent on subtle social cues or back-
ground knowledge. One example might be an educational
robot that proactively teaches a language, where the lesson
is tailored to the student’s comprehension level. We imag-
ine such domain would be difficult to learn with our current
approach, since such framework containing the knowledge
about a user (i.e. level of comprehension) is not represented
in our system.

In terms of scalability with our proposed system, we
believe that it will be able to scale up to more complex
scenarios, for instance, when the number of cameras on dis-
play increases. The amount of training data required will be
dependent on the number of social behaviors that need to be
reproduced, the variability of the customer actions, and the
reliability of sensing, thus training effort would scale linearly
with the number of behaviors to be learned.

7.5 Limitations

While we have demonstrated a system for learning robot
behaviors from a proactive shopkeeper, the offline evaluation
shows there are some limitations to the current system.Below
we discuss some limitations and possible strategies for future
improvement.

Repeatability of actions This technique is designed to
work for social scenarios containingmany repeatable actions,
and the most frequently-observed actions will be learned
best. Actions that are very infrequent or unique in the training
data will not be learned well. This is an inherent limitation
of a learning-by-imitation approach, and it could be valuable
to develop methods for quantifying the degree of repeatabil-
ity in a set of interactions. This could be useful for judging
when sufficient training data has been collected to reproduce
an interaction, or for deciding whether this approach is appli-
cable to a new social scenario.

Compound utterances The shopkeeper often spoke about
multiple features in one utterance (e.g. “This has a 9 preset
modes and it also has a 3200 ISO” and “This has 9 presets and
is $550”), which means that utterances that are not exactly
semantically similar may end up being clustered together,
and consequentlymapped to the same robot action. For future
work, we envision improving the clustering algorithm (e.g.
using a soft clustering algorithm to expose more information
about the probability distribution of an utterance belonging to
a robot action) or techniques in natural language processing
to better handle more complex utterances.

Representing othermodalitiesModalities such as gaze and
gesture are often important in social interaction. For exam-
ple, the human shopkeeper sometimes introduced a camera
by pointing to it instead of actually moving to that cam-
era. This pointing behavior is not recognized by our sensors
and thus not learned by the robot. Consequently, this led
to some confusing situations where the robot would talk
about a camera other than the one it was standing at. It
would be interesting to incorporate additional perceptual
(Nickel and Stiefelhagen 2007) and generative (Sugiyama
et al. 2007) modules for additional modalities, such as point-
ing or gaze.

8 Conclusion

In this work we have successfully demonstrated a system
designed to reproduce not only reactive behaviors for a
robot (e.g. answering questions), but also proactive behav-
iors (e.g. providing unsolicited information) that are learned
from human–human interactions. This was accomplished
through three proposed techniques, including detection of
yield actions, incorporating interaction history, and using an
attention mechanism to learn which history steps are impor-
tant for predicting the robot behavior. First, we demonstrated
that our proposed technique was rated the highest in terms of
behavior correctness among five different methods for pre-
dicting robot behaviors. Then, we validated our approach
in a comparison user-study, which showed that participants
perceived the proposed techniques to produce behaviors that
weremore proactive, socially-appropriate, and better in over-
all quality.

Social robots are now appearing in the real world, and we
are seeing a growingmarket in the service industry for robots
which interact with customers. In such situations, proactive
behavior may prove necessary to enable robots to effectively
engage with their customers and users. In this work we have
successfully demonstrated one way in which a data-driven
approach from our previous work can be extended to repro-
duce proactive behaviors from a human shopkeeper, and we
believe that data-driven techniques like these will become
a valuable tool for building real-world interaction logic for
social robots.
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Appendix

Here we describe our data abstraction techniques to enable
the learning of high-level interaction logic in human–robot
interaction to be achieved in an entirely data-driven way, that
is, without any kind of manual annotation or cleanup of the
sensor data. This follows the work presented in Liu et al.
(2016).

Defining input features

Here, we describe the features used in the joint state vector,
including the abstraction of motion (consisting of current
location, motion origin, andmotion target of both partici-
pants, and a spatial formation), and an utterance vector of
the current spoken utterance. The total dimensionality of the
input features was 1244.

Motion abstraction We use motion abstraction to charac-
terize a set of stopping locations, motion trajectories, and
spatial formations which can be used to describe the motion
of the customer or shopkeeper as a combination of discrete
state variables rather than raw position or velocity data.

To begin the analysis, we segmented all trajectories in
the training data into moving and stopped trajectories, based
on a velocity thresholding technique presented in Guéguen
(2001). We spatially clustered these trajectory segments to
identify a discrete set of typical stopping locations and
motion trajectories for each role (customer and shop-
keeper).

For stopping locations, we used k-means clustering, iden-
tifying five stopping locations for the customer (i.e. the
locations of the 3 cameras, the middle, and the door) and
five for the shopkeeper (i.e. the locations of the 3 cameras,
the middle, and the service counter).

For moving trajectories we used k-medoid clustering
based on spatiotemporal matching using dynamic timewarp-
ing.

We created rules for identifying a predetermined set of
common spatial formations based on the distance between
the interactants and their locations. The rules for spatial for-
mations are similar to three existing HRI proxemics models:
(1) present object (Yamaoka et al. 2008): both interactants
were at stopping locations corresponding to the same cam-
era, (2) face-to-face (Hall 1966): both interactants are within
1.5m of each other but not at a camera, and (3) waiting
(Kitade et al. 2013): if the shopkeeper was at the service
counter and the customer was not.

In addition, we also identified the current spatial tar-
get for a particular spatial formation. The formation target
for “present object” can be either Sony, Nikon, or Canon,
whereas the formation target for the spatial formation “face-
to-face” and “waiting” is ‘none’.

Utterance vectorization We performed utterance vec-
torization of the customer and shopkeeper using common
text-processing techniques. Specifically, we removed stop
words, applied a Porter stemmer, enumerated n-grams up
to 3, and performed Latent Semantic Analysis (Landauer
et al. 1998) to reduce the dimensionality to 1000. To empha-
size important keywords, we also used the AlchemyAPI
cloud-based service2 to automatically extract keywords from
each utterance and represented the keywords separately in
the vector (200 dimensions). By using this procedure, we
were able to take any input utterance and represent it using
a 1200-dimensional vector. Vectorization of customer and
shopkeeper utterances were performed independently.

Defining robot actions

In our system, each observed shopkeeper action must corre-
spond to a discrete robot action. A robot action consists of an
utterance (represented by an ID number) with a correspond-
ing target formation.

Shopkeeper utterance To reproduce shopkeeper speech
with a robot, it is necessary to define a set of discrete utter-
ance actions. Common utterances are frequently repeated in
the training data (for example, variants of “How may I help
you?” occur 188 times), but these instances often include
slight differences due to speech recognition errors or indi-
vidual variation. We used bottom-up hierarchical clustering
based on lexical cosine similarity to group these similar utter-
ances into 761 clusters corresponding todiscrete robot speech
actions.

Fromeach shopkeeper utterance cluster, one utterancewas
selected for use in behavior generation. For each utterance,
we compute the cosine similarity of its term frequency vector
with every other utterance in the same cluster, and we sum
these similarity values. The utterance with the highest sim-
ilarity sum is chosen as the typical utterance to be used to
generate robot speech. Notice the typical utterance can also
be “none”, which means that the robot does not output an
utterance.

Target formation We use the same abstraction rule
described earlier to represent a target spatial formation for the
robot (i.e. present product, face-to-face, waiting, or none).
This allows the robot to precisely calculate its target position
and facing direction defined by the specefic HRI model, in
accordance with its estimation of the customer’s destination.

If the predicted target formation is different from the
robot’s current formation, the robot moves to attain the
new target formation. Specifically, if the predicted forma-
tion is face-to-face, the robot approaches the customer; if
the predicted formation is waiting, it returns to the service
counter; if the predicted formation is present-object, the robot

2 http://www.alchemyapi.com.
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approaches the target object; and if the predicted formation
is none, the robot stays where it is.

References

Admoni, H., & Scassellati, B. (2014). Data-driven model of nonver-
bal behavior for socially assistive human–robot interactions. In
Proceedings of the 16th international conference on multimodal
interaction (pp. 196–199), ACM.

Awais,M., &Henrich, D. (2012). Proactive premature intention estima-
tion for intuitive human–robot collaboration. In 2012 IEEE/RSJ
international conference on intelligent robots and systems (pp.
4098–4103), IEEE.

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine trans-
lation by jointly learning to align and translate. arXiv preprint
arXiv:1409.0473.

Bauer, A., Klasing, K., Lidoris, G., Mühlbauer, Q., Rohrmüller, F., Sos-
nowski, S., et al. (2009). The autonomous city explorer: Towards
natural human–robot interaction in urban environments. Interna-
tional Journal of Social Robotics, 1(2), 127–140.

Breazeal, C., DePalma, N., Orkin, J., Chernova, S., & Jung, M. (2013).
Crowdsourcing human–robot interaction: new methods and sys-
tem evaluation in a public environment. Journal of Human–Robot
Interaction, 2(1), 82–111.

Brscic, D., Kanda, T., Ikeda, T., &Miyashita, T. (2013). Person tracking
in large public spaces using 3-D range sensors. IEEE Transactions
on Human–Machine Systems, 43(6), 522–534. https://doi.org/10.
1109/thms.2013.2283945.

Chao, C., & Thomaz, A. L. (2011). Timing in multimodal turn-taking
interactions: Control and analysis using timed petri nets. Journal
of Human–Robot Interaction, 1(1), 1–16.

Cheng, J., Dong, L., & Lapata, M. (2016). Long short-term memory-
networks for machine reading. arXiv preprint arXiv:1601.06733.

Chernova, S., DePalma, N., Morant, E., & Breazeal, C. (2011). Crowd-
sourcing human–robot interaction: Application from virtual to
physical worlds. In RO-MAN, 2011 IEEE, July 31 2011–Aug. 3
2011 (pp. 21–26). https://doi.org/10.1109/roman.2011.6005284.

Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification.
IEEE Transactions on Information Theory, 13(1), 21–27.

Duncan, S. (1972). Some signals and rules for taking speaking turns
in conversations. Journal of Personality and Social Psychology,
23(2), 283.

Duncan, S. (1974). On the structure of speaker–auditor interaction dur-
ing speaking turns. Language in Society, 3(02), 161–180.

Fox, D., Burgard, W., & Thrun, S. (1997). The dynamic window
approach to collision avoidance. IEEE Robotics & Automation
Magazine, 4(1), 23–33.
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