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Abstract We present a framework for distributed mobile
sensor guidance to locate and track a target inside an urban
environment. Our approach leverages the communications
between robots when a link is available, but it also allows
them to act independently. Each robot actively seeks the tar-
get using information maximization. The robots are assumed
to be capable of communicating with their peers within some
distance radius, and the sensor payload of each robot is a
camera modeled to have target detection errors of types I
and II. Our contributions include an optimal information
fusion algorithm for discrete distributions which allows each
agent to combine its local information with that of its neigh-
bors, and a path planner that uses the fused estimate and a
recent coverage result for informationmaximization to guide
the agents. We include simulations and laboratory experi-
ments involvingmultiple robots searching for amoving target
within model cities of different sizes.
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1 Introduction

Many applications require time-efficient location of a target,
and these tasks are made more difficult in urban environ-
ments. For example, Urban Search and Rescue (USAR) may
be time-critical after a natural disaster or an accident calls
for the rapid location of survivors (Tomić et al. 2012; Liu
and Nejat 2013, 2015). Surveillance tasks are also exam-
ples of a search and tracking problem (Pennisi et al. 2015).
While a single, autonomous agent can successfully locate
a target, it has been shown that increasing the number of
agents that participate in a distributed search task is always
beneficial (Chung and Burdick 2008). In this work, we
are concerned with the problem of locating a moving tar-
get inside an urban environment, using multiple Unmanned
Aerial Vehicles (UAVs) equipped with camera sensors. We
study the efficient distribution of search effort among the
UAV platforms, which must also be capable of operating
autonomously.

One of the challenges for multiple agent searching is the
need for communication and coordination among them. A
centralized structure with sufficient computing power can
plan optimal paths, even though the search problem is known
to be NP-hard (Trummel and Weisinger 1986). For example,
sensor guidance can be posed in a game-theoretical context
as a cooperative strategy if the sensor motions and measure-
ments have a central processor (Choi and Lee 2015). The
work of Haugen and Imsland (2016) plans the motions of
fixed-wing UAVs with sensor payloads by using dynamic
optimization of convex programs. Multiple target detection
and tracking with a central planner is demonstrated in Dames
et al. (2015), with an application of the Probability Hypoth-
esis Density filter. When the targets to localize are static,
the application of information-theoretical tools in a central-
izedmotion planner formultiple sensors results in substantial
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gains over exhaustive coverage strategies (Charrow et al.
2015b). As the authors show in Hausman et al. (2015), if the
communication topology among sensors can be controlled,
it can be optimized to enhance the estimation of the location
of the sensors and a target.

Optimal path planning becomes intractable as the number
of agents and the complexity of the map increase. Further-
more, a centralized controller requires a fully connected
network. Line of sight communications are difficult in urban
canyons, and many tasks cannot assume the presence of
communication networks. Alternatively, the search can be
performed in a distributed manner if each agent has access
to the target location estimates of one or more of its peers.
However, if the communication network of the agents is not
fully connected, they will not have shared access to a tar-
get location estimate. In Pimenta et al. (2009), the authors
propose a distributed control framework to track an intruder
while keeping coverage of the search area. An example of
distributed estimation in urban environments is Dames et al.
(2016), where teams of UAVs equipped with magnetometers
use information gradients to locate ground targets.

Different methods have been proposed to address the
problem of distributed data fusion. The average consen-
sus algorithm is one of the most widespread (Olfati-Saber
and Murray 2003; Moreau 2005). The nodes share a belief
with certain neighbors. As long as the graph is connected,
all of the agents will reach consensus as the average of
the estimates. In Scoy et al. (2015), the average consen-
sus algorithm is extended with local nonlinear oscillators
to ensure that the estimator is robust to the initial internal
node states. The framework inAtanasov et al. (2015) includes
average consensus for particle filter estimators, with a dis-
tributed sensor guidance algorithm that uses the gradient
of mutual information to locate a signal source. Instead of
using information-based approaches to position mobile sen-
sors, Kantaros and Zavlanos (2016) focuses onmaximizing a
sensor coverage cost function while optimizing the commu-
nication topology, with both alternating optimizations being
performed in a distributedmanner. An alternative approach is
the channel filter. In this case, the nodes fuse their local esti-
mates with those of their neighbors, but they have to remove
shared information before the fusion to avoid overemphasiz-
ing their agreement (Ong et al. 2008). Thismode of operation
allows for asynchronous communications.

Wepropose a framework to allowa teamofmultiple agents
to locate a target within an urban environment that does not
assume full connectedness of the communication graph. This
paper presents two major contributions to solve the affore-
mentioned challenges. First, we propose a solution to the
optimal information fusion problem for the case of two, one-
dimensional, discrete probability mass functions (pmfs). We
derive a closed-form equation that, given two pmfs, finds a
third one that simultaneously minimizes the measurement

space distance to both. This result removes the need to com-
pute the information shared by two agents and allows for a
straightforward combination of their beliefs.

Our second contribution builds on the availability of a
localmap and a local target position estimator per each agent,
and formulates an information-based path planner that guides
the target search. The planner is based on a recent result
linkingmutual informationmaximization to sensor coverage,
which is used as part of a cost function that also includes a
collision avoidance term.

The UAVs can operate independently in case of no com-
munication and share information when it is available. In
the case of full or guaranteed intermittent connectivity, their
target position estimates will converge. This is supported by
Monte Carlo analysis using different sets of communication
distances and path planning lengths. We also include labora-
tory experiments using UAVs searching for a ground robot
while running our algorithms in real time.

The rest of this paper is organized as follows. Sect. 2
presents background material relative to our estimator and
mapmodel. The algorithm applied for distributed target loca-
tion estimation is described in Sect. 3. We then explain our
approach to path planning in Sect. 4, after which Sect. 5
presents simulation and experimental results. Our conclu-
sions and remarks are in Sect. 6.

2 Preliminaries

2.1 Particle filter estimator

The particle filter is an estimator that can be used in the case
of nonlinear system dynamics and non-Gaussian process and
measurement noise (Arulampalam et al. 2002). Let xk denote
the target state at time k. An initial estimate of the target
state probability distribution function (pdf), p(x0) may be
arbitrarily chosen and is described by the set of N particles
X = {xi0 : i = 1, . . . , N }, with associated weights wi

0 such
that

∑N
i=1 wi

k = 1 at any time k. The particle filter follows a
prediction-correction pattern similar to other schemes such
as the Kalman filter. The state pdf at time k is approximated
by a sum of delta functions

p (xk) ≈
N∑

i=1

wi
kδ(xk − xik). (1)

The prediction step consists of propagating the particles
forward in time according to the dynamic model, xik =
fk−1(xik−1,uk−1). This yields the predicted state pdf,
p (xk | zk−1). When a measurement zk is received, the state
pdf is updated in the correction step
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p (xk | zk) = p (zk | xk) p (xk | zk−1)

p (zk | zk−1)
. (2)

The measurement likelihood function, p (zk | xk), is used to
update the particle weights according to Bayes’ Rule

wi
k = wi

k−1 p
(
zk | xik

)

∑N
j=1 w

j
k−1 p

(
zk | x j

k

) . (3)

Over time, as more information about the target is gath-
ered, many of the particlesmay have their weights drop down
to or near zero. This means that the effective number of par-
ticles decreases, leading to a degeneration of the particle set.
To cope with this phenomenon, various resampling tech-
niques have been devised (Li et al. 2015). The resampling
may be performed when the number of effective particles
drops below a threshold by using an approximate metric

Nef f = 1
∑N

i=1 w
(i)
k

(4)

although it can also be performed at every time step inwhat is
known as systematic resampling, whenever the computation
constraints allow it.

2.2 Urban map model

The urban environment can be modeled as a graph M =
(V, E), where the set of vertices V = {1, . . . , n} represents
either one end of a road segment or an intersection ofmultiple
roads, and the set of edges E ⊆ V × V represents road
segments. The use of a directed graph allows us to represent
one or two-way roads (Ramirez-Paredes et al. 2015).

In this context, the location of a vehicle can be represented
as tuple θ = {e, p, v}, where e is an identifier for the edge
where the vehicle is located, p ∈ [0, 1] is the position of
the vehicle relative along the length of the road segment, and
v ∈ R is the velocity of the vehicle. We can always define
a mapping R : E × [0, 1] × R �→ R

2 × [−π, π ] × R to
change to a representation consisting of a location in R

2,
an orientation and a linear velocity, i.e., the current pose and
velocity in the world. The target vehicle is modeled as having
first-order kinematics with velocity saturation, such that it
may follow a sequence of map graph nodes as waypoints,
accelerating and stopping in a manner that resembles a car
in a city environment.

Two examples of graph-based descriptions of urban envi-
ronments are shown in Fig. 1. The square grid is used later
in this text as a test environment for laboratory experiments
involvingmultiple robots. The bottomgraph represents a por-
tion of downtown Dallas, TX. In both cases, the directions of
the roads E are represented as arrows joining intersections,
which are the nodes V .

Fig. 1 Two graphs representing urban environments. Top: a 5×5 grid.
Botton: a model of downtown Dallas, TX

3 Distributed target search and tracking

3.1 System overview

The agents (e.g., one or more UAVs) perform distributed
data fusion, and each agent runs a particle filter estimator
for the target location. The kinematic model for each UAV is
based on the common first-order approximation for quadro-
tor helicopters. Each agent plans its movements usingmutual
information maximization between its sensor and the distri-
bution of target locations based on its local estimator, and is
capable of individually pursuing its goal. The path genera-
tion is based on the result fromRamirez-Paredes et al. (2016)
linking sensor coverage to mutual information. The sensors
are assumed to be capable of detecting their peers if within
some distance radius, and each sensor is allowed to have
target detection errors of types I and II. Our approach lever-
ages available communications between the mobile sensor
and also allows them to act independently. The information
exchange lets the agents agree on an improved estimate of
the target location distribution and continue their individual
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Fig. 2 Inner components of a single agent

search. The agents can locate the target without communi-
cating, but they will perform a more efficient search if the
communication links exist at least occasionally.

A diagram of the control components of a single agent
is shown in Fig. 2. Each agent is equipped with a camera
for target detection, and it is capable of self localizing in a
global frame. This can be accomplished by using a Global
Positioning System (GPS) receiver, for example. The radio
link can be used to transmit and receive both the estimates of
the target location and the location of the agent in the global
frame to other agents within a radius. Also included in the
diagram are a path planning and a trajectory controller mod-
ules. The trajectory control can be achieved by a combination
of autopilot module and waypoint navigation, while the path
planner is described later in this text.

We begin by formally establishing the set of agents as
NA > 1 identical UAVs equipped with electro-optical sen-
sors capable of detecting a designated target. Let each agent
be identified by an integer i ∈ {1, . . . , NA}. The agents
are connected in a communication network, represented by
a digraph Gc = (Vc, Ec), with NA vertices, where Vc =
{1, . . . , NA}.

An example of a network configuration is illustrated in
Fig. 3. Each UAV is considered a single agent, and two radii
are associatedwith it. Thefirst, rd , is a communication radius.
This indicates that any other agent within rd units will be
able to exchange positions and beliefs with the agent being
analyzed. Similarly, rc is a collision radius. Whenever two
agents are closer than rc units of each other, a collision is
considered imminent and must be avoided. In Fig. 3, agent 1
is disconnected from the others and gets no information from
their estimators.

Consider the scenario where each agent i has a local
particle filter estimator of the target location. Hence each
agent maintains its own particle set θ(i), w(i), as covered in
Sect. 2.1. Each particle is θ ∈ E × [0, 1] × R. At any time

Fig. 3 A team of four UAVs, showing the communication radius rc
and the collision avoidance radius rc for each

instant, a particle set can be transferred from agent i to agent
j if (i, j) ∈ E . Whenever unambiguous, we will drop the
time index of the particles and weights to simplify notation.
We could design the system such that only measurements
are shared by the agents, but by exchanging particle sets
they implicitly transmit their measurement history. Assum-
ing that agent i is then provided with a copy of the particle set
[θ( j), w( j)], we need an approach to compute p(θ(i)|θ( j)).
Ideally, under the assumption that the measurements from
each agent are independent,

p(θ(i)|z(i) ∪ z( j)) = η
p(θ(i)|z(i))p(θ(i)|z( j))

p(θ(i)|z(i) ∩ z( j))
(5)

where η is a normalization constant. The denominator of
this expression is computed using a channel filter, the pur-
pose of which is to compensate for duplicated information
shared by agents i and j . Our choice to use a channel fil-
ter approximation comes from the work of Makarenko and
Durrant-Whyte (2006), where the distributed data fusion
architecture assumes that each and every node is an infor-
mation fusor.

Depending on the estimator used, it may not be possible to
properly construct a channel filter, which can then be substi-
tuted by an approximation, such as the covariance intersect
algorithm (Julier and Uhlmann 1997; Franken and Hupper
2005). This requires pdfs that can be completely described
by covariance matrices, which is not the case for the urban
search scenarios discussed in this work. In our case, the par-
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ticle filter allows us to construct a representation of the target
pdf.

3.2 Optimal information fusion

We present a reliable and simpler alternative to approxi-
mate a channel filter. Since the channel filter is used to
remove the common information between two nodes, an
effective approximation has to achieve the same effect. The
target pdf can be represented with varying degrees of preci-
sion by dividing each road segment into a set of discrete
sections and formulating a normalized histogram. Taking
this to an extreme, each road portion or graph edge can
be represented by a single histogram bin. Let us define a
function to retrieve the edge on which a particle travels
Es(i, k) = {e : θk(i) ∈ e}, where the superscript denotes
the k-th particle in the set maintained by agent i . We can
then construct a representation for the probability mass of
edge e, as perceived by agent i

Ew(i, e) =
∑

k : θk(i) ∈ e

wk(i). (6)

Thus, Ew(i, e) constitutes a bin in the normalized his-
togram or pmf for agent i over E . When combining the
information from agents i and j , we seek for a fused estimate
of the target pmf, F , that minimizes some metric between F
and both Ew(i, e) and Ew( j, e) over E .

When comparing pdfs (or pmfs) p and q, it is commonly
accepted to use theKullback-Lieber divergence (KLD), given
by

D(p||q) =
∫

p(x) log
p(x)

q(x)
dx .

This quantity is, however, not symmetrical and hence not
a metric. An alternative metric is the Hellinger distance
(Fannes and Spincemaille 2003), which is symmetrical, and
its square has the important property of being the lower
bound of the KLD, so H2(p, q) ≤ D(p||q). In the con-
text of describing metrics between discrete distributions, we
will temporarily use the symbols i and j to enumerate their
elements. The Hellinger distance is defined as

H(p, q) = 1√
2

[∫ (√
p(x) − √

q(x)
)2

dx

]1/2
(7)

and for the discrete case as

H(p, q) = 1√
2

[
∑

i

(√
p(i) − √

q(i)
)2

]1/2

(8)

where the factor of 1/
√
2 is used to normalize the distance

in the interval [0, 1]. Taking the squared Hellinger distance
and expanding the binomial expression for each term of the
sum, an alternative form is

H2(p, q) = 1 −
∑

i

√
p(i)q(i) (9)

where the sum term is called the affinity between distribu-
tions.

Let us define a metric to minimize in order to find the pmf
r that results from the optimal fusion of p and q. A sensible
choice based on (8) is

g(p, q, r) = H2(p, r) + H2(q, r) (10)

g(p, q, r) = 2 −
∑

i

√
p(i)r(i) −

∑

i

√
q(i)r(i) (11)

= 2 −
∑

i

√
r(i)

[√
p(i) + √

q(i)
]

(12)

which adds the distances of some pmf r to both p and q.

Proposition 1 The optimal choice of r , which minimizes the
sum of the squared Hellinger distances (10), is given by the
element-wise function of p and q

r∗(i) = (
√
p(i) + √

q(i))2

2 + 2
∑

j
√
p( j)q( j)

. (13)

Proof Finding the r that minimizes g(p, q, r) can be stated
as an optimization problem.

maximize
r

f (r) =
∑

i

√
r(i)[√p(i) + √

q(i)]

subject to
∑

i

r(i) = 1

0 ≤ ri ≤ 1, i = 1, . . . , n

(14)

The objective function, which consists of a sum of square
roots, has a minimum at r = 0. Taking the gradient with
respect to r gives

∂ f

∂r(i)
=

√
p(i) + √

q(i)

2
√
r(i)

which has no critical pointswithin the feasible set. An inspec-
tion of the components of the Hessian shows that

∂2 f

∂r( j)∂r(i)
=

⎧
⎨

⎩

−
√
p(i)+√

q(i)

4
√

r(i)3
if i = j

0 if i �= j
(15)

which indicates that f (r) is concave in Rn+, the positive real
n-vectors.
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Given that the arguments are all real in [0, 1], the
extremum of (14) can be found using Lagrange multipli-
ers. We will consider p, q as constant in this derivation. The
Lagrangian is

�(r, λ) =
∑

i

√
r(i)[√p(i) + √

q(i)] − λ

(
∑

i

r(i) − 1

)

(16)

Let us compute the derivative of (16) with respect to each
r(i), and also with respect to λ, and equate them to zero.

∂�

∂r(i)
=

√
p(i) + √

q(i)

2
√
r(i)

− λ = 0 (17)

∂�

∂λ
= 1 −

∑

i

r(i) = 0 (18)

Then we arrange all of the equations involving λ as a series
of equalities, and square them.

√
p(1) + √

q(1)

2
√
r(1)

=
√
p(2) + √

q(2)

2
√
r(2)

= · · · =
√
p(n) + √

q(n)

2
√
r(n)

(19)

(
√
p(1) + √

q(1))2

4r(1)
= (

√
p(2) + √

q(2))2

4r(2)

= · · · = (
√
p(n) + √

q(n))2

4r(n)
(20)

Here n is the total number of elements for each pmf. The
common factor of 1/4 can be removed. At this point, it is
convenient to define the shorthand li = (

√
p(i) + √

q(i))2.
The quantity li = 0 iff both p(i) = q(i) = 0. From (10),
it is clear that in this case any choice of r(i) results in zero
contribution to the distance computation.

Taking pairs of equations from (20), we can use the fol-
lowing relationships to find the solution to the system formed
by (17) and (18).

l2r(1) = l1r(2)

l3r(2) = l2r(3)

...

lnr(n − 1) = ln−1r(n) (21)

These can be condensed along with (18) in a single matrix
equation.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

l2 −l1 0 0 · · · 0
0 l3 −l2 0 · · · 0
0 0 l4 −l3 · · · 0

...
. . .

...

0 0 0 0 · · · −ln−1

1 1 1 1 · · · 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

r =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0
...

0
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(22)

Assuming the left-hand n×n matrix is full rank, the solution
can be found using Gaussian elimination as

r(i) = li
∑

j l j
= (

√
p(i) + √

q(i))2
∑

j (
√
p( j) + √

q( j))2

= (
√
p(i) + √

q(i))2
∑

j

(
p( j) + q( j) + 2

√
p( j)q( j)

) (23)

and we reach the stationary point of (16), r∗.
The special case of li = 0 for some i can be handled

by carefully selecting the pairs of equations from (21), i.e.,
taking care not to choose a pair li r( j) = l j r(i) where li =
l j = 0, but either can be zero. Thatmakes thematrix full rank
since, with the exception of its last row, it is upper triangular
with non-zero elements along the diagonal.

If li = 0 ∀ i , then p = q = 0 and r∗ = 0 by definition.
��

Furthermore,wecanget boundson (10). First, bybeing the
sum of two squared Hellinger distances, the absolute bounds
on (10) for arbitrary r are

0 ≤ g(p, q, r) ≤ 2. (24)

Let us now state the bounds for using the optimal r .

Proposition 2 By computing the optimal distributionr∗ with
(13), the sum of the squared Hellinger distances (10) is
bounded by

0 ≤ g(p, q, r∗) ≤ 2 − √
2. (25)

Proof We can get bounds for (10) for r∗ by first substituting
(13) in (10)

g(p, q, r∗) = 2 − 2 + 2
∑

i
√
p(i)q(i)

√
2 + 2

∑
j
√
p( j)q( j)

(26)

and then considering the extrema of the affinity term for p
and q, which are {0, 1}. ��

Using Proposition 1, we can compute the distribution that
optimally fuses the information from two nodes. Let us call
this optimal fusion F , distributed over E . Then, for agents i
and j , the fusion for edge e is given by
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F(i, j, e) = Ew(i, e) + Ew( j, e) + 2
√
Ew(i, e)Ew( j, e)

2 + 2
∑

e∈E
√
Ew(i, e)Ew( j, e)

(27)

and the data fusion step for agent i incorporating the infor-
mation from agent j is an update of the weight of the k-th
particle

wk(i)|θ( j) ← wk(i)
F(i, j, Es(i, k))

Ew(i, Es(i, k))
. (28)

The denominator is the sum of the particle weights in the
edge that contains particle wk(i). This division ensures that
theweights of the particles on edge Es(i, k) add up to the new
weight from the fusion step with agent j , F(i, j, Es(i, k)).

3.3 Distributed estimation convergence

A condition for distributed estimation is the existence of a
connected communication network graph among the agents.
Otherwise, there would be no information exchange among
them. When the communication distance between agents is
limited but they still are expected to periodically exchange
information, we can refer to a result from the random net-
works and distributed data fusion literature in order to discuss
connectivity. A random graph G has a set V = {1, . . . , n}
of vertices, and a probability p that determines the existence
of edge (i, j), i �= j . These parameters define the sample
space of all random graphs, which is denoted by G(n, p).
The union of two graphs that have the same vertex set V is
the graph G1 ∪ G2 = (V, E1 ∪ E2). The graphs G and Gi

are not to be confused with M, which represents the urban
map.

Let us first review a lemma from (Hatano and Mesbahi
2005).

Lemma 1 Consider the sequence of random graphs Gk ∈
G(n, p), with k = {1, 2, . . .}. Then, if k → ∞, ∪kGk is
connected w.p.1.

The proof is brief and comes from noting that the prob-
ability of existence of edge (i, j) is p for any Gk , so the
probability of two vertices not being connected in ∪kGk is
limk→∞(1 − p)k = 0. In the case of multiple agents that
have communication links as in our system, most of the time
the network graph L is Kn , the complete graph on n ver-
tices. There is a probability 1 − p of having a broken link,
but we may not have information to determine p. Lemma 1
helps us ensure that the information about the target will get
disseminated among the agents w.p.1.

It is also useful to consider the communication topol-
ogy as a random network because in real implementations
it would be considerably difficult to guarantee a complete

or even connected graph at a given time instant t f . Con-
sider agent i simultaneously receiving measurements from
its m neighbors d1 . . . dm at time t f . These measurements
will normally be processed asynchronously, resulting in a
sequence of subgraphs of G given by Gt f +	t = (V, (i, j)),
with j ∈ d1 . . . dm , and 	t is some random delay will be
introduced to the reception of each measurement. The asyn-
chronous nature of the measurement processing makes it
necessary for the nodes to perform a local filtering of the
common information between their estimates and those from
their neighbors.

We now present a proposition regarding the convergence
of the distributed estimation approach from the previous sec-
tion, under the assumption that the communication graph is
connected.

Proposition 3 Consider an undirected communication net-
work Gc = (Vc, Ec) established among the agents, such that
|Vc| = NA. Assume that Gc is connected. Define, per agent
i , a local estimate of the probability weights assigned to each
edge e1, e2, . . . , e|E | ∈ E denoted as a vector

Ei = [Ew(i, e1) Ew(i, e2), . . . , Ew(i, e|E |)]T .

Then define the fusion process as a per-element substitu-
tion operating on two agents that exchange estimates, so
Ew(i, e) ← F(i, j, e), Ew( j, e) ← F(i, j, e) ∀ e ∈ E.
Let us denote this process as Ei � E j . Consider a time index
to indicate the local estimate of edge probabilities for agent
i at time k, as in Ei (k). The total disagreement among all
agents at time k can be expressed as

	(k) =
NA∑

i=1

NA∑

j=1

H2(Ei (k), E j (k)).

Under the conditions above,

Ei (k − 1) � E j (k − 1) �⇒ Ei (k) ≡ E j (k)

�⇒ 	(k − 1) > 	(k)

such that

lim
k→∞ 	(k) = 0

Proof By definition, for two identical pmfs the value of (8)
is zero.We have defined the fusion operation as a substitution
of two fused pmfs with the best approximation to them both,
using (13). For a connected graph, it follows by inspection
that at least one term of the sum in 	(k) will become zero
after the fusion is applied at time k − 1. The number of
zero terms in	(k) can only increase as time progresses. The
requirement that the graph is connected guarantees that all
terms of 	(k) eventually become zero. ��
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If the communication network is strictly connected at
all times, the number of iterations for convergence of this
discrete-time data fusion is, in the worst case, equal to the
number of edges in the connected graph Gc.

4 Information-based path planning

Using a graph as the road network representation enables the
use of well-established graph search algorithms. One notable
example is the shortest paths algorithm by Dijkstra (Dijkstra
1959). In graph theory, a path is an alternating sequence of
vertices and edges in which (a) each edge is incident with the
vertex that precedes it and the vertex that follows it, and (b)
all edges and vertices are distinct, with the possible exception
of the first and last ones. The particle weights can be used
to compute an edge traversal cost to guide the UAVs in their
search for the target over some path. The planning horizon
can be specified according to the application.

The objective of our path planner is to guide the agents
such that the mutual information between their sensors and
the target pdf is maximized, while the search effort is effi-
ciently distributed. One additional challenge that our work
addresses is intermittent connectivity of the communication
network Gc. We require the agents to be able to work in
isolation if the connectivity of Gc is compromised, and to
be able to resume working as a team once Gc becomes
connected.

In order to achieve this distributed planning, each agent
uses its own estimate of the target pdf p(θ), which may
include information fused from other agents, and plans its
own path. The local planner also needs the location of the
other agents in order to trace a path that does not overlap
with them. When the planner has no knowledge of the loca-
tions of other agents, collisions are avoided when they are
within sensing range, defined by the collision radius. The
emergent behavior of the system distributes the search effort
if communications are available.

4.1 Mutual information maximization and sensor
coverage

The objective of the path planning algorithm is to maximize
the mutual information (MI) between the sensors and the
target. The larger this quantity is, the more knowledge about
the target location we can extract from the sensor data. The
MI is commonly defined in terms of the information entropy.
For a certain continuous random variable Θ defined in a
domain Ω , its differential entropy is given by

h(Θ) = −
∫

Ω

p(θ) ln p(θ)dθ.

Using this definition, we can introduce the MI in terms of
the conditional distribution p(θ |Z) after a measurement Z is
acquired.

I (Θ; Z) = h(Θ) − h(Θ|Z).

Computing I (Θ; Z) can be difficult, and many works in the
literature resort to the information gradient instead, so under
the common first-order dynamics assumption for a hypothet-
ical mobile sensor the control law

u = ζ
∂ I

∂θ
(29)

with ζ > 0 would guide the sensor in the most informative
direction (Hoffmann and Tomlin 2010; Ryan and Hendrick
2010; Julian et al. 2012). This has also been referred to
as myopic search given the very limited horizon employed
(Charrow et al. 2015a).

A recent work by our group has found a simple solution
to compute the points that maximize MI for a class of binary
sensors, which can detect a target once it falls inside a region
of coverage (Ramirez-Paredes et al. 2016). A notable exam-
ple of this sensor class are surveillance cameras.

The sensors under consideration are modeled as capable
of giving misreports, also known as Type I (false positive)
and II (false negative) errors. A binary sensor covers a region
S of the search domainΩ . Defining the probability of a Type
I error as α and that of a Type II error as β, we have

p(z = 1|θ /∈ S) = α (30)

p(z = 0|θ ∈ S) = β (31)

p(z = 0|θ /∈ S) = 1 − α (32)

p(z = 1|θ ∈ S) = 1 − β (33)

as the detection probabilities for a given target position θ .
The connection between sensor coverage and MI max-

imization requires the definition of an auxiliary function,
C(S).

C(S) =
∫

S
p(θ)dθ (34)

The main result from Ramirez-Paredes et al. (2016) is
the following proposition that links sensor coverage to MI
maximization.

Proposition 4 (Ramirez-Paredes et al. (2016)) For a binary
sensor satisfying (30) to (33), the value of C(S) that maxi-
mizes I (Θ; Z) is

Copt = 1 − α(γ + 1)

(1 − α − β)(γ + 1)
(35)
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where the constant γ is defined as

γ =
[

αα(1 − α)(1−α)

ββ(1 − β)(1−β)

] 1
1−α−β

. (36)

We apply this result to our path planner by making the
sensor coverage of eachUAV a part of its cost function. Since
Copt is always known, we can define a per-edge information
cost for the path planner.

Ie =
∣
∣
∣
∣
∣
∣

∑

k:θk∈e
wk − Copt

∣
∣
∣
∣
∣
∣

(37)

4.2 Collision avoidance

To avoid inter-agent collisions, we propose a cost-based
approach to bias the path planning stage. Assuming that each
agent knows the positions of the others, the planner can assign
a large cost to any graph edge that contains an agent, thus
deviating the path from collisions.

For all agents flying at approximately the same altitude,
we can simplify the collision avoidance by considering the
configuration space as a subset ofR2. We denote the position
of agent i in the global frame as ξi . Then, for each agent i ,
a ball of collision B(ξi , r ic) ⊂ R

2 is an open set centered at
the position of agent i .

With these definitions in place, we can proceed to present
a cost function for each edge to be traversed by an agent.

κe =
{
c

⋃N
i=1

[
e ∩ B(ξi , r ic)

] �= ∅
0 otherwise

(38)

The constant c can be arbitrarily large, but as a minimum
c > Ie ∀ e.

Even under this scheme, the lowest cost path for a given
agent may guide it to collide in the presence of a large num-
ber of agents on the graph, depending on the scale of the
road network. For those situations, and considering the extra
degree of freedom that altitude provides, a natural approach
is to vary the height at which each agent moves. The agents
start climbing or descending to their designated collision-
avoidance altitudes whenever another agent moves within a
safety radius.

4.3 Unified path planning and collision avoidance

We can now combine the previous expressions for edge cost
in a single procedure that simultaneously guides the agents to
informative locations while avoiding collisions. This can be
expressed as an optimization problem, where the objective
is to find some set of map edges and vertices P ⊂ M, such

that the edges ofP minimize a joint information and collision
cost

minimize
P

∑

e∈P
(κe + Ie)

subject to P forms a path.

(39)

Under no communication, collisions are possible since κe =
0 ∀ e. Hence we assume that an agent can detect others that
are within its collision radius. Having all of the edge costs,
Dijkstra’s algorithm is applied at each iteration to compute
the path that solves (39). This choice of algorithm is driven
by the availability of fast implementations.

5 Results

5.1 Simulations

Monte Carlo simulations were used to evaluate the perfor-
mance of our approach. The simulator was developed using
the Robot Operating System (ROS). To simulate changing
communication network topologies due to the environment,
we used different communication radii for the agents. We
get the fully connected case by increasing the radius to be
larger than the size of themap.Weused a scaled-downmap of
downtownDallas, Texas, USA for the evaluation, as in Fig. 1.
The original size of the region is approximately 800 × 500
m. The scale used was 1:20.

Wemodeled four quad-rotor helicopters carryingmonocu-
lar cameras to search for a single moving target. Each camera
had false positive and negative detection probabilities of
α = 0.01 and β = 0.05. The target is modeled by a dif-
ferential drive robot that follows the directions of the roads
and chooses a new road at random at each intersection, with
uniform probability. The target is not allowed to return if it
was traversing a one-way road. The starting location of the
target was randomized at the beginning of each simulation,
always within the urbanmap. The linear velocity of the target
reached a maximum of 0.2m/s.

The initial location of the agents for every simulation was
fixed at opposite corners of the map. The maximum linear
velocity of each agent was set at 0.5m/s. All agents know
the street map and their own location on the map. Each agent
employs a local particle filter using 4000 particles. We had
scenarios with 2, 4 and 6 agents searching for the target. The
communication distances used in the simulations were 5, 20
and 100% of the map size, and the planning lengths were
1, 3 and 5 map edges ahead. Additionally, we present the
results of a naive search, in which the agents choose the road
sections to explore at randomwith equal probability, without
making use of the target location estimation or exchanging
any information other than for collision avoidance purposes.

123



384 Auton Robot (2018) 42:375–389

Fig. 4 Urban map overlaid with different markers, corresponding to
several aspects of the internal target position estimator for Agent 1

This random search can be used to illustrate the effect of sim-
ply adding more agents to the search, and provides a baseline
for comparison. We ran 120 trials for each choice of number
of agents, communication distance and path planning length,
including the random searches, totaling 30 combinations.

Figure 4 shows the simulation environment, as understood
by Agent 1. In this example, the communication network is
complete, and all of the agents are aware of the positions
of other agents and exchange particle sets. Lines represent
streets, and tall buildings are assumed to prevent the target
or agent from moving off the streets. The red rectangle rep-
resents the ground region covered by the on-board camera.
The red circles signal the collision prevention regions of the
other agents, in case they come in close proximity. We used
a 5 m radius. The green path indicates the roads which the
planner has selected as the best route for Agent 1. The cyan
dots represent particles with low weights, while the magenta
dots are the particles with higher weights. Thus, the magenta
regions have a higher probability of containing the target. A
general view of the path planners and the estimators for the
4 agent case can be seen in Fig. 5. The four plots depict the
same instant in time.A comparison of the particle sets of each
estimator reveals that they have reached an approximate con-
sensus. A perspective view of the simulation environment is
shown in Fig. 6.

We present statistics for the target acquisition time corre-
sponding to different parameter selection in Fig. 7. For each
combination of communication distance and planning hori-
zon, the 0.25, 0.5 and 0.75 quantiles are plotted in standard
box format. The 0.5 quantile or median is shown as the hor-
izontal line amidst the box for each configuration. The top
and bottom of the boxes are the 0.25 and 0.75 quantiles. The
whiskermarkers indicate the range of themeasurements. The

Fig. 5 Visualization of the path planners and target location estimators
for the four agents case in the search task

Fig. 6 Visualization of the simulation environmentwith four quadrotor
helicopters present. The target is the red ground robot (Color figure
online)

labels on the x axis indicate the planning horizon P, or the
special case of a random search, denoted by the letter R.

The color of the boxes indicates the communication dis-
tance used, where blue is 5%, green is 50% and red is 100%
of the map size. As the communication and planning dis-
tances increase, a general trend in acquisition time reduction
can be noticed in the different boxes. Including a comparison
of our scheme with the random searches is useful to discern
between the time reduction due to the different communica-
tion distances and planning lengths, and the effect of simply
adding more agents to the task. These comparisons further
demonstrate the advantages of having agents that can plan
and communicate their internal estimator states.
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Fig. 7 Quantiles for the acquisition times of different communication
distances and planning horizons for the agents. The box colors denote
the communication distance between agents as a percentage of the map
size. The horizontal axis labels denote the planning path length, as a
number of map edges. The special cases of yellow boxes with the label
’R’ denote a random search, with no communication among robots. We
present results for the 2, 4 and 6 agents cases (Color figure online)

5.2 Statistical analysis

Although the results presented so far are compelling, a rig-
orous analysis provides insight about the effect that each
choice of parameters (communication distance, planning
path length, the number of agents) has on the time to acquire
the target. This can be achieved by the application of hypoth-
esis testing. The results of such tests indicate which choices
of simulation parameters are significantly better.

Our sets of simulations constitute samples from a ran-
dom process, with unmodeled probability distributions. The
Kolmogorov-Smirnov (KS) test can be used to determine the
goodness of fit for a certain distributionwith respect to a sam-
ple. We tried fitting our simulation data to exponential and
geometric distribution models, under the reasoning that the
time to capture a target can be thought of as a series of failing
Bernoulli trials until a success occurs. The null hypothesis for
the KS test is that the sample corresponds to the distribution
with the specified parameters. However, this hypothesis was
rejected for our data for both the exponential and geometric
models at a 5% significance level.

When performing hypothesis testing, it is possible to
choose either parametric or non-parametric tests depending
on the underlying distribution of the data. Given that our data
is not normally distributed, there is no strong indication that
parametric tests will be inherently better. Under this reason-
ing, we will present the results from a non-parametric test.

The non-parametric test is the Wilcoxon rank sum test
(Wilcoxon et al. 1970), which can determine whether two
samples come from the same distribution. We would like
to know if two sets of our simulations take a significantly
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Fig. 8 Results for the statistical analysis of our simulations. The labels
denote the number of agents used after the letter A, the communication
radius as a percentage of themap size after the letter D, and the planning
path length as map edges after the letter P. The (◦) symbol indicates that
the null hypothesis is rejected at a 5% significance level, meaning that
the parameters from a certain row cause the target acquisition to take
significantly longer than the parameters from the corresponding column.
On the other hand, the (·) symbol indicates that the null hypothesis
cannot be rejected

different amount of time to capture the target. In particular,
if a certain selection of communication radius and planning
horizon is faster than another. This test uses the median of
the data.

The null hypothesis H0 : t i ≤ t j refers to the situation in
which sample i contains smaller or equal target acquisition
times than sample j , in general. Note that this is a one-tailed
test since our intention is to confirm if a given set of simu-
lation parameters is strictly faster to acquire the target than
another, hence the null hypothesis is not an equality condi-
tion. The alternative hypothesis H1 : t i > t j is that sample j
contains significantly shorter acquisition times than sample
i .

We used a p-value of 0.05 for our hypothesis tests. Since
we have 30 different sets of parameters to compare, resulting
in 302 tests, we do not present the results as a table. Instead,
we show for which pairs of parameter sets theWilcoxon rank
sum test rejects the null hypothesis for the chosen p-value.
The results are shown in Fig. 8. The rejection of the null
hypothesis is denoted by a (◦) symbol, whereas a failure to
reject H0 is denoted by (·).

There are several text labels associated with the data. The
letter A represents the number of agents used for those trials.
The letterD is the percentage of themap size that corresponds
to the communication range of the agents, and the letter P is
the number of map edges used by each agent for planning its
path. The random searches are denoted as A2Rand, A4Rand
andA6Rand for the 2, 4 and 6 agent cases, respectively. Thus,
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Fig. 9 Two miniature UAVs equipped with cameras search for a mov-
ing target, represented by a ground robot. The grid illustrates the city
map used by the robots

for some row i and column j of Fig. 8, finding a (◦) symbol
at their intersection means that H1 : t i > t j is accepted and
the parameter selection of column j is significanly faster than
that of row i .

We can find an overall trend in Fig. 8 that signals faster
target acquisition times as the communication distance, path
planning horizon and number of agents increase. However,
we cannot claim that these increases result in improve-
ments for all cases. For example, the parameter selection
A6D100P5 outperforms most other selections, but it is not
significantly better than A6D20P1. It seems that as the
number of agents is increased, the benefit from increas-
ing communication distances becomes less important, which
may come from the role that the map size plays in the target
acquisition times.

5.3 Laboratory experiments

Our distributed estimation algorithm was tested inside a lab-
oratory environment, using two agents to search for amoving
target. The scenario was a 5 × 5 grid, representing an urban
environment. Each square was 0.75m per side. The target
was a Pioneer 3DX ground robot, traversing the simulated
streets at a maximum linear velocity of 0.2m/s. Each time
the ground robot reached an intersection, it took one of the
allowable road at random with uniform probability.

The agents were two AR Drone 2.0UAVs, equipped with
downward-facing cameras. The false positive and negative
probabilities for the target detector were experimentally
determined to be α = 0.0247 and β = 0.2304, and the
local estimators for each agent used 4000 particles. As in the
simulations, the maximum linear velocity of the agents was
limited to 0.5 m/s. The motion of all robots was recorded
using a Vicon capture system. Although all of the guidance

Fig. 10 Two agents searching for a moving target inside a grid map,
with a communication radius that exceeded the size of the map. The
target acquisition times for these experiments were, from top to bottom:
28.19, 47.90 and 78.57 s
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Fig. 11 Experiments with the agents limited to communicate within a
1.5 m radius. Their capture times, from top to bottom: 21.50, 46.51 and
23.05 s

and control algorithmswere being executed in the same com-
puter, the path planners for the UAVs did not have access to
the pose information for the ground robot. The target search
was purely based on the camera feedback from the UAVs.
Two instances of the path planner were running in parallel,
connected to a single UAV each. These instances could com-
municate but did not have direct access to the target location
estimate of the other. Each path planner transmitted its local
particle set at 4 Hz. Figure 9 shows our UAVs pursuing a
target inside the laboratory. The ground robot can be seen
moving on top of the simulated roads, while the UAVs are
executing the search task.

We present two sets of experiments. The first three, repre-
sentedbyFig. 10, used a complete graph for communications.
These trials took different acquisition times to locate the tar-
get, but they all end in capture. The path followed by the
target is depicted in green. The position of the first agent
over time is the bold red curve, while the blue curve corre-
sponds to the motion of the second agent. In all cases, the
starting position of a robot is marked by a (×) symbol, while
the final position is indicated by (�).

The second set of experiments, illustrated in Fig. 11, were
executed with the agents being restricted in their communi-
cation radii. They exchanged beliefs only when they became
closer than 1.5m (i.e., two edge lengths). The target was
located even though the agents were mostly working inde-
pendently.

In the laboratory environment we encountered results that
were not as uniform as those in presented in the simulation
section. An inspection of the target acquisition times from
the experiments in Figs. 10, 11 does not show gains from
increasing the communication radius. In all cases, the UAVs
found the target, whether by communicating their particle
sets or acting almost fully independently. This is indicative
of the robustness of our approach to disruptions in the com-
munication network of the agents.

6 Conclusions

The use of multiple agents to search for a target presents a
series of challenges in order to coordinate them and to dis-
tribute the search effort efficiently. The approach presented in
this work focuses on enabling each agent to search for the tar-
get in an individual manner, while also letting them leverage
any information that the other agents may share with them.
Since the map representation is a graph, with the edges cor-
responding to road segments, we propose to consider each
edge as a bin in a histogram, and as such, construct an imple-
mentation of the channel filter well suited for a particle filter
estimator. Of course, finer partitions of the edges would be
possible, making it a design choice.
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We present an algorithm that uses the entirety of each edge
as a histogram bin, andwhich updates theweights of the local
particles with the information shared by the other agents as
their particle sets. The information-based path planner that
each agent uses generates routes over the road network based
on the local estimator, which may include information fused
from other nodes or not. When said information from other
agents is available, the planner will avoid repeated explo-
ration of areas already covered since the probability mass
contained in them is far from the optimum.

Simulations and experiments indicate the performance of
this approach.The agents successfully completed their search
tasks under different communication distance conditions,
both in simulation and laboratory experiments. However, it
is only with persistent communication that the agent behav-
iors indicate cooperation, since they avoid regions that others
have explored and concentrate on more informative areas.
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