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Abstract Gesturing is an important modality in human–
robot interaction. Up to date, gestures are often implemented
for a specific robot configuration and therefore not easily
transferable to other robots. To cope with this issue, we
presented a generic method to calculate gestures for social
robots. The method was designed to work in two modes to
allow the calculation of different types of gestures. In this
paper, we present the new developments of the method. We
discuss how the twoworkingmodes can be combined to gen-
erate blended emotional expressions and deictic gestures. In
certain situations, it is desirable to express an emotional con-
dition through an ongoing functional behavior. Therefore,
we implemented the possibility of modulating a pointing
or reaching gesture into an affective gesture by influencing
the motion speed and amplitude of the posture. The new
implementations were validated on virtual models with dif-
ferent configurations, including those of the robots NAO and
Justin.

Keywords Generic gesture system · Pointing · Gestures ·
Upper body postures · Affective gesture

1 Introduction

Body language is a crucial feature in human communica-
tion. Facial expressions, body posture and gestures all convey
information about a person’s internal state, and contribute
to the overall effectiveness of communication. It has been
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shown that these features also benefit the interaction between
humans and robots by ensuring a more fluent and natu-
ral communication (Park et al. 2011; Scheutz et al. 2007;
Salem et al. 2013; Breazeal et al. 2005). Different research
teams have implemented gestures in robots, in the light of
investigating different aspects of communication. Since these
gestures are generally preprogrammed off-line for a specific
robot configuration (Sugiyama et al. 2007; Ido et al. 2006;
Zecca et al. 2009), or generated by mapping motion capture
data to the robot’s configuration (Matsui et al. 2005; Tapus
et al. 2012; Do et al. 2008), they are robot-specific and not
easily transferable to other robots. To offer a solution to this
issue, which is known as the correspondence problem (Daut-
enhahn and Nehaniv 2002; Alissandrakis et al. 2002), we
developed a generic method to generate gestures for social
robots. By storing target gestures independently of a con-
figuration and calculating a mapping based on a random
configuration chosen by the user, gestures can be calculated
for different robots.

Since for different types of gestures, different features
are important, our method was designed to work in two
modes (Fig. 1). The block mode is used to calculate gestures
whereby the overall arm placement is crucial, like for emo-
tional expressions (Van de Perre et al. 2015). The end effector
mode, on the other hand, is developed for end-effector
depending gestures, i.e. gestures whereby the position of the
end-effector is important, like for manipulation and pointing
(Van de Perre et al. 2016). The working principles and results
of the block and end-effector mode were presented in detail
in previous publications. In this paper, we focus on how these
twomodes are combined to generate blended deictic gestures
and emotional expressions, and how information about the
current emotional condition can be used tomodify functional
behaviors calculated by the end-effector mode into affective
motions.
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Fig. 1 This schema represents the methodology of the developed ges-
ture method, aiming to overcome the limitations of the current state of
art where gestures are implemented for specific robot. The method uses
a human base model to store target gestures independently of any con-
figuration in a database, and to calculate a mapping at runtime, based
on the robot configuration specified by the user. Two modes are used to
allow for different types of gestures to be calculated. The block mode
is used to calculate gestures whereby the overall arm placement is cru-

cial, like for emotional expressions, while the end-effector mode was
developed for end-effector depending gestures, like for deictic gestures.
This paper focusses on how the twomodes can be combined to generate
blended emotional and deictic gestures, and how information concern-
ing the emotional state can be used to modulate functional behaviors
into affectivemotions. Robots: aWE-4RII (Itoh et al. 2004),bKOBIAN
(Zecca et al. 2009), c NAO (Belpaeme et al. 2012), d ASIMO (Salem
et al. 2009), e Myon (Hild et al. 2012), f HRP-2 (Hirukawaa et al. 2004)

2 Related work

Different attempts are made to ease the animation of social
robots. Balit et al. (2016) suggested to use the knowledge
of animation artists to generate lifelike robotic motions by
providing a generic software, whereby different types and
combinations of gestures can be created by keyframing or
by 3D character articulation. However, since the generated
motions are still dependent on the used joint configuration,
this does not address the correspondence problem.

A possible solution lies in the field of developmental
robotics, by using neural networks to learn the correspon-
dence between a posture and the robot’s joint angles (Andry
et al. 2001). A technique to teleoperate a humanoid robot
without an explicit kinematic modeling by using neural
networks was proposed by Stanton et al. (2012). Mühlig
et al. (2012) ease the correspondence problem between a
human tutor and robot in imitation learning by representing
demonstrated movement skills using a flexible task space

representation. Another approach of addressing the corre-
spondence problem in imitation learning was suggested by
Azad et al. (2007), by using a reference kinematic model, the
MasterMotorMap, to convert motion capture data to an arbi-
trary robotmorphology. This is a similar strategy as we use to
map target gestures from a database to a robot configuration
(see Sect. 3.1). In a later stage, the Master Motor Map was
extended with a dynamic model and improved to allow for
on-line reproduction of human motion to a humanoid robot
(Terlemez et al. 2014). In Koga et al. (1994), a semi-general
approach for generating natural arm motions, specifically
for manipulation tasks is presented. Their inverse kinemat-
ics algorithm is based on neurophysiological findings, and
decouples the problem of calculating joint angles for the arm
from calculating those for the wrist. The sensorimotor trans-
formation model of Soechting and Flanders (1989) is used to
determine the arm posture, while the wrist angles are found
by assuming a spherical wrist and using orientation inverse
kinematics.
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In both Salem et al. (2010) and Le et al. (2011), a
gesture framework initially developed for virtual agents is
applied on a humanoid robot. In Salem et al. (2010), speech-
accompanying gestures are generated for ASIMO by using
the speech and gesture production model initially developed
for the virtual agent MAX. For a specified gesture, the end
effector positions and orientations are calculated by theMAX
system and used as input for ASIMO’s whole body motion
controller (Gienger et al. 2005). Similarly, in Le et al. (2011),
speech-accompanying gestures are generated for NAO by
using the GRETA system. The gestures are described inde-
pendently of the embodiment by specifying features as the
hand shape, wrist position and palm orientation. However,
to obtain the corresponding joint values, a predetermined
table listing values for the shoulder and elbow joints for all
possible wrist positions is used. So although the gestures are
described independently of the robot configuration, mapping
these gestures to the robot requires hard coded joint informa-
tion.

An interesting feature of this framework however, is the
possibility of generating affective motions by modulating a
neutral behavior using a set of expressivity parameters. In
that way, it is possible to convey an emotional state through
an ongoing functional behavior. This is indeed an impor-
tant feature in human communication. Lots of research has
been performed on how an emotional state is reflected in
the motions generated by a human. Wallbott (1998) found
that both the quantity as the quality of the emotion influ-
ences the generated body movements. A number of studies
investigated the effect of different emotions on human gait
(Montepare et al. 1987; Crane and Gross 2007), while other
focussed on addressing affect to static body postures (James
1932; Coulson 2004; Atkinson et al. 2004). A number of
researchers focussed on affective arm movements (Pollick
et al. 2001) and whole bodymotion (Meijer 1989; Castellano
et al. 2007), whereof a number of researches were directed to
the effect of affect on dance (Dittrich et al. 1996; Castellano
et al. 2007). Using the knowledge obtained by these numer-
ous researches, it is possible to create behaviors conveying
emotional information by modifying neutral motion patterns
(see Sect. 5).

An interesting aspect of our method, is that, in contrast
to learning techniques, no training is required. The method
can directly calculate gestures for a chosen configuration.
Furthermore, the method allows an impressive amount of
flexibility, both for the desired robot configuration as for the
targeted body motion. The method can be used for a col-
lection of robots and virtual models that consist at least of
one arm, a body, or a head (see Sect. 3). Regarding the body
motions, our developed system uses two separate modules
to calculate different types of gestures. Next to modulating a
certain neutral gesture into affective motions, it is also pos-
sible to combine different types of gestures into one blended

gesture. An emotional expression in the sense of an explicit,
full body action as calculated by our block mode, can take
place in combination with a deictic gesture as calculated by
our end-effector mode, by assigning each gesture to other
body parts. How the modes are combined to generate such a
blended body motion is handled in Sect. 4. But first, to get a
better understanding of the method, the working principles
of the two modes are briefly repeated in Sect. 3. In situa-
tions where it is desirable to express an emotional condition
not by using explicit bodily expressions, it can be expressed
by modifying an ongoing functional behavior. How this is
implemented in the method is handled in Sect. 5. A num-
ber of results are discussed throughout Sects. 4 and 5. We
conclude this paper by a summary and some details about
current developments in Sect. 6.

3 Working principles of the method

To ensure a generic method usable for different kind of
robots, the framework was developed without using any kind
of robot morphology. Instead, a simplified model of the rota-
tional possibilities of a human is used; the human basemodel.
Firstly, a set of Body Action Units (BAU’s) was defined,
based on the human terms of motion. The defined BAU’s are
listed inTable 1. The unitswere grouped into different blocks,
corresponding to one human joint complex, such as the shoul-
der or the wrist. These blocks can subsequently be grouped
into three body parts, namely the head, body and arm, which
we refer to as chains. In that way, our human base model was
defined. A standard reference frame was defined, whereby
the x-axis is located in the walking direction and the z-axis
is pointing upwards, and subsequently, a reference framewas
assigned to each joint block (see Fig. 2). When a user desires
to generate gestures for a certain robot or model, its morpho-
logical information is specified by inputting a limited amount
of rotational information and the configuration’s Denavit–
Hartenberg (DH) parameters into the program, whereby the
different joints of the robot are grouped into the chains and
blocks of the human base model. As such, the method can be
used for any robot that consists at least of one arm, a body,
or a head.

3.1 Block mode

The block mode is used for gestures whereby the overall
placement of the arms is important, such as for emotional
expressions. In this mode, the method uses a set of target
gestures stored in a database and maps them to a selected
configuration. To ensure a good overall posture, it is not suf-
ficient to only impose the pose of the end effector, since
inverse kinematics for robots with a different configuration
and different relative arm lengths could result in unrecog-
nisable global postures. Therefore, the orientation of every
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Table 1 The body action coding system

Chain Block BAU Description

Head Head 1 Flexion/extension of neck

2 Abduction/adduction of neck

3 Rotation of neck

Body Body 4 Flexion/extension of spinal column

5 Lateral flexion of spinal column

6 Transversal rotation of spinal column

Arm Clavicle 7 Abduction/adduction of shoulder girdle

8 Elevation/depression of shoulder girdle

Shoulder 9 Flexion/extension of shoulder

10 Abduction/adduction of shoulder

11 Inward/outward medial rotation

Elbow 12 Flexion/extension of elbow

Wrist 13 Pronation/supination of elbow

14 Flexion/extension of wrist

15 Abduction/adduction of wrist

Fig. 2 A reference frame was assigned to each block. For the body 1
block, the reference frame is the standard reference frame. The body
2 and body 3 axes are respectively, the body 1 and body 2 embedded
axes. The head and clavicle’s reference axes are the body 3—embedded
axes. For all other blocks of the arm, the axes are the embedded axes of
the previous block

joint complex the robot has in common with a human needs
to be imposed. Hence, the target gestures are stored in the
database by specifying the orientation of every joint block i
of the base model using the orthopaedic angles (Kadaba et al.
1990) of frame i + 1 (the base frame of block i + 1) with
respect to frame i (the base frame of block i) (see Fig. 2).
To make a robot or model perform a selected expression, a
mapped rotation matrix for every present joint block is cal-
culated by combining the information from the database and
the morphological data specified by the user:

Ri =b,i Rs t · Ri,des · st Re,i (1)

Here, Ri is the mapped rotation matrix for block i , b,i Rst

the rotation matrix between the base frame of block i and the
standard reference frame, Ri,des the target rotation matrix in
standard axes for block i, loaded from the database and st Re,i

the rotation matrix between the standard reference frame and
the end frame of block i , i.e. the base frame of block i + 1.

These mapped matrices serve as input for an inverse kine-
matics algorithm to calculate the necessary joint angles to
make the specified robot configuration perform the desired
expression. Using the Runge–Kutta algorithm (Ascher and
Petzold 1998), for every block, the angle values q are
obtained from their derivatives q̇ , calculated by the following
algorithm (Sciavicco 2009):

q̇ = J †A(q) (ẋd + K (xd − xe)) +
(
I − J †A(q)JA(q)

)
q̇0

(2)

Here, xd is the desired end effector pose. Since the maxi-
mumnumber of joints in one block is three, it is not necessary
to use all six parameters of the pose; the consideration of
the orientation of the end effector is sufficient. Therefore,
xd is reduced to the zyx−Euler angles corresponding to
the mapped rotation matrix. J †A(q) is the Moore-Penrose
pseudo inverse of the analytical jacobian JA(q). Since only
rotational information is imposed, JA(q) is reduced to its
rotational part only. xe is the current end effector pose;
i.e. the current zyx−Eulerangles, and K a positive definite
gain matrix. Since the different blocks are treated sepa-
rately, no redundancy is present, causing the second term(
I − J †A(q)JA(q)

)
q̇0 to be zero.

3.2 End-effector mode

The end-effector mode is used for gestures whereby the posi-
tion of the end-effector is crucial, like for deictic gestures.
In some situations, for example when reaching for an object,
the position of the right and/or left hand is important and
specified by the user. This situation is called the place-at
condition. The specified position then serves as a basis to
calculate the necessary end-effector position for the selected
chain, which is used as input for the same inverse kinematics
algorithm as used in the block mode (Eq. 2). While in the
block mode, a constraint is imposed on the end-effector of
every block and the inverse kinematics algorithm is used to
calculated the joint angles of every block separately, in the
end-effectormode a constraint is imposed on the end-effector
of the chain, and the algorithm is used to calculate the joint
angles of the chain as awhole. Since in the end-effectormode
the position is specified, the desired end effector pose xd is
limited to positional information only, reducing JA(q) to its
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translational part only. In the highly probable case of an arm
chain consisting of more than three degrees of freedom, the
functional redundancy is used to guide the configuration into
a natural posture. In that case, the second term of Eq. 2 will
differ from zero, activating the influence of q̇0 on the calcu-
lated joint speeds. q̇0 introduces the cost function w(q):

q̇0 = k0

(
∂w(q)

∂q

)T

(3)

with k0 a positive weight factor. For the cost function w,
we decided to work with a slightly adapted form of the joint
range availability (JRA) criterion (Jung et al. 1995), whereby
an optimal human like posture is calculated by keeping the
joints close to a selected set of minimum posture angles (see
our previous publication Van de Perre et al. 2016):

w =
n∑

i=1

w0,i
(qi − qmi )

2

(
qmax,i − qmin,i

)2 (4)

Here, qi is the current value of joint i and qmi the min-
imum posture angle for that joint. qmax,i en qmax,i are the
maximum andminimum joint limits, andw0,i aweight factor
for joint i. The pointing condition functions in a same way as
the place-at condition, apart from the fact that by specifying
a desired pointing position, no direct constraint is imposed
on the end-effector. A series of configurations with a specific
combination of end-effector position and orientation can ful-
fil the pointing constraint. When pointing to an object, the
index finger is directed towards the object, implying that for
a certain position of the end-effector, the orientation needs
to be chosen along the connection line between the object
and the last wrist joint. Or with other words, the extension
of the end-effector needs to pass the selected target position.
To calculate the different possible postures, the end-effector
is gradually virtually extended and the pointing position is
imposed on the virtual end-effector. For every virtual length,
the optimal configuration is calculated. From the resulting
collection of postures, the cost function finally selects the
optimal result by comparing the total cost of every configu-
ration.

Before calculating a trajectory to the desired end-effector
position, the possibility of reaching this position by the cur-
rent configuration is checked by using an approximate calcu-
lation of theworkspace. If the desired end-effector position is
indeed located in theworkspace of the robot, a suitable trajec-
tory towards this position is be calculated. In case of a reach-
ing gesture towards a position located outside the workspace,
the pointing-condition can be activated, and a trajectory
towards a suitable posture for a pointing gesture is calculated
instead.

4 Blended gestures

4.1 Priority levels

During natural communication, humans use and combine dif-
ferent types of gestures. By combining the two modes of our
method presented above, it is possible to generate blended
emotional expressions and deictic gestures. In order to do
so, priority levels for each chain are assigned to both gesture
types and a mode mixer was designed. If the mode mixer is
turned off, all gestures are treated separately; starting a new
gestures entails a previously started gesture to be aborted.
By enabling the mode mixer, different gestures are blended
by considering for every chain, only the end-effector condi-
tion(s) corresponding to the gesture with the highest priority
level. The priority levels are defined using a number of rules:

– For an emotional expression, the priority level for each
chain is set on a basic level (level 1)

– A deictic gesture has a higher priority than an emo-
tional expression: the chain corresponding to the point-
ing/reaching arm receives a higher priority level (level
2)

– Similarly, gazing has a higher priority than an emotional
expression: the head chain receives a higher priority level
(level 2)

For every separate chain, the highest priority level present
determines which gesture needs to be considered for that
chain. The corresponding calculation principles are enabled,
and the required constraints are loaded for the different
chains: orientational information for every block compos-
ing the chain for the block mode, or the desired end-
effector position for the complete chain for the end-effector
mode.

When, for example, an emotional expression is performed
in combination with a left handed deictic gesture, the left
arm chain has a level 1 priority for the emotional expres-
sion but a level 2 for the deictic gesture. Therefore, for that
chain, the pointing position is considered and the end-effector
mode will calculate the corresponding joint angles. For the
other chains, only priority level 1 is present. Therefore, the
block mode will calculate the joint angles for all blocks in
the remaining chains.

Figure 3 schematically summarizes how the mode mixer
and the priority levels determine the imposed constraints,
while Fig. 4 visualizes thework flowof one iteration, depend-
ing on the priority levels.

4.2 Examples of blended gestures

Figure 5 illustrates the calculation of a blended gesture for
both the robots NAO and Justin. The left part of Fig. 5 shows
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Fig. 3 Schematic representation of how the end-effector constraints are determined by the motion mixer and the priority levels

Fig. 4 Work flow of one
iteration, depending on the
priority levels
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Fig. 5 Example illustrating the calculation of a blended gesture for a NAO b Justin. Left joint configuration of the robot. Middle calculated end
posture for the emotional expression of fear. Right calculated end posture for a combination of a pointing gesture with the right arm, and the
emotional expression of fear

the joint configuration of the robots. NAO has an actuated
head, and a left and right arm of 5 DOF. Justin’s arms, on
the other hand, contain 7 DOF, with a remarkable differ-
ent configuration. In addition, Justin has an actuated body
with 3 DOF. The middle of Fig. 5 displays the end pos-
ture for the emotional expression of fear, calculated by the
block mode. For the right part of Fig. 5, the mode mixer
was enabled and a combination of gestures was demanded.
Next to the expression of fear, a pointing gesture with the
right arm was desired, accompanied by gazing towards the
pointing location. As explained above, the priority levels
determine which calculation principle is activated for every
chain, andwhich corresponding end-effector conditions need
to be used. For the expression of fear, all present chains have
priority level 1. However, the priority of the pointing ges-
ture for the right arm is higher than the basic level; level 2.
Therefore, for the right arm chain, the end-effector mode
is activated, whereby the end-effector condition is deter-
mined by the desired pointing position (see Sect. 3.2). For all
the other chains present, the block mode is activated. Since
the priority of gazing towards a specified position for the
head overrules that of the emotional expression, the neces-
sary rotation matrix to obtain the desired gazing direction is
imposed. For the left arm chain, and body chain in case of
Justin, the mapped rotation matrices, calculated using data
from the gesture database, are imposed as end-effector condi-
tion for every present block in the corresponding chains (see
Sect. 3.1).

5 Affective functional behaviors

5.1 Expressivity models

In some situations, it is desirable to express an emotional
condition in a different manner than by using explicit bodily
expressions as calculated by the block mode. It is possi-
ble, for example, that both arms are involved in a functional
behavior, and therefore not available for performing an emo-
tional expression. On the other hand, the recognizability of
an emotional expression can decrease severely when one arm
is used for a deictic gesture. In such cases it can be useful
to express an emotional state through an ongoing functional
behavior bymodulating it, using a certain set of characteristic
performance parameters. In literature, different expressiv-
ity models have been developed to reach that goal. Amaya
et al. (1996) proposed a model to generate an emotional ani-
mation from neutral motions by calculating an emotional
transform based on the difference in speed and spatial ampli-
tude of a neutral and emotional motion. In Pelachaud (2009),
six parameters, namely spatial extent, temporal extent, flu-
idity, power, overall activation and repetition were used to
modify behavior animations for the virtual agent Greta. Yam-
aguchi et al. (2006) found that the amplitude, position and
speed are relevant parameters in modifying basic motions
to express joy, sadness, angriness and fear, while Lin et al.
(2009) found that the stiffness, speed and spacial extent of
the motion, can effectively generate emotional animations
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Fig. 6 Dependency of the modification factorsmotion speed (vmotion)
and Amplitude (Amp) on the valence and arousal value, depicted on the
circumplex model of affect (Posner et al. (2005))

from an initial neutral motion. Xu et al. (2013a) proposed
a method for bodily mood expression, whereby a set of
pose and motion parameters modulate the appearance of an
ongoing functional behavior. Results indicated that the spa-
tial extent parameters, including hand-height and amplitude,
head position and the motion speed are the most important
parameters for readable mood expressions (Xu et al. 2013b).
Since in all these discussed expressivity models, the motion
speed and the amplitude are important recurring factors, we
decided to focus on these modification parameters in our
method.

5.2 Generating affective gestures by influencing the
motion speed

In both (Xu et al. 2013b) and Yamaguchi et al. (2006), it
was experimentally confirmed that the motion speed influ-
ences the perceived level of both valence and arousal; a fast
motion is associated with a hight arousal and valence, while
a slow motion is attributed to low arousal and valence val-
ues. By considering the two dimensional emotion space of
valance and arousal, based on the circumplex model of affect
(Posner et al. 2005), we obtained an appropriate speed scal-
ing factor for each emotion (see Fig. 6). When calculating
a deictic gesture with the end-effector mode of our method,
a suitable trajectory between the initial posture and the end
posture is generated by calculating intermediate key frames.
The timing between two consecutive frames is fixed, but the
amount of frames, and therefore the total duration of the ges-
ture is determined by the speed scaling factor, in order to add
affectional content to it.

5.3 Generating affective postures using the nullspace

The second modification parameter, the amplitude of the
motion, refers to the spatial extent; the amount of space occu-
pied by the body. (Xu et al. 2013b) found that this parameter is
only related to the valence; open postures with a high ampli-
tude are coupledwith affective stateswith highvalence,while
closed, low amplitude posters are related to states with a low
valence (see Fig. 6). As discussed in Sect. 3, the necessary
joint angles to reach a desired posture are calculated by the
inverse kinematics algorithm of Eq. 2 with as cost function
w, a slightly adapted form of the joint range availability cri-
terion (see Eq. 4). In that way, an optimal humanlike posture
is calculated by keeping the joints q close to a selected set
of minimum posture angles qmi . Instead of using the fixed
minimum posture angles, it is possible to express them as
a function of the current valence level. Hence, the resulting
calculated posture becomes dependent of the current affec-
tive state. The Body Action Units mostly influencing the
openness of a posture are BAU 10 and 13; the units cor-
responding to the abduction/adduction of the shoulder and
the flexion/extension of the elbow joint (see Table 1). For
the joints corresponding to these BAU’s, a linear function of
the valence is provided instead of the fixed minimum posture
angle as used before. When scaling the valence level val for
each emotion as read on the circumplex model of affect (see
Fig. 6) between 0 and 1, the following linear function can be
used to select the current appropriate value for the minimum
posture angle, which we now call the affective posture angle
qai :

qai = qai,min + val × (qai,max − qai,min) (5)

The minimum value qai,min of the affective posture angle
corresponds to the value associated to the minimum valence
value, i.e. a value generating a closed posture with low
amplitude. The angle value is defined in the corresponding
reference frame connected to the human base model, and rel-
atively to the T-pose as visualized in Fig. 2. Therefore, for
BAU 10, a value of 90◦ is a suitable choice, since it corre-
sponds to a posture whereby the upper arm is touching the
flank of the body. Regarding BAU 13, a small amplitude pos-
ture is reached when keeping the forearm as close as possible
to the upper arm. A value of 170◦ is therefore an appropriate
choice. Similarly, the maximum value qai,max of the affec-
tive posture angle corresponds to the value associated to the
maximum valence value; the value generating an open pos-
ture with high amplitude. This should be a posture whereby
both the elbow and wrist are located far away from the body.
A suitable choice is therefore 0◦ for BAU 10, and 80◦ for
BAU 13.
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(a)

(b)

Fig. 7 Example illustrating expressing affect during a functional
behavior for a a human virtual model b the robot Justin. A reaching
gesture was calculated during different affective states: happiness, fear
and sadness. Right top corresponding joint configuration. Main figure

time line showing a set of postures for every affective state, illustrat-
ing the effect of the motion speed modification factor on the calculated
gesture. The effect of the amplitude modification factor is visible when
comparing the end postures for every mood

5.4 Example: deictic gesture during different states of
affect

Figure 7 illustrates the results of the two subsections dis-
cussed above. A right-arm reaching gesture during different
states of affect was calculated for two different configura-
tions; a human virtual model with a 9 DOF arm (Fig. 7a) ,
and the robot Justin (Fig. 7b). This example shows that the
developed method cannot only be used for existing robots,
but also for any virtual model by assigning suitable joint
configuration to it.

The right top of Fig. 7 shows the corresponding joint con-
figurationof theusedmodels,while themainfigure visualizes
a set of calculated postures for every affective state on a time

line. As discussed in Sect. 5.2, the total timing of the ges-
ture is influenced by the speed factor, of which the current
value is determined by the current affective state. Since the
motion speed increases with both valence and arousal, a high
value is obtained for the happy state, resulting in a short total
timing of the gesture of 0.75 s. For the same pointing ges-
ture performed during a sad state, a low speed factor and
long duration (1.5 s) is calculated, while for the fearful state,
the values are located somewhere in between (duration of
1.0 s).

The influence of the amplitude modification factor is visi-
ble when comparing the end postures for each affective state.
Since the amplitude of the posture increases with higher
valence values, an open posture is calculated for the happy
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state, whereby the elbow is located far away from the body.
For the sad state, the elbow is placed close to the body, gener-
ating a closed posture as expected. Since the valence values
for fear and sadness are close to each other (see Fig. 6), the
difference in posture during the the corresponding states is
small (a difference of approximate 10◦ for BAU 10), but here
the total timing of the gesture is the main differentiator.

6 Conclusions and current work

In this paper, we presented the new developments of our
generic method to generate gestures for social robots. The
method was designed to work in two modes, to allow the
calculation of different types of gestures. The block mode
is used to calculate gestures whereby the overall arm place-
ment is crucial, like for emotional expressions, while the
end effector modewas developed for end-effector depending
gestures, such as deictic gestures. The working principles
of both modes were discussed in previous publications (Van
de Perre et al. 2015, 2016). During human communication,
different types of gestures are used and combined. In this
paper we discussed how the two modes can be combined
to generate blended emotional expressions and deictic ges-
tures. To achieve this, a mode mixer was developed, and for
every mode, priority levels were assigned to each chain. The
priority levels decide which end-effector constraints need
to be considered for each chain. In that way, when ges-
tures with different priority levels are selected with the mode
mixer enabled, the imposed end-effector conditions originat-
ing from the different gestures result in a blended posture. A
combination of a pointing gesture with the emotional expres-
sion of fearwas calculated for both the robotsNAOand Justin
to illustrate this new functionality. When one arm is used for
a deictic gesture, it is possible that the recognizability of
the emotional expression decreases. In that case, it can be
interesting to express an emotional condition not by using
explicit bodily expressions as calculated by the block mode,
but through an ongoing functional behavior.We implemented
the possibility to modulate a pointing or reaching gesture
into an affective gesture by influencing the motion speed and
amplitude of the posture. To illustrate the results of this new
implementation, an affective gesture was calculated for two
different configurations for three affective states. Differences
in motion speed and posture could be clearly distinguished.
However, for configurations with very low DOF’s, these dif-
ferences can diminish. In that case, it can be interesting to
implement supplementary modification parameters.

The new implementations were validated on the virtual
model of different robots. Current work includes evaluating
themethod on the physical model of a set of robots, including
Romeo and Pepper.
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