
Auton Robot (2018) 42:529–551
https://doi.org/10.1007/s10514-017-9648-7

Using probabilistic movement primitives in robotics

Alexandros Paraschos1 · Christian Daniel2 · Jan Peters1,3 · Gerhard Neumann4

Received: 15 December 2015 / Accepted: 23 June 2017 / Published online: 15 July 2017
© Springer Science+Business Media, LLC 2017

Abstract Movement Primitives are a well-established
paradigm for modular movement representation and gener-
ation. They provide a data-driven representation of move-
ments and support generalization to novel situations, tem-
poral modulation, sequencing of primitives and controllers
for executing the primitive on physical systems. However,
while many MP frameworks exhibit some of these proper-
ties, there is a need for a unified framework that implements
all of them in a principled way. In this paper, we show that
this goal can be achieved by using a probabilistic represen-
tation. Our approach models trajectory distributions learned
from stochastic movements. Probabilistic operations, such as
conditioning can be used to achieve generalization to novel
situations or to combine and blend movements in a princi-
pled way. We derive a stochastic feedback controller that
reproduces the encoded variability of the movement and the
coupling of the degrees of freedom of the robot. We evalu-

B Alexandros Paraschos
Paraschos@ias.tu-darmstadt.de

Christian Daniel
Christian.Daniel@de.bosch.com

Jan Peters
Peters@ias.tu-darmstadt.de

Gerhard Neumann
Neumann@ias.tu-darmstadt.de

1 Technische Universität Darmstadt, Hochschulstrasse 10,
64289 Darmstadt, Germany

2 Bosch Center for Artificial Intelligence,
Robert-Bosch-Campus, 71272 Renningen, Germany

3 Max-Planck-Institut für Intelligente Systeme, Spemannstrasse
38, 72076 Tübingen, Germany

4 Computational Learning for Autonomous Systems, School of
Computer Science, University of Lincoln, Brayford Pool,
LN6 7TS Lincoln, UK

ate and compare our approach on several simulated and real
robot scenarios.

Keywords Imitation learning · Movement primitives ·
Trajectory representation · Control · Robotics

1 Introduction

Movement Primitives (MPs) are a well-established approach
for representing movement policies in robotics. MPs have
several beneficial properties; generalization to new situa-
tions, temporal modulation of the movement, co-activation
of multiple primitives to concurrently solve multiple tasks,
sequencing of primitives to generate longer and more com-
plex movements, and they are easy to learn from demonstra-
tions. Using such properties, MPs were successfully applied
to reaching (dAvella and Bizzi 2005), locomotion (Dominici
et al. 2011; Moro et al. 2012) and are state of the art for
robot movement representation and generation. However,
many approaches for movement generation based on MPs
(Ijspeert et al. 2003; Williams et al. 2007; dAvella and Bizzi
2005; Khansari-Zadeh and Billard 2011; Rozo et al. 2013;
Rückert et al. 2012; Righetti and Ijspeert 2006) exhibit only
a subset of these properties. Hence, a generalized framework
that unifies all these properties in one principled framework
is needed.

We formalize the concept of probabilisticmovement prim-
itives (ProMPs) as a general probabilistic framework for
representing and learning MPs. A ProMP represents a dis-
tribution over trajectories. The trajectory distribution can be
defined in either joint-space, task-space, or any other space
that accommodates the experiment. In this paper, we focus on
joint-space trajectories. Working with distributions enables
us to formulate the described properties using operations

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-017-9648-7&domain=pdf

530 Auton Robot (2018) 42:529–551

from probability theory. For example, modulation of a move-
ment to a novel target can be realized by conditioning on
the desired target’s positions or velocities. Similarly, consis-
tent parallel activation of two elementary behaviors can be
accomplished by a product of two independent trajectory dis-
tributions. A trajectory distribution can encode the variance
of the movement, and, hence, a ProMP can directly encode
optimal behavior in systems with linear dynamics, quadratic
costs and Gaussian noise (Todorov and Jordan 2002). In con-
trast, deterministic approaches, e.g., the DMP approach, can
only represent the mean solution, which is known to be sub-
optimal. Even if assumption does not hold, we believe that it
offers a good a approximation of physical robotic systems.
Finally, a probabilistic framework allows us tomodel the cou-
pling between the degrees of freedom (DoFs) of the robot by
estimating the covariance between different DoFs.

The benefits of using a probabilistic representation have
so far not been extensively exploited for representing and
learning MPs. The main reason for this limitation has been
the difficulty of extracting a policy for controlling the robot
from a trajectory distribution. We show how this step can
be accomplished and derive a control policy that exactly
reproduces a given trajectory distribution. While ProMP
introduces many novel components, it also incorporates
many of the advantages from well-known previous move-
ment primitive representations (Schaal et al. 2005; dAvella
and Bizzi 2005), such as temporal rescaling of movements
and the ability to represent both rhythmic and stroke based
movements.

In this paper, we unify and complement our prior work
(Paraschos et al. 2013a, b; Neumann et al. 2014) on ProMPs.
Note that the reference Neumann et al. (2014) contains only
a brief summary of our work on ProMPs presented in the
context of an overview paper that spans over multiple topics.
Therefore, Neumann et al. (2014) provides less information
than the corresponding conference papers. In this paper, we
present much more details which are necessary to reproduce
the results. We introduce a new regularization technique for
achieving smoother movements and present an expectation-
maximization algorithm for learning rhythmic ProMPs in
more detail. We extended the description of our controller
derivation and showhow it is used on physical tasks, e.g. con-
trolling a 7-DoF arm for playingMaracas, robot-hockey, and
‘Astrojax’. Moreover, we show new comparisons to state of
the artMPapproaches in termsof optimality, generalizability,
composition of primitives and robustness of the movement
representations. We also evaluate our ProMP controller on
non-linear systems and made the source code of all exam-
ples publicly available.1

1 http://www.ausy.tu-darmstadt.de/uploads/Team/AlexandrosParas
chos/ProMP_toolbox.zip.

2 Properties of movement primitive frameworks

We categorize MPs into state-based (Khansari-Zadeh and
Billard 2011; Calinon et al. 2010a) and trajectory-based
representations (Schaal et al. 2005; Neumann et al. 2009;
Rückert et al. 2012; Rozo et al. 2013). Trajectory-based prim-
itives typically use time as the driving force of themovement.
They require simple, typically linear, controllers, and scale
well to a large number ofDoFs. In contrast, state-based primi-
tives (Khansari-Zadeh andBillard 2011;Calinon et al. 2010a)
do not require the knowledge of a time step but often need to
use more complex, non-linear policies. Such increased com-
plexity has limited the application of state-based primitives
to a rather small number of dimensions, such as the Cartesian
coordinates of the task space of a robot. The main focus of
this paper is on trajectory-based representations. We begin
with a discussion on the properties of MPs.

2.1 Concise representation

MPs offer a concise representation of the movement, with a
few open parameters to set. The small number of parameters
simplifies learning the movement from demonstrations and
the use of reinforcement learning algorithms to adapt and
refine the primitive through trial-and-error. MP frameworks
can be trained from demonstrations using simple learning
methods, e.g. linear regression, and have been successfully
used in fairly complex scenarios, including “Ball-in-the-
Cup” Kober et al. (2010), Ball-Throwing (Ude et al. 2010;
da Silva et al. 2012), Pancake-Flipping (Kormushev et al.
2010), Tetherball (Daniel et al. 2012a), and bi-pedal loco-
motion (Nakanishi et al. 2004).

2.2 Adaptation and time modulation

ManyMPs offer an intrinsic adaptation mechanism to match
a new situation or an altered task, e.g., hitting a different
incoming balls when playing table tennis. The adaptation
commonly comes in a form of modification of the desired
target position and velocity at the end of the primitive or as
a modulation of the amplitude of the primitive (Ijspeert et al.
2003).Our approach (Paraschos et al. 2013a, b) can be used to
adapt the movement at any time point during the trajectory’s
execution.

Furthermore, adaptationofMPs include temporalmodula-
tion. Temporalmodulation is a valuable property as it enables
MPs to be applied in scenarios where correct timing is crit-
ical for the success of the task, e.g., in hitting, batting, or in
locomotion to adjust the walking speed of the robot (Righetti
and Ijspeert 2006).

123

http://www.ausy.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/ProMP_toolbox.zip
http://www.ausy.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/ProMP_toolbox.zip

Auton Robot (2018) 42:529–551 531

2.3 Combination and sequencing

The expressiveness of an MP approach can be significantly
improved if multiple primitives can be simultaneously co-
activated to compose more complex movements. However,
most MP approaches do not support co-activation of primi-
tives in a principled way. Instead, the concurrent activation
requires a prioritization scheme (Mülling et al. 2013; Pas-
tor et al. 2011) in order not to disrupt the motion. In our
approach (Paraschos et al. 2013a), we co-activate primitives
to solve multiple tasks at the same time, without the need of
such a scheme. Besides simultaneous activation, MP archi-
tectures aim to support sequencing MPs (Konidaris et al.
2012) to acquire a smooth transition from one primitive to
another. Such sequencing is needed to dynamically concate-
nate primitives in order to acquire longer, more complex
movements. We show that in our framework a smooth tran-
sition can be achieved in a principled way similar to the
combination of primitives.

2.4 Coupling the DoFs

Movement primitives approaches are typically applied to
robots with multiple Degrees of Freedom (DoF). In order
to reproduce coordinated movements, MPs need a synchro-
nization mechanism among the different DoF. Using time,
or a function of time, as a reference signal (Schaal et al.
2007; Ijspeert 2008), one can implement simple time align-
ment mechanisms. However, when experiencing deviations
from the desired trajectory due to noise or unmodeled effects,
coordinated recovering from perturbations is advantageous.
ProMPs, additionally to time synchronization, estimate such
correlations directly from demonstrations and use them to
synchronize the DoFs of the system.

2.5 Optimal behavior

Many trajectory-based representations use a single desired
trajectory that is followed by a feedback controller with con-
stant gains. However, following such a single trajectory has
been proven to be suboptimal for many tasks if the system’s
dynamics are stochastic (Todorov and Jordan 2002). In this
paper, we focus on control affine systems with Gaussian
control noise, which is a standard assumption for physical
systems. In this case, a distribution over trajectories is a
good representation of the optimal behavior. Such distribu-
tion can be achieved by using time-varying feedback gains,
which are often used as approximation for optimal behav-
ior (Li and Todorov 2010). Feedback controllers with time
varying gains modulate the stiffness of the system to pro-
vide high precision at the ‘important’ time points of a task
while the system is less controlled for time points where
accurate control in not so critical. The time varying gains of

the controller can be approximated (Calinon et al. 2010b),
computed using a LQR by specifying a cost function (Cali-
non 2016; Bruno et al. 2015), improved with reinforcement
learning (Buchli et al. 2011), or, as in our approach, computed
in closed form (Paraschos et al. 2013a).

2.6 Stability

Generating stable behavior is an important aspect of MPs.
However, stability guaranties often have limited use as they
assume linearity in the dynamics. Yet, however simple, real-
world, systems are non-linear, e.g., a pendulum, where the
gravity alone introduces non-linearities in the dynamics. Dis-
crete DMPs (Ijspeert et al. 2003) generate stable behavior
by moving towards an attractor at the end of the movement,
while periodicMPs (Ijspeert et al. 2003; Righetti and Ijspeert
2006) stabilise the movement on a unit circle. The proba-
bilistic framework from Calinon et al. (2010a) initially did
not provide any stability guarantees, but it was still gener-
ating stable movements as long as the disturbances did not
perturb the system “far” from the region where the demon-
stration occurred. With Khansari-Zadeh and Billard (2011)
the authors alleviate the problem and learned asymptoti-
cally stable control laws. Recently, Calinon (2016) proposed
the use of a Linear Quadratic Regulator (LQR) for con-
trol, that is stable for closed-loop systems (Stengel 2012).
The ProMPs (Paraschos et al. 2013a) derive a controller
that exactly reproduces the demonstrated trajectory distri-
bution and, thus, provide stability guaranties as long as the
demonstrated trajectory distribution was generated by a sta-
ble control law.

3 Related work

A commonly used trajectory-based representation is the
Dynamic Movement Primitive (DMP) approach, introduced
in Ijspeert et al. (2003, 2013) for a recent review. They rep-
resent a linear attractor system which is modulated by a
time-dependent forcing function. The DMP introduced the
concept of a phase, defined as a monotonic function of time.
By adjusting the phase derivatives, we can temporally scale
the movement. The forcing function is represented by nor-
malized Gaussian basis functions, multiplied with the phase
signal. Since the phase decreases exponentially to zero, the
forcing function will asymptotically vanish at the end of the
movement. At that time, only the attractor dynamics stay
active, which guarantees the stability of the linear system.
When used in an imitation learning scenario, the weights of
the basis functions can be fitted from a single demonstration
using linear regression. Generalization to new, unseen, sit-
uations in DMPs is limited. The original formulation only
allowed for changing the position at the end of the move-

123

532 Auton Robot (2018) 42:529–551

ment, which is implemented bymodifying the position of the
goal attractor or, for rhythmic DMPs, by adjusting the ampli-
tude of the forcing function. Extensions exist that also allow
setting a desired final velocity (Kober et al. 2010; Mülling
et al. 2013; Paraschos et al. 2009). Directly changing inter-
mediate points in the trajectory is not possible. DMPs can be
sequenced given proper initialization (Paraschos et al. 2009),
but only instant switching from one primitive to another is
considered. Kulvicius et al. (2012) extended DMPs to sup-
port sequencing of primitives and evaluated their approach
on a handwriting dataset. Gams et al. (2014) proposed the use
of DMPs for tasks that include interactions with the environ-
ment.

Despite that DMPs introduce many beneficial properties,
such as temporal scaling of the movement, learning from
a single demonstration or generalizing to new final posi-
tions, further work is still needed for concurrently activating
multiple primitives, generalizing to intermediate via-points,
representing optimal behavior in stochastic systems, and cap-
turing the correlation of the individual joints of the robot.
Trajectories based onDMPs applied tomultipleDoF systems
are synchronized based only on the internal phase vari-
able. Multiple DMPs for the same DoF cannot be activated
simultaneously without further considerations on prioritized
control and partial cancellation of the movement.

Probabilistic approaches use distributions to additionally
encode the variability of themovement (Calinon et al. 2010a;
Rozo et al. 2013; Kormushev et al. 2010; Calinon 2016).
The variability of the movement, or the variance in distribu-
tion terms, is crucial, as it reflects the importance of single
time points for the movement execution and it is often a
requirement for representing optimal behavior in stochas-
tic systems (Todorov and Jordan 2002). Moreover, capturing
the variance of the movement leads to better generalization
capabilities and to more natural movements. A probabilistic
MP approach was proposed by Calinon et al. (2010a), where
a Gaussian Mixture Regression (GMR) model was used to
represent the trajectory. Given a set of trajectories, the GMR
was trained with an Expectation Maximization (EM) algo-
rithm (Rozo et al. 2013). A unifying formulation that extends
the DMPs and uses them in a probabilistic framework is dis-
cussed in Kormushev et al. (2010). Yet, it is unclear how a
GMR model can be conditioned to reach different final or
intermediate positions. An extension of the approach (Cali-
non 2016) enabled generalization to different situations by
recording the movement from different spaces and tracking
the affine transformation to each space.While the approach is
capable of generalizing, for example when an object changes
its position, it can not modulate the encoded variance.

Besides representing the variance of the trajectory, we
need a controller that reproduces the encoded distribution
on a real system. A feedback controller where the gains are
based on the inverse of the covariance of the current time-

step was presented in Calinon et al. (2010b). The control
law is based on the intuition that the gains have to be lower
when the variance of the trajectories is higher. A comparison
to this control law is presented at the evaluation section of
this paper. As our experiments show, the resulting trajectory
distribution from executing this controller does not match
the desired one. In Calinon (2016) and Bruno et al. (2015),
the authors proposed the use of minimum intervention con-
trol to generate the gains of the feedback controller. In this
approach, the authors use the inverse of the covariance at
every time point as metric for the quadratic state costs. How-
ever, while intuition-wiseweighting the state with the inverse
of the covariance is appropriate, we will show in our compar-
ison that this approach can not match the desired trajectory
distribution. Additionally, the cost function proposed by the
authors include a quadratic action penalty to limit the actions
that is not learned by the demonstrations.

A different approach for computing a control law for a
GMR model was proposed by Khansari-Zadeh and Billard
(2011). In this approach, the control gains are proven to be
stable if the system is linear. The authors derive the stability
constraints from the Lyapunov stability theory. In Khansari-
Zadeh et al. (2014), the authors extend their approach to
generate stable controllers with state-dependent stiffness.
The resulting controller share similarities with the ProMPs
controller.

The approach by Rückert et al. (2012) also offers a prob-
abilistic interpretation of MPs by representing them with
learned graphicalmodels. A probabilistic planning algorithm
is used to obtain a controller that optimizes the cost function
represented by the graphical model. The resulting controller
is also a linear feedback controller with time varying gains.
However, this approach heavily depends on the quality of the
used planner and imitation learning of such a representation
is not straightforward.

The ability to combine multiple MPs into a single move-
ment provides significantly better generalization capabilities,
enables the use of MP libraries, and has recently attracted
attention of the community. Mülling et al. (2013) use a
library for table tennis which is concurrently activating mul-
tiple DMPs to perform striking movements. Each primitive
is activated with an activation provided by a trained gating
network. The primitives are then combined on the acceler-
ation level which is equivalent to a linear combination of
primitives in parameter space. The primitives and the acti-
vation weights were refined with Reinforcement Learning
(RL). A different approach was proposed byMatsubara et al.
(2011) usingDMPs in combination of with a style parameter.
The parameters of DMPs are linearly interpolated according
to the given style parameter. Forte et al. (2012) proposed
a similar approach, where a library of DMPs learned from
multiple demonstrations is used. Generalization is obtained
from a Gaussian Process Regression (GPR) model which

123

Auton Robot (2018) 42:529–551 533

is capable of modeling non-linear transformations of the
style variable. The major limitation of approaches based on
deterministic representations, e.g., on DMPs, is the inabil-
ity to concurrently solve a combination of tasks where we
have one task per primitive. Since there is no notion of
the importance of each time point in the trajectory the
resulting combined primitive is just an interpolation of the
participating primitives trajectories. In contrast, probabilistic
representations (Khansari-Zadeh and Billard 2011; Calinon
et al. 2010a) leave unclear how primitives can be combined.
In ProMPs, we propose a new combination operator based
on a product of trajectory distributions. We show that by
co-activating ProMPs, the resulting movement solves a com-
bination of tasks that is given by a combination of different
cost functions. We evaluate this property in two different
scenarios in the experiments section.

Smoothly sequencing, also called blending, two move-
ment primitives can be considered as a special case of
a combination of MPs. Discrete DMPs can be trivially
sequenced (Paraschos et al. 2009), however the transition
from one primitive to then next one is typically instantly,
which can lead to a jump in the acceleration profiles. Spe-
cial cases of discrete and periodic primitive blending, such
as transient motions, have been considered in Ernesti et al.
(2012) and Degallier et al. (2011). As opposed to the previ-
ous approaches, the ProMPs can cope with combination and
blending of primitives independently of their periodicity.

In the next section, we will first introduce probabilistic
movement primitives and show their advantageous proper-
ties.Next,will showhow to compute a time-varying feedback
controller that reproduces the given trajectory distribution.
Subsequently, we will demonstrate the performance and
advantageous properties of ProMPs in several experiments
on simulated and real robot tasks.

4 Probabilistic movement primitives (ProMPs)

ProMPs provide a single principled framework for imple-
menting the desirable properties of MPs, summarized in
Table 1. We will first introduce the probabilistic model for
representing the trajectory distribution, that is based on a
basis function representation. Such a representations signifi-
cantly reduces the amount ofmodel parameters and facilitates
learning. We proceed by illustrating how our representation
can be trained from imitation data for both stroke-based
and periodic movements. Training from imitation allows
to rapidly reproduce tasks that are easy to demonstrate to
the robot. Here, we describe a simple maximum likelihood
training procedure that can be used for stroke-based move-
ments and an expectation-maximization algorithm that can
be used to train the primitive in case of missing data or
also for rhythmic movements. We continue by discussing

Table 1 Properties and their implementation in the ProMPs

Property Implementation

Co-activation Product of pi (τ)

Modulation Conditioning

→ final positions �
→ final velocities �
→ via-points �
Optimality Encode variance

Coupling Mean, covariance

Learning Max. likelihood

Temporal modulation Modulate phase

Rhythmic movements Periodic basis

Fig. 1 Two real robot setups that we used for the evaluation of
our approach. (left) The KUKA arm playing the maracas musical
instrument. We demonstrated a slow version of the rhythmic shak-
ing movement and we progressively increased the speed. (right) The
KUKA arm playing with an Astrojax. The robot learned to play from
demonstrations

the implementation of the desirable properties, i.e. tempo-
ral modulation of the movement, encoding of the coupling
between the joints that allows the generation of coordinated
movements, conditioning to generalize a trained primitive
to a novel situation, adaptation to task parameters to allow
task-dependent variables to modify the primitive, and com-
bination and blending of primitives to solve more complex
tasks. Finally, in Sect. 4.4, we present the analytical deriva-
tion of a stochastic feedback controller that is capable of
exactly reproducing the trajectory distribution. Such feed-
back controller is essential for using trajectory distributions
for controlling a physical system (Fig. 1).

4.1 Probabilistic trajectory representation

Westart our discussionwith the simple case of a single degree
of freedom, where the joint angle q is a scalar, and we subse-
quently extend it to themultiple DoF case, where the vector q
describesmultiple joint angles.Wemodel a singlemovement
execution as a trajectory τ = {qt }t=0...T , defined by the joint
angle qt over time. In our framework, a MP describes multi-

123

534 Auton Robot (2018) 42:529–551

θ
w

p(w; θ)

yt

p(yt|w)

t = 1 . . . T

Fig. 2 The Hierarchical Bayesian model used in ProMPs. The prob-
ability distribution p(y1:T |w) of the observed trajectories depends on
the parameter vector w. The distribution over the parameter vector w is
given by p(w|θ). The parameter vectorw is integrated out in the ProMP
formulation

ple ways to execute a movement, which naturally leads to a
probability distribution over trajectories. We encode our pol-
icy representation with a hierarchical Bayesianmodel, which
is presented in Fig. 2.

4.1.1 Concise encoding of trajectory distributions

Our movement primitive representation models the time-
varying variance of the trajectories. Representing the vari-
ance information is crucial as it reflects the importance of
single time points for the movement execution. We use a
basis-function representation as it reduces the amount of
model parameters in comparison to a simple distribution
over the joint positions for each time step. This reduction
in parameters can greatly facilitate learning. Additionally, it
allows us to derive a continuous time approach and transfer
data between systems, e.g., from a motion capture system to
the robotic platform, directly without interpolating the data.
When controlling the system, a continuous time approach
allows for choosing the control frequency and is robust to
jitter. Further, as we will discuss in Sect. 4.1.2, it enables
the temporal modulation of the movement. Additionally,
it allows us to generalize the primitive at any time-point,
Sect. 4.3.1 and to derive our feedback controller in closed
form, Sect. 4.4.

We use a weight vector w to compactly represent a single
trajectory. The probability of observing a trajectory τ given
the underlying weight vector w is given as a linear basis
function model

yt =
[
qt
q̇t

]
= �tw + ε y, (1)

p(τ |w) =
∏
t

N (
yt

∣∣�tw,�y
)
, (2)

where �t = [φt , φ̇t]T defines the 2 × n dimensional time-
dependent basis function matrix for the joint positions qt and
velocities q̇t . The basis functions for the velocities φ̇t are the
time derivatives of φt . The variable n defines the number of
basis functions and ε y ∼ N (

0,�y
)
represents zero-mean

i.i.d. Gaussian noise.

In order to capture the variance of the trajectories, we
introduce a distribution p(w; θ) over the weight vector w,
with parameters θ . In most cases, the distribution p(w; θ)

will be Gaussian where the parameter vector θ = {μw,�w}
specifies themean and the variance ofw. However, alsomore
complex distributions such as Gaussian mixture models can
be used for this task (Rueckert et al. 2015). The trajectory
distribution p(τ ; θ) can now be computed by marginalizing
out the weight vector w, i.e.

p(τ ; θ) =
ˆ

p(τ |w)p(w; θ)dw, (3)

to obtain the probability distribution over the trajectories τ .
The distribution p(τ ; θ) defines the hierarchical Bayesian
model that is illustrated at Fig. 2. Themodel’s parameters are
given by the observation noise variance �y and the parame-
ters θ of the weight distribution p(w; θ).
Illustrative example To illustrate the properties of our MP
representation, we use a simple toy-task as a running exam-
ple throughout this section where we also compare to other
state-of-the-art MP approaches. In our toy-task, we use a tra-
jectory distribution that passes through two via-points. The
simulated system has linear dynamics and Gaussian i.i.d.
noise on the actions. In this illustrative example, we control
the acceleration of the system. We generate demonstrations
with an optimal control algorithm (Toussaint 2009). The cost
function is given as

C(τ , u) =
∑

i={tvia}
(ydi − yi)

T Q(ydi − yi) +
T∑
i=1

uTi Rui , (4)

where tvia = {0.4 s, 0.7 s} is a set of the time-points for the
via-points and Q, R are are the state and action cost matri-
ces, respectively. We simulate trajectories with the resulting
controller to obtain the demonstrations. The demonstrations
exhibit variability due to the noise of the system. The optimal
trajectory distribution is presented in Fig. 3a.

The use of a cost-function enables us to quantify the qual-
ity of the resultingMP policies. The ProMP policy is capable
of reproducing exactly the variance of the movement, as
shown in Fig. 3b. For the trajectory reproduction of ProMPs,
we used the controller that we describe in Sect. 4.4. Addition-
ally, we evaluate the heuristic controller presented in Calinon
et al. (2010b), which computes the feedback gains inverse
proportionally to the variance of the trajectory. The trajec-
tory distribution of the inverse covariance controller does not
match the demonstrated distribution, see Fig. 3c. The DMP
approach uses constant feedback gains to follow a single tra-
jectory, and, hence, can not adapt the variance of the resulting
trajectory distribution. InFig. 3d,wegenerated trajectory dis-
tributions for two different settings of the feedback gains to
illustrate the resulting variances. We empirically optimized

123

Auton Robot (2018) 42:529–551 535

−0.5

0

q
(r
ad

)

0 0.25 0.5 0.75 1
−4

−2

0

2

4

time(s)

q̇
(r
ad

/s
)

0 0.25 0.5 0.75 1

time(s)
0 0.25 0.5 0.75 1

time(s)
0 0.25 0.5 0.75 1

time(s)

(a) (b) (c) (d)Demonstrations ProMPs Inv. Cov. Controller DMPs

Fig. 3 Trajectory distribution showing the joint positions (first row)
and velocities (second row). The shaded area denotes two times the
standard deviation. a The demonstrated trajectory distribution that was
generated by an stochastic optimal control algorithm for a via-point
task. The resulting trajectories show variability due to the noise in the
system. b The trajectory distribution generated using ProMPs (blue).
ProMPs can exactly reproduce the demonstrated trajectory distribution
(shown in redbelow theblue shadedarea). cThe resulting trajectory dis-
tribution produced by the inverse covariance control approach (blue).

Due to latency-effects it missed the via-points in time and generated
high actions which led to the velocity spike. d Trajectory distribution
produced by DMPs.While the DMP can follow the mean of the demon-
strations, it can not adapt its variance. The accuracy at the via-points is
worse than ProMPs, while the control actions are higher in non-relevant
areas of the trajectory. In bluewe tuned the DMP gains for reproducing
the trajectory distribution with the lowest cost and in green we used
lower gains (Color figure online)

Table 2 Comparison of different control approaches on a hand-
specified cost function

Control approach Average cost

Reproduction

Optimal controller 2.07 × 104 ± 2.58 × 102

Model-free Gaus. Ctl 2.25 × 104 ± 3.21 × 102

ProMP Jerk Penalty 2.29 × 104 ± 3.35 × 102

ProMP weight reg. 2.35 × 104 ± 3.25 × 102

Opt. Ctl.—Gaus. dist. 3.37 × 104 ± 4.41 × 102

GMM/GMR—min int. 4.47 × 104 ± 7.25 × 102

DMP 5.16 × 104 ± 13.2 × 102

Inv. cov. controller 7.36 × 104 ± 16.1 × 102

DMP with low gains 76.5 × 104 ± 392 × 102

Combin.

Optimal controller 3.36 × 104 ± 3.52 × 102

ProMP 5.46 × 104 ± 3.55 × 102

Inv. cov. controller 6.54 × 104 ± 7.30 × 102

DMP 208 × 104 ± 107 × 102

As baseline, we compare the approaches to an optimal controller that
maximizes the cost. The ProMPs can produce trajectories with a similar
cost. The newly presented regularization scheme for the weights (jerk
penalty, Sect. 4.2.1) achieves a slightly lower costs due to the smoother
torque profiles produced by this approach

the gains for the inverse covariance controller and the DMPs
using search. The average costs generated by each control law
are shown in the upper part of Table 2. The ProMP achieve
a similar cost to the optimal controller while all other con-
trollers can not reproduce the optimal behavior.

Further, we compare our approach to Calinon (2016),
where we fit the proposed Gaussian Mixture Model (GMM)
to the demonstrations and then useGaussianMixture Regres-
sion (GMR) to derive the desired trajectory distribution. We
present the fitted regressionmodel in Fig. 4 (blue).We gener-
ated trajectories using Minimum Intervention Control (Cali-
non 2016) and we present the results in Fig. 4 (red) where we
jointly optimized for the number of mixture components and
the action penalty. We also used the optimal number of com-
ponents, but the same action penalty as in the cost function
used to generate the demonstrations (green). The resulting
controller can not reproduce the given distribution.

Moreover, we evaluated our approach using simple Gaus-
sian distributions and optimal control. At every time-step, we
fit a Gaussian distribution over the state and we use it to set
a quadratic cost function. The cost function has the form of
Eq. (4) where ydi is set to the mean and Q to the inverse of
the covariance. We optimize for the action penalty R such
that the true cost function we used to generate the data is
minimized. We present our results in Table 2. This approach
uses the same approach for deriving the controller as in Cali-
non (2016), but uses a simple Gaussian distribution to model
each time-step instead of the state-defined GMR. Compared
to ProMPs, the performance on the true cost function isworse
as can be seen in the table. This approach also does not pro-
vide any generalization or modulation mechanism.

As another baseline, we fit aGaussian distribution at every
time-step on the state-action space. At reproduction, we con-
dition the distribution of that time-step on the current state

123

536 Auton Robot (2018) 42:529–551

0 0.25 0.5 0.75 1

−0.5

0

time(s)

q(
ra
d)

Fig. 4 Evaluation of the GMM-GMR approach, using the minimum
innervation principle for control (Calinon 2016). The learned distribu-
tion using the GMM-GMR approach is presented in blue. The approach
captures the mean of the distribution accurately, however, the variance
at the via-points is higher than in the demonstrations. For reproduction,
we used the optimal action penalty (red) or the same action penalty
as in the demonstrations (green). While the mean of the reproductions
matches the mean of the demonstrations, there is a miss-match for the
variance (Color figure online)

to obtain the action, which results in a linear Gaussian action
policy. As the demonstrations have been generated by a time-
dependent linear controller, the performance of this approach
is is close to optimal and similar to the ProMP controller as
shown in Table 2. However, fitting a Gaussian distribution
over the state-action requires the actions to be known dur-
ing the demonstrations and, which limits the applicability of
the approach to tele-operation setups. Similar to the optimal
control approach from the previous paragraph, this approach
does not provide any generalization mechanism.

4.1.2 Temporal modulation

With temporalmodulation,we can adjust the execution speed
of themovement. Similar to theDMPapproach,we introduce
a phase variable z to decouple the movement from the time
signal. By modifying the rate of the phase variable, we can
modulate the speed of the movement. Without loss of gen-
erality, we define the phase as z0 = 0 at the beginning of
the movement and as zT = 1 at the end. We typically use
a constant velocity żt = 1/T for reproducing the recorded
motion, but we can also adapt it dynamically during the exe-
cution of the movement. The basis functions φt now directly
depend on the phase instead of time, such that

φt = φ(zt), (5)

φ̇t = φ̇(zt)żt , (6)

where φ̇t denotes the corresponding derivative. An illustra-
tion of temporal scaling for our running example is shown in
Fig. 5.

4.1.3 Rhythmic and stroke-based movements

The choice of the basis functions depends on the type of
movement, which can be either rhythmic or stroke-based. For

0 0.25 0.5 0.75 1 1.25

−0.5

0

time(s)

q(
ra
d)

Fig. 5 Temporal modulation of the ProMPs. The demonstrated distri-
bution is shown in red. The green shows an execution at a slower pace,
whereas the blue at a faster one (Color figure online)

stroke-based movements, we use Gaussian basis functions
bGi , while for rhythmic movements, we use Von-Mises basis
functions bVMi to model periodicity in the phase variable z,
i.e.,

bGi (z) = exp

(
− (zt − ci)2

2h

)
, (7)

bVMi (z) = exp

(
cos(2π(zt − ci))

h

)
, (8)

where h defines the width of the basis and ci the center for
the i th basis function. We normalize the basis functions

φi (zt) = bi (z)∑n
j=1 b j (z)

, (9)

to obtain a constant summed activation and improve the
regression’s performance. The centers of the basis functions
are uniformlyplaced in [−2h, (1+2h)] the phase domain.We
center basis functions outside the interval [0, 1] to improve
homogeneity of the basis vector, i.e., by including the “tails”
of the basis placed outside, and therefore improve the per-
formance of our model.

4.1.4 Encoding coupling between joints

So far, we have considered each degree of freedom to be
modeled independently. However, for many tasks we have to
coordinate the movement of multiple joints. The trajectory
distributions p (τ ; θ) can be easily extended to the multi-
DoF case. For each dimension i , we maintain a parameter
vector wi , and we define the combined weight vector w as
w = [wT

1 , . . . ,wT
n]T , a concatenation of the weight vectors.

The basis matrix �t now extends to a block-diagonal matrix
containing the basis functions and their derivatives for each
dimension. The observation vector yt consists of the angles
and velocities of all joints. The probability of an observation
y at time t is given by

123

Auton Robot (2018) 42:529–551 537

Algorithm 1: Learning Stroke-Based Movements
Data: A set of N trajectories with position observations Y i ,

i = 1 . . . N at time t i .
Input: Number of basis functions K , Basis function width h,

Regression parameter λ.
Result: The mean μw and covariance �w of

p(w) ∼ N (
w

∣∣μw,�w

)
.

foreach trajectory i do
→ Compute phase: zi = t i/tendi ;
→ Generate basis: � t = f (zi , K , b), Eq. (9);
→ Compute the weight vector wi for trajectory i

wi =
(
�T

t � t + λI
)−1

�T
t Y i .

end
→ Fit a Gaussian over the weight vectors wi

μw = 1

N

N∑
i=1

wi , �w = 1

N

N∑
i=1

(wi − μw)(wi − μw)T .

return μw,�w .

p(yt |w) = N

⎛
⎜⎝

⎡
⎢⎣

y1,t
...

yd,t

⎤
⎥⎦

∣∣∣∣
⎡
⎢⎣

�t . . . 0
...

. . .
...

0 · · · �t

⎤
⎥⎦ w,�y

⎞
⎟⎠

= N (
yt

∣∣� tw,�y
)

(10)

where yi,t = [qi,t , q̇i,t]T denotes the joint angle and velocity
for the i th joint. We nowmaintain a distribution p(w; θ) over
the combined parameter vector w. By introducing p(w; θ),
we extended our representation to additionally capture the
correlation between the joints. The extended multi-DoF rep-
resentation is used throughout the rest of the paper, including
the experimental section. Controlling the robot in a co-
ordinated manner using the coupling between the joints, for
example, allows the robot to reach a via-point defined in the
task-space while the joints exhibit variability. In the multi-
DoF model, Eq. (1) becomes

p(τ |w) =
∏
t

N (
yt

∣∣� tw,�y
)
. (11)

Additionally, our model captures the covariance of joint
positions and velocities for each time step. Therefore, it
encodes a linear relationship between them and enables to
compute the desired velocity if the position is known or vice
versa.We further exploit this property in Sect. 4.3.1 for adap-
tation to novel situations.

4.2 Learning from demonstrations

To simplify the learning of the parameters θ , we will assume
a Gaussian distribution for p(w; θ) = N (w|μw,�w) over
the parameters w. Consequently, the distribution of the state
p(yt |θ) for time step t is given by

p
(
yt ; θ

) =
ˆ

N (
yt

∣∣� tw,�y
)N (

w
∣∣μw,�w

)
dw

= N
(
yt

∣∣∣� tμw,� t�w�T
t + �y

)
, (12)

and, thus, we can easily evaluate the mean and the variance
for any time point t . As a ProMP represents multiple ways to
execute an elemental movement, we need multiple demon-
strations in order to learn p(w; θ), or, in the special case that
only one demonstration is available, a prior variance profile
for p(w) should be given.2

4.2.1 Learning stroke-based movements

For stroke-basedmovements, we can estimate the parameters
θ = {μw,�w} from demonstrations by a simple maximum
likelihood estimation algorithm.We estimate the weights for
each trajectory individually with linear ridge regression, i.e.

wi =
(
�T� + λI

)−1
�TY i (13)

where Y i represents the positions of all joints and time steps
from the demonstration i , and � the corresponding basis
function matrix for all time steps. We align the demonstra-
tions by adjusting the phase signal. For each demonstration,
we assume that zbegin = 0 and at the end zend = 1. The
ridge factor λ is generally set to a very small value, typi-
cally λ = 10−12, as larger values degrade the estimation the
trajectory distribution. In this paper, we also propose a new
regularization scheme that is based on minimizing the jerk
of the trajectories, i.e.,

wi =
(
�� + λ	T	

)−1
�TY i , (14)

where 	 denotes the third derivative3 of �. The third deriva-
tive is needed as the jerk is given by the third derivative.
The jerk minimization scheme can generate smoother torque
profiles and, hence, performs better in the cost function com-
parison presented in Table 2. The mean μw and covariance
�w are computed from the samples wi ,

μw = 1

N

N∑
i=1

wi , �̂w = 1

N

N∑
i=1

(wi −μw)(wi −μw)T (15)

where N is the number of demonstrations.We use an Inverse-
Wishart distribution as a prior to the covariance matrix �w.

2 This prior variance profile can be just set to α I , where α is a small
constant and I is the identity matrix.
3 The third derivative of � can be computed numerically.

123

538 Auton Robot (2018) 42:529–551

The maximum a-posteriori estimate of the covariance (OHa-
gan and Forster 2004) given the prior becomes

�w = N �̂w + λw I
N + λ

, (16)

where the value of λw is set such that the covariance matrix
�w is positive-definite. The complete algorithm is shown in
Algorithm 1.

4.2.2 Learning periodic movements

In this section we present an Expectation-Maximization
(EM) algorithm that can be used to learn frommissing data or
rhythmic movements. Using the previous learning approach
for periodic movements would require that each demonstra-
tion finishes at the same state as it started, as we use a single
weight vector per demonstration and the basis functions are
periodic. However, due to the variability, single trajectories
typically do not end exactly where they started. Yet, rhythmic
movements can be learned by using an EM-algorithm that we
can train with partial trajectories, i.e., trajectories that do not
cover a whole period.

We derive an Expectation Maximization (EM) algorithm
that infers the latent variables, i.e. the weights for each
demonstrations during training (Ewerton et al. 2015). We
assume that our set of demonstrations contains multiple
periods. First, we determine the period length from the
demonstration and we construct the basis and phase signal.
We randomly split the demonstration to N potentially over-
lapping segments. The size of the segment must be shorter
than a period to avoid the periodicity in the basis functions for
a single demonstration. The initial guess for the parameters
is estimated using linear ridge regression. In the expectation
step, we need to compute the posterior distribution of the
weights

p(wi |Y i ,μw,�w) ∝ p(Y i |wi)p(wi |μw,�w), (17)

for each demonstration. The posterior can be computed using
the Bayes rule for Gaussian distributions. The expectation
step becomes

μi = μw + �T
i

(
� i�w�T

i

)−1
(Y i − � iμw) , (18)

�i = �w − �w�T
i

(
� i�w�T

i

)−1
� i�w, (19)

where the index i denotes the i-th segment of the demonstra-
tion and� i the basis functions for that segment. We dropped
the time dependency from the notation of � i for clearness.
In the maximization step, we need to optimize the complete-
data log-likelihood

argmaxθ ′
N∑
i=1

ˆ
w

p (wi |θ) log p
(
Y i

∣∣θ ′) p (
w

∣∣θ ′) dw (20)

where θ ′ = {μ′
w,�′

w} denote the new parameters for the
weight distribution. Thus, the maximization step becomes

μ′
w = 1

N

N∑
i=1

μi , (21)

�′
w = 1

N

N∑
i=1

((
μi − μ′

w

) (
μi − μ′

w

)T + �i

)
, (22)

for computing the updates in closed form.We iterate between
the expectation step and the maximization step until conver-
gence. Our algorithm is based on the EM from HBMs with
Gaussian distributions approach presented in Lazaric and
Ghavamzadeh (2010) and has been evaluated in Paraschos
et al. (2013a) and Ewerton et al. (2015) for the ProMP rep-
resentation. The algorithm for learning periodic movements
is shown in Algorithm 2.

In both learning approaches, the weight covariance �w

may become not positive definite because of numerical
problems. To correct these numerical problems we use an
eigen-decomposition to find the closest symmetric positive
definite matrix to our estimation, as described in Higham
(1988).

4.3 New probabilistic operators for movement
primitives

With the probabilistic representation we can exploit prob-
abilistic operators, i.e., modulate the trajectory by condi-
tioning and co-activate MPs by computing the product of
distributions.

Using Gaussian distributions for p(w; θ), all operators
can be computed in closed form.

4.3.1 Modulation of the trajectory distribution by
conditioning

The modulation of via-points and final positions is an impor-
tant property to adapt the MP to new situations. In our
probabilistic formulation, such operations can be described
by conditioning the MP to reach a certain state y∗

t at time t .
Note that conditioning can be performed for any time point
t . It is performed by adding a desired observation

x∗
t =

{
y∗
t ,�

∗
y

}
(23)

to our probabilistic model and applying Bayes theorem, i.e.

p
(
w

∣∣x∗
t

) ∝ N
(
y∗
t

∣∣∣� tw,�∗
y

)
p(w), (24)

123

Auton Robot (2018) 42:529–551 539

Algorithm 2: Learning Periodic Movements
Data: A trajectory with multiple periods with position

observations Y , at time t
Input: Number of basis functions K , Basis function width b,

Regression parameter λ, Number of segments to split N ,
EM convergence parameter ε

Result: The mean μw and covariance �w of
p(w) ∼ N (

w
∣∣μw,�w

)
→ Detect base frequency: fq by FFT;
→ Periodic phase signal: z = mod(t fq , 1);
→ Split randomly: {Y , z} into N segments;
→ Initial guess: μw and �w from Algorithm 1;
repeat

Expectation step:

μi = μw + �T
i

(
� i�w�T

i

)−1
(Y i − � iμw) ,

�i = �w − �w�T
i

(
� i�w�T

i

)−1
� i�w

Maximization step:

μ′
w = 1

N

N∑
i=1

μi ,

�′
w = 1

N

N∑
i=1

((
μi − μ′

w

) (
μi − μ′

w

)T + �i

)

until difference in log-likelihood < ε;
return μ′

w,�′
w .

where the state vector y∗
t represents the desired position and

velocity vector at time t and�∗
y describes the accuracy of the

desired observation. We can also condition on any subset of
y∗
t . For example, specifying a desired joint position q1 for the

first joint the trajectory distribution will automatically infer
the most probable joint positions for the other joints. Condi-
tioning partially on the state is done by constructing the basis
function matrix � used in Eqs. (25) and (26) to contain only
the variables that participate in the conditioning. For exam-
ple, Maeda et al. (2014) used such an approach based on
ProMPs to model human–robot interaction where condition-
ing on the human movement yields the desired movement of
the robot.

For Gaussian trajectory distributions, the conditional dis-
tribution p

(
w

∣∣x∗
t

)
forw is Gaussian with mean and variance

μ[new]
w = μw + L

(
y∗
t − �T

t μw

)
, (25)

�[new]
w = �w − L�T

t �w, (26)

where L is given by

L = �w� t

(
�∗

y + �T
t �w� t

)−1
. (27)

Illustrative Example Conditioning a ProMP to different
target states, positions and velocities, is illustrated in Fig. 6.

Weobserve that, despite themodulation of theProMPby con-
ditioning, the ProMP stays within the original distribution.
How the ProMPsmodulate is hence learned from the original
demonstrations. Modulation strategies in other approaches
such as the DMPs do not show this effect (Schaal et al. 2005).
DMPs can reach the desired target position and velocities at
the end of the movement, but deform the trajectory signif-
icantly. In contrast, the trajectory distribution obtained by
conditioning a ProMP even matches the distribution of the
optimal controller that has the conditioned via-point as addi-
tional cost term.

4.3.2 Adaptation to task parameters

In many situations, we need to adapt the primitive based on
an external state variable ŝ, such as a desired target angle
when shooting hockey pucks. The value of such external
variables is typically known during training and also before
reproduction of the primitive. Hence, we can directly learn
this adaptation by learning a mapping from the external vari-
able to the mean weight vector μw. We use a simple linear
mapping, which is equivalent to modeling a joint distribution

p
(
w, ŝ

) = N
([

w

ŝ

]∣∣∣∣μ,�

)

= N (
w

∣∣Oŝ + o,�w

)N (
ŝ
∣∣μŝ,� ŝ

)
, (28)

however, the transformation parameters {O, o} are learned
directly with linear ridge regression.

4.3.3 Combination and blending of movement primitives

We can use a product of trajectory distributions to con-
tinuously combine and blend different MPs into a single
movement. Suppose thatwemaintain a set of i different prim-
itives that we want to combine. We can co-activate them by
taking the products of distributions,

pnew(τ) ∝ ∏
i pi (τ)α

[i]
, (29)

where the α[i] ∈ [0, 1] factors denote the activation of the
i th primitive. The product captures the overlapping region of
the active MPs, i.e., the part of the trajectory space where all
MPs have high probability mass.

We also want to be able to modulate the activations of the
primitives, for example, to continuously blend themovement
execution from one primitive to the next one. Hence, we
decompose the trajectory into its single time steps and use
time-varying activation functions α

[i]
t , i.e.,

p∗(τ) ∝
∏
t

∏
i

pi (yt)
α

[i]
t , (30)

123

540 Auton Robot (2018) 42:529–551

−0.5

0

q
(r
ad

)

0 0.25 0.5 0.75 1
−4

−2

0

2

4

time(s)

q̇
(r
ad

/s
)

(a)

0 0.25 0.5 0.75 1

time(s)
(b)

0 0.25 0.5 0.75 1

time(s)
(c)

0 0.25 0.5 0.75 1

time(s)
(d)

−0.5

0

q
(r
ad

)

0 0.25 0.5 0.75 1
−4

−2

0

2

4

time(s)

q̇
(r
ad

/s
)

(e)

0 0.25 0.5 0.75 1

time(s)

(f)

0 0.25 0.5 0.75 1

time(s)

(g)

0 0.25 0.5 0.75 1

time(s)

(h)

 Optimal Controller Optimal Controller ProMPs ProMPs

DMPs DMPs Optimal Controller ProMPs

Fig. 6 Generalization of primitives. We want to modulate the MPs
such that they go through additional via-points (blue and green) and
evaluate the quality of the generalizedMP policies. The resulting distri-
butions are illustrated only for comparison and are not used for training.
The added via-points are depicted with colored boxes. a, b Evaluation
of the optimal controller given the additional via-points on the final
position (a) or final velocity (b). c, d Evaluation of the ProMP on the
samevia-points. ProMPs reproduce the optimal behavior despite that the

unconditioned demonstrations have been used for training. e, fGeneral-
ization to the same via-points with DMPs. The position generalization
is a linear interpolation of the mean trajectory and quickly goes “out-
side” the demonstrated distribution. The final velocity generalization
reproduce drastically different trajectories than the demonstrated ones.
g, h Evaluation of the optimal controller and the ProMPs on additional
via-point in intermediate and final locations, that require adaptation on
both the position and the velocity simultaneously (Color figure online)

pi (yt) =
ˆ

pi
(
yt

∣∣∣w[i]) pi
(
w[i]) dw[i]. (31)

For Gaussian distributions pi (yt) = N (yt |μ[i]
t ,�

[i]
t), the

resulting distribution p∗(yt) is again Gaussian with variance
and mean,

�∗
t =

(∑
i

(
�

[i]
t /α

[i]
t

)−1
)−1

, (32)

μ∗
t = �∗

t

(∑
i

(
�

[i]
t /α

[i]
t

)−1
μ

[i]
t

)
. (33)

Illustrative Example. Co-activation of two ProMPs is shown
in Fig. 7c and blending of two ProMPs in Fig. 7d. We trained
the ProMPs such that each primitive solves a different task
indicated by the via points in the figures with the same
colors. The combined primitive is capable of reaching all
four via-points, i.e., it achieved both tasks at the same time.
Additionally, we compare our combination approach to the
optimal controller by adding the cost functions of the two
tasks. The optimal controller results are shown in Fig. 7a.
Combining movements with the DMPs results on averaging
between the trajectories and therefore missing all of the via-
points. The trajectory distribution is shown in Fig. 7b. We
quantified the results in terms of the average cost in Table 2.

123

Auton Robot (2018) 42:529–551 541

0 0.25 0.5 0.75 1
−0.2

0

0.2

time(s)

q(
ra
d)

0 0.25 0.5 0.75 1
time(s)

0 0.25 0.5 0.75 1
time(s)

0 0.25 0.5 0.75 1
time(s)

(a) Opt. Ctl. Combination (b) DMP Combination (c) ProMP Combination (d) ProMP Blending

Fig. 7 Combination and blending of two primitives. We want to com-
bine two MPs to obtain an MP that can achieve both tasks of the single
MPs at the same time. We show the resulting distribution in green and
the participating primitives in blue and red. a The resulting optimal
distribution is generated by adding both cost-functions that have been
used to generate the single primitive distributions. b Combining DMPs
linearly in weight space results in a linearly interpolated trajectory. The

movement misses all the via-points. c We co-activate two ProMPs with
equal weights. The resulting movement passes through all via-points.
d We smoothly blend from the red primitive to the blue primitive. The
resulting movement (green) first follows the red primitive and, subse-
quently, switches to following exactly the blue primitive (Color figure
online)

While the ProMP approach achieves an average cost in the
same range of magnitude, the performance of the DMP com-
bination is highly degraded.

4.4 Using trajectory distributions for robot control

In order to fully exploit the properties of trajectory distribu-
tions, a policy that reproduces these distributions is needed
for controlling the robot. To this effect, we derive a stochastic
feedback controller that can accurately reproduce the mean
μt , the variances �t , and the correlations �t,t+1 for all time
steps t of a given trajectory distribution. The derivation of
the controller is based onmoment matching on Gaussian dis-
tribution. In our approach there is no notion of cost function.

Such controller can only be obtained by using a model.
We approximate the continuous time dynamics of the system
by a linearized discrete-time system with step duration dt,

yt+dt = (I + At dt) yt + Bt dt u + ct dt, (34)

where the system matrices At , the input matrices Bt and the
drift vectors ct can be obtained by first order Taylor expan-
sion of the dynamical system for the current state yt .

4 We
assumea stochastic linear feedback controllerwith timevary-
ing feedback gains is generating the control actions, i.e.,

u = K t yt + kt + εu, ε ∼ N
(
εu

∣∣∣0,�udt
−1

)
, (35)

where the matrix K t denotes a feedback gain matrix and kt
a feed-forward component. We use a control noise which
behaves like a Wiener process (Stark and Woods 2001), and,

4 If inverse dynamics control (Peters et al. 2008) is used for the robot,
the system reduces to a linear system where the terms At , Bt and ct are
constant in time.

hence, its variance grows linearly with the step duration5 dt.
By substituting Eq. (35) into Eq. (34), we can rewrite the next
state of the system as

yt+dt = (I + (At + Bt K t) dt) yt
+ Bt dt(kt + εu) + c dt

= Ft yt + f t + Bt dt εu, (36)

where we defined

Ft = (I + (At + Bt K t) dt) ,

f t = Bt kt dt+c dt . (37)

We will omit the time-index as subscript for most matri-
ces in the remainder of the paper to improve readability.
From Eq. (12), we know that the distribution for our current
state yt is Gaussian with mean μt = � tμw and covariance6

�t = � t�w�T
t . As the system dynamics are modeled by a

Gaussian linear model, we can obtain the distribution of the
next state p (yt+dt) analytically from the forward model by
integrating out the current state

p(yt+dt) =
ˆ
yt

N (
yt+dt

∣∣F yt + f ,�s dt
)N (

yt
∣∣μt ,�t

)

= N
(
yt+dt

∣∣∣Fμt + f , F�t FT + �s dt
)
, (38)

where dt�s = dt B�uBT represents the system noise
matrix. Both sides of Eq. (38) are Gaussian distributions.
The left-hand side can be computed in two ways; from our
desired trajectory distribution p(τ ; θ) and from Eq. (38). We

5 As we multiply the noise by B dt, we need to divide the covariance
�u of the control noise εu by dt to obtain this desired behavior.
6 The observation noise is omitted as it represents independent noise
which is not used for predicting the next state.

123

542 Auton Robot (2018) 42:529–551

proceed bymatching themean and the variances of both sides
with our control law,

μt+dt = Fμt + (Bk + c) dt, (39)

�t+dt = F�t FT + �s dt, (40)

where F is given in Eq. (37) and contains the time varying
feedback gains K . Using both constraints, we can now obtain
the time-dependent gains K t and kt . Note that the linearized
model given by At , Bt and ct depends on the current state yt
which is used as linearization point. As our computation of
the gains will depend on the linearized model, our controller
gains also depend implicitely on the current state, i.e., K t =
K (yt) and kt = k(yt). Therefore, our controller is in fact
a non-linear controller. However, we will ommit the state
dependence of our gains in the remaining derivation for the
sake of clarity.

4.4.1 Derivation of the controller gains

Wecontinuewith the derivation of the controller gains, K . To
perform the derivation we assume, for the moment, that the
stochasticity of the controller�u is known. In Sect. 4.4.3, we
show how the stochasticity of the controller can be computed
closed form. By rearranging terms, the covariance constraint
becomes

�t+dt − �t = �s dt+ (A + BK) �t dt

+ �t (A + BK)T dt+O(dt2), (41)

where O(dt2) denotes all second order terms in dt. After
dividing by dt and taking the limit of dt → 0, the second
order terms disappear and we obtain the time derivative of
the covariance

�̇t = lim
dt→0

�t+dt − �t

dt

= (A + BK)�t + �t (A + BK)T + �s, (42)

which is a special case of the continuous time Ricatti equa-
tion. Note that this operation was only possible due to the
continuous time formulation of the basis functions.

The derivative of the covariance matrix �̇t can addition-
ally be obtained from the trajectory distribution by

�̇t = �̇ t�w�T
t + � t�w�̇

T
t , (43)

which we substitute into Eq. (42). After rearranging terms,
the equation reads

M + MT = BK�t + (BK�t)
T , (44)

where we defined

M = �̇ t�w�T
t − A�t − 0.5�s, (45)

to demonstrate the structure of the equation. A solution can
be obtained by setting M = BK�t and solving for the gain
matrix K ,

K = B†
(
�̇ t�w�T

t − A�t − 0.5�s

)
�−1

t , (46)

where B† denotes the pseudo-inverse of the control matrix
B.

4.4.2 Derivation of the feed-forward controls

Similarly, we obtain the feed-forward control signal k by
matching the mean of the trajectory distribution μt+dt with
the mean computed with the forward model. After rearrang-
ing terms, dividing by dt, and taking the limit of dt → 0, we
arrive at

μ̇t = (A + BK) μt + Bk + c, (47)

the differential equation for the mean of the trajectory. We
use the trajectory distribution p(τ ; θ) to obtain μt = � tμw

and μ̇t = �̇ tμw and solve Eq. (47) for k,

k = B† (
�̇ tμw − (A + BK) � tμw − c

)
. (48)

The time-varying feedback gains K do not depend on the
mean of the trajectory distribution, but only on the variance at
that time step. Similarly, the feed-forward controls k, depend
on the variance only through the feedback gains K , but oth-
erwise they depend on the mean.

4.4.3 Estimation of the control noise

The last step required tomatch the trajectory distribution is to
match the control noise matrix �u which is needed to gener-
ate the distribution. This noise can be higher than the system
noise to induce a higher variance in the distribution. Such a
higher variance can, for example, be useful for exploration
in reinforcement learning.

We compute the system noise covariance �s = B�uBT

by examining the cross-correlation between time steps of
the trajectory distribution. To do so, we compute the joint
distribution p

(
yt , yt+dt

)
of the current state yt and the next

state yt+dt as

p
(
yt , yt+dt

)

= N
([

yt
yt+dt

] ∣∣∣
[

μt
μt+dt

]
,

[
�t C t

CT
t �t+dt

])
, (49)

123

Auton Robot (2018) 42:529–551 543

where C t = � t�w�T
t+dt is the cross-correlation of the sub-

sequent time points. We use our linear Gaussian model to
match the cross correlation. The joint distribution for yt and
yt+dt can also be obtained by our system dynamics, i.e.,

p
(
yt , yt+dt

) = N (
yt |μt ,�t

)N (
yt+dt|F yt + f ,�u

)

which yields a Gaussian distribution with mean and covari-
ance

μ̂t =
[

μt
Fμt + f

]
, �̂t =

[
�t �t FT

F�t F�t FT + �s dt .

]
(50)

The noise covariance �s is obtained by matching both
covariance matrices given in Eqs. (49) and (50),

�s dt = �t+dt − F�t FT = �t+dt − F�t�
−1
t �t FT

= �t+dt − CT
t �−1

t C t , (51)

and solving for �s . The variance �u of the control noise is
then given by

�u = B†�sB†T . (52)

The variance of our stochastic feedback controller does
not depend on the controller gains and can be pre-computed
before estimating the controller gains. If the computed
desired control noise is smaller than the real control noise
of the system, we use the control noise of the system to cal-
culate the feedback gain matrix K . Otherwise the estimated
�u is used to allow the trajectory distribution to increase its
variance.

4.4.4 Controlling a physical system

On a non-linear physical system, we first obtain the lineariza-
tion of the dynamics model using the current state yt and use
this linearization to obtain the parameters of the controller
for the current time step in an online manner.

For a physical system, we also have to consider that the
variance of the control noise �u, computed from Eq. (52),
contains two sources of noise; first, the inherent system noise
�′

u , and, second, the additional noise injected into the system
by the demonstrator. Therefore, if we apply the control noise
�u the inherent system noise will still be present and, as a
result, our controller will not match the demonstrated distri-
bution as it already contained the system noise. Therefore,
we compute the control noise covariance

�[new]
u = �u − �′

u (53)

by subtracting the estimated system noise �′
u from the con-

troller noise �u, computed from Eq. (52). If the resulting

−1

−0.5

0

q
(r
ad

)

0 0.25 0.5 0.75 1
−5

0

5

time(s)

q̇
(r
ad

/s
)

0 0.25 0.5 0.75 1
time(s)

(a) (b)

Fig. 8 Robustness evaluation. We applied a perturbation between the
dashed lines with an amplitude of P = 200 (m/s2) (green), or an
amplitude of P = −200 (m/s2) (blue). The ProMPs a show compli-
ant behavior but pass through the via-point accurately. The DMPs b
are much stiffer and compensate the perturbation faster, before the via-
point was reached. The DMPs exhibit a less efficient recovery strategy
due to the higher actions. a ProMPs, b DMPs (Color figure online)

controller noise is not positive definite, e.g., when the sys-
tem noise estimate is higher than the control noise, we set
the control noise to zero.
Illustrative example—robustness analysis. In order to eval-
uate the robustness of our approach, we test different MP
approaches under strong perturbation occurring during the
execution of the movement, see Fig. 8. Our control approach
demonstrates compliant behavior when the variance of the
movement is high. It allows larger deviations from the
demonstrated distribution and takes more time to “return”
to the distribution. However, it manages to pass accurately
through the via-points as this point has small variance. The
DMPs on the other hand, use high feedback gains which
results in a less compliant movement which quickly tries to
return to the mean trajectory. Such strategy results in unnec-
essary high control actions as DMPs do not have a notion of
the importance of time points.

4.4.5 Relation to optimal control

Our controller derivation has strong relations to optimal con-
trol (OC). Equation (42) resembles a continuous time Ricatti
equation that is typically used for state estimation (Todorov
2008), only the observationnoise ismissing as it is not present
in our application. It is well known that state estimation and
optimal control are dual problems that can be solved in the
same framework (Todorov2008).Yet, our usage of theRicatti
equation is quite different fromOCand state estimation. Both
approaches use the Ricatti equation for backwards integra-
tion of the value function, or the covariance, respectively. In
contrast, we assume that the covariance and its derivative are
already known. In this case, we can use the Ricatti equation

123

544 Auton Robot (2018) 42:529–551

Table 3 Overview of the experimental evaluation of ProMPs

Experiment Real robot #DoF Basis Type #Demos #Basis Evaluation objectives

7-link Reach. Sim. 7 Gaussian 200 20 Movement coordination, via-points, combination

Double Pend. Sim. 2 Gaussian 100 36 Non-linear system, change in the dynamics

Astrojax � 7 Von-Mises 7 periods 30 Periodic movements, movement coordination

Maracas � 7 Von-Mises 5 periods 10 Periodic movements, temporal modulation, blending

Hockey � 7 Gaussian 10 + 10 10 Union, combination, conditioning, context

Table Tennis Sim. 7 Gaussian 20 15 Generalization in a complex noisy environment

to obtain the controller gains and no backwards integration
is required. By circumventing the backwards integration, we
can also avoid limitations of many OC algorithms. Almost
all OC methods require a linearization of the model along a
nominal mean trajectory. Using this linearization, an approx-
imately optimal linear controller can be obtained (Li and
Todorov 2010; Toussaint 2009). In contrast, our ProMP con-
troller is non-linear as the linearization of the system is
computed online for the current state. The use of OC or
state estimation would also require that we know either the
reward function or the observation model. Both quantities
are unknown in the imitation learning scenario.

5 Experiments

We evaluate our approach on simulated and real robot exper-
iments. Our experimental setups cover several aspects of our
framework, i.e., stroke-based and rhythmic movements, lin-
ear and non-linear systems, simple trajectory following tasks,
coordinated movements, and complex experiments such as
table tennis or robot hockey.

For the real-robot experiments, i.e., the Astrojax, the
maracas and the hockey task, we gathered demonstrations
by kinesthetic teach-in, whereas for the simulated tasks we
specify a cost function for finding the optimal time-varying
controller. We used the optimal control algorithm from Tou-
ssaint (2009). For stroke-based movements, we train our
approach as in Sect. 4.2.1 and for periodic tasks we use the
EM approach in Sect. 4.2.2. An overview of the experiments
performed and their objectives is given in Table 3. The open
parameters of our approach where hand-picked and no fur-
ther tuning was necessary.

5.1 7-link reaching task

In this task, we use a seven link planar robot that has to
reach desired target positions in task-space, at different time
points, with its end-effector. Our goal is to demonstrate the
co-activation of ProMPs to solve a combination of tasks by
combining two different movements. In addition, the task

evaluates the necessity of the coupling between the joints of
the robot, which is implemented by the ProMPs. As many
joint configurations can lead to the same end-effector posi-
tion, the end-effector of the robot can exhibit high accuracy,
whereas each individual joint can exhibit higher variability.
In this experiment, the end-effector has low variability at the
task-space via-points. In order to successfully reproduce the
demonstrated movements, ProMPs must correctly capture
and reproduce the coupling between the DoF of the robot.

In the first set of demonstrations, the robot has to reach the
via-point at t1 = 0.25 s. The reproduced behavior with the
ProMPs is illustrated in Fig. 9 (top). We learned the coupling
of all seven joints with one ProMP. The ProMP exactly repro-
duced the via-points in task space while exhibiting a large
variability for time steps in between the via-points. More-
over, the ProMP could also reproduce the coupling of the
joints from the optimal control law which can be seen by
the small variance of the end-effector in comparison to the
rather large variance of the single joints at the via-points. The
ProMP achieved an average cost value of similar quality as
the optimal controller.

In the second set of demonstrations the first via-point
was located at time step t2 = 0.75 s. The movement of the
robot is illustrated for specific time steps in Fig. 9 (middle).
We combined both primitives and the resulting movement
is illustrated in Fig. 9 (bottom). The combination of both
MPs accurately reaches both via-points at t1 = 0.25 and
t2 = 0.75, generating a primitive that satisfies both tasks.

Moreover,we evaluated the reproduction cost our approach
to the number of training demonstrations in Fig. 10. The com-
parison was performed on the first set of demonstrations, i.e.
top row of Fig. 9.With only two training demonstrations, our
approach depends heavily on the regularization coefficients
for the estimation of the covariance matrix and, on average,
produces higher actions compared to using more demonstra-
tions for training. In Fig. 10, we show that the performance
of our approach does not significantly improve using more
than 20 demonstrations for training. Additionally, we eval-
uated the performance of the inverse covariance controller
(Calinon et al. 2010b) and the DMPs (Ijspeert et al. 2003).
The cost for every experiment is averaged over 200 reproduc-

123

Auton Robot (2018) 42:529–551 545

−2 0 2 4 6
0
2
4
6

−2 0 2 4 6 −2 0 2 4 6
x−axis [m]

−2 0 2 4 6 −2 0 2 4 6

0
2
4
6

y−
ax

is
 [m

]

0
2
4
6

t = 0s t = 0.25s t = 0.5s t = 0.75s t = 1.0s

Fig. 9 A 7-link planar robot has to reach a target position at T = 1.0 s
with its end-effectorwhile passing a via-point at t1 = 0.25 s (top) or t2 =
0.75 s (middle). The plot shows themean posture of the robot at different
time steps in black and samples generated by the ProMP in gray. The
ProMPapproachwas able to exactly reproduce the demonstrationwhich
have been generated by an optimal control law. The combination of
both learned ProMPs is shown in the bottom. The resulting movement
reached both via-points with high accuracy

101 102
106

107

2

Demonstrations

C
os
t

Fig. 10 Evaluation of the reproduction cost versus the number of
demonstrations provided for training on the 7-link task-space via-point
task. We present the results using ProMPs (blue), the Inv. Cov. Ctl.
(red) Calinon et al. (2010b), and DMPs (green) Ijspeert et al. (2003).
The cost is averaged over 200 reproductions for every approach and
over 10 trials (Color figure online)

tions. Additionally, we average over 10 trials, where for each
trial, we randomly randomly regenerated the demonstrations
using an optimal control law.

5.2 Double pendulum

In this experiment we evaluate our control approach on
a system with non-linear dynamics. We use a simulated
double-pendulum with unit link lengths and unit masses.
Non-linearities are induced due to gravity, centripetal and
Coriolis forces. During the execution of our controller we
compute a linearization of the system dynamics at every time
step at the state yt to obtain {At , Bt , ct }.

In this experiment, we also evaluate the robustness of the
controller to changes in the system dynamics. To this end,
we generated demonstrations on a linear double-link system,

−0.5

0

0.5

q
(r
ad

)

0 0.25 0.5 0.75 1

−0.5

0

0.5

time (s)

q(
ra
d)

(a)

0 0.25 0.5 0.75 1
time (s)

(b)

Fig. 11 Double pendulum, non-linear system. In red we depict the
demonstrated trajectory distribution. (first row) In this experiment,
we use the optimal controller to generate demonstrations on a lin-
ear system. Subsequently, we executed our controller on a non-linear
double-pendulum system. The reproduced trajectory distribution (blue)
match the demonstrations (red) despite the changed dynamics. The
ProMP controller is using the linearization at the current state to com-
pute the control gains. (second row) We illustrate the performance of
our approach by using non state-independent gains (blue) where the lin-
earization is performed offline along themean state trajectory. As can be
seen, ProMPs with state-independent gains are not capable of reproduc-
ing the demonstrated trajectory distribution. In green, we evaluate the
performance of a linearized version of the non-linear ProMP controller
which has been learned by fitting a linear model to the data produced
by the ProMP controller. Also the linearized ProMP controller fails at
tracking the distribution, showing that the state-dependent gains of the
ProMP controller that cause the non-linearity are essential for accurate
tracking in non-linear systems. a First joint and b second joint (Color
figure online)

i.e. without gravity, centripetal, andCoriolis forces taken into
account, using the optimal controller. Subsequently, we exe-
cuted the learned trajectory distribution on the non-linear
dynamical system using the ProMP controller that uses the
linearization of the real dynamics. The linearization is per-
formed in an online manner at the current state of the system
for each of the reproductions, resulting in state-dependent
gains and a non-linear control architecture. Our results are
presented in Fig. 11. The reproduced trajectory distribution
matches the demonstrations, despite the drastic change in
the dynamics of the system. Additionally, we compare to
the ProMP controller if we use a pre-linearization of the
system dynamics along the mean trajectory, which is given
in Fig. 11 (second row). Linearizing at the mean trajectory
results in a linear feedback controller with state-independent
gains and, hence, the resulting controller can not reproduce
the demonstrated trajectory distribution. Moreover, we eval-
uated the reproduction a learned linear Gaussian controller
per time-step which is learned from data obtained from the
ProMP controller. We used the ProMP reproductions as our
classical optimal control method (Toussaint 2009) failed to
find a solution that was minimizing the given cost func-
tion. This approach is a linearized version of the non-linear

123

546 Auton Robot (2018) 42:529–551

Fig. 12 The KUKA light-weight arm playing “Astrojax”. The robot holds one of the balls in his fingers and starts with releasing the ball that is
connected to the other end of the string. It subsequently reproduces the demonstrated rhythmic movement showing the same human-like variability
in its movement pattern

ProMP controller. Our results in Fig. 11 show that the track-
ing performance reduces significantly, which proofs that the
non-linearities of the ProMP controller are essential for accu-
rate distribution tracking in non-linear systems.

5.3 Playing astrojax

‘Astrojax’ is a toy consisting of three balls on a string. Two
balls are fixed at either end of the string, while one ball
is free to slide along the string. Roughly, ‘Astrojax’ is a
game between ‘YoYo’ and juggling. In order to successfully
play ‘Astrojax’, the bottom two balls should orbit each other
and not get in touch. We use the ‘Astrojax’ experiment to
demonstrate that ProMPs can successfully learn and repro-
duce periodic movements. The real-robot setup is shown in
in Figs. 1 and 12. The hand performs a stable grasp and is
not controlled by ProMPs.We demonstrate a rhythmicmove-
ment to the robot which created a “basic orbit” pattern. We
subsequently use the ProMPs to learn the movement with
thirty Von-Mises basis functions for each joint. The robot
could reproduce the behavior and recreated the same pat-
tern, as illustrated in Fig. 12. The demonstrations exhibit a
lot of variability and the robot generate periodic movements
which show the same type of variability. During the demon-
strations, we were capable of sustaining a successful orbit
of the ‘Astrojax’ for a mean duration of tdemo = 8.2 (s).
During the reproduction, we achieved a mean orbiting of
treprod. = 15.2 (s). In contrast, the DMP approach would
repeat always exactly the same movement, rendering the
behavior different than the demonstrated one. DMPs are
neither capable of reproducing variability, be compliant, or
generate coordinated movements. GMR approaches, to our
knowledge, have not yet investigated the application in peri-
odic movements. A video with the robot playing ‘Astrojax’
can be found at http://www.ausy.tu-darmstadt.de/uploads/
Team/AlexandrosParaschos/Astrojax.mp4.

5.4 Robot maracas

The maracas is a musical instrument containing grains.
Shaking the maracas produces sounds. We used the KUKA
lightweight arm for the experiments and the DLR hand to

grasp the instrument. The hand was only used for holding the
maracas and was not controlled by the ProMPs. Our setup is
shown in Fig. 1.

As demonstrating fast movements with kinesthetic teach-
in can be difficult on the real robot arm due to the inertia,
friction, and model discrepancies, we demonstrate a slower
movement of ten periods. We used this slow demonstration
for learning the primitive but modulated the speed of the
phase during reproduction. The faster movement achieved a
shaking movement of appropriate speed that generates the
desired sound of the instrument.

We learned the rhythmic movement using N = 10
Von-Misses basis functions per dimension. The ProMP
was trained all seven DoF of the robot. We optimized the
parameters of ProMPs using the Expectation Maximization
algorithm. To do so, we split the demonstration in M = 400
segments and assigned the appropriate phase signal. We exe-
cuted our controller after training and we measured that the
generated trajectories stay on average 94.4% of the total time
within two standard deviations of demonstrated distribution.
After learning the ProMPmodel from the demonstration, we
progressively increase the speed of the movement by mod-
ulating the phase, such that the robot successfully plays the
instrument.

The speed of the motion can be changed during execution
to achieve different sound patterns. We show an example
movement of the robot in Fig. 13a. The desired trajectory
distribution of the demonstrated rhythmic movement and the
resulting distribution generated from the feedback controller
again match.

Additionally, we demonstrated a second type of rhyth-
mic shaking movement and use it to continuously blend
between both movements to produce different sounds. One
such transition between the two ProMPs is shown for one
joint in Fig. 13b, c. We measured the trajectory reproduc-
tion accuracy from our controller against the desired blended
distributions and found that the trajectories are within two
standard deviations for 92.7, and 93.4% of the total execu-
tion time, respectively. A video showing the demonstration
phase, reproduction with time modulation, and blending two
primitives can be found at http://www.ausy.tu-darmstadt.de/
uploads/Team/AlexandrosParaschos/Maracas.mp4

123

http://www.ausy.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/Astrojax.mp4
http://www.ausy.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/Astrojax.mp4
http://www.ausy.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/Maracas.mp4
http://www.ausy.tu-darmstadt.de/uploads/Team/AlexandrosParaschos/Maracas.mp4

Auton Robot (2018) 42:529–551 547

q
[ra

d]

time [s]

1.3

1.4

1.5

1.6

1.7
Desired
Feedback Controller

q
[ra

d]

time [s]

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5
Demonstration 1
Demonstration 2
Combination

q
[ra

d]

time [s]
1 2 3 4 5 6 7 8 9 10 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
Demonstration 1
Demonstration 2
Combination

(a) (b) (c)

Fig. 13 a The trajectory distribution of the fourth joint when play-
ing maracas. The speed of the movement is adapted by modulating the
speed of the phase signal zt . The desired distribution is shown in blue
and the generated distribution from the feedback controller in green.

Both distributions match. b, c Blending between two rhythmic move-
ments (blue and red areas). The green area is produced by continuously
switching from the blue to the red movement (Color figure online)

Setup Distance Angle

Union Combination Conditioning

(a) (b) (c)

(d) (e) (f)

Fig. 14 Robot hockey. The robot shoots a hockey puck. The figure
shows overlaid images of the real-robot setup that is set on the flour,
taken from above. We demonstrate ten straight shots with varying dis-
tances and ten shots with varying angles. The pictures show samples
from the ProMP model for straight shots (b) and shots with different
angles (c). Learning from the union of the two data sets yields a model

that represents variance in both distance and angle (d). Co-activating
the individualMPs leads to a combinedMP that reproduces shots where
both models had probability mass, i.e., in the center at medium distance
(e). The last picture shows the effect of conditioning on the angle of the
shoot (f)

5.5 Robot hockey

In the hockey task, the robot has to shoot a hockey puck
in different directions and for different distances. The task
setup is depicted in Fig. 14a.We used the KUKA lightweight
arm for this experiment and controlled the accelerations of
the arm with the ProMPs using an inverse dynamics con-
troller. The control parameters of the robot tk∈1...K are the
desired position vector qt ∈ R

7 and the desired acceleration
q̈ t ∈ R

7 of each joint. The ProMPs provide at every time
point the desired acceleration q̈t , while the desired position
q t is obtained from second-order Euler integration of the
acceleration. The duration of the control step is dt = 1ms.
A hockey stick is mounted as an end-effector for hitting the
puck.

We again used two sets of demonstrations. The first set
contained M1 = 10 demonstrations where the robot shot
the puck straight at varying distances. The demonstrations

were provided by a human tutor, using kinesthetic teach-
ing. The second set also contained M2 = 10 demonstrations
where the demonstrator shot the puck at varying angles,
while trying to keep the variance of the distance relatively
small. For both demonstration sets, we trained two ProMPs
using N = 10 Gaussian basis functions per dimension,
which resulted in a weight vector w ∈ R

70. By reproduc-
ing the learned primitives, we obtain behaviors illustrated
in Fig. 14b, c respectively. The shots exhibit the demon-
strated variability in either angle or distance. We generated
the images in Fig. 14 by taking the picture of the robot’s con-
figuration after the execution of the primitive and the puck
has stopped. The figures show an overlay of the images from
multiple executions of each primitive. By training a primitive
on the union of the two datasets, the robot is able to shoot
the puck at a variety of angles and distances, as illustrated
in Fig. 14d. Additionally, we co-activated the two individ-
ual primitives and the resulting MP shoots only in the center

123

548 Auton Robot (2018) 42:529–551

Fig. 15 The simulated table tennis setup. (left) Shown are the robot
arm mounted on linear axis, the ball position, the hitting plane in which
the robot will try to hit the ball, and the hitting point prediction. Due to
the induced noise in our simulation the desired and actual hitting points
may differ. On the opponent’s side, we can see the robot’s target for
this simulation. In our experiments, we use 15 different combinations
of initial ball positions and targets covering most of the table

at medium distance, i.e., the intersection of both MPs, as
illustrated in Fig. 14e. This experiment again illustrates the
achievement of a combination of tasks, where the first task
was to shoot at a desired angle and the second, to shoot at a
desired distance.

Finally, we learned a conditional distribution over the tra-
jectories conditioned on the angle of the final puck position
as described in Sect. 4.3.2. The resulting primitive was able
to shoot at the desired angle as illustrated in Fig. 14f. All the
operations are computed in closed form, no re-estimation of
the primitive parameters is needed to compute the general-
ization or the combination of the primitives.

We provide a cost function evaluation of the two demon-
strated datasets, the “angle” and the “distance” dataset, and
the respective reproduction in Table 4. The cost function is
chosen intuitively to resemble the desired task. By giving the
human demonstrator a specific task, we can assume that he
is minimizing a similar cost function, at least in approxima-
tion. Our approach successfully reproduces the same costs
as in the demonstrations. The cost function of the “distance”
dataset contains demonstrations that shoot the puck at differ-
ent distances, but aiming at the same angle. Therefore, it only
penalizes deviations from the desired angle. Similarly, in the
“angle” dataset, the cost function penalizes deviations from
the desired distance. Since, shooting the puck at a specific
distance is quite hard due to different environment variables,
i.e, friction between the puck surface and the floor, we choose
a lower deviation penalty.

We also evaluated the cost on the combined movement
which is supposed to solve both tasks, i.e., shoot at a spe-
cific distance and angle. For this evaluation, we added the
cost functions from the “distance” and “angle” datasets. In
Table 4, we show that the reproduction of the combina-
tion, which is a newly composed behavior not present in the

Table 4 Evaluation of the average cost for the Robot Hockey experi-
ment

Dataset Average cost

Demonstrations

Distance 1.20 ± 1.18

Angle 2.21 ± 2.95

Reproduction

Distance 1.24 ± 1.24

Angle 2.07 ± 3.16

Combination 2.52 ± 1.59

Evaluation

Dist. on Comb. 6.21 ± 8.18

Angle on Comb. 25.97 ± 21.54

We present the average cost of the human demonstrations for both
demonstrated datasets. The robot reproduction results in similar cost
as the demonstrations. The “Combination” cost is specified as the sum
of both cost functions. The robot produces a novel composed behavior
that performs significantly better than both demonstrated sets

demonstrations, achieves significantly lower costs than both
original datasets.

5.6 Simulated table tennis

In this experiment,we evaluate the generalization capabilities
of the ProMPs for a complex task. As comparison, we use the
DMP approach presented in Kober et al. (2010). The robot, a
simulated BioRob 5-DoF arm (Klug et al. 2008), is mounted
on two linear axis and equipped with and additional shoulder
joint. The setup is shown in Fig. 15. We control the robot
with inverse dynamics control. We used an imperfect inverse
dynamics model to render the simulation more realistic. As a
result, the desired and actual trajectories do notmatch exactly
and, thus, make the robot more sensitive to jerky movements
as jerky movements are harder to track. At the beginning
of each experiment, the ball is set to different pre-specified
positions and initial velocities.

The robot has to return the ball to a specific target area
at the opponents field. For this experiment, we gathered
trajectories for 15 different combinations of initial ball con-
figurations and robot targets, generated from an analytical
player (Muelling et al. 2011).We trained theProMPapproach
with the whole data-set and created a single primitive. In our
experiment, the ball state is set at the beginning of a trial and
the ProMP is conditioned to the predicted hitting position and
velocity in joint space, obtained from the analytical player.
A delay before the start of the execution of the primitive is
provided by the simulation. In order to make the task more
realistic, we assume that the ball state is estimated, instead
of being directly observed, with zero-mean i.i.d. Gaussian
noise. The noise on the ball position increases the task diffi-
culty significantly as it also affects the estimated time until

123

Auton Robot (2018) 42:529–551 549

0

0.05

0.1

0.15

0.2
D

is
ta

nc
e

to
 ta

rg
et

 (m
) DMPs

ProMPs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

0.8

1

Su
cc

es
s

R
at

e

Fig. 16 The distance between the impact position of the ball on the
opponents field and the actual targeted point in meters, for the DMP
and the ProMP approaches. We tested 15 different configurations of
ball initial states and robot’s targets. We average the results over 20
samples where Gaussian observation noise was added to the initial ball
position. The bars denote themean error and the error-bars one standard
deviation. (bottom) Shows the success rate for each combination. If the
distance between the landed position and the target position is less than
0.4 meters it is counted as a success. The performance of ProMPs is
superior in all the experiments leading generally to smaller errors with
an increased success rate

the ball reaches the hitting plane. We evaluate the ProMPs
and the DMPs on each of the 15 task setups by computing the
average distance to the target and the average success rate.
We display our results on Fig. 16.

The DMPwas trained with only one demonstration, while
the goal position and velocity were modified according to
predicted hitting point using the approach presented in Kober
et al. (2010). The DMP had inferior performance as it signif-
icantly deforms the trajectories, which makes the resulting
trajectory harder to track as the feedback controller saturates
in torque limits due the deformation. This saturation has the
effect that the robot does not reach the specified hitting point
with the specified velocity.

6 Discussion and conclusion

Probabilistic movement primitives are a promising approach
for learning, modulating, and re-using movements in a mod-
ular control architecture. To effectively take advantage of
such a control architecture, ProMPs support simultaneous
activation, match the quality of the encoded behavior from
the demonstrations, are able to adapt to different desired tar-
get positions, and can be efficiently learned by imitation. In
ProMPs we parametrize the desired trajectory distribution of
the primitive by a hierarchical Bayesian model with Gaus-
sian distributions. The trajectory distribution can be easily

obtained from demonstrations and simultaneously defines a
feedback controller which is used for movement execution.
Our probabilistic formulation introduces new operations for
movement primitives, such us conditioning and combination
of primitives. These all these mechanisms do not exist for
alternative representations and, with ProMPs, we provide
a single mathematical framework to describe them. Future
work will focus on using the ProMPs in a modular control
architecture and improving upon imitation learning by rein-
forcement learning.

The advanced flexibility of ProMPs comes to a cost of
requiring multiple demonstrations in order to accurately
encode the distribution over the trajectories. The number of
demonstrations required depend on the complexity of the
task and, from our experience, ∼10−20 suffice for simple
tasks. Prior knowledge about the task can be incorporate
by using prior distributions and regularization techniques.
Furthermore, our approach is appropriate for tasks that have
a strong coupling to time. For tasks loosely coupled with
time, other approached might produce better results. Finally,
it should be noted that our approach can not capture multiple
modes since we only use a single Gaussian component to
encode the trajectory distribution.

Acknowledgements The research leading to these results has received
funding from the European Community’s Framework Programme
CoDyCo (FP7-ICT-2011-9 Grant No. 600716), CompLACS (FP7-ICT-
2009-6GrantNo. 270327), GeRT (FP7-ICT-2009-4GrantNo. 248273),
and ERC StG SKILLS4ROBOTS.

References

Bruno, D., Calinon, S., Malekzadeh, M. S., & Caldwell, D. G. (2015).
Learning the stiffness of a continuous soft manipulator from mul-
tiple demonstrations. In Intelligent robotics and applications (pp.
185–195).

Buchli, J., Stulp, F., Theodorou, E., & Schaal, S. (2011). Learning
variable impedance control. International Journal of Robotics
Research, 30(7), 820–833.

Calinon, S. (2016). A tutorial on task-parameterizedmovement learning
and retrieval. Intelligent Service Robotics, 9(1), 1–29.

Calinon, S., D’Halluin, F., Sauser, E. L., Caldwell, D. G., & Billard,
A. G. (2010). Learning and reproduction of gestures by imitation.
IEEE Robotics and Automation Magazine, 17, 44–54.

Calinon, S., Sardellitti, I., & Caldwell, D. G. (2010b). Learning-based
control strategy for safe human–robot interaction exploiting task
and robot redundancies. In IEEE/RSJ international conference on
intelligent robots and systems (IROS) (pp. 249–254).

Daniel, C., Neumann, G., & Peters, J. (2012). Learning concurrent
motor skills in versatile solution spaces. In IEEE/RSJ interna-
tional conference on intelligent robots and systems (IROS), (pp.
3591–3597).

da Silva, B., Konidaris, G., & Barto, A. (2012). Learning parameterized
skills. In International conference onmachine learning (pp. 1679–
1686).

dAvella, A., & Bizzi, E. (2005). Shared and specific muscle synergies
in natural motor behaviors. Proceedings of the National Academy
of Sciences (PNAS), 102(3), 3076–3081.

123

550 Auton Robot (2018) 42:529–551

Degallier, S., Righetti, L., Gay, S., & Ijspeert, A. (2011). Toward simple
control for complex, autonomous robotic applications: Combining
discrete and rhythmic motor primitives. Autonomous Robots, 31,
155–181.

Dominici, N., Ivanenko, Y. P., Cappellini, G., dAvella, A., Mondì, V.,
Cicchese, M., et al. (2011). Locomotor primitives in newborn
babies and their development. Science, 334(6058), 997–999.

Ernesti, J., Righetti, L., Do, M., Asfour, T., & Schaal, S. (2012). Encod-
ing of periodic and their transient motions by a single dynamic
movement primitive. In IEEE-RAS international conference on
humanoid robots (humanoids) (pp. 57–64).

Ewerton, M., Maeda, G., Peters, J., & Neumann, G. (2015). Learning
motor skills from partially observed movements executed at dif-
ferent speeds. In IEEE/RSJ international conference on intelligent
robots and systems (IROS) (pp. 456–463).

Forte, D., Gams, A., Morimoto, J., & Ude, A. (2012). On-line motion
synthesis and adaptation using a trajectory database. Robotics and
Autonomous Systems, 60, 1327–1339.

Gams, A., Nemec, B., Ijspeert, A. J., &Ude, A. (2014). Couplingmove-
ment primitives: Interaction with the environment and bimanual
tasks. IEEE Transactions on Robotics, 30(4), 816–830.

Higham,N. J. (1988). Computing a nearest symmetric positive semidef-
inite matrix. Linear Algebra and its Applications, 103, 103–118.

Ijspeert, A. J. (2008). Central pattern generators for locomotion control
in animals and robots: A review.Neural Networks, 21(4), 642–653.

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., & Schaal, S.
(2013). Dynamical movement primitives: Learning attractor mod-
els for motor behaviors. Neural Computation, 25(2), 328–373.

Ijspeert, A. J., Nakanishi, J., & Schaal, S. (2003). Learning attractor
landscapes for learning motor primitives. In Advances in neural
information processing systems (NIPS) (pp. 1547–1554).

Khansari-Zadeh, S. M., & Billard, A. (2011). Learning stable nonlinear
dynamical systems with Gaussian mixture models. IEEE Transac-
tions on Robotics, 27(5), 943–957.

Khansari-Zadeh, S. M., Kronander, K., & Billard, A. (2014). Modeling
robot discrete movements with state-varying stiffness and damp-
ing: A framework for integrated motion generation and impedance
control. In Robotics science and systems (R:SS).

Klug, S., Lens, T., von Stryk, O., Möhl, B., & Karguth, A. (2008).
Biologically inspired robot manipulator for new applications in
automation engineering. In Proceedings of robotik.

Kober, J., Muelling, K., Kroemer, O., Lampert, C. H., Scholkopf, B., &
Peters, J. (2010). Movement templates for learning of hitting and
batting. In International conference on robotics and automation
(ICRA) (pp. 853–858).

Konidaris, G., Kuindersma, S., Grupen, R., & Barto, A. (2012). Robot
learning from demonstration by constructing skill trees. Interna-
tional Journal of Robotics Research (IJRR), 31(3), 360–375.

Kormushev, P., Calinon, S., &Caldwell, D. G. (2010). Robotmotor skill
coordination with EM-based reinforcement learning. In Interna-
tional conference on intelligent robots and systems (IROS) (pp.
3232–3237).

Kulvicius, T., Ning, K., Tamosiunaite, M., &Worgotter, F. (2012). Join-
ingmovement sequences:Modified dynamicmovement primitives
for robotics applications exemplified on handwriting. IEEE Trans-
actions on Robotics, 28(1), 145–157.

Lazaric,A.,&Ghavamzadeh,M. (2010). Bayesianmulti-task reinforce-
ment learning. In International conference on machine learning
(ICML) (pp. 599–606).

Li, W., & Todorov, E. (2010). Iterative linear quadratic regulator
design for nonlinear biological movement systems. In Inter-
national conference on informatics in control, automation and
robotics (ICINCO) (pp. 222–229).

Maeda, G., Ewerton, M., Lioutikov, R., Amor, H., Peters, J., & Neu-
mann, G. (2014). Learning interaction for collaborative tasks with

probabilistic movement primitives. In International conference on
humanoid robots (Humanoids) (pp. 527–534).

Matsubara, T., Hyon, S. H., & Morimoto, J. (2011). Learning paramet-
ric dynamic movement primitives from multiple demonstrations.
Neural Networks, 24(5), 493–500.

Moro, F. L., Tsagarakis, N. G., & Caldwell, D. G. (2012). On the
kinematic motion primitives (kMPs)—Theory and application.
Frontiers in Neurorobotics, 6(10), 1–18.

Muelling, K., Kober, J., & Peters, J. (2011). A biomimetic approach to
robot table tennis. Adaptive Behavior Journal, 19(5), 359–376.

Mülling, K., Kober, J., Kroemer, O., & Peters, J. (2013). Learning to
select and generalize strikingmovements in robot table tennis. The
International Journal of Robotics Research, 32(3), 263–279.

Nakanishi, J., Morimoto, J., Endo, G., Cheng, G., Schaal, S., &Kawato,
M. (2004). Learning from demonstration and adaptation of biped
locomotion. Robotics and Autonomous Systems, 47, 79–91.

Neumann, G., Daniel, C., Paraschos, A., Kupcsik, A., & Peters, J.
(2014). Learning modular policies for robotics. Frontiers in Com-
putational Neuroscience, 8(62), 1.

Neumann, G., Maass, W., & Peters, J. (2009). Learning complex
motions by sequencing simpler motion templates. In International
conference on machine learning (ICML) (pp. 753–760)

OHagan,A.,&Forster, J. (2004).Kendalls advanced theory of statistics:
Bayesian inference (2nd ed.). Arnold, NewYork. Technical report,
ISBN 0-340-80752-0.

Paraschos, A., Daniel, C., Peters, J., & Neumann, G. (2013a). Proba-
bilistic movement primitives. In Advances in neural information
processing systems (NIPS) (pp. 2616–2624).

Paraschos, A., Neumann, G., & Peters, J. (2013b). A probabilistic
approach to robot trajectory generation. In International confer-
ence on humanoid robots (humanoids) (pp. 477–483)

Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and
generalization of motor skills by learning from demonstration. In
International conference on robotics and automation (ICRA) (pp.
763–768)

Pastor, P., Righetti, L., Kalakrishnan, M., & Schaal, S. (2011). Online
movement adaptation based on previous sensor experiences. In
International conference on intelligent robots and systems (IROS)
(pp. 365–371)

Peters, J.,Mistry,M., Udwadia, F. E., Nakanishi, J., & Schaal, S. (2008).
A unifying methodology for robot control with redundant DOFs.
Autonomous Robots, 24(1), 1–12.

Righetti, L., & Ijspeert, A. J. (2006). Programmable central pattern
generators: An application to biped locomotion control. In Inter-
national conference on robotics and automation, (ICRA) (pp.
1585–1590).

Rozo, L., Calinon, S., Caldwell, D., Jiménez, P., & Torras, C. (2013).
Learning collaborative impedance-based robot behaviors. In AAAI
conference on artificial intelligence (pp. 1422–1428).

Rückert, E. A., Neumann, G., Toussaint, M., & Maass, W. (2012).
Learned graphical models for probabilistic planning provide a new
class of movement primitives. Frontiers in Computational Neuro-
science, 6(97), 1.

Rueckert, E., Mundo, J., Paraschos, A., Peters, J., & Neumann, G.
(2015). Extracting low-dimensional control variables for move-
ment primitives. In International conference on robotics and
automation (ICRA) (pp. 1511–1518).

Schaal, S., Mohajerian, P., & Ijspeert, A. (2007). Dynamics systems vs.
optimal control—A unifying view. Computational Neuroscience:
Theoretical Insights into Brain Function, 165, 425–445.

Schaal, S., Peters, J., Nakanishi, J., & Ijspeert, A. (2005). Learning
movement primitives. In International symposium on robotics
research (pp. 561–572).

Stark, H., & Woods, J. (2001). Probability and random processes with
applications to signal processing (3rd ed.). Upper Saddle River:
Prentice-Hall.

123

Auton Robot (2018) 42:529–551 551

Stengel, R. F. (2012). Optimal control and estimation. North Chelms-
ford, MA: Courier Corporation.

Todorov, E. (2008). General duality between optimal control and esti-
mation. Conference on Decision and Control, 5, 4286–4292.

Todorov, E., & Jordan, M. (2002). Optimal feedback control as a theory
of motor coordination. Nature Neuroscience, 5, 1226–1235.

Toussaint, M. (2009). Robot trajectory optimization using approxi-
mate inference. In International conference on machine learning
(ICML) (pp. 1049–1056).

Ude, A., Gams, A., Asfour, T., & Morimoto, J. (2010). Task-specific
generalization of discrete and periodic dynamic movement primi-
tives. Transactions in Robotics, 5, 800–815.

Williams B., Toussaint, M., & Storkey, A. (2007). Modelling motion
primitives and their timing in biologically executed movements.
In Advances in neural information processing systems (NIPS) (pp.
1609–1616).

Alexandros Paraschos received
his PhD fromTechnischeUniver-
sität Darmstadt. Previously, he
studied Electronic and Computer
Engineering at TechnicalUniver-
sity of Crete and worked at Cog-
nitive Robotics Research Centre
(CRRC), at University of Wales,
Newport, as a research associate.
He specializes in movement rep-
resentation for motor skills in
redundant robots. He aims to cre-
ate the movement representation
that will allow robots to share
our environment, but until then

he focuses on creating movement representations that not only allow
composing complex robot skills out of elemental movements, but also
have extensive generalization capabilities.

Christian Daniel is a research
scientist at the Bosch Center
for Artificial Intelligence. Pre-
viously, he received his Ph.D.
from TU Darmstadt’s Intelli-
gent Autonomous System lab.
His research interest include
machine learning and reinforce-
ment learning for physical sys-
tems.

Jan Peters is a full professor
(W3) for IntelligentAutonomous
Systems at theComputer Science
Department of the Technische
UniversitaetDarmstadt and at the
same time a senior research sci-
entist and group leader at the
Max-Planck Institute for Intelli-
gent Systems,where he heads the
interdepartmental Robot Learn-
ing Group. He has received the
Dick Volz Best 2007 US PhD
Thesis Runner-Up Award, the
Robotics: Science & Systems -
Early Career Spotlight, the INNS

Young Investigator Award, and the IEEE Robotics & Automation Soci-
ety’s Early Career Award. Recently, he received an ERC Starting Grant.

Gerhard Neumann is a Profes-
sor of Robotics & Autonomous
Systems in College of Science.
Before coming to Lincoln, he has
been anAssistant Professor at the
TU Darmstadt from September
2014 to October 2016 and head
of the Computational Learn-
ing for Autonomous Systems
(CLAS) group. Before that, he
was Post-Doc and Group Leader
at the Intelligent Autonomous
Systems Group (IAS) also in
Darmstadt under the guidance of
Prof. Jan Peters. He obtained his

Ph.D. under the supervision of Prof. Wolfgang Mass at the Graz Uni-
versity of Technology. He already authored 50+ peer reviewed papers,
many of them in top ranked machine learning and robotics journals
or conferences such as NIPS, ICML, ICRA, IROS, JMLR, Machine
Learning and AURO. In Darmstadt, he is principle investigator of the
EU H2020 project Romans and also already acquired DFG funding.
He organized several workshops and is senior program committee for
several conferences.

123

	Using probabilistic movement primitives in robotics
	Abstract
	1 Introduction
	2 Properties of movement primitive frameworks
	2.1 Concise representation
	2.2 Adaptation and time modulation
	2.3 Combination and sequencing
	2.4 Coupling the DoFs
	2.5 Optimal behavior
	2.6 Stability

	3 Related work
	4 Probabilistic movement primitives (ProMPs)
	4.1 Probabilistic trajectory representation
	4.1.1 Concise encoding of trajectory distributions
	4.1.2 Temporal modulation
	4.1.3 Rhythmic and stroke-based movements
	4.1.4 Encoding coupling between joints

	4.2 Learning from demonstrations
	4.2.1 Learning stroke-based movements
	4.2.2 Learning periodic movements

	4.3 New probabilistic operators for movement primitives
	4.3.1 Modulation of the trajectory distribution by conditioning
	4.3.2 Adaptation to task parameters
	4.3.3 Combination and blending of movement primitives

	4.4 Using trajectory distributions for robot control
	4.4.1 Derivation of the controller gains
	4.4.2 Derivation of the feed-forward controls
	4.4.3 Estimation of the control noise
	4.4.4 Controlling a physical system
	4.4.5 Relation to optimal control

	5 Experiments
	5.1 7-link reaching task
	5.2 Double pendulum
	5.3 Playing astrojax
	5.4 Robot maracas
	5.5 Robot hockey
	5.6 Simulated table tennis

	6 Discussion and conclusion
	Acknowledgements
	References

