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Abstract In static scenarios, binaural sound localization is
fundamentally limited by front-back ambiguity and distance
non-observability. Over the past few years, “active” schemes
have been shown to overcome these shortcomings, by com-
bining spatial binaural cues with the motor commands of
the sensor. In this context, given a Gaussian prior on the
relative position to a source, this paper determines an admis-
sible motion of a binaural head which leads, on average, to
the one-step-ahead most informative audio-motor localiza-
tion. To this aim, a constrained optimization problem is set
up, which consists in maximizing the entropy of the next
predicted measurement probability density function over a
cylindric admissible set. The method is appraised through
geometrical arguments, and validated in simulations and on
real-life robotic experiments.

Keywords Robot audition · Binaural audition · Active
localization · Information theory · Information based control

1 Introduction

The advent of auditory robots has led to the emergence of bin-
aural audio-motor localization schemeswhich, by combining
binaural perception and motor commands, can disambiguate
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front from back and recover source range (Cooke et al. 2007;
Nakadai et al. 2000). Some of these can cope with a moving
and intermittent sound source (Portello et al. 2012). How-
ever, the question remains how to drive a binaural head so
as to maximize the spatial information on a source extracted
from the sensorimotor flow.

In Robotics, Simultaneous Localization and Mapping
(SLAM) techniques have been extended to make robots
move in order to improve their knowledge about the envi-
ronment (Thrun et al. 2005). Control policies could be found
by maximizing information criteria related to the robot sit-
uation, e.g., by determining the direction of maximum local
information improvement. Shannon entropy or mutual infor-
mation have often been used (Bourgault et al. 2002), as
well as the Fisher information matrix (FIM) (Feder et al.
1999). It has been shown that a mapping robot guided by
a mutual information based controller can be “attracted”
towards unexplored areas (Julian 2013). Similar strategies
have been used to coordinatemultiple sensor platforms (Gro-
cholsky et al. 2003). Information-theoretic controllers can
address different objectives such as the control of a robot-
mounted camera to optimize depth estimation (Forster et al.
2014), or the selection of sensor parameters (e.g., zoom or
attitude) for scene analysis (Denzler and Brown 2002; Som-
merlade and Reid 2008).

In the bearings-only tracking problem, optimum observer
actions can be determined by maximizing a cost functional
involving FIM determinants (Cadre and Laurent-Michel
1999).When the problem is the reduction of the mean square
tracking error, the minimization of the posterior Cramér-
Rao lower bound—i.e., the inverse of the Bayesian extension
of the FIM—has been addressed (Ristic and Arulampalam
2003).

In robot audition, the problem of auditory scenes explo-
ration has also been investigated (Martinson and Schultz
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2009). A mobile robot has been equipped with a micro-
phone array to localize sound sources and estimate its own
position in a known geometric map (Sasaki et al. 2010).
Motion planning based on audio situation has been proposed
to improve speech recognition by a monaural robot (Kumon
et al. 2010). InMartinson et al. (2011), sound source localiza-
tionwas improved by optimizing the position ofmicrophones
deployed in the environment. Recently, a robot equippedwith
amicrophone arraywas controlled to locate a sound source by
minimizing a criterion based on the entropy of an occupancy
grid used to represent the source position belief (Vincent et al.
2015).

Given a prior knowledge on the relative position of a static
sound source with respect to a binaural head, this paper deals
with the determination of an admissible finite motion of the
sensor which leads, on average, to the minimum uncertainty
in the one-step-ahead localization. It is organized as follows.
First, the three-stage approach to binaural active localization
(Bustamante et al. 2015) which has motivated this work is
recalled (Sect. 2). Then, a constrained optimization problem
is defined, so as to get the next best position of the sensor
(Sect. 3). A numerical solution scheme is proposed. Further,
useful insights into the geometry of the problem are pro-
vided (Sect. 4), when the exploration is guided by directional
cues such as the interaural time difference (ITD) between
two microphones placed antipodally on a spherical binaural
head. Evaluations are then conducted in simulation and on
a binaural robotic platform (Sect. 5). Therein, a comparison
is made with some open-loop motion policies. Conclusions
and prospects end the paper.

2 A three-stage framework to active binaural
localization

This work took place within the EU FET Two!Ears project
(www.twoears.eu) whose aim was to develop a compu-

tational model of auditory perception and experience in
humans. Listeners are regarded as multi-modal agents that
develop their concept of the world by active, exploratory,
interaction, and, in the course of this process, interpret
percepts, collect knowledge and develop concepts accord-
ingly. To enable this, the Two!Ears model includes not only
bottom-up—signal-driven—processing but also top-down—
hypothesis-driven—feedbacks. Some of these feedbacks
come from the cognitive level, e.g., the context-dependent
adjustment of bottom-up processing parameters, or the
hypothesis-driven activation of specific low-level process-
ing procedures. Other feedbacks operate at the sensorimotor
level—with no cognition in between—at much shorter time
scales, e.g., “turn-to-reflex” exploratorymovements to dispel
localization ambiguities.

Such sensorimotor feedbacks for single-source active bin-
aural localization can be adressed through the three-stage
framework depicted on Fig. 1. Stage A implements the max-
imum likelihood estimation of the source azimuth and the
information-theoretic detection of its activity from the short-
term channel-time-frequency decomposition of the binaural
stream (Portello et al. 2013). Stage B assimilates these
azimuths over time and combines them with the motor
commands into a stochastic filter, leading to the posterior
probability density function (or “belief”) of the head-to-
source relative position (Portello et al. 2014b). Stage C is
the topic of this paper. It consists in a feedback controller
which, on the basis of the output from Stage B, can move the
head so as to improve the quality of the localization. Stage A
has been extended to the multiple-source case (Portello et al.
2014a), and Stage B can cope with a moving and/or intermit-
tent source (Portello et al. 2012), but this is not considered
here.

First an overview of Stages A and B is proposed. Then,
the paper focuses on Stage C.

Fig. 1 The three-stage framework to active binaural localization. This paper addresses Stage C
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Fig. 2 Sketch of the planar problem. The dashed circle depicts the
binaural head, with R1 and R2 its left and right microphones, and a its
radius. The sound source E is located on the plane (O,

−→yR,
−→zR) at the

distance r and azimuth θ . By convention, θ is zero along along −→zR and
increases clockwise (so, θ > 0 here). In this plot and all subsequent
plots depicting the motion of the binaural head, the front and interaural
axes are colored in red and blue, respectively (Color figure online)

2.1 Terminology

A binaural head is fitted with the left and right microphones
R1 and R2. A frame F = (O,

−→xR,
−→yR,

−→zR) is attached to it,
with

−−→
R1O = −−→

OR2 (Fig. 2). R1, R2 and the pointwise emitter
E lie on a common horizontal plane defined by (O,

−→yR,
−→zR),

where−→yR =
−−−→
R2R1

‖−−−→
R2R1‖

supports the interaural axis and−→zR is ori-

ented towards the front direction. So,−→xR is vertical and points
downwards. a terms the radius of a sphere approximating the
head.

Throughout the paper, geometric vectors are denoted with
arrows. Scalar, vector or matrix variables are written in nor-
mal font. Whether they are deterministic or stochastic can be
straightly inferred.

2.2 Stage A: short-term extraction of directional cues

The interaural transfer function is assumed known over an
adequate range of source azimuths and frequencies. The
source signal and sensor noises are modeled as jointly Gaus-
sian, zero-mean, individually and jointly “locally stationary”
random processes (Portello et al. 2013). Then, on the basis of
the channel-time-frequency decomposition zk of the binaural
signal on a sliding window ending at time k, the short-term
maximum likelihood θ̂k of the source azimuth θk comes as
the argmax of a “pseudo likelihood” p(zk |θk). This pseudo
likelihood is obtained by replacing in the genuine likelihood
of the unknown variables the most likely spectral parame-
ters of the source as a function of its azimuth, by means of a
notable separation property.

2.3 Stage B: combination with motor commands

A discrete-time stochastic state space equation is set up,
uniting the motor commands to the head-to-source posi-
tion xk = (ey, ez)T to be estimated (Fig. 2). A theoretically
sound Gaussian mixture square-root unscented Kalman filter
(GMsrUKF) is defined so as to incorporate the above pseudo
likelihood p(zk |θk), where θk comes as a static function of xk ,
and compute a Gaussian mixture approximation of the pos-
terior probability density function (pdf), or “belief”,

p(xk |z1:k) =
Ik∑

i=1

wi
kN

(
xk; x̂ ik|k, Pi

k|k
)

, (1)

where (wi
k, x̂

i
k|k, P

i
k|k) are the weight, mean and covariance

of each hypothesis (Portello et al. 2014b). Empirical tests
show that self-initialization as well as posterior covariance
consistency are generally ensured, so that front and back are
disambiguated, and both range and azimuth are faithfully
recovered.

2.4 Stage C: problem statement

Let Fk = (Ok,
−→xRk,−→yRk,−→zRk) and Xk = (ex , ey, ez)T be

the frame F at time k and the Cartesian coordinates of
the—static—source in Fk . If between times k and k + 1
the sensor undergoes the translation Ty

−→yRk + Tz
−→zRk fol-

lowed by the rotation of angle φ � ̂(
−→zRk,

−→zRk+1) around−→xRk , then the vector Xk+1 of the source coordinates in
Fk+1 = (Ok+1,

−→xRk+1,
−→yRk+1,

−→zRk+1) writes as

Xk+1 = RT (φ)Xk − RT (φ)T + wk, (2)

with T = (0, Ty, Tz)T , R(φ) the rotation matrix correspond-
ing to φ, and wk the dynamic noise (if present).

A belief on the sensor-to-source position xk = (ey, ez)T

at time k is given in terms of the 2D Gaussian pdf
N (xk; x̂k|k, Pk|k), with x̂k|k the estimate of xk and Pk|k the
associated error covariance matrix. The problem consists
in determining the motion (T, φ) of the sensor which best
improves, on average, the next localization of the sound
source. First, a metric is described, uniting the belief on the
state at time k and the rigid motion applied over [k; k + 1],
to the expected information obtained after a measurement
update at time k+1. The exploration is assumed to be guided
by a scalar closed-form observation model such as

zk = l(xk)+ vk = l̄(θk)+ vk, zk ∈ R, vk ∼ N (0, Rk), (3)

with vk themeasurement noise and Rk its (co)variance. In the
above, zk is assumed to be a directional cue, in that it solely
depends on the source relative azimuth θk = −atan2(ey, ez).
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Note that by convention, θk is 0 along −→zR and increases
clockwise. Assuming a farfield sound source, l̄(θk) in (3)
could express the time delay of arrival (TDOA) between two
microphones in free field. Unless otherwise stated, in the
sequel l̄(θk) stands for the Woodworth-Schlosberg farfield
approximation of the ITD between two antipodal micro-
phones placed on a spherical head. That is, (Aaronson and
Hartmann 2014)

l̄ (θk) = a

c
(θk + sin (θk)) for |θk | ∈

[
0,

π

2

]
,

l̄ (θk) = a

c
(π − θk + sin (θk)) for θk ∈

[π

2
, π

]
,

l̄ (θk) = a

c
(−π − θk + sin (θk)) for θk ∈

[
−π,−π

2

]
, (4)

with c the velocity of sound.

3 Feedback control of the binaural sensor

On the basis of Stages A and B introduced above, the main
topic of the paper is now adressed, namely, the development
of Stage C. The information based feedback control is first
stated, then turned into a constrained optimization problem.
Ageometric interpretation is discussed.A numerical solution
is obtained by means of the projected gradient algorithm.

3.1 Information-theoretic constrained optimization

Let x, y be continuous random variables with joint and
marginal pdfs p(x, y) and p(x), p(y). The differential
entropy

h(x) = − ∫
p(x) log p(x)dx (5)

and the mutual information (nonnegative by definition)

I (x, y) = ∫
p(x, y) log p(x,y)

p(x)p(y)dxdy (6)

respectively embody the uncertainty in x and measure the
amount of information that x contains about y (Cover and
Thomas 1991).

When conditioned on the event that a random variable
z takes a given value, they will henceforth be denoted by
h(x |z), h(y|z) and I (x, y|z). The Bayes rule underlying the
measurement update stage relates the next filtered state pdf
p(xk+1|z1:k+1), the next predicted state pdf p(xk+1|z1:k),
the observation model p(zk+1|xk+1) and the next predicted
measurement pdf p(zk+1|z1:k). Consequently, entropies and
mutual information of these distributions can be connected
with an entropy update rule of the same kind as (Manyika
1993). The expectation

∫ − log p(xk+1|z1:k+1) p(xk+1, zk+1|z1:k)dxk+1dzk+1,

(7)

of − log p(xk+1|z1:k+1) conditioned on z1:k , which is also
equal to Ezk+1|z1:k

{
h(xk+1|z1:k+1)

}
, satisfies (Bustamante

et al. 2016)

Ezk+1|z1:k {h (xk+1|z1:k+1)} = h (xk+1|z1:k) − I,

Exk+1|z1:k {h (zk+1|xk+1)} = h (zk+1|z1:k) − I, (8)

I = I (xk+1, zk+1|z1:k),

with I the conditional mutual information of the next
state and measurement. Due to the nonnegativity of I ,
Ezk+1|z1:k{h(xk+1|z1:k+1)} ≤ h(xk+1|z1:k) holds, which high-
lights the information gain brought by the measurement
update.

Between times k and k + 1, (linear) Kalman time
update equations turn the Gaussian belief p(xk |z1:k) =
N (xk; x̂k|k, Pk|k) into the next predicted state pdf
p(xk+1|z1:k) = N (xk+1; x̂k+1|k, Pk+1|k). Then, (non-
linear) Kalman measurement update equations incorporate
the measurement zk+1 so as to compute a Gaussian approx-
imation p(xk+1|z1:k+1) ≈ N (xk+1; x̂k+1|k+1, Pk+1|k+1)

of the next filtered state pdf. They involve a Gaussian
approximation p(zk+1|z1:k) ≈ N (zk+1; ẑk+1|k, Sk+1|k)
of the next predicted measurement pdf.
Let |.| term the determinant of a matrix. If wk is negli-
gible in (2), then h(xk+1|z1:k) = 1

2 log[(2πe)nx |Pk+1|k |] is
also equal to 1

2 log[(2πe)nx |Pk|k |] in view of the fact that the
sensor undergoes a rigid motion1, with nx = 2. In addition,
h(zk+1|xk+1) = 1

2 log[(2πe)nz |Rk+1|], with nz = 1, is also
independent of the control variables (T, φ). Besides, both
h(xk+1|z1:k+1)= 1

2 log[(2πe)nx |Pk+1|k+1|] and h(zk+1|z1:k)
= 1

2 log[(2πe)nz |Sk+1|k |] do not depend on the measurement
zk+1. Consequently, the following rule is in effect.

Theorem 1 Finding the next best sensor positionwhichmin-
imizes the entropy h(xk+1|z1:k+1) of the next filtered state
pdf—which is also its expected value w.r.t. zk+1—is equiva-
lent tomaximizing themutual information I (xk+1, zk+1|z1:k)
of the next predicted state andmeasurement, or tomaximizing
the entropy h(zk+1|z1:k) of the next predicted measurement
pdf. In other words, the optimum rigid body motion (T ∗, φ∗)
to be applied to the sensor is the solution of

1 Consider again the dynamic equation (2) with no dynamic noise,
and assume that the posterior covariance Pk|k of the full state Xk

(defined in R

3) is Pk|k = diag(0, Pk|k). As the vector RT (φ)T
is constant, the next “full” predicted covariance Pk+1|k writes as
Pk+1|k = RT (φ)Pk|k R(φ), with R(φ) = diag(1, r(φ)), and
|R(φ)|=|r(φ)|=1. Consequently, Pk+1|k = diag(0, Pk+1|k) with
|Pk+1|k | = |rT (φ)Pk|kr(φ)| = |Pk|k |.
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(P)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(T ∗, φ∗) = arg min
(T,φ)∈T ×R

h (xk+1|z1:k+1)

= arg max
(T,φ)∈T ×R

I (xk+1, zk+1|z1:k)
= arg max

(T,φ)∈T ×R
h (zk+1|z1:k) ,

(9)

whereT andR respectively term the sets of admissible trans-
lations and rotations.

3.2 Interpretation

A fundamental feature of the observation model (3) is
that the spreading of the measurement noise—i.e., the
(co)variance Rk—is assumed known and constant inde-
pendently of the value of the hidden state vector. If the
exploration is guided by TDOAs/ITDs, then this assumption
is valid since the standard deviation of the noise associated to
their extraction is typically a fraction of the audio sampling
period.

From (3), the loci of the sensor-to-source positions x
corresponding to given values of the measurement z in
the absence of noise—or “iso-z loci”—are radial lines
rigidly linked to frame F and passing through O . For
TDOA/ITD measurements, because of the nonlinearity of
themeasurement equation—see for instance (4)—these lines
are not uniformly distributed along the azimuths. They
are more concentrated along the direction of −→zR which
defines the auditive fovea, while they are sparser around
the interaural axis −→yR . Given a belief N (xk; x̂k|k, Pk|k) on
the head-to-source position at time k, Fig. 3 sketches the
2D Gaussian approximation of the next filtered state pdf
N (xk+1; x̂k+1|k+1, Pk+1|k+1) after applying various rigid
motions (T, φ) to the sensor. All the involved normal distri-
butions are depicted by related 99%-probability confidence
ellipses. Importantly, if the dynamic noise is neglected in
(2), then the next predicted state pdfN (xk+1; x̂k+1|k, Pk+1|k)
is basically described by the same ellipse as for the initial
belief, but “viewed” from the sensor once it has completed
its motion. Besides, (3) implies that the pdf of the head-to-
source position deduced from the solemeasurement zk+1 can
be described by a 99%-probability confidence cone tapering
to the apex Ok+1. For a given variance Rk of the mea-
surement noise, the extent of this cone on each side of
the iso-z locus corresponding to the genuine azimuth of
the source is all the more important as the iso-z loci are
sparse. The measurement update fuses these two last pdfs
so as to get the next belief N (xk+1; x̂k+1|k+1, Pk+1|k+1).
Qualitatively, the fusion is all the more efficient as the over-
lap of the respective confidence ellipse and cone occurs
around the modes of the pdfs and has a limited spatial
extent.

From the initial configuration depicted in Fig. 3a, the head
first undergoes a pure rotational motion so that the auditive

(a) (b)

(c) (d)

Fig. 3 Iso-z loci and measurement update for various scenarios. a
Frame Fk attached to the binaural head (blue); sound source genuine
position (yellow square); confidence ellipse associated to the belief at
time k (grey); iso-zk loci depicting the measurement space (grey radial
lines). b–d FrameFk+1 (blue); confidence ellipse associated to the next
predicted state pdf at time k+1 (blue); iso-zk+1 loci (grey); confidence
cone associated to the measurement (green); confidence ellipse associ-
ated to the next filtered state pdf (belief at k+1) after the incorporation
of zk+1 (red) (Color figure online)

fovea (supported by −→zRk+1) becomes oriented towards the
major axis of the confidence ellipse associated to the next pre-
dicted state pdf (Fig, 3b). On Fig. 3c, a translation is applied
so as to drive Ok+1 on the line supported by the minor axis
of that ellipse, and a subsequent rotation makes −→yRk+1 point
towards its center. Last, in Fig. 3d, the auditive fovea −→zRk+1

is driven towards the minor axis of that ellipse.
Equation (9) in Theorem 1 states that the next best sensor

positionmustmaximize the (determinant of) the (co)variance
Sk+1|k of the next predicted measurement pdf p(zk+1|z1:k).
Here, the scalar value of Sk+1|k is heuristically related to the
number of iso-zk+1 loci intersecting the confidence ellipse
associated to the next predicted state pdf. The more iso-zk+1

loci intersect that ellipse, the higher is Sk+1|k .
As aforementioned, the confidence cone describing the

spatial uncertainty on the head-to-source position due to the
noisy measurement is wide if the source lies along the inter-
aural axis (Fig. 3c). In this case, a small number of iso-z loci
intersect the confidence ellipse associated to the predicted
state pdf, so that themeasurement update cannot significantly
improve the information in the next filtered state pdf. When
the auditive fovea is oriented towards the confidence ellipse,
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the confidence cone is narrower, so the measurement update
is more efficient (Fig. 3b, d). The variance Sk+1|k is also
higher than in the above case. Further, if the fovea points to
the minor axis of the confidence ellipse, then the measure-
ment update is improved (Fig. 3d).

Importantly, the closer the sensor gets to the source,
the smaller is the spatial uncertainty on the head-to-source
position given a TDOA/ITD measurement. Then, a greater
number of iso-z loci cross the confidence ellipse associated
to the predicted state pdf, so that the predicted measurement
variance Sk+1|k increases, what is beneficial.

3.3 Numerical solution

In view of the above, starting from the head-to-source posi-
tion belief N (xk; x̂k|k, Pk|k) at time k, the desired optimum
finite translations T ∗

y , T ∗
z and rotation φ∗ maximize the log-

determinant—as z ∈ R, just the log—of the (co)variance
the next predicted measurement pdf p(zk+1|z1:k), i.e., max-
imize Fk(Ty, Tz, φ) = log Sk+1|k with Fk : R

3 → R. Then,
the optimization problem (P) defined in (9) can be stated as

(P)

{
(T ∗

y , T ∗
z , φ∗) = arg max

(Ty ,Tz ,φ)∈(T ×R)
Fk(Ty, Tz, φ) (10)

with T = {(Ty, Tz) ∈ R × R | Ty2 + Tz2 ≤ r2max } and R =
{φ ∈ R | |φ| ≤ φmax } the sets of admissible translations and
rotations. T ×R thus constitutes a cylinder volume (Fig. 4a).
The height of the cylinder represents the admissible rotations
while horizontal sections stand for the feasible translations
given a fixed rotation.

Though Fk has no closed form, an approximation of its
gradient around a defined translation and rotation U =
(Ty, Tz, φ)T can be derived bymeans of successive first order
Taylor expansions and the Unscented transform (Julier and
Uhlmann 2004). This approximation writes as

Fk (U + du) = Fk (U ) + ∇Fk (U )T du, (11)

with du = (dTy, dTz, dφ)T the infinitesimal motion vector
applied around U and ∇Fk(U ) the gradient of Fk evalu-
ated at U , which points to the direction of steepest ascent
of Fk around U . A derivation of ∇Fk(U ) is proposed in
“Appendix 1”.

The projected gradient algorithm is then used to solve (P)

numerically. It consists in iteratively updating the value of
the decision variableU = (Ty, Tz, φ)T obtained through the
conventional gradient ascent method by projecting it onto the
closed convex set T ×R by means of the projection operator
πT ×R(.) defined as

πT ×R(U ) � argmin
x

{‖U − x‖2, x ∈ (T × R)} . (12)

(a) (b)

Fig. 4 Representation of the admissible cylindrical set T × R of
the problem (P). The contour lines of the criterion Fk(Ty, Tz, φ) are
sketched as functions of Ty, Tz when φ takes a constant value corre-
sponding to the bottom (φ = −φmax ) or top (φ = φmax ) side of T ×R,
respectively. The red spots depict the optima of Fk restricted to these
sides (Color figure online)

This leads to Algorithm 1.

Algorithm 1: Simplified Projected Gradient

Data:
– Moments of the initial belief at time k: x̂k|k , Pk|k
– Maximum admissible translation of the head: rmax
– Maximum admissible rotation of the head: φmax
– Step size: γ
– Number of iterations: M
– Projection operator onto T × R: πT ×R(Ty, Tz, φ)

Outputs: U∗ = (T ∗
y , T ∗

z , φ∗)T � UM = (TyM , TzM , φM )T

Initialization
1 U0 = [Ty0, Tz0, φ0]T ;

for i = 0, . . . , M − 1 do
2 evaluate di = ∇Fk(Ui ), where Fk is defined on the basis of

the initial belief at time k;
3 set Ui+1 = πT ×R (Ui + γ di );
4 end

4 Geometrical insights

In this section, the geometry of the maximization problem
(P) is depicted.

4.1 Overview

Given a belief N (xk; x̂k|k, Pk|k) on the sensor-to-source
position at time k, it is interesting to consider the level
sets of the criterion Fk(Ty, Tz, φ) w.r.t. the translation
and rotation variables Ty, Tz, φ. The gradient vectors of
Fk(Ty, Tz, φ) are orthogonal to these surfaces and highlight
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Fig. 5 Contour lines and local gradient vectors of the criterion
Fk(Ty, Tz, 0) w.r.t. the translation variables Ty, Tz , i.e., when no sub-
sequent rotation is applied to the head (φ = φ0 = 0). The red circle
delimits the admissible translations. The magenta spot depicts the con-
strained local maximum (Color figure online)

the directions of steepest ascent. Restricting to horizon-
tal sections of the admissible cylindrical set indexed by
values φ0 of the rotation variable can ease the analy-
sis. The contour lines of F(Ty, Tz, φ0) w.r.t. Ty, Tz can
be observed, as well as the 2-dimensional “local” gradi-
ent vectors—which are just obtained by setting the third
entry of the genuine 3-dimensional gradient vectors to 0
(Fig. 5).

For the instances of the problem (P) considered in
Sects. 4.2 and 4.3 below, the optimum solution(s) have been
observed to lie on the external surface of T ×R in all consid-
ered scenarios (this fact has not been proved analytically). So,
the contour lines of the criterion Fk constrained to the cylin-
der surface will also be displayed. To this aim, the following
bivariate function is introduced

F̃k(α, φ) = [Fk ◦ g](α, φ) (13)

with g : R

2 → R

3
( α

φ

)
�→

( rmax sin(α)
rmax cos(α)

φ

)
,

where (α, φ) references the position onto the cylinder surface
(Fig. 4a, b).

4.2 Iso-entropy contour lines for ITD based exploration

When l̄(θk) in (3) stands for the Woodworth-Schlosberg
farfield approximation (4) of the ITD between two antipodal
microphones placed on a spherical head, the iso-zk loci are
similar to those depicted in Fig. 3.

The contour lines of Fk(Ty, Tz, φ0) are plotted on
Fig. 6a–c w.r.t. Ty, Tz for various subsequent rotations φ0

of the head, given an initial frame Fk and a confidence

ellipse describing the belief N (xk; x̂k|k, Pk|k), where x̂k|k =
(1, 1.5)T . The set of admissible translations is also displayed,
as well as the constrained local maximum on the slice of the
admissible set defined by φ0.

InFig. 6a, the sensor undergoes a pure translation followed
by no rotation. The contour lines of the criterion appear to
be distorted—i.e., the gradient of the criterion is subject to
important local variations—whenever the translation is either
T = (1, .)T or T = (., 1.5)T . By refering to intuitive argu-
ments fromSect. 3.2, one can show that for T = (1, .)T (resp.
T = (., 1.5)T ), the distorsion is explained by the fact that
Ok+1 lies on the major axis of the confidence ellipse associ-
ated to the next predicted state pdf N (xk+1; x̂k+1|k, Pk+1|k)
(resp. the interaural axis−→yRk+1 is aligned with the minor axis
of this ellipse). For each such restricted value of T , the head
must get closer to the source so as to reach a given value of
the information criterion, than if a neighboring unrestricted
translation were applied.

Subsequent rotations of the head by φ0 = +30◦ or
φ0 = −30◦ turn Fig. 6a into Fig. 6b or Fig. 6c, respec-
tively. The contour lines are changed, and so is the maximum
restricted to the slice defined by φ0. It is more interesting to
apply a rotation of −30◦ than +30◦, because the obtained
optimum for φ0 = −30◦ lies on a contour line with higher
value (and thus warmer color). Noticeably, the first distor-
tions explained in the above paragraph for a null rotation
remain, while the second ones are just rotated by φ0. Also, as
the step size between the indices of two consecutive contour
lines is constant, and as these contour lines are not regularly
spaced, the closer the sensor gets to the source, the higher is
the increase in the information criterion Fk .

To get some insight on the maximum value of
Fk(Ty, Tz, φ) on the cylindrical surface of the admissible
set, the function F̃k(α, φ) has then been evaluated for the
same initial belief. It appears that its maximum is located on
φ∗ = −48◦ (Fig. 6d).

In some cases, e.g., x̂k|k = (0, 1.5)T , the problem (P) has
several optimums, see Fig. 7a, b.

4.3 Iso-entropy contour lines for azimuth based
exploration

This section considers the following observation model

zk = θk + vk, zk ∈ R, vk ∼ N (0, Rk). (14)

Note that observing azimuth measurements contaminated
with constant-variancenoise is unrealistic in practice. Indeed,
when extracting azimuth measurements from the binaural
stream, the closer the sound source is to the front axis (resp. to
the interaural axis), the smaller (resp. the bigger) the associ-
ated uncertainty is. Nevertheless, this case has been included
because it enables a verification of some intuitive features.
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(a) φ0 = 0 (b) φ0 = +30◦ (c) (d)φ0 = −30◦

(e) φ0 = 0 (f) φ0 = +30◦ (g) φ0 has no impact on the
contour lines

(h)

Fig. 6 a, b, c, e, f, g Contour lines of the criterion Fk(Ty, Tz, φ0)w.r.t.
Ty (abscissa, in meters) and Tz (ordinate, in meters). d, h Contour lines
of F̃k(α, φ)w.r.t. α (abscissa, in radians) and φ (ordinate, in radians). In
a–d (resp. e–h), the exploration is based on ITD measurements (resp.
on ideal azimuth observations). The sensor frame in the initial posi-
tion Fk = (O,

−→xR,
−→yR,

−→zR) is plotted in red. The initial estimate of the
head-to-source position is x̂k|k = (1, 1.5)T . The blue ellipse/circle rep-

resents the 99%-probability confidence ellipse associated to the initial
belief N (xk; x̂k|k , Pk|k). The red circle delimits the admissible trans-
lation T ∈ T . The blue frame portrays the orientation of Fk+1 if a
zero translation were applied. The contours are warm (resp. cold) when
Fk—or, equivalently, F̃k—has high (resp. low) values. On d, h, the hor-
izontal red lines depict the limits of the admissible head rotation, which
have been set to ±60◦ (Color figure online)
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Fig. 7 Contour lines of: a Fk(Ty, Tz, φ0)w.r.t. Ty, Tz ; b F̃k(α, φ)w.r.t.
α, φ when (P) has two solutions. Conventions similar to Fig. 6a–h are
used

The iso-z loci corresponding to equispaced values of the
azimuth measurements are equiangular radial lines passing
throughO . The confidence cones associated to anymeasured
azimuth then have the same width—they are just rotated
images of each other. So, given a belief on the source position
evenly spread around its genuine location, the assimilation

of such an azimuth measurement intuitively brings the same
information whether the sensor remains static or whether it
moves on a circle centered on the source, regardless of its
orientation.

The analysis of the contour lines of Fk(Ty, Tz, φ0) w.r.t.
Ty, Tz shows that they do not depend on the rotation φ0

(Fig. 6e, f). Consequently, the contour lines of F̃k(α, φ)w.r.t.
α, φ are vertical (Fig. 6h). Nonetheless, the contour lines are
still distorted for T = (1, .)T in (Fig. 6e, f) for the same rea-
sons as those explained in Sect. 4.2. These distortions vanish
when the confidence ellipse associated to the initial belief is
circular (Fig. 6g), and the contour lines become concentric.
In this case, the only way to increase the gained informa-
tion on the source location is to get closer to it, which is in
agreement with the above intuition.

5 Evaluation of the algorithm

The whole three-stage scheme has been implemented on
a simulated or real KEMAR binaural head-and-torso-
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Fig. 8 Simulated sound source localization for different scenarios. In
the circular movement, the front direction is tangent to the circle. The
random path is generated by randomly selecting positions on admissi-
ble cylindrical set. a Source position and head trajectories in the world
frame (i.e., the initial frame F0). b Entropy decrease of the posterior

state pdf for the various motion strategies. c–f Interesting snapshots of
the localization process showing the binaural head (front direction in
dashed red, interaural axis in dashed blue), the source (in red), and the
99%-probability confidence ellipses of the hypotheses constituting the
Gaussian mixture belief (Color figure online)

simulator (HATS) fromG.R.A.S.�(kemar.us) endowed with
omnidirectional planar motion, i.e., with two translational
and one rotational degrees of freedom. This section reports
the assessment of the obtained audio-motor localization,
depending on whether the binaural head undergoes the active
motion developed in this paper or other kinds of open-loop
movements.

For the sake of simplicity, the binaural head and the robot
supporting it move every Ts = 1s, then stop in order to
acquire binaural signals, perform their short-term analysis
(Stage A, Sect. 2.2) and update the belief on the source posi-
tion (Stage B, Sect. 2.3). To drive the exploration, Stage C
relies on the Woodworth-Schlosberg measurement equation.
The next best position of the robot then comes from the solu-
tion of (P) (Sect. 3.3).

The quality of the short-term azimuth estimation in
Stage A critically affects the behavior of the whole bin-

aural active localization. Therefore, in both simulated and
live experiments, a non-intermittent white noise signal fil-
tered by a 1 kHz bandwidth band-pass filter with 1 kHz
central frequency has been selected for the sound source, as
it endows the azimuth pseudo-likelihood with modes much
sharper than with speech sources for instance (Portello et al.
2013). Various ways to cope with intermittent sources in
Stages A or B have been proposed in Portello et al. (2012,
2014b), but they have not been implemented here. Themove-
ments of the binaural sensor have been limited in translation
and rotation by r ≤ rmax = 0.1m and |φ| ≤ φmax =
15◦.

5.1 Simulations with audio spatialization

The online rendering of realistic binaural signals caused
by a static sound source has first been simulated in an
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Fig. 9 Single-source localization for different scenarios: a–d trans-
lation of the head along the interaural axis; e–h circular movement;
i–l active motion. Snapshots (a–l) of the localization process display
in the initial frame F0 the binaural head (front direction in dashed
red, interaural axis in dashed blue), the source (in red), and the

99%-probability confidence ellipses of the hypotheses constituting the
Gaussian mixture belief. They are displayed at times: a, e, i t = 1 s; b, f,
j t = 10 s; c, g, k t = 20 s; d, h, l t = 28 s. Screenshots of the recorded
video for the active motion scenario are reported at times: (m) t = 2 s;
(n) t = 10 s; (o) t = 34 s (Color figure online)

anechoic environment. When the sensor moves, those bin-
aural signals are synthesized by using a database of Head
Related Impulse Responses (HRIRs) suited to the used

KEMAR HATS. This database as well as a binaural sim-
ulator are publicly available at the URLs www.twoears.eu
and docs.twoears.eu/en/latest/binsim/.
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The sound source is initialized at the position X = (1, 2)T

in the robot frameF0 at time k = 0. To simplify the notation
in the legends of the next plots, this frame is denoted as
F0 = (O,

−→x 0,
−→y 0,

−→z 0).
Various motions of the sensor have been simulated: the

proposed active strategy, a translation along the interaural
axis, a circular movement such that the front direction of the
head stays tangent to its trajectory, and a random movement
(Fig. 8a). During the five first seconds in all the scenarios,
the same rotational movement is applied to the sensor in
order to disambiguate front and back, so that at t = 5 s the
Gaussian mixture belief can be better approximated by a sin-
gle Gaussian pdf. The common progress of the audio-motor
localization from initial time t = 0 s to t = 5 s is displayed
on Fig. 8c, d. Then, each specific movement is applied from
time t = 6 s until the end.

It can be observed that the active motion translates
the sensor and rotates its fovea towards the estimated
position of the sound source. By computing the Gaus-
sian moment-matched approximation of every state belief∑Ik

i=1 wi
kN (xk; x̂ ik|k, Pi

k|k), the entropy h(xk |z1:k) has been
evaluated for the different strategies (Fig. 8b). In terms of
localization efficiency, the active motion strategy clearly
outperforms the random and translation open-loop move-
ments.

In view of the closeness of the entropies of the passive
circular and active motions at each time t ∈ [6 s, 9 s] and at
t = 17 s, the confidence ellipses of the respective beliefs have
similar sizes. However, they may have distinct centers and/or
orientations, see for instance Fig. 8e, f.

Between t = 9 s and t = 17 s, the entropies of the poste-
rior state pdfs obtained for the circular motion are minimum.
This does not contradict the fundamental property that,
between any two consecutive times, the active strategy finds
the translation and rotation of the head leading to the max-
imum decrease of the entropy. In fact, this is an interesting
example where the sequence of N one-step-ahead opti-
mum motions does not constitute a N -step-ahead optimum
motion.

By Sect. 3.2, if at t = 17 s the head starts from Fig. 8e—
where its (blue) interaural axis is close to the confi-
dence ellipse—and keeps moving on a circular path tan-
gent to its front axis with no dynamic noise, then only
little information can be brought by the measurement.
In the simulated experiment, the entropy even increases
because the information loss implied by a noisy dynam-
ics cannot be compensated by the little information gain
brought by the measurement. If at t = 17 s the head
starts from Fig. 8f—where its (red) front axis inter-
sects the confidence ellipse—then there plausibly exists
an admissible translation and rotation which can further
decrease the entropy, even if little noise affects the dynam-
ics.
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Fig. 10 Entropy reduction of the posterior state pdf for various motion
strategies

5.2 Live experiments on a binaural robot

A KEMAR HATS has been mounted on a NEOBOTIX MP-
L655 nonholonomic mobile robot. In order to make the head
omnidirectional, i.e., to endow it with two translational and
one rotational degrees of freedom, the neck of the HATS has
been equippedwith a homemade controllable azimuth degree
of freedom (Fig. 1). Its software architecture is based on the
ROS middleware. Real time components such as binaural
audio stream server or three-stage active localization have
been synthesized by means of the GenoM3 module genera-
tor (Mallet et al. 2010). The supervision task which manages
the program, plots and saves the results, is performed by a
MATLAB� client. The experiments have been conducted in an
open-space 15m×5m×8marea delimited by dividingwalls
made of resin, so that reverberation effects were limited.

The results of the audio-motor localization for several
motion strategies as well as the genuine position of the
sourcemeasured by a real-timemotion capture system—with
±0.1mm accuracy—are displayed on Fig. 9. A translation
along the interaural axis reduces the uncertainty on the dis-
tance to the source but cannot disambiguate front from back.
A pure rotation (not shown on Fig. 9 due to space reasons)
resolves the front-back ambiguity but cannot recover the
source range. The active motion drives the head in the same
way as before. The entropy of the moment-matched approx-
imation of the state posterior pdf is reported on Fig. 10. A
circular motion is also implemented, leading to a behavior
quite similar to Sect. 5.1.

The whole three-stage framework runs in 5ms on a i7
quadcore laptop@2.8GHzwith 16GBRAM.Further videos
are available on http://homepages.laas.fr/danes/AR2016.
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6 Conclusion and prospects

Given a Gaussian belief on the relative position of a sound
source with respect to a binaural head, a method has been
proposed to determine the admissible planar motion of
the sensor which leads to the one-step-ahead best audio-
motor localization. It internally relies on a measure of the
information brought by the incorporation of TDOA/ITD
observations after the sensor has moved. Any other mea-
surement variable could guide the exploration, provided that
it is related to the hidden relative position by a closed-form
equation similar to (3). Experiments have been conducted on
a soundscape rendering simulator and on a mobile binaural
robot, when the approach constitutes the “feedback control”
component of a three-stage framework to active binaural
localization.

Though the “one-step-ahead” statement of the synthe-
sis of the active motion of the sensor is greatly simplified,
several issues remain open even in this context. An immedi-
ate problem concerns the gap between the Gaussian prior
required by the method and the—multimodal—Gaussian
mixture (1) provided by the used estimation technique
(GMsrUKF) in Sect. 2.3. This is especially significant at
the first localization times, as the combination of the short-
term azimuths extracted from the binaural stream and of the
sensor motion does not yet enable front-back disambigua-
tion nor range recovery. Several elementary options can be
envisaged to get around this problem: (a) keep themost prob-
able hypothesis of the belief provided by the GMsrUKF;
(b) turn the genuine multimodal belief into its Gaussian
moment-matched approximation; (c) keep the most probable
“branch” of the genuine Gaussian mixture—i.e., set of con-
tiguous hypotheses with similar azimuths— and compute its
moment-mached approximation; (d) at the early times, apply
elementary translation and rotation movements to the head
so as to reduce the number of hypotheses in the Gaussian
mixture. In this paper, (b) and (d) were jointly used. One
more involved alternative is to avoid trading the Gaussian
mixture belief for a single Gaussian distribution. As the dif-
ferential entropy of a Gaussian mixture density cannot be
evaluated analytically, two solutions can be envisaged: use an
alternativemeasure of informationwhich can be expressed in
closed-form for a Gaussianmixture distribution and supports
a rule similar to (8); approximate the differential entropy of a
Gaussianmixturewherever needed by a closed-form formula
whose accuracy-complexity balance can be handled. These
topics are the subject of current research.

Though the proposed strategy does find the translation and
rotation optimizing a one-step-ahead criterion, the sequence
of N suchmotionsmay be outperformed by another sequence
of admissible displacements as explained in Sect. 5.1. This
is why current research also focuses on multi-step meth-
ods, where the objective is to find a sequence of the robot

commands u� = {uk, uk+1, . . . , uk+N } which improves the
localization after N -steps. For instance, this optimum N -
step sequence may be obtained by expressing the differential
entropy of the belief at k + N and minimizing its expected
value over the next measurements zk+1, . . . , zk+N , in the
vein of Deutsch et al. (2004).

A thorough evaluation of StageA in several kind of acous-
tic environments is in process. It will be followed by the
evaluation of the whole localization framework, including
the audio-motor localization Stage B and information-based
feedback control Stage C. Finally, the integration of the pro-
posed active localization framework within a comprehensive
computational model of human auditory perception—like
the one developed in Two!Ears—requires further investiga-
tion. Active localization has been viewed as a sensorimotor
function operating on short time ranges, i.e., a low-level
“reflexive behavior”. So, its interaction with upper-level
long-term cognitive processes needs to be refined. Among
the important issues are a kind of exploration-exploitation
dilemma: when and how must a cognitive process decide
between exploring—i.e., parameterizing and triggering an
active localization reflexive behavior in order to gather
information—and launching an elaborate reasoning on the
basis of its current knowledge?

Acknowledgements The authors would like to thank Matthieu Herrb,
Anthony Mallet, and Xavier Dollat for their invaluable help.

Appendix

Consider the posterior state pdf p(xk |z1:k) of the sensor-to-
source position at time k, and N (xk; x̂k|k, Pk|k) the approx-
imate Gaussian belief. This pdf can be mapped into the 1D
Gaussian approximationN (zk+1; ẑk+1|k, Sk+1|k) of the pre-
dictedmeasurement pdf p(zk+1|z1:k), by using the unscented
transform. The aim is then to maximize the variance Sk+1|k
so as to increase the entropy h(zk+1|z1:k). This involves the
composition of several functions.

First the sigma-points
{
X−
i

}
corresponding to

p(xk |z1:k) = N (xk; x̂k|k, Pk|k) are computed from the
posterior mean x̂k|k of the state vector at time k and the
Cholesky decomposition Pk|k = Lk|k LT

k|k of the posterior
covariance:

{
X−
i

} = Sigma_points
(
x̂k|k, Lk|k

)
(15)

The sigma-points
{
X+
i

}
of the next predicted state pdf

p(xk+1|z1:k) = N (xk; x̂k+1|k, Pk+1|k) can be obtained by
applying the translation and rotation on each sigma point
in the set

{
X−
i

}
. Note that (2) is defined as a function of

(Ty, Tz, φ), so that
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∀i, X+
i = �X−

i
(Ty, Tz, φ). (16)

Then the set of sigma-points
{
Z+
i

}
of the predicted mea-

surement pdf p(zk+1|z1:k) = N (zk; ẑk+1|k, Sk+1|k) can be
obtained from

{
X+
i

}
defined in (16) by:

∀i, Z+
i = l

(−atan2
(
X+
i (1), X+

i (2)
))

, (17)

with X+
i (1) and X+

i (2) the components of X+
i , and l(·) the

measurement equation used to guide the exploration. Finally
themean ẑk+1|k and variance Sk+1|k of p(zk+1|z1:k) are com-
puted by

ẑk+1|k =
∑

i

wi
m Z

+
i (18)

Sk+1|k =
∑

i

wi
c

(
Z+
i − ẑk+1|k

)2
, (19)

with
{
wi
m

}
and

{
wi
c

}
the classic weights of the unscented

transform.
The log of the variance Sk+1|k comes as a function

of the finite translation and rotation, i.e., log Sk+1|k =
Fk(Ty, Tz, φ). However the maximum of this function is not
analytically tractable. Its gradient aroundU = (Ty, Tz, φ) is
then computed as follows.

The first order Taylor expansion of the functions �X−
i
,

atan2, l, and log, are composed around U with infinitesimal
translations and rotation du = (dTy, dTz, dφ)T :

�X−
i
(U + du) = �X−

i
(U ) + J�X−

i
(U ) du

atan2(u, v)=atan2(u0, v0)+∇T atan2(u0, v0)

(
u − u0
v − v0

)

l(w) = l(w0) + l ′(w0)(w − w0)

log(r) = log(r0) + 1

r0
(r − r0) (20)

with ∇ the gradient operator. J�X−
i
(U ) is the Jacobian

of �X−
i

at U . Then the result of the composition, noted
Zi (dTy, dTz, dφ), is used to retrieve the mean and the
variance with (18) and (19). Finally, the first order Taylor
expansion of Fk(dTy, dTz, dφ) is obtained, highlighting the
gradient ∇Fk :

Fk (U + du) = Fk (U ) + ∇T Fk(U ) du. (21)
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