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Abstract This paper presents a collaborative control strat-
egy designed to enable a team of robots to track attracting
Lagrangian coherent structures (LCS) and unstable mani-
folds in two-dimensional flows. Tracking LCS in flows is
important for many applications such as planning energy
optimal paths in the ocean and for predicting the evolution of
various physical and biological processes in the ocean. The
proposed strategy which tracks attracting LCS and unsta-
ble manifolds in real-time through direct computation of the
local finite time Lyapunov exponent field, does not require
global information about the dynamics of the surrounding
flow, and is based on local sensing, prediction, and correc-
tion. The collaborative control strategy is implemented on a
team of robots and theoretical guarantees for the tracking and
formation keeping strategies are presented. We demonstrate
the performance of the tracking strategy in simulation using
actual ocean flow data and experimental flow data generated
in a tank. The strategy is validated experimentally using a
team of micro autonomous surface vehicles in an actual fluid
environment.
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1 Introduction

We are interested in the development of collaborative con-
trol strategies for distributed sensing and tracking of coherent
structures andmanifolds in flows using teams of autonomous
underwater and surface vehicles (AUVs and ASVs). Specifi-
cally, we are interested in deploying teams of robots to track a
class of coherent structures that are important for quantifying
transport phenomena in flows.

Inanc et al. showed that time and fuel optimal paths in the
ocean can coincide with a specific class of coherent struc-
tures called Lagrangian coherent structures (LCS) (Inanc
et al. 2005; Senatore and Ross 2008). LCS are the extensions
of stable and unstable manifolds to general time dependent
flows (Haller and Yuan 2000; Haller 2011) and are similar
to separatrices that divide the flow into dynamically distinct
regions. This is supported by Forgoston et al. ’s (2011) work
where they showed that LCS coincide with regions in the
flow field where more escape events occur. Furthermore, it
has been shown that biological phenomena in the ocean, such
as the dispersion of algea blooms, can be predicted using
knowledge about propagation of LCS boundaries (Olasco-
aga et al. 2008). More importantly, Olascoaga et al. have
shown that, the class of LCS that we are interested in i.e.,
attracting LCS, was responsible for pushing spilled oil from
the Deepwater Horizon spill in 2010, towards the coast of
Florida (Olascoaga and Haller 2012). As such, knowledge of
LCS is important for planning energy efficient trajectories in
the ocean, maintaining sensors in their desired monitoring
regions (Mallory et al. 2013; Hsieh et al. 2014; Heckman
et al. 2015), predicting pollutant dispersion and for enabling
efficient, computationally tractable estimation and prediction
of the underlying geophysical fluid dynamics.

Existing methods require complete knowledge of the
underlying flow field to numerically compute and track the
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location of an LCS in a flow. However, accessibility to and
the overall quality of ocean current hindcasts, nowcasts, and
forecasts provided by navy coastal ocean model (NCOM)
databases (SCRIPPS 2014), regional ocean model systems
(ROMS) (Smith et al. 2010), and/or other numerical models
are generally low. This is because most existing ocean mod-
els are derived from assimilated satellite and field data with
predictions from numerical PDE models (Shchepetkin and
McWilliams 1998, 2005). As such, existing data sets that
describe ocean flows are mostly finite time, of low spatio-
temporal resolution and are limited to specific regions. Due
to this sparseness of available ocean data, locating and track-
ing LCS in real time is problematic. In this paper we seek
to establish a methodology that will enable a team of ASV’s
to track an attracting LCS in real time, using on board flow
velocity measurements. To the best of our knowledge this is
the first instance where direct on board flow measurements
have been used to locate and track LCS.

In two-dimensional (2D) flows, LCS are one-dimensional
separating boundaries analogous to ridges defined by local
maximum instability, and can be quantified by localmeasures
of finite-time Lyapunov exponents (FTLE) (Shadden et al.
2005). The tracking of coherent structures in fluids is chal-
lenging since the structures are generally unstable and time
dependent. Existingwork have shown that it is possible to use
a team of robots to collaboratively track the stable manifolds
and LCS boundaries in 2D flows (Michini et al. 2014a, b, c).
The strategy relies on robots maintaining a boundary sad-
dling formation while collecting local measurements of the
flow velocity. LCS tracking is achieved by fusing the data to
identify the region in the flowfieldwith the extremal velocity.

While the strategy has been validated using analytical
models that describe large scale ocean circulation (Hsieh
et al. 2012; Michini et al. 2014c), experimental data created
in a flow tank, actual ocean data (Michini et al. 2014a), and
a scaled robotic platform (Michini et al. 2014b), the work is
focused on tracking the repelling LCS boundaries or stable
manifolds in 2D flows. Since the identification of repelling
LCS boundaries requires the computation of forward FTLEs,
real-time tracking of the LCS boundaries in these existing
work is achieved by solely examining the flow velocities in
the region spanned by the robot team and do not rely on actual
FTLE computations. As such, no explicit information can be
obtained about the type of the LCS boundary being tracked.
Lastly, since the LCS boundaries are not explicitly resolved,
the team of robots may end up tracking a non-existent bound-
ary.

In this work, which is an extension of the work in
(Kularatne and Hsieh 2015), we present a methodology
to track attracting LCS boundaries and unstable manifolds
through the explicit on-board calculation of local FLTE
fields. This can be done in real-time since the required FTLE
calculations only use previously acquired flow velocity data.

The proposed tracking strategy utilizes the FTLE field along
with instantaneous local flow field measurements to resolve
the attracting LCS boundary. Different from the work in
(Kularatne and Hsieh 2015), in this work we

(a) present a formation keeping strategy that is more robust
to measurement uncertainty,

(b) analyze the tracking and formation keeping strategies to
provide theoretical performance guarantees, and

(c) validate the strategy using actual oceanflowdata andflow
data generated in an experimental flow tank.

The remainder of this paper is structured as follows. We
provide a background on characterizing LCS using local
FTLE measures and then formulate the problem in Sect. 2.
The development of the proposed control strategy is pre-
sented in Sect. 3 and its theoretical feasibility is analyzed in
Sect. 4. Simulation and experimental results are presented in
Sects. 5 and 6 respectively. We conclude with a discussion
of our results and directions for future work in Sect. 7.

2 Background and problem statement

2.1 Background

In this paperwe consider the problemof tracking an attractive
Lagrangian coherent structure (LCS) in a 2Dplanar flowfield
of the form

ẋ(t) = F(x, t) (1)

where x = [x, y]′ gives the position in the plane with respect
to some inertial frame O and x′ denotes the transpose of the
vector x.

The position of a fluid particle advected by the flow field
given by (1), is a function of time t , the starting point of the
particle x0 and starting time t0, i.e., x = x(t; x0, t0). Using
the notation used by Shadden et al. (2005), the solution to the
dynamical system given in (1) can be viewed as a flow map
which takes points from their initial position x0 at time t0 to
their position at time t . This map, denoted by φt

t0 , satisfies

φt
t0(x0) = x(t; x0, t0), (2)

andhas thepropertiesφt0
t0 (x)= x andφs+t

t0 (x) = φs+t
s (φs

t0(x)).
The finite time Lyaponov exponent (FTLE) over a finite inte-
gration time interval T , associated with a point x at time t0
is given by,

σ T
t0 (x) = 1

|T | ln
√

λmax (Δ) (3)

123



Auton Robot (2017) 41:1575–1588 1577

Fig. 1 a Locations of neighboring particles for the numerical compu-
tation of Δ, b agents are initialized with the center agent of the grid in
proximity of the attracting LCS

whereλmax (Δ) is themaximumeigenvalue of the finite-time
version of theCauchy–Green deformation tensorΔ, given by,

Δ = dφ
t0+T
t0 (x)

dx

′
dφ

t0+T
t0 (x)

dx
. (4)

The value of Δ is computed numerically by discretizing the
domain into a regular grid and computing the trajectories of
each point and its immediate neighbors in the grid from time
t0 to t0 + T by numerically integrating (1) (see Fig. 1a).

In this paper, LCS are considered to be ridges in the FTLE
field calculated using (3), i.e., maximal values in the FTLE
field, as defined by Shadden et al. (2005). The forward-time
FTLE field calculated by advecting fluid particles forward in
time (T > 0), reveals repelling LCS which are analogous to
the stable manifolds of saddle points in a time independent
flow field. Conversely, the backward-time FTLE field (T <

0) reveals attracting LCS which are analogous to unstable
manifolds of a time independent flow field. Figure 2 shows
the forward and backward time FTLE fields computed for a
time independent flow field generated using the wind driven
double gyre model.

The FTLE value gives a measure of the maximum expan-
sion of two initially nearby particles when they are advected
by the flow. Therefore, particles initiated on opposite sides
of an LCS will have much higher FTLE values than their
neighbors, since an LCS acts as a boundary between two
dynamically distinct regions of the flow (Shadden et al.
2005). Thus, by calculating the FTLE field in a neighbor-
hood that contains an LCS, it should be possible to find the
LCS boundary by tracing out points with the highest FTLE
values.

2.2 Problem statement

Let Bu denote an attractive LCS of the flow field given in (1).
Since F(x, t) is a 2D flow field, Bu will be a time varying
1D curve in the domain of F. In this work, a team of N
autonomous surface vehicles (ASVs) are used to track Bu in
real-time. Each ASV is assumed to have the model given by,

Fig. 2 a Time independent flow field generated using the wind driven
double gyre model. A saddle point can be observed at (1,1). Though
not clearly seen additional saddle points exist at (0,0), (0,1), (0,2), (1,0),
(1,2), (2,0), (2,1) and (2,2), b forward time FTLE field which reveals
the stable manifolds, c backward time FTLE field which reveals the
unstable manifolds (Color figure online)

ẋi = Vi cos θi + ui (5a)

ẏi = Vi sin θi + vi (5b)

θ̇i = ωi (5c)

where Vi is the speed of the i th ASV (Pi ) with respect to the
flow, θi is its heading direction, xi = [xi , yi ]′ is its position
with respect to the inertial frame O and [ui , vi ]′ = F(xi, t)
is the velocity of the underlying flow field at xi. The control
inputs of the i th ASV are Vi and ωi . In vector form, the
velocity of Pi could be written as,

ẋi (xi, t) = Vi/f (t) + F(xi, t) (6)

whereVi/f is the velocity of Pi relative to the flow. Note that
Vi and θi are themagnitude and direction ofVi/f respectively.
We assume that each ASV has the capability to measure the
flow velocity at its current position and that each ASV can
communicate bi-directionally with a data processing vehicle.
In practice, measuring the flow would require an agent to
obtain a flow velocity measurement relative to its motion,
and then obtain the inertial flow velocity by accounting for
its own motion using (6). Throughout this work, we assume
that theASVsare initialized in such away that the centerASV
Pc is in close proximity to the boundary Bu , and the sensing
grid is straddling the boundary, as shown in Fig. 1b. Using the
definitions and assumptions given above, we can now state
the problem being addressed in this paper as follows:

Given an estimate for the position of a point on Bu at time
t0, develop a collaborative control strategy to track Bu for
time t > t0 for a team of ASVs with the kinematic model
given by (5).

3 Methodology

In the proposed methodology, the center ASV Pc is tasked
with tracking the boundary Bu , i.e., the trajectory of Pc will
give the time evolution of a point on Bu . The other ASVs in

123



1578 Auton Robot (2017) 41:1575–1588

the sensing grid are required tomaintain formation around Pc
so that valid flow measurements are available for computing
and tracking the boundary. In the proceeding sections, the
position of Pc at time t is given by xc(t) = [xc, yc]′.

3.1 Manifold tracking

The methodology proposed in this paper utilizes a combina-
tion of backward-time FTLE computations and the proper
interior maximum (PIM) triple inspired tracking strategy
(Hsieh et al. 2012) to locate the attractive LCS boundary.

3.1.1 Locating the LCS boundary using the FTLE field

Considering the flow velocity measurements obtained by the
team of ASVs, a discrete space–time approximation could
be obtained for the velocity field given in (1) as

F̂(xi(t j ), t j ) = F(xi(t j ), t j ) i = 1, . . . , N ; j = 0, . . . , f

(7)

where t j is the j th sampling instance and xi(t j ) is the position
of the i th ASV at time t j . Now the flow field is represented
by N × (t f + 1) number of discrete data points. In order
to calculate the backward-time FTLE field around the center
agent, a set of fluid particles arranged in a grid around Pc are
advected along the flow backwards in time. This is achieved
by integrating the particle positions backwards in time using
F̂, i.e., T < 0. The resulting flow map is used in (4) and
(3) to compute the backward-time FTLE field on this grid.
To overcome the inherent sparseness of the available mea-
surements, trilinear interpolation is used on F̂ to approximate
the flow velocities at spatio-temporal coordinates for which
direct velocity measurements are unavailable. The interpo-
lation should not affect the accuracy of boundary extraction
since it has been shown that FTLE maxima are relatively
insensitive to the interpolation scheme used in their compu-
tations (Harrison and Glatzmaier 2012) and that strong LCS
are relatively robust to uncertainty (Lermusiaux and Lekien
2005; Harrison and Glatzmaier 2012). Since we assume that
Pc is initialized on Bu itself, following from the discussion
in Sect. 2.1, the point with the highest FTLE value on this
grid will correspond to a point on the LCS. Thus, the point
with the highest FTLE value in the computed FTLE field is
selected as the boundary location (qF) at the current sampling
instance.

3.1.2 Locating the LCS boundary using the PIM inspired
strategy

Since LCS are time varying, tracking based solely on FTLE
computations will tend to fail, when the time scales of the

past flow velocity measurements are not representative of
the time scales of the current or future time variations of
the boundary. To address this, we augment the FTLE based
tracking strategy with the boundary tracking strategy intro-
duced by Hsieh et al. (2012) which is based on the PIM triple
method (Nusse and Yorke 1989). We briefly summarize the
strategy below and refer interested readers to (Hsieh et al.
2012; Michini et al. 2014a) for more information.

Given a team of three robots, denoted {L;C; R}, robot C
is tasked to remain close to the boundary of interest, i.e., track
Bu , while robots L and R are tasked to remain on opposite
sides of Bu at all times. Thus the three robots will maintain a
saddle straddle formation across the boundary at all times.Let
ûL(t) = F̂(xL, t), ûC (t) = F̂(xC, t) and ûR(t) = F̂(xR, t)
denote the flow velocity measurements obtained by L, C and
R at their respective positions xL, xC and xR at time t . The
saddle straddle line segment J whose end points are defined
by xL and xR, is discretized such that xL = h1 < h2 < · · · <

hM = xR. Given a set of velocity measurements ûi (t) and
corresponding position estimates x̂i (t), the flow velocity at
hk is calculated as

u(hk) =
∑

j

N∑

i=1

wi j ûi ( j)
∑

s
∑N

r=1 wrs

where wi j = ‖x̂i ( j) − hk‖−2. The location of the boundary
on the current saddle straddle line segment is given by the
point hB = arg max

k=1,...,M
u(hk)′ûc(t).

The velocity measurements obtained by the team of ASVs
is usedwith this method to compute the boundary location on
a saddle straddle line segment defined by the two immediate
neighbors of Pc on either side of the boundary. The boundary
location found using the PIM triple based method is denoted
by qP.

3.1.3 Boundary tracking

The boundary locations computed using the FTLE method
and the PIM triple method are combined to get a better esti-
mate of the actual boundary location (qh). Since Pc is tasked
with tracking the boundary, any computed boundary location
should be very close to the trajectory of Pc. Therefore, a dis-
tance based weighted averaging scheme is used to combine
qF and qP to find a better approximation for the boundary
location (qh). As such

qh = dPqF + dFqP
dP + dF

(8)

where dF and dP are the shortest distances from to qF and
qP to the trajectory of Pc.
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Fig. 3 a The LCS location qh is detected on the calculated FTLE grid
and the flow map is used to predict the future LCS location q̂h , b Vc/f
is selected such that Vgc is always directed towards q̂h

Next, the Lagrangian nature of the FLTE field is used
to predict the future location of the LCS boundary. It has
been shown by Shadden et al. Shadden et al. (2005) that flux
across an LCS is very small, i.e., a particle on an LCS will
remain on the LCS or remain very close to the LCS as it
advects along the flow. Therefore, we advect a fluid particle
located at qh forward in time for T1 seconds using F̂, to get
an approximation of the future LCS location q̂h as indicated
in Fig. 3a. Thus,

q̂h = φ
t+T1
t (qh) = qh +

∫ t+T1

t
F̂(x, t)dt. (9)

In order for Pc to follow Bu , we want Pc to head towards
q̂h at all times, i.e., we want the velocity of Pc in the inertial
frame, Vgc, to be directed towards q̂h at all times. As shown
in Fig. 3b, this could be done by setting Vc/f (velocity of Pc
relative to the flow) appropriately. Sincewe have the freedom
to set |Vc/f | arbitrarily and set the direction θd accordingly,
we select the minimum possible value for |Vc/f |. It can be
shown that this can be achieved by settingVc/f = (ui sin α−
vi cosα)ñ where α is the desired direction of Vgc as shown
in Fig. 3b and ñ = [− sin α, cosα]′ is the direction normal
to α. The corresponding |Vc/f | and θd are given by,

|Vc/f | =
{
ui sin α − vi cosα, α ≥ θ f

vi cosα − ui sin α, α < θ f
(10a)

θd =
{

α + π
2 , α ≥ θ f

α − π
2 , α < θ f

, (10b)

where θ f is the direction of the flow as shown in Fig. 3b.
Note that, according to the model of the vehicle given in (5),
while it is possible to set the speed of an agent directly to a
desired value,its heading direction has to be controlled using
ω. Thus the velocity commands for Pc are set as,

Vc =
{
ui sin α − vi cosα, α ≥ θ f

vi cosα − ui sin α, α < θ f
(11a)

ωc = Kω (θd − θc) + θ̇d (11b)

where θc is the current heading angle of Pc and θd is given
in (10).

Remark 1 The proposed tracking strategy fundamentally
relies on the team’s ability to simultaneously measure the
flow field on opposite sides of Bu . Thus, it is possible track
the LCS using a minimum of three agents. However, the spa-
tial spread of the flow data collected with just three agents
would not be sufficient for effective FTLE calculations.

3.2 Formation keeping

In order to accurately locate the boundary using backward-
time FTLE calculations and to accurately predict the future
LCS location, it is important that the flow velocity mea-
surements available for these calculation are an accurate
representation of the underlying flow field. As such, we
require that the agents in the sensing grid

(a) maintain a boundary straddling formation, and
(b) maintain a sufficient spread across the boundary so as to

capture the salient features of the flow across the bound-
ary.

To achieve this, in our previous work (Kularatne and Hsieh
2015), we proposed a formation keeping strategy that uti-
lizes the attracting property of the boundary to maintain a
grid formation across the boundary. Even though this strat-
egy was verified in simulations and experiments, the stability
of the formation and consequently the accuracy of the FTLE
computations depended significantly on the accuracy of the
velocity measurements obtained by the team, i.e., when
measurement noise was high, the team lost the boundary
straddling formation and this lead to inaccurate FTLE com-
putations. Furthermore, that strategy was geared exclusively
for rectangular formations and was not scalable for large
numbers of sensing agents. In this work, to address these
issues and to be able to vary the spread of the sensing grid to
adapt to changing flow conditions, we use a formation keep-
ing strategy that controls the mean (μ) and variance (ς2) of
the sensing grid [note the use of non-standard notation for
the variance to distinguish it from the notation used for the
FTLE in (3)].

If we control the mean of the grid such that it follows
the trajectory of the center agent and if we control the vari-
ance of the grid to suit the flow characteristics, both (a) and
(b) above are addressed. In addition, if the agent level con-
trols are derived in terms of these group parameters, we
address scalability issues as well. To achieve this, we use
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the group abstraction control strategy introduced by Belta
and Kumar (2004); Belta et al. (2005), and extend it to sys-
tems with drift. Even though other shape theoretic formation
control strategies exist in literature (Zhang 2010), this strat-
egy was selected due its simplicity in implementation. In the
following sections, µ and ς2 have the standard definitions,
µ = 1

N

∑N
i=1 xi and ς2 = 1

N

∑N
i=1(xi − µ)′(xi − µ).

3.2.1 Desired group behavior

In order to obtain the required behavior of the group, we
employ the following control laws for the mean and the vari-
ance:

µ̇ = Kμ (xc (t) − µ (t)) + ẋc(t) (12a)

ṡ = Ks(sd(t) − s(t)) + ṡd(t). (12b)

where Kμ, Ks > 0 and s = Nς2

N − 1
is a scaled representation

of the variance of the group. Now, the behavior of the sensing
grid is completely defined by the desired group mean xc(t)
and the desired group variance sd(t). When the mean and
the variance of the sensing grid are controlled according to
these control laws, it is trivial to see that μ(t) → xc(t) and
ς2 → N−1

N sd(t) as t → ∞, i.e., we have achieved a bound-
ary straddling formation around Pc. Now, what is left is to
select sd(t) so that the spread of the grid is varied to adapt
to changing flow conditions. Since our interest in this paper
is on computing the FTLE field near an LCS boundary, we
select sd such that the standard deviation of the sensing grid
ς , approaches the Region of Attraction (RoA) of the LCS
boundary, i.e., we set sd = N

N−1 RoA
2 so that ς → RoA

as t → ∞. This will ensure that the sensing grid covers the
region of attraction of the boundary and guarantee that suffi-
cient data is available to compute the FTLE field. The details
on estimating the RoA are given in “Appendix”.

3.2.2 Individual control laws

Once the group behavior is set, it is required to derive the
control laws for individual agents based on the group behav-
ior in a scalable manner. Belta et al. have shown that for a
team of fully actuated, holonomic agents with the kinematics
ẋi = v̂i , the individual control laws given by,

v̂i = ẋi = µ̇ + xi − µ

2s
ṡ (13)

would achieve the desired group behavior specified by µ̇ and
ṡ (Belta and Kumar 2004). Note that in (13), the control for
each agent is only dependent on its own state and the required
group behavior and as a result themethod is scalable to a large
number of agents.

In contrast to Belta et al. the ASVs in our case have a
significant drift component in their kinematics. Therefore
we use (6) to compute the control inputs (Vi and ωi ) for the
ASVs in (5) as,

Vi = |Vi/f | (14a)

ωi = Kωi

(
θdi − θi

) + θ̇di (14b)

where Vi/f = ẋi − F(xi, t) [from (6)], θdi = Vi/f and ẋi is
given by (13).

Remark 2 While we do not specifically address inter-agent
collision avoidance, the specified formation control strategy
is guaranteed to avoid inter agent collisions (Belta andKumar
2004). However, since the control for the center agent is inde-
pendent from the controls for the other agents in the grid,
collisions could occur between the center agent and other
agents. Thus we do not make any claims about inter agent
collision avoidance.

4 Analysis

In this section we analyze the proposed boundary tracking
strategy and and the proposed formation control strategy.We
show that, under certain conditions, the center agent is able
to track the boundary exponentially and that the proposed
formation keeping strategy is robust to measurement noise.

4.1 Tracking strategy

In the proceeding discussion d(·, ·) denotes the Euclidean
distance function and 〈, 〉 denotes the inner product between
two vectors.

Assumption 1 The team of ASVs are initialized such that,
d(xc(t0), Bu) < ε for small value of ε > 0.

Assumption 2 The accuracy of the boundary location com-
puted in (8) is such that d(qh,qB) < δ for a small positive
value of δ where qB is the point on the boundary curve Bu

that is closest to the estimated boundary location qh.

Assumption 1 ensures that the ASVs are initialized in the
vicinity of the boundary and that the boundary location strate-
gies specified inSect. 3.1will initially return a valid boundary
location. Assumption 2 relates to the accuracy of the bound-
ary estimation strategies specified in Sect. 3.1. The value of
δ will depend on the bounds of the sensor and actuator noise,
the vector interpolation routine, the spatio-temporal resolu-
tion of the flow velocity measurements, the time scales of the
flow dynamics, and the inherent environmental noise.

Proposition 1 Given a team of ASVs with kinematics given
in (5), the control strategy for the center agent Pc given in (11)
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Fig. 4 The trajectory of the estimated boundary location qh versus the
trajectory of a point qB on the actual boundary Bu

will ensure that d(xc(t), Bu) < D for t > t0 if Assumptions 1
and 2 are satisfied, where D is a small positive value in the
order of the boundary estimation error δ, i.e., D = O(δ).

Proof Let qh = qB + q̃ (see Fig. 4). Thus, |q̃| = d(qh,qB),
and due to Assumption 2, |q̃| < δ. After a time interval T1,
the perturbation term q̃ can be written as

q̃(t + T1) = φ
t+T1
t (qh) − φ

t+T1
t (qB).

Due to the Lagrangian nature of LCS, φ
t+T1
t (qB) gives a

point on Bu at t = t + T1 and from (9), q̂h = φ
t+T1
t (qh).

Therefore, q̃(t + T1) represents the vector from q̂h to a point
on Bu and could be expanded around qB as,

q̃(t + T1) = dφ
t+T1
t (qB)

dx
q̃ + O(|q̃|2).

Since, |q̃| < δ, the higher order terms are dropped, and thus
the magnitude of the perturbation term can be written as,

|q̃(t + T1)| = √〈q̃,Δq̃〉 (15)

where Δ is the Cauchy–Green deformation tensor computed
at qB using (4). Let the eigenvalues of Δ be λ1 and λ2 with
λ1 < λ2 and let the corresponding normalized eigenvectors
be v1 and v2. Since qB is on the attracting manifold, λ1 <

1 < λ2 (Shadden et al. 2005; Wiggins 2005) and v2 would
be tangent to Bu at qB. Using the unit vectors v1 and v2, q̃
can be written as q̃ = |q̃|(αv1 + βv2), where (αv1 + βv2)
represents the unit vector in the direction of q̃. Thus (15) can
be expanded as,

|q̃(t + T1)| = |q̃|
√

α2λ1 + β2λ2 + αβ(λ1 + λ2)〈v1, v2〉
(16)

Since, (αv1 + βv2) is a unit vector, it can be shown that,

〈v1, v2〉 = 1 − α2 − β2

2αβ
. (17)

Furthermore, since q̃ = qh − qB is perpendicular to Bu at
qB, i.e., 〈q̃, v2〉 = 0, it can be shown that

〈v1, v2〉 = −β/α. (18)

Using (17) and (18), (16) can be reduced to,

|q̃(t + T1)| = |q̃|√λ1 < |q̃| < δ. (19)

As shown in Fig. 4, d(q̂h, Bu) ≤ |q̃(t +T1)| < δ. Therefore,
it could be asserted that d(q̂h, Bu) = γ with 0 < γ < δ, i.e.,
q̂h is closer to the boundary than qh.

When the direction control given in (11b) is applied on
the model given in (5c), it can be seen that the heading of
the center agent θc = θd + e−Kωt , i.e., θc → θd exponen-
tially (note that from (10b), θd = α ± π/2 depending on the
required heading angle α and the direction of the flow θ f ).
Thus, when the speed control given in (11a) is applied on the
model in (5), the components of the velocity of the center
agent in the inertial frame (Vgc) go to,

ẋc = ±(ui sin α − vi cosα) cos(α ± π/2) + ui (20a)

ẏc = ±(ui sin α − vi cosα) sin(α ± π/2) + vi (20b)

exponentially, where the sign is dependent on α and θ f . By
expanding (20), it can be seen that, exponentially ẋc and ẏc
become,

ẋc = (ui cosα + vi sin α) cosα (21a)

ẏc = (ui cosα + vi sin α) sin α. (21b)

Thus, Vgc → α exponentially, i.e., the control schemegiven
in (11) makes the heading of Pc in the inertial frame to be
directed towards q̂h . As such, d(Pc, Bu) → γ exponentially.
This together with Assumption 1 leads to d(xc(t), Bu) < D
for t > t0 where D = O(δ). 
�

4.2 Formation keeping

Let δF(t) = [F(x1, t) − F̂(x1, t), . . . ,F(xN, t) − F̂(xN, t)]′
be the error between actual and measured flow velocities,
with F̂(xi, t) denoting the measurement obtained by the i th
agent.

Assumption 3 Each component of the measurement noise
vector δF(t), is an independent and identically distributed
(iid) ergodic random process with a normal probability dis-
tribution (Oppenheim and Verghese 2016).

Proposition 2 The control lawsdefined in (14) exponentially
achieves the desired group behavior specified by xc and sd
in (12), in the presence of measurement noise δF.
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Proof Let µ̇req and ṡreq be the required controls for µ and
s specified in (12) to achieve the desired group behavior xc
and sd . Then from (13), the required motion for agent i is,

ẋreqi = µ̇req + xi − µ

2s
ṡreq . Letting X = [x1, x2, . . . xN]′ ∈

R
2N , this can be rewritten as,

Ẋreq = Aµ̇req + X − Aμ

2s
ṡreq (22)

where A = [
N times

︷ ︸︸ ︷
I2, I2, . . . , I2]′ with I2 specifying the 2 × 2

identity matrix. From (6), the required velocity command
for the team to achieve this required motion is,

[Vi/f ]req = Ẋreq − [F(x1, t),F(x2, t), . . . ,F(xN, t)]′

where [Vi/f ]req denotes the vector of required velocity com-
mands for the team. However, the actual velocity commands
applied by the agentswill dependon themeasuredflowveloc-
ities rather than the actual flow velocities. Thus,

[Vi/f ]act = Ẋreq −
[
F̂(x1, t), F̂(x2, t), . . . , F̂(xN, t)

]′
(23)

where [Vi/f ]act denotes the vector of velocity commands
actually applied by the team. Thus, using (6), the actual
motion of the team is given by,

Ẋ = [Vi/f ]act + [F(x1, t),F(x2, t), . . . ,F(xN, t)]′

which, using (23), can be reduced to,

Ẋ = Ẋreq + δF (24)

Using the definition of µ, we can write µ̇ in terms of Ẋ as,

µ̇ = 1

N

N∑

i=1

ẋi = A′

N
Ẋ.

Thus, using (22) and (24), we can write,

µ̇ = µ̇req + A′

N
δF. (25)

Using a similar approach we can write,

ṡ = ṡreq + X − Aμ′

N − 1
δF. (26)

To achieve the desired group behavior for the mean of the
group (specified by xc), from (12), µ̇req = Kμ (xc − µ)+ẋc.
Thus, (25) can be reduced to,

µ̇ = Kμ (xc − µ) + ẋc + A′

N
δF.

Solving above,we can get the actual time variation ofµ under
the influence of measurement noise as,

µ(t) = xc(t) + (µ(0) − xc(0)) e−Kμt +
∫ t

0

A′

N
δFdτ.

FromAssumption 3, each component of δF is a normally dis-
tributed ergodic randomprocess. Therefore,

∫ t
0

A′
N δFdτ → 0

as t → ∞ (Oppenheim and Verghese 2016). Thus, it can be
seen that, µ(t) → xc(t) exponentially.

Using similar constructions on (26), it can be shown that
s(t) → sd(t) exponentially. 
�

5 Simulation results

In this section, we validate the proposed LCS tracking strat-
egy in simulations. The strategy is validated on 2D periodic
flows given by the time dependent wind driven double gyre
model, experimental 2D flow data generated in a lab setup
and ocean current data obtained from the naval coastal ocean
model (NCOM) database.

In each of the simulation scenarios, the mean tracking
error (MTE) was used to verify the accuracy of the tracking
strategy. The mean tracking error was computed as,

MT E = 1

n f

n f∑

i=1

(xc (ti ) − qB (ti )) (27)

where n f is the number of sampling instances, and qB(ti ) is
the point on the actual boundary curve Bu , that is closes to
the center agent location xc(ti ) at the i th sampling instance.
qB was computed by running a ridge tracking algorithm on
the actual FTLE field computed for the underlying flow field.

5.1 Time dependent wind driven double gyre flow

In this section we use a flow field generated using the wind-
driven double-gyre flow model for the simulations. In this
case, the flow is given by

u(x, t) = −π A sin

(
π

f (x, t)

s

)
cos

(
π
y

s

)
− μx, (28a)

v(x, t) = π A cos

(
π

f (x, t)

s

)
cos

(
π
y

s

) d f

dx
− μy, (28b)

f (x, t) = ε sin(ωt + ψ)x2 + (1 − 2ε sin(ωt + ψ))x .
(28c)

When ε = 0, the double-gyre flow is time-independent,
while for ε = 0, the gyres undergo a periodic expansion and
contraction in the x direction. In (28), A approximately deter-
mines the amplitude of the velocity vectors, ω/2π gives the
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Fig. 5 Tracking an attracting LCS in a flow generated using (28) with
A = 0.02, ε = 0.1, ω = 2π/30, s = 1 and μ = 0, a t = 31s, b
t = 38.5s, c t = 45s, d t = 52 s (Color figure online)

Table 1 Tracking and formation keeping performance for different
sensing grid sizes

No. of ASVs MTE (m) μ error (m) % s error

5 0.033 0.00 1.21

15 0.024 0.00 0.99

20 0.031 0.00 1.04

30 0.035 0.00 1.06

The given values are averaged over five runs for each grid size

oscillation frequency, ε determines the amplitude of the side
to side motion of the separatrix between the gyres, ψ is the
phase, μ determines the dissipation and s scales the dimen-
sions of theworkspace. Simulationswere runwith A = 0.02,
ε = 0.1, ω = 2π/30, s = 1 and μ = 0. The flow field and
the corresponding FTLE field are very similar to those shown
in Fig. 2. A team of 15 ASVs was used to track an attract-
ing LCS on this flow. Snapshots of the tracking is shown in
Fig. 5, and the mean tracking error (MTE) for this case was
found to be 0.011m. The mean performance parameters for
tracking with various number of ASVs are given in Table 1.
The values shown for each sensing grid size, have been aver-
aged over five runs where each run had a unique set of initial
conditions. It can be seen that the performance parameters
are relatively unchanged for different sensing grid sizes.

Fig. 6 a Experimental setup used to generate the data, b FTLE field
computed from a snapshot of collected data (Color figure online)

5.2 Experimental flow data

The performance of the proposed tracking strategywas tested
on data generated in an experimental flow tank. The tank,
termed as the HiRe tank due to the Reynolds number regime
of the flows it produces, is part of the multi-robot coherent
structure test bed (mCoSTe) at Drexel University. The HiRe
tank measures 60 × 60 × 30 cm3 and is capable of generat-
ing repeatable and controllable quasi-2D flows which exhibit
LCS similar to those in the ocean.Aflowwas generated using
a 3 × 4 array of cylinders rotating at 60 rpm and the flow
velocities were captured using a particle image velocimetry
(PIV) system. In thismethod, the flow is seededwith particles
that accurately follow the flow, and a set of high speed cam-
eras are used to obtain instantaneous snapshots of the flow.
These images are post processed to obtain the flow velocity
description. Interested readers are referred to (Larkin 2015)
for additional information on the generation of flow data and
to (Raffel et al. 2007) for more information on the PIV tech-
nique. The tank setup and a snapshot of a backward time
FTLE field computed using this data is shown in Fig. 6.

A teamof 20 agentswas to used track attracting LCS in the
captured data. Snapshots of the tracking progress is shown in
Fig. 7. Themean tracking error (MTE) for this casewas found
to be 1.1mm. Themean performance parameters for tracking
with various number ofASVs are given inTable 2. The values
shown for each sensing grid size, have been averaged over
five runswhere each run had a unique set of initial conditions.
It can be seen that the MTE and μ error values are similar
when N ≥ 15.However,MTEandμ error values are compar-
atively higher when N = 5. To assess the performance of the
strategy in the presence ofmeasurement noise, the simulation
was repeated with white noise added to the velocity mea-
surements. Three cases were considered, where the standard
deviation of the noise were 5, 15 and 20% of the mean flow
velocity on the boundary. The mean performance parameters
for these three cases are given in Table 3. As expected, the
tracking error increases with increasing noise levels. How-
ever, considering the fact that each gyre like cell in the flow
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Fig. 7 Tracking an attracting LCS in the experimental data generated
from the flow tank, a t = 4.3s, b t = 7s, c t = 9.8s, d t = 12.5s (Color
figure online)

Table 2 Tracking and formation keeping performance for different
sensing grid sizes

No. of ASVs MTE (mm) μ error (mm) % s error

5 2.41 1.47 3.90

15 1.55 0.50 4.68

20 1.19 0.26 4.42

30 1.47 0.22 2.86

The given values are averaged over five runs for each grid size

Table 3 Tracking and formation keeping performance at different noise
levels

Noise % MTE (mm) μ error (mm) % s error

5 1.30 0.20 4.04

15 2.04 0.30 2.85

25 3.52 0.55 3.59

is approximately 100 × 100mm2, the tracking errors are
extremely small even at high noise levels. In addition, as
shown inProposition 2, the error between expected and actual
group behaviors (μ and s) is relatively unaffected by noise.

5.3 Ocean data

We implemented the tracking strategy on ocean current
data obtained from the naval coastal ocean model (NCOM)

Fig. 8 a Time and direction reversed ocean current data for the Santa
Barbara Channel for May 2012, b the corresponding backward-time
FTLE field. An attracting LCS can be observed between the mainland
and the San Miguel island (Color figure online)

database hosted by the Scripps Institution of Oceanography
at the University of California, San Diego (SCRIPPS 2014).

In particular, we used ocean current data from May 2012
for the Santa Barbara Channel along the California coast.
This region is instrumentedwith several high frequency radar
stations which provide hourly surface current measurements
on a 2km grid. There is a recurring small scale eddy in this
region, which results in an area of highly divergent flow
between the mainland and the San Miguel island. This flow
feature clearly shows up as a repelling LCS boundary in the
forward-time FTLE field. Since our focus is on attracting
LCS boundaries and since we were not able to find such a
boundary in the available data, we reversed the time stamps
and the flow velocity directions in the available ocean current
data to convert this repelling boundary to an attracting bound-
ary. The corresponding velocity field and the backward-time
FTLE field are shown in Fig. 8. An attracting LCS boundary
can be clearly seen extending from the San Miguel island to
the mainland.

A team of 30 agents, initialized with the center agent of
the grid coincident on the LCS, was used to track this LCS
boundary. Snapshots of the tracking progress is shown in
Fig. 9. The black line indicates the trajectory traced by the
center agent Pc. The mean tracking error (MTE) was com-
puted to be 92m. Table 4 shows the performance values for
different sensing grid sizes, where the values have been aver-
aged over five runs for each case. It can be seen that theMTE
decreases as the number of agents in the grid is increased.
Figure 10 shows the changes in standard deviation ς com-
manded by the strategy. Note that, the commanded standard
deviation is equal to the computed RoA estimate.

In order to asses the performance of the strategy in the
presence of measurement noise, the velocity measurements
obtained by each agent were corrupted with white noise.
Three cases with different standard deviations for the noise
were considered. In the three cases, the standard deviations
were set at 5, 15 and 25% of the mean flow velocity along
the boundary respectively. The mean performance parame-
ters for the three cases are given in Table 5. A degradation
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Table 4 Tracking and formation keeping performance for different
sensing grid sizes

No. of ASVs MTE (m) μ error (m) % s error

5 244 10.9 0.83

15 146 4.84 0.61

20 135 6.08 0.76

30 116 3.86 0.65

The given values are averaged over five runs for each grid size

of the tracking error can be observed with increasing noise.
However, it should be noted that the spatial scales considered
in these simulations are in tens of kilometers. Hence, an error
of ≈0.5km at high noise levels is quite satisfactory. It can
also be seen that, similar to the simulations using tank data,
the level of noise has little to no impact on the error between
expected and actual group behaviors (μ and s).

6 Experiments

In this section we evaluate the methodology proposed
in Sect. 3 employing our indoor laboratory experimental
testbed mCoSTe. We employ the multi robot (MR) tank
and a fleet of micro-autonomous surface vehicles (mASV),
both of which are constituents of the mCoSTe, to validate
the proposed tracking strategy. The mASVs are differen-
tial drive autonomous surface vehicles equipped with a
micro-controller board, XBee radio module, and an inertial
measurement unit (IMU). The vehicles are approximately 12
cm long and have a mass of about 45g each. Localization for
the mASVs is provided by an external motion capture sys-
tem. The MR tank which is 3× 3× 1m3 in size, is designed
to accommodate the operation of several mASVs and is able
to create time-independent flow fields that exhibit kinematic
and transport features similar to those observed in the ocean.
For additional details about the various components of the
mCoSTe and the quality of the flows that can be created

Fig. 10 The standard deviation commanded by the strategy

Table 5 Tracking and formation keeping performance at different noise
levels

Noise % MTE (m) μ error (m) % s error

5 129 0.6 0.144

15 462 1.3 0.139

25 539 2.4 0.166

using the mCoSTe, we refer the interested reader to (Larkin
et al. 2014).

Ideally, it is desirable to test the performance of the track-
ing strategy using real time flow velocity measurements
obtained by the mASVs. However, currently the mASVs
are not able to obtain flow velocity measurements that are
accurate enough to carry out the necessary computations.
Therefore, instead of creating an actual flow field in the the
MR tank, we overlay a simulated flow field on the surface
of the MR tank and obtain simulated flow velocity measure-
ments depending on the positions of the mASVs. This also
allows us to use virtual ASVs in combination with actual
mASVs in the experiments.

For the experimental validation of the strategy, we
employed 3 mASVs along with 7 virtual ASVs. One of the
mASVs was considered to be the center agent Pc. The same
flow field used for the simulations in Sect. 5.1 was used for

Fig. 9 Tracking an attracting LCS in the Santa Barabara channel. The black line shows the trajectory of Pc. The agents maintain a saddle straddle
formation around the center agent, a t = 2.1h, b t = 10.9h, c t = 17.2h, d t = 24.1h (Color figure online)
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Fig. 11 a–d The positions of the sensing grid overlaid on top of the
FTLE field of the simulated flow. The green triangle shows the position
of the mASV functioning as the center agent while the other mASVs
are shown as red triangles. The virtual ASVs are shown in white. e–h

Simulated flow and the virtual ASVs (blue) overlaid on the surface of
the MR tank. The actual mASVs can be seen in red (Pc), orange and
purple, a t = 0 s, b t = 7.8s, c t = 16.4s, d t = 22.9s, e t = 0 s, f
t = 7.8s, g t = 16.4s, h t = 22.9s (Color figure online)

Table 6 Tracking and formation keeping performance for five different
experimental runs

Run MTE (m) μ error (m) % s error

1 0.010 0.027 2.77

2 0.019 0.027 2.08

3 0.014 0.013 1.08

4 0.017 0.012 1.82

5 0.011 0.018 3.00

the experiment. Figure 11 shows snapshots of the tracking
performance in the tank. The top row of figures (a–d), shows
the positions of the sensing grid on the FTLE field of the flow
field considered. The mASV functioning as the center agent
is shown in green and the other three mASVs are shown in
red. The virtual ASVs are shown in white. In the bottom row
of figures (e–h), the simulated flowfield and the virtual ASVs
are overlaid on images of the mASVs in the MR tank. The
virtual ASVs are represented as blue triangles and the actual
mASVs can be seen in red, orange and purple. The mean
tracking error in this experiment was 0.014m. The experi-
ment was repeated five times for different initial conditions
and the results were recorded. The performance parameters
for these runs are given in Table 6.

7 Conclusions and future work

In this work, we developed a methodology to track attracting
LCS boundaries through the explicit on-board calculation of

local FLTE fields. We have demonstrated how robotics sys-
tems could be used track dynamical features in a flow field
that provide insights into the surrounding fluidic dynamics.
The proposed method was verified in simulations using ana-
lytical flow fields as well as actual flow velocity data. In
addition, the strategy was also verified using actual ASVs
in an indoor laboratory testbed. Theoretical guarantees for
the tracking and formation keeping strategies were also pre-
sented. We have also shown that the tracking and formation
keeping strategies are robust to measurement noise.

The formation keeping strategy presented here focuses on
spreading the sensing grid around the center agent such that
they cover the region of attraction of the boundary. Alter-
natively, we could spread the grid to an optimal value, that
would produce flow velocity measurements leading to the
best possible FTLE computations. However, obtaining such
an optimal value requires deeper analysis of the flow sur-
rounding theLCSboundary and is a direction for futurework.
In addition, we would also like to verify the proposed strat-
egy experimentally on actual flows in theMR tank. Currently
work is underway to develop a method to obtain real time
flow velocity measurements from the MR tank, that would
facilitate such an experiment.

Appendix: Estimating the region of attraction

In this section, we describe themethodology used to estimate
the region of attraction (RoA) of the boundary. This estimate
for the RoA is used in Sect. 3.2 to set the desired group
behavior of the sensing grid.
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Fig. 12 a The red line shows the line segment perpendicular to the
boundary through Pc. The length of the line is 2ς , b flow speed directed
towards the boundary on the line segment. Two maximums on either

side of the boundary, c maximums flow speeds are on the edges of the
line, i.e., the line segment is not long enough to capture the RoA (Color
figure online)

Even if we had an analytical description for the flow field,
obtaining a closed form expression for the RoA is extremely
difficult. In the case of a discrete representation of the flow
field (in the form of sparse velocity measurements), we have
no other option but to estimate the RoA numerically. To do
this, we consider the flow velocities of a set of points along a
perpendicular line segment across the boundary through Pc
(see Fig. 12a). The length of the line segment (l) is selected
to be 2 × ς , so that it extends a distance of ς on either side
of the boundary (note that ς is the standard deviation of the
sensing grid). Due to the attractive nature of the boundary, the
flow speed components on this line, towards the boundary,
typically has the distribution shown in Fig. 12b. The flow
speed towards the boundary increases on either side of the
boundary as we move away from it and then tapers off as we
approach the edge of the attracting region. Thus, as shown in
Fig. 12b, we approximate RoA as,

RoA = max (‖xm1 − xc‖, ‖xm2 − xc‖)

where xm1, xm2 are the points on the line on either side of the
boundary having themaximum normal flow. If themaximum
normal flows are at either end of the line, that indicates that
the RoA is larger than l/2, i.e., RoA > ς (see Fig. 12c).
Therefore, on such instances we set

RoA = α × ς

where α > 1.
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