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Abstract Classifying objects in complex unknown environ-
ments is a challengingproblem in robotics and is fundamental
in many applications. Modern sensors and sophisticated per-
ception algorithms extract rich 3D textured information, but
are limited to the data that are collected from a given loca-
tion or path. We are interested in closing the loop around
perception and planning, in particular to plan paths for better
perceptual data, and focus on the problem of planning scan-
ning sequences to improve object classification from range
data.We formulate a novel time-constrained active classifica-
tion problem and propose solution algorithms that employ a
variation of Monte Carlo tree search to plan non-myopically.
Our algorithms use a particle filter combined with Gaussian
process regression to estimate joint distributions of object
class and pose. This estimator is used in planning to gener-
ate a probabilistic belief about the state of objects in a scene,
and also to generate beliefs for predicted sensor observations
from future viewpoints. These predictions consider occlu-
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sions arising from predicted object positions and shapes.
We evaluate our algorithms in simulation, in comparison to
passive and greedy strategies.We also describe similar exper-
iments where the algorithms are implemented online, using
a mobile ground robot in a farm environment. Results indi-
cate that our non-myopic approach outperforms both passive
and myopic strategies, and clearly show the benefit of active
perception for outdoor object classification.

Keywords Active classification · Object classification ·
Sequential Monte Carlo · Monte Carlo tree Search

1 Introduction

Information gathering is an important family of tasks for
outdoor robots that is central to a wide variety of appli-
cations including agriculture, environmental monitoring,
mining, defence, surveillance, and disaster management.
Many information gathering tasks, such as searching (Gan
et al. 2014), localising (Cliff et al. 2015), and tracking (Xu
et al. 2013), naturally involve a planning component that
seeks to choose future observation locations in order to
maximise an information-theoretic objective. Object seg-
mentation and classification, however, is traditionally cast
as a passive perception problem where data are generated as
part of a disconnected navigation process and fed into a per-
ception processing pipeline. This paper advocates an active
approach for outdoor object classification, and attempts to
close the loop around planning and perception in this context.

Object recognition is fundamental to the general applica-
tion of outdoor robots. Manipulation tasks require the robot
to identify and localise objects of interest among many other
objects present in the natural world. Non-manipulation tasks,
such as semantic mapping, also require the robot to identify
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the class and pose of objects in order to perform useful work
outdoors. A good example is agricultural robotics, where
object recognition is applied in autonomous crop surveil-
lance (Hung et al. 2013), weeding (Underwood et al. 2015),
and harvesting (Bac et al. 2014).

Outdoor environments are challenging for robots because
they comprise complex 3Dgeometry, usuallywith little high-
level structure. Robots often rely on data from range sensors
to perceive this complex geometry. The problem of how to
collect range data from such sensors is vital to the accuracy
and efficiency of identifying objects. In this situation, choos-
ing the proper viewpoint of the robot is key to perception
quality because data from these sensors is highly viewpoint
dependent; variation in the position and orientation of the
sensor relative to the environment can result in large changes
in the distribution of 3D points in the scene. Achieving high-
quality perception is therefore strongly coupled to planning
robot motion, and there is exciting potential to dramatically
improve the quality of outdoor object classification through
an active perception approach.

In this paper, we focus on the problem of planning scan-
ning sequences to improve estimates of object class labels
from 3D laser scans. We are interested in unknown outdoor
scenes which are cluttered and potentially large. One imme-
diate challenge is how to quantify the benefit of any active
approach to this problem, in comparison to passive percep-
tion, in a meaningful way. An active approach may perform
better simply due to more available observations. More-
over, there is an inherent exploration/exploitation trade-off
between covering a large area (exploration) and improving
semantic understanding (exploitation).

Our idea is to both disentangle the exploration problem
and to construct a fair comparison by proposing a problem
formulation based on a resource-budgeted goal. We call this
the time-constrained active object classification problem.
The robot must navigate to a given location in its workspace
in a specified timeor distancewhilemakinghigh-value obser-
vations. This formulation is strongly motivated by many
applications, such as agriculture, where a natural roadmap
exists from which the robot may deviate in order to improve
perception, and where resource constraints could necessitate
refuelling at a known location. It is also then possible to
compare to passive strategies given the same budget.

Solving this problem involves two main technical chal-
lenges. First, it is necessary to consider planning and per-
ception algorithms in an integrated manner. In order for
planning and perception to operate in a closed loop, planning
algorithms must be efficient enough to operate online while
considering many possible viewpoints with uncertain utility,
in addition to traditional geometric path planning. Perception
algorithms must provide a principled estimate of such utility,
also online, while considering occlusions and possibly sparse
training data. Second, evaluation necessarily involves online

experiments with real robots. Simulation is limited in its abil-
ity to accurately model sensor noise and control uncertainty
that affect the quality of data in real robot systems. Thus,
algorithmic challenges are supplemented by systems chal-
lenges in performing experimental evaluation.

Our approach is to plan observation sequences using
Monte Carlo methods coupled with a classifier based on
non-parametric Bayesian regression. We assume a set of
known objects and attempt to recognise them in an out-
door scene, while obeying the time/distance constraint. We
present a novel planning algorithm,Monte Carlo active per-
ception (MCAP), that chooses viewpoints by considering
information gain, travel cost, time/distance budget, and goal
location. MCAP is non-myopic in that it simulates full paths
to the goalwithMonteCarlo rollouts, and combines the infor-
mation gained from these different paths. We treat the class
and pose of objects as partially observable states, and main-
tain state estimates as joint probability distributions. The
process of predicting future observations considers occlu-
sions by generating simulated point clouds based on the
current object beliefs. It makes no other assumptions about
objects (e.g., touching or stacked), only that samples from
their probability distributions can be obtained. MCAP is an
any-time algorithm and will continue to operate until a given
computation limit is exceeded.Althoughwe present the algo-
rithm in a replanning context, where a new plan is generated
following each sensor observation, it can also be used to plan
full sequences of observations if desired.

The information gain evaluation in MCAP is assumed
to be provided by a separate algorithm. Here, we present
a novel algorithm for jointly estimating object class and pose
that learns global feature vectors using Gaussian process
(GP) regression combined with a particle filter estimation
framework. The particle filter maintains a joint distribution,
represented as a collection of particles, for each observed
point cloud segment. Mutual information is computed using
the particle estimate based on expected observations.

We show that MCAP converges to the optimal value func-
tion in the limit, and then evaluate its performance both
in simulation and using an outdoor mobile robot in a farm
setting. Simulation experiments use synthetic data in man-
ually constructed and randomly constructed scenarios. We
compare MCAP with passive perception approximated by a
random walk (Patten et al. 2016), and by a myopic (one-step
greedy) strategy, for various time budgets. Algorithm per-
formance is measured using the Brier score, a well-known
measure of the quality of probabilistic estimates. Simulation
results indicate that MCAP outperforms passive perception
and themyopic strategywith increasing budget, which shows
that MCAP uses available time more effectively to improve
object classification.

Our experiments with a real robot demonstrate the
behaviour of our algorithms online in real-world conditions.
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We report results from a total of 12 trials comprising passive
perception, one-step greedy, and MCAP in two scenes. The
scenes include five object classes typical of those found on a
farm. The robot has a single, side-mounted 2D laser scanner
oriented vertically, and thus the robot must build 3D point
clouds from successive scans while the robot is in motion.
This side-mounted configuration ismotivated by applications
in agriculture (Bargoti et al. 2015; Rosell and Sanz 2012) and
is challenging because simple straight-line paths generate
limited views of objects and are unlikely to lead to sufficient
data for classification. Algorithm performance in these trials
is similar to the simulation experiments.

This paper offers four main contributions. First, we intro-
duce a novel non-myopic planning algorithm for active object
classification. Second, we provide a supporting perception
framework that estimates object class and pose distributions
jointly in a principled manner. Third, we establish a prob-
lem formulation designed to directly compare passive and
active perception. Finally, we report extensive experimental
results to evaluate ourmethods.Webelieve that our real-robot
experiments are thefirst demonstration of online active object
classification from 3D range data in the outdoor setting.

The remainder of the paper is organised as follows.
Section 2 discusses related work and Sect. 3 defines the
time-constrained active object classification problem. Sec-
tion 4 presents the MCAP algorithm. Section 5 describes
the classification and estimation algorithms. Sections 6 and
7 report experimental results. The paper concludes and dis-
cusses future work in Sect. 8.

2 Related work

The problem of classifying 3D objects with range sensors is
traditionally performedwith a predetermined set of objects of
interest, aswe do here, but using data collected offline or from
preselected locations (Douillard et al. 2014). Recent interest
has focused on long-term and long-range operation (Collet
et al. 2015).However, the passive perception approachmeans
that these methods do not perform online decision making to
improve data quality during execution.

The Monte Carlo planner we propose for online decision
making is related to the large body of work in the area of
MonteCarlo state estimation and planning. SequentialMonte
Carlo (SMC) methods (e.g., particle filters) (Andrieu et al.
2010; Doucet et al. 2001) are commonly used for inference
in state space models. SMC methods are well established in
robotics and are now a topic of resurgent interest for various
applications (Lindsten and Schön 2013).

One relatively recent application is planning in game
AI, where determining the value/cost of a search node in
a large search tree is treated as a state estimation prob-
lem and solved using SMC methods. Monte Carlo tree

search (MCTS) (Browne et al. 2012) is an important exam-
ple that very recently has achieved success in solving the
notoriously difficult game of Go (Silver et al. 2016). Pre-
viously, we have applied MCTS to the robotics domain for
information gathering with an aerial glider (Nguyen et al.
2016). MCTS has also been applied to object recognition
where online planning minimises the costs of movement and
incorrect decisions (Lauri et al. 2015).

We formulate a similar problem, but base our approach
on the partially observableMonte Carlo Planning (POMCP)
algorithm, proposed by Silver and Veness (2010), to explic-
itly consider the partially observable states of objects. Similar
ideas have been used for general active sensing problems
in combination with information maximisation (Lauri 2016;
Lauri and Ritala 2014). Our MCAP algorithm extends
POMCP to the specific problem of active object classifi-
cation with state uncertainty, and similarly exploits sam-
pling to compute an information-theoretic reward function.
However, instead of using a black-box simulator to gener-
ate observations, we develop a sensor model to explicitly
predict observations. The immediate rewards (information
gained by taking an observation) are stored at each node
in the search tree. Unlike POMCP, the rewards are used
to evaluate mutual information for observation sequences,
and we show that equivalent convergence properties are
retained.

Outdoor active perception is typically studied in the con-
text of information gathering by maximising the rate of
information gain, which has been applied in areas such as
exploration (Bourgault et al. 2002), search (Gan et al. 2014),
tracking (Xu et al. 2013), search and rescue (Pineda et al.
2015), active localisation (Vander Hook et al. 2015), active
underwater inspection (Hollinger et al. 2013), environmen-
tal monitoring (Binney et al. 2013), object detection (Vélez
et al. 2012), and model construction (Blaer and Allen 2007;
Fentanes et al. 2011). In these tasks, actions are chosen by
predicting the information gain of observations, commonly
measured by the resulting reduction in uncertainty (entropy)
and quantified with mutual information.

Solutions to the related informative path planning prob-
lem (Guestrin et al. 2005; Krause et al. 2008) provide
provable guarantees for information gain planning by lever-
aging the property of submodularity (Nemhauser et al. 1978).
Although maximising mutual information is known to be a
submodular objective function, our problem does not satisfy
a number of other requirements, such as knowing all possible
observation locations beforehand. This class of approaches
is not applicable to our case.

Outdoor active object classification is related to work in
passive perception that studies multiple object recognition
from multiple views (Faulhammer et al. 2015; Tang et al.
2012; Xie et al. 2013) and shows that the availability of
multiple views can improve recognition performance (Kara-
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sev et al. 2012). One of the challenges is how to associate
the data acquired from different observations to the objects
in the scene (Wong et al. 2015). An approach is to per-
form data association as a pre-processing step (Patten et al.
2015, 2016; Wu et al. 2015). Another challenge is that
estimating the pose and class of objects from multiple obser-
vations involves estimating a state that is a mix of continuous
and discrete variables. We approach this problem using a
non-parametric Bayesian method combined with a particle
filter.

Our development of a classifier based on GP regression
is motivated by the need for robust performance in the case
of limited training data. Supervised classifiers use training
sets that typically are collected and labelled by hand, which
is time-consuming in the field robotics context. Our method
is inspired by the work of Huber et al. (2012) who learn
object models with GP regression. Their method learns the
likelihood of image features of predefined object models for
camera parameters. We apply the approach to 3D data by
learning global features of point clouds, generalise the task
to object classification, and analyse the performance with
dimensionality reduction.

Active perception has a long history in robotics, begin-
ning with active vision (Bajcsy 1988; Aloimonos et al.
1988), which is still of considerable interest (Chen et al.
2011). Current research in this area has a strong focus on
indoor applications and finding the next-best-view. Often,
this is formulated as a state estimation problem (Denzler
and Brown 2002; Huber et al. 2012; Meger et al. 2010).
The choice of classifier, in addition to viewpoint, has also
been explored (Potthast et al. 2015), as well as variants
such as active object detection (Becerra et al. 2016). Work
that is most similar to ours considers a long planning hori-
zon and a time budget (Eidenberger and Scharinger 2010;
Atanasov et al. 2014). Like ours, this work formulates the
problem as a partially observable Markov decision pro-
cess (POMDP). However, our approach exploits Monte
Carlo methods to avoid full-width expansion in the search
space.

A main challenge in active classification is to identify
objects by selecting only a subset of possible views, and in the
presence of occlusions (Wu et al. 2015; Patten et al. 2016).
Many approaches are limited to observing a small number
of objects (often household) with viewpoints constrained to
an orbit around the scene (Huber et al. 2012; Denzler and
Brown 2002; Eidenberger and Scharinger 2010). In contrast,
we consider the problem of moving in a large outdoor envi-
ronment with a potentially large number of objects. For this
problem it is not meaningful to restrict the number of obser-
vations; rather, it is more intuitive to constrain the amount of
available time for a robot to move in an environment while
making observations. Therefore, we formulate a new prob-
lem that formalises this objective.

3 Problem formulation

In this section, we define the time-constrained active object
classification problem. We introduce the problem in general
form, and then model it as a partially-observable Markov
decision process. The algorithms presented in subsequent
sections provide a solution to this POMDP.

3.1 Time-constrained active object classification

The objective is for amobile robot to actively classify uniden-
tified objects in an unknown environment while arriving at
a goal location within a strict time or distance budget. For
this problem, the robot is equipped with a range sensor and
it is deployed in an environment with an unknown number
of static objects with unknown identities.

The environment is composed of a finite number of objects
where each object is assumed to belong to one of a set of
classes � ∈ L = {1, 2, . . . , NL} of size NL . We assume a
known set of object models M = {mi }NM

i=1 of size NM that

are partitioned into independent subsets C� = {mi }N�

i=1 ⊂ M
to define each class �. Each subset C� ⊂ M is composed
of N� models. The classes are independent subsets and each
object model belongs to only one set. In each set, the number
of models may not necessarily be the same.

Let t index time such that the total number of observed
objects at time t is denoted by Nt . The state of each observed
object n ∈ {1, . . . , Nt } is maintained in a global belief
Bt = {btn}Nt

n=1. Each btn = (N (μt
n,Σ

t
n), p

t
n) is a prob-

abilistic interpretation of an object. The x-y location and
orientation of an object are assumed to be normally dis-
tributed with mean vector μt

n = [μt
n,x , μ

t
n,y, μ

t
n,θ ] and

covariance matrix Σ t
n = diag(σ t

n,x , σ
t
n,y, σ

t
n,θ ). The vector

ptn = [ptn,�]NL
�=1 maintains the probability for each class,

where

ptn,� = Pr(Ln = �), (1)

for the discrete random variable Ln , andwith
∑NL

�=1 p
t
n,� = 1

and ptn,� ≥ 0 ∀ t, n, �.
The pose of the robot at time t is given by xt = (xt , yt , θ t )

and represents the robot’s x-y location and orientation. The
path travelled by the robot from its initial location x0 and
ending at the current location xt is denoted by the sequence
X0:t = [xi ]ti=0. At each location, the robot makes a 3D

point cloud observationZ t = {ztn}Nt

n=1 that is partitioned into
subsets (using 3D segmentation) such that each ztn ∈ Z t cor-
responds to an object. Every observation updates the belief
Bt to a new belief Bt+1 by modifying each btn . Observations
also update a global 3D occupancy grid Gt composed of vox-
els that have a state of free, occupied, or unknown.

123



Auton Robot (2018) 42:391–421 395

The robot is given a budget B, which is the maximum
amount of time it can operate (or distance it can travel) before
it needs to arrive at the goal xG . The budget reduces accord-
ing to a cost function C(xt , xt+1) that measures the time
(or distance) to travel between two locations or CP (X0:t ) =
∑t

i=0 C(xi , xi+1) that measures the time (or distance) to tra-
verse a path. At each time, the remaining budget is given by
Bt = B − CP (X0:t ). We define t = tE for when the budget
is exhausted, in other words BtE = 0.

The set of robot locations over time forms a path and
the aim is to select a path such that xtE = xG as well as
maximising a measure of informativeness given by a utility
function. The utility of observing object n from a candidate
path Xt :tE = [xi ]tEi=t is denoted Ub(Xt :tE , btn,Gt , xG, Bt ).
This is a function of the candidate path, the object’s state
estimate, the occupancy grid, the goal, and the remaining
budget. If the path cannot reach the goal within the remaining
budget then it has utility 0. Objects are assumed independent;
therefore, the total utility of observing all objects is

UB(Xt :tE ,Bt ,Gt , xG, Bt ) =
Nt
∑

n=1

Ub(X
t :tE , btn,Gt , xG, Bt ).

(2)

For online planning, the robot replans after each observation.
Therefore, at each stage the robot moves to the first location
on the path that yields the largest expected utility.

With the outline above, the problem is defined as follows.
Given the current pose xt , the current belief Bt , the occu-
pancy gridGt , the goal location xG , and the remaining budget
Bt , plan a path to the goal such that xtE = xG by iteratively
selecting the first location of the path that maximises the
utility function

X∗ = argmax
Xt :tE

[
UB(Xt :tE ,Bt ,Gt , xG, Bt )

]
. (3)

3.2 Sequential decision-making formulation

The underlying classification problem is considered to be a
stochastic process that obeys the Markov property. Objects
are observed, from which their class and pose are estimated.
The true state of an object is only inferred from noisy obser-
vations, therefore we model the system as a POMDP. In our
approach we assume the action-value function is known (or
well approximated) and so we do not consider model uncer-
tainty, for which reinforcement learning techniques would
apply (Sutton and Barto 1998). Instead we focus on state
uncertainty with a POMDP, defined as follows.

A set of unique states S t is defined at each time t . Each
state st = (xt , B̃t )∀ st ∈ S t comprises the robot’s pose and a
set of object states B̃t = {b̃tn}Nt

n=1. Each b̃
t
n = (x̃n, ỹn, θ̃n, �̃n)

is a single x location, y location, orientation, and class label
that can be considered as a sample of the object belief btn ; B̃t

can be considered as a set of samples of Bt . The belief state
characterises the probability distribution over the state space
S t . The probability assigned to a state st is denoted belt (st )
where 0 ≤ belt (st ) ≤ 1 and

∑
st∈S t belt (st ) = 1.

The robot is given a set of discrete actions A where each
action a ∈ A stochastically affects the robot’s state. The next
pose xt+1 = A(xt , at ) is determined by the action process A,
characterised by the probability distribution p(xt+1|xt , at ).

With each action, the robot receives a single observation
Z t+1. In general, the observation is characterised by the path
from xt to xt+1, the object beliefs, and the action taken. The
observation function O(st , at ,Z t+1) = p(Z t+1|st , at ) rep-
resents a probability distribution over possible observations,
given action at was taken from state st . When an obser-
vation is made, the belief state is updated belt+1(st+1) =
E(belt (st ),Z t+1) through an estimation process E (defined
later in Sect. 5). Together, the action process A and estimation
process E represent a full update process of the state.

The transition function T specifies the probability of tran-
sitioning to a new state. Given action at is taken in state
st , the transition function is defined as T (st , at , st+1) =
p(st+1|st , at ).

The reward function R(st , at ) assigns a numerical value
to quantify the utility of performing action at from state st

(defined later in Sect. 4). For active object classification,
this reward can only be determined by anticipating future
observations for a given state, which we specify through a
prediction function, Ẑ t = P(st , at ).

The goal of the robot is to maximise the sum of rewards
collected along a path from the current location to the goal
by sequentially selecting actions. The robot should consider
the value of actions while considering the uncertainty of
the underlying belief state. Therefore, we define the reward
for the belief state as Rbel(belt (st ), at ) = E[R(st , at )] =∑

st∈S t belt (st )R(st , at ). In addition, the robot should con-
sider a non-myopic approach by optimising the sum of future
rewards along a path to the goal. As such, the utility func-
tion (2) can be defined as the sum of cumulative rewards

UB(Xt :tE ,Bt , xG , Bt ) =
tE∑

i=t

ηi Rbel(bel
i (si ), ai ), (4)

where each action at , . . . , atE results in the updated belief
with corresponding robot positions xt+1, . . . , xtE in Xt :tE ,
and 0 < η ≤ 1 is a discount factor that weights the impor-
tance of earlier actions over later actions.

Thus, substituting (4) into (3), the objective is as follows.
Plan a path to the goal such that xtE = xG by iteratively
selecting the first location (or corresponding action) on the
path that maximises the total expected cumulative reward
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Fig. 1 Illustration of the five main stages of the MCAP algorithm

X∗ = argmax
Xt :tE

[ tE∑

i=t

ηi Rbel(bel
i (si ), ai )

]

. (5)

4 Monte Carlo active perception

In this section we present the Monte Carlo active perception
algorithm. MCAP plans observation actions non-myopically
by building on ideas from Monte Carlo tree search (Browne
et al. 2012), a method for stochastic planning that constructs
a search tree using random samples in the decision space.
MCTS approximates the true value of an action by simulat-
ing, or rolling out, a subsequent chain of actions according
to a default policy, and then uses reward statistics to adjust
the tree search policy. Many rollouts are performed, and thus
the expected value of a tree node approaches its true value.
Tree search uses best-first search, enabling computation time
to be spent in the most promising areas of the search space.

The MCTS algorithm assumes that the environment is
fully observable. However, in many problems, such as active
perception, this is not the case. Thework bySilver andVeness
(2010) proposes the POMCP algorithm, which extends
MCTS to partially observable environments. The key idea
is to represent action and observation histories with the tree
nodes, draw samples from the belief space, and then proceed
with the standard MCTS algorithm.

MCAP is an extension of MCTS and POMCP for active
perception, where the states of objects are partially observ-
able. In contrast toPOMCP,MCAPdoes not generate random
observations with a black box simulator. Instead, it predicts
maximum-likelihood observations given sampled states and
sensor model. Our reward function uses mutual information
(Sect. 4.2), which requires solving an intractable integral for
conditional entropy. To deal with this problem, we exploit
sampling to update the integral calculation with each iter-
ation. Updating mutual information with each observation
(due to the samples), allows the reward value to be collapsed
into the action transition. Thus, the search tree branches

only on actions, and not on observations. This generates a
deep and focused tree that would otherwise be shallow due
to the excessive branching factor at chance (observation)
nodes.

Furthermore, predicted observations are computed differ-
ently during tree search and rollouts. Belief updates during
tree search (from the root to a leaf node) use maximum-
likelihood observations (Sect. 4.4). Rollouts from the leaf
node update the belief using offline data, selected from
simplified geometric occlusion reasoning (Sect. 4.5). These
rewards are maintained separately by tree nodes, motivating
further modification in reward computation.

We first give an overview of the MCAP algorithm. Then
we define its reward function and show its convergence prop-
erties. We then present the viewpoint estimation methods
used in our implementation.

4.1 Algorithm overview

The main stages of MCAP are shown in Fig. 1. Intuitively,
MCAP builds a tree where nodes represent viewpoints. First,
a node is chosen for expansion in the select stage using a vari-
ant of best-first search as in MCTS. Then, a sample is drawn
from the belief state. Using the sample, the belief and inter-
nal node rewards are updated for each observation along the
path from the root to the chosen node. Next, the chosen node
is expanded by adding a new child node to the tree follow-
ing a random action. The simulate stage performs a rollout
of random actions for the entire planning horizon (until the
time budget is exceeded). The final reward resulting from the
expansion is backed-up to update the expected future reward
for each node along the path from the new child node to
the root. This process is repeated until available computation
time is exceeded. The algorithm finishes by returning the
child of the root node (or corresponding edge action) with
the highest expected reward.

MCAP is listed as pseudocode in Algorithm 1. The algo-
rithm takes as input the current belief state, the occupancy
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Algorithm 1 Monte Carlo active perception (MCAP)
1: procedure MCAP(bel(s),G, xG , B, β)
2: initialise tree V with root node v0 from initial robot pose
3: while within computation budget β do
4: V ← Select(V )

5: Brem ← B − Cp(V) 	 compute remaining budget
6: SampleExpandSimulate(V,V, bel(s),G, xG , Brem)

7: BackUp(V,Vend)

8: end while
9: return argmax

vc∈Children(v0)

[
Q̄vc

]

10: end procedure

11: procedure Select(V )
12: V ← v0, v ← v0
13: while v not terminal node do
14: v ← argmax

vc∈Children(v)

[
Q̄vc + cuct

√
2 log(Wv)

Wvc

]

15: V ← V ∪ v 	 add node to path
16: end while
17: return V
18: end procedure

19: procedure SampleExpandSimulate(V,V, bel(s),G, xG , Brem)
20: s ∼ bel(s) 	 sample state for each object
21: x ← robot pose from s, X ← x
22: for all v ∈ V do 	 compute rewards at nodes on path
23: a ← action from previous to current node
24: x ← A(x, a)

25: X ← X ∪ x
26: bel(s) ← update with predicted observation at x
27: Rv ← Wv Rv+R(s,a)

Wv+1
28: Wv ← Wv + 1
29: end for
30: Bsim ← Brem, rsim ← 0, τ ← depth of v from v0
31: while Bsim ≥ 0 do 	 simulate to goal, compute rollout reward
32: a ← SelectAction(G, xG , Bsim)

33: x ← A(x, a)

34: X ← X ∪ x
35: bel(s) ← update with predicted observation at x
36: R ← R(s, a)

37: if first iteration then
38: create new node vnew = 〈X , 1, R, 0, 0〉 and add to V
39: end if
40: rsim ← rsim + ητ R
41: Bsim ← update with travel cost of a
42: τ ← τ + 1
43: end while
44: rvnew ← rsim
45: end procedure

46: procedure BackUp(V, vleaf)
47: v ← vleaf, τ ← depth of vleaf from v0
48: while τ ≥ 0 do
49: Q̄v ← ητ Rv + 1

Wv

(
rv + ∑

vc∈Children(v)

Wvc Q̄vc

)

50: v ← Parent(v)

51: τ ← τ − 1
52: end while
53: end procedure

grid, the goal location, the current travel-time budget remain-
ing, and a user-defined computation time allowance. Each
node in the search tree V , defined as v = 〈Xv,Wv, Rv, rv,

Q̄v〉, represents a history of actions.Xv is the history of robot
poses. Wv is the visit count. Rv is the immediate reward of
the node representing the value of the action from the parent
node. This value is modified with independent calculations
each time the node is visited. rv is the reward for a rollout
from the initial simulation when the node was added. This
accounts only for the accumulated reward between the leaf
node and the terminal state. Finally, Q̄v is the weighted sum
of the immediate reward and all child node rewards. Our
representation differs from standard MCTS by the defini-
tion of incremental rewards between nodes. The reason is
that it allows the mutual information reward for a node to
be updated with each iteration, separately from other nodes.
As a result, the average rewards Q̄v are defined differently,
through recursion, in order to retrieve the equivalent average
value.

The algorithm proceeds by initialising the search tree V
with the root node v0 (line 2). The algorithm then iterates
until the desired computation time (an input parameter) is
exhausted (line 3). In the limit, the tree would grow to a max-
imum depth that depends on the budget, but in practice this
may take a considerable amount of time. Active object classi-
fication benefits significantly fromonline replanning because
real data improves the estimates, which in turn enables bet-
ter paths to be planned. In our implementation we plan for a
fixed number of iterations of 50, before taking an action and
then replan while considering the new observation.

At each iteration of the algorithm, a node is chosen for
expansion by the function Select and its path from the
root is returned (line 4) according to the upper confidence
bound (UCT) algorithm (Kocsis and Szepesvári 2006)

v+ = argmax
vc∈Children(v)

[

Q̄vc + 2cuct

√
log(Wv)

Wvc

]

. (6)

This sums an exploitation value (first term) for promising
nodeswith high value and an exploration value (second term)
for nodes visited less frequently. The parameter cuct balances
exploration/exploitation and controls the trade-off between
the solution quality and computational complexity.

In MCAP, the remaining budget from the chosen node
to the terminal state is computed (line 5). With the updated
budget, the node is expanded by a simulation in the function
SampleExpandSimulate to compute an expected reward
(line 6). First, a set of object states are sampled from the
initial belief state (line 20). Then the nodes along the path
from the root to the selected node are traversed, updating the
belief with each transition, and updating immediate rewards
Rv for the sampled state (line 27). Once the chosen node
is reached, a Monte Carlo rollout is performed that selects
actions randomly. Actions from A are selected by the func-
tion SelectAction such that the subsequent path reaches
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the goal (without collisions in G) within the remaining time
budget (line 32). Thefirst node from thefirst action is added to
the tree V as a new child node of the expanded node (line 38).
The remaining actions create a path to the goal, and a final
reward is computed from the final state (line 40). The final
reward is stored at the new node as rv (line 44).

The simulated reward is then propagated from the
expanded node to the root in the function BackUp (line 7).
The cumulative reward of each node is updated so that it
stores the average reward of all rollouts starting at the node. In
MCAP, the rewards are defined incrementally and therefore
they are computed recursively by summing the immediate
reward of the node and the rewards of its child nodes (all
sub-trees), and appropriately normalising (line 49). This is in
contrast to standard MCTS, which averages the total reward
of all rollout paths that include the node.

Lastly, the algorithm iterates by expanding a new node
with a new set of object samples. The algorithm terminates
when the allowed computation time is reached. When the
algorithm finishes, or if it possibly terminated prematurely
by a user, it returns the child node of the root node with
highest expected reward (line 9).

4.2 Reward function

We define the reward function for active object classification
as the combination of increase in mutual information and
exploration of unknown space. This could be used for other
tasks where mutual information is an appropriate measure.

4.2.1 Information reward

Let Zn be a random variable to represent observations.
Mutual information for a single object n is defined as

I (bn; Zn) = H(bn) − H(bn|Zn),

= H(bn) −
∑

z̃n

p( z̃n)H(bn|Zn = z̃n), (7)

where H(bn) is the entropy of an object belief, H(bn|Zn =
z̃n) is the entropy conditioned on the observation z̃n , and
p( z̃n) is the probability of the observation. Entropy compu-
tation for our belief definition is provided in “Appendix 1”.

Computing the conditional entropy requires summing
over all possible observations,which is intractable. InMCAP,
each iteration samples a new state s from the belief state and
each sample can be used to generate a predicted point cloud
from the prediction function Ẑ = P(s, a) defined previously
in Sect. 3.2. Thus, given many samples, the summation in (7)
can be approximated.

Let bτ
n denote an object belief for node v at depth τ given

the sequence of observations from the root to v, generated
according to the sample s. Then, withWv iterations (number
of samples), the accumulated reward can be computed as

I (bτ
n) = WvH(bτ−1

n ) −
∑

z̃n

H(bτ−1
n |Zn = z̃n), (8)

This defines an incremental information reward at node v

as the mutual information with respect to the belief of its
parent node. The total mutual information in (7) is given by
averaging over all samples, as is done in MCAP (line 27).

Objects are assumed independent; therefore the total infor-
mation content for all objects at a node, with belief state bτ

n ,
sample s, and action a, is given by

IC(s, a) =
N∑

n=1

I (bτ
n)

H(b0n)
. (9)

Dividing the entropy of the object belief by the entropy of
the parent node b0n scales the total information content at any
node in the tree to lie within the interval [0, 1].

4.2.2 Exploration reward

The onboard sensor is considered to have a limited range and
field of view (FoV). This means the environment is never
fully observed from a single observation. Consequently,
objects will only ever be inspected if they have been detected.
To guide the robot to actively seek new objects, we introduce
the concept of exploration

EX (s, a) = ΔVunknown
Vtotal

. (10)

The numerator ΔVunknown measures the increase of observ-
able volume of unknown space for an observation at a node
with respect to the parent node in a similar way to (8). The
denominator Vtotal measures the total volume of the work
space. Dividing by Vtotal enforces exploration to be a value
in the interval [0, 1] because it measures the proportion of
unexplored space within the total workspace. Determining
ΔVunknown exploits the occupancy grid G by counting the
number of unknown cells that have a clear line-of-sight to
the sensor. The total volume is simply given by the dimen-
sions of the environment.

4.2.3 Combined reward function

The reward function is given by combining (9) and (10)

R(s, a) = α IC(s, a) + (1 − α)EX (s, a), (11)

where α is a tuning parameter that balances between explo-
ration (α = 0) and exploitation (α = 1). Scaling the
information content in (9) and exploration in (10) restricts
the final reward to the domain [0, 1].
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4.2.4 Recursive reward computation

The motivation for storing immediate rewards at each node
is so that each iteration can separately update the conditional
entropy term in (7). In general, MCTS does not store imme-
diate rewards but instead stores the sum of rewards from all
rollouts that pass through the node. The empirical average
can be computed incrementally by

Q̄MCTS
v = (Wv − 1)Q̄v + qi

Wv

(12)

where qi is the total cumulative reward of the simulation from
the root to a terminal state.

For the case of incremental rewards between nodes, as in
MCAP, we propose to compute the average rewards recur-
sively according to

Q̄v = ητ Rv + 1

Wv

(

rv +
∑

vc∈Children(v)

Wvc Q̄vc

)

. (13)

This differs from (12) in that rewards are defined by the sub-
sequent action sequences from a node, instead of the full path
from the root to a terminal state. That is, nodes comprise their
immediate reward plus the average of all sub-tree rewards.
Nodes do not consider the accumulated rewards for sequence
of actions corresponding to the portion of the path higher in
the tree. The discount factor η is applied at each depth τ .
These are also applied to the incremental values accumu-
lated for rv in MCAP (line 40) to correctly weight the overall
rollout value.

4.3 Analysis

In the original UCT algorithm, setting cuct = 1/
√
2 is known

to satisfy Hoeffding’s inequality which admits the bound
O(log(n)/n) on the rate of regret (Kocsis and Szepesvári
2006; Auer et al. 2002). This is derived under the assumption
that the expected values of the averages converge for reward
values in the interval [0, 1]. In MCAP, reward calculation is
decomposed so that the conditional entropy term in (7) can
be directly updated and this motivates the recursive formu-
lation in (13). We show this formulation is equivalent to the
empirical average and subsequently that MCAP maintains
the same bound on the rate of regret as UCT.

Lemma 1 The average reward value

Q̄v = ητ Rv + 1

Wv

(

rv +
∑

vc∈Children(v)

Wvc Q̄vc

)

,

for node v at depth τ in the search tree ofMCAP is equivalent
to the empirical average of all simulations starting from the

node, Q̄v = 1
Wv

∑Wv

i=1 R
i
v . Here, Wv is the visit count of the

node, which is equivalent to the number of simulations. Ri
v =∑τmax

j=τ ηi r ij is the cumulative reward of the i
th simulation from

the node to a terminal state at depth τmax. The cumulative
reward is defined as the discounted sumof immediate rewards
r ij = R(s, a).

The proof of this is given in “Appendix 2”. We now state our
convergence theorem.

Theorem 1 For suitable choices of cuct and a sufficiently
large number of samples n, the bias of the estimated expected
reward Q̄v is O(log(n)/n).

Proof As the number of samples increases, the empirical
averages of all immediate node rewards converge to the true
mean value. By Lemma 1, the expected payoffs Q̄v are the
expected averages of all simulations starting at a node. There-
fore, the assumption in (Kocsis and Szepesvári 2006) that
the expected values of all rollout returns converge is satis-
fied. The average reward values lie in the interval [0, 1] due
to normalisation in (9) and (10) which implies that the tail
conditions are satisfied with cuct = 1/

√
2 by Hoeffding’s

inequality. The remainder of the proof follows from (Kocsis
and Szepesvári 2006). ��

4.4 Predicting point clouds for viewpoint evaluation

The reward function assumes predicted point clouds from
future viewpoints (as defined in Sect. 3). We define the
prediction function P(s, a), listed in pseudocode as Algo-
rithm 2, that takes as input a set of object states and outputs
an expected point cloud observation Ẑ . This method uses
ray tracing that is similar to our previous work (Patten et al.
2016).

4.4.1 Predicting occupied space

The first step to predict visible point clouds is to determine
which cells in the occupancy grid belong to which object.

Algorithm 2 Point cloud prediction for tree nodes
1: procedure P(s, a, G, Γ )
2: Ẑ ← ∅ 	 empty point cloud
3: xnew ← A(x, a)

4: {G̃1, . . . , G̃n} ← assign occupied cells to objects
5: for all objects n do
6: xrel ← relative viewpoint to object
7: zforw ← CastForward(xrel, γn,mi )

8: transform zforw to world frame
9: zback ← CastBackward(xnew, zforw,G, G̃n)

10: Ẑ ← Ẑ ∪ zback
11: end for
12: return Ẑ
13: end procedure
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Each object is associated a set of occupied cells denoted by
G̃n ⊂ G (line 4). Cells can only belong to one object, which
implies that the sets are mutually exclusive. Assigning a cell
gi = [gi,x , gi,y, gi,z] to an object is done by computing a
scalar weight value according to

ωi,n =
(
(gi,x − x̃n)2 + (gi,y − ỹn)2

)−1/2

∑N
n=1 ωi,n + εnon

. (14)

The weights are proportional to the distance between the
centre of the grid cell and the centres of the objects; larger
for objects that are nearer and smaller for objects that are
further. The weights are normalised by dividing by the sum
of the weights so that they can be interpreted as a probability.
Cell ownership is performed by sampling an object index
from the cumulative probability distribution.

A small probability is introduced to allow association of
cells to no observed object. This is useful in situations involv-
ing real sensorswhere sensor noisemay temporarily generate
artificial returns. The probability of assigning a cell to no
object is controlled by the parameter εnon.

4.4.2 Predicting point clouds

Once cells are assigned to objects, the algorithm then deter-
mines the expected point cloud observation for each object
independently. For object n, surface points are determined
by casting rays from the sensor location to an occupancy
grid representation of the object. For clarity, let the future
location of the robot, as determined by the input action a,
be denoted xnew = A(x, a) and let xrel denote the relative
location between xnew and the object. In an offline phase, a
3D occupancy grid γmi ∈ Γ is created for each object model
mi ∈ M. Online, the model that matches the object belief of
the sampled state, denoted by γn,mi , is selected and rays are
cast from xrel in the CastForward function (line 7). In this
function, rays are cast according to the characteristics of the
sensor. Any ray that intersects with an occupied cell in γn,mi

is maintained in the set of points zforw at the corresponding
intersection point with the cell. This set of points represents
the observable points on the surface of the object.

The points in zforw are processed individually to determine
which points are visible with respect to the global occupancy
grid G. The points are first transformed to the world coordi-
nate frame and then rays are cast to the sensor location xrel in
the function CastBackward (line 9). Any point that does
not intersect with an occupied cell is stored in the set zback.
Careful consideration is taken not to exclude points that only
intersect with the occupied space belonging to the object of
interest. Thus, zback consists of points corresponding to the
rays that have no intersection or only intersect with occupied
cells associated to the object in G̃n .

The procedure for predicting the visible points is per-
formed for each observed object. The point clouds are com-
bined together to form a complete observation Ẑ (line 10)
and this is returned by the prediction function (line 12).

4.5 Predicting point clouds for rollouts

The algorithm outline above computes precise point clouds
and is used for computing future rewards. However, it can
be time consuming, which is prohibitive when many rollout
simulations need to be performed. For this reason, we present
an alternative method for use with the rollouts.

The point cloud prediction procedure for rollouts is listed
in Algorithm 3. First, occupied cells are assigned to each
object, as in Algorthim 2. Then, the 3D convex hull is com-
puted for each set of occupied cells using the centroids of
the cells as points (line 5). These are then projected to a 2D
plane (line 6).

Each object is then analysed sequentially. The function
Overlapdetermines the occlusion level of an object by using
the projected convex hulls (line 9). First, it determines which
other objects can potentially occlude the object by comput-
ing the distance from the observation location xnew to the
centre of each convex hull. Any object that is nearer to xnew
than object n is an occluding object. Next, the area of overlap
between the combined convex hulls of the occluding objects
with the convex hull of object n is calculated. This calcu-
lation outputs a scaler value o, indicating the proportion of
occlusion for the object.

The occlusion level o, along with the relative observation
location xrel, and the class of the object �̃n (determined from
s̃) are input to a lookup table (line 10). This returns a point
cloud that is then combined with the point clouds of other
objects (line 11). The combinedpoint cloud is finally returned
at the end of the algorithm (line 13).

The lookup table is constructed offline in a training phase.
Object models are observed from random locations and
the point clouds are stored with their relative observation

Algorithm 3 Point cloud prediction for rollouts
1: procedure P ′(s, a, LookupTable)
2: Ẑ ← ∅ 	 empty point cloud
3: xnew ← A(x, a)

4: {G̃1, . . . , G̃n} ← assign occupied cells to objects
5: H ← 3D convex hulls for each set of occupied cells
6: Ĥ ← project convex hulls to plane
7: for all objects n do
8: xrel ← relative viewpoint to object
9: o ← Overlap(n, Ĥ, xnew)

10: zlookup ← LookupTable(o, xrel, �̃n)
11: Ẑ ← Ẑ ∪ zlookup
12: end for
13: return Z̃
14: end procedure
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location. To consider occlusion, the object models are also
observed with random occlusions with specific size such
that the observed point clouds represent an occluded point
cloud with known occlusion level. Using the lookup table in
Algorithm 3 simply requests a point cloud for a given class,
observation location, and occlusion level. In our experiments,
wediscretise the occlusion to the levels {0, 0.2, 0.4, 0.6, 0.8}.

5 Class and pose estimation

MCAP requires the availability of an application-specific
algorithm to generate and update belief states. Here, we
define an estimator that computes this belief state as a joint
distribution of object class and pose. MCAP uses this esti-
mator in two contexts: (1) when a real observation is taken
by an onboard sensor, and (2) when a simulated observation
is created using the point cloud predictor.

Our estimation algorithm consists of a particle filter com-
bined with a classifier based on GP regression. An informal
description of the estimation process is as follows. First, a
point cloud is provided as input (real or simulated) and is
segmented such that each segment corresponds to a single
object. The choice of segmentation algorithm is not criti-
cal to the description of the estimator; in our implemented
system we use a simple nearest-neighbour approach. Then,
a set of particles is assigned to each point cloud segment.
Each particle corresponds to a single class/pose hypothesis
for its associated point cloud segment, and the set of particles
represents a distribution over states. A weight is computed
for each particle to represent the likelihood of the associ-
ated class/pose hypothesis. Using these weights, particles
are resampled to generate a new set of particles, which is
returned to MCAP as the belief state distribution. MCAP
samples from this distribution by drawing a single particle
from each object’s associated set of particles.

We begin this section by describing theGPmethod used to
compute class/pose likelihoods. Then, we describe the parti-
cle filter estimator.

5.1 Gaussian process classifier

Here we describe our approach for computing object class
and pose likelihoods given point cloud observations. We
explain our method for learning global feature vectors of
object models using GP regression, and how the likelihood
values are determined for query data.

We first present a short description of Gaussian pro-
cess regression for convenience. Although GPs can be used
directly for classification (GP classification), e.g., (Paul et al.
2012), in this paper we use GP regression to learn a contin-
uous function, which is then used as a classifier.

5.1.1 Background: Gaussian process regression

GPs are a non-parametric Bayesian technique for learning
a latent function from noisy data (Rasmussen and Williams
2006). A GP defines a prior over functions, from which a
posterior can be derived for new data. In other words, a GP
provides a prediction of output values from input querieswith
an additional measure of prediction uncertainty that depends
on the noise and variability of the data.

GP regression assumes a training set D = {(φi , fi )}ND
i=1

with size ND of inputs φi ∈ Φ ⊆ R
d , with dimension d, and

outputs fi ∈ F ⊆ R. The aggregation of all ND inputs form
the design matrix Φ ⊆ R

d×ND and the aggregated output
values form the column vector f . The outputs are assumed
to be drawn from a noisy process

fi = F(φi ) + ε, (15)

where F(·) is the latent function that is to be determined
from the training data and ε is zero-mean Gaussian noise
with variance σ 2

noise.
A GP denoted by

F(φ) ∼ GP(μ(φ), κ(φ,φ′)), (16)

is completely specified by itsmean functionμ(φ) and covari-
ance function κ(φ,φ′) which are defined as

μ(φ) = E [F(φ)] , (17)

κ
(
φ,φ′) = E

[
(F(φ) − μ(φ))

(
F(φ′) − μ(φ′)

)]
, (18)

for any two inputs φ and φ′ and where κ(·, ·) is a positive
definite kernel. The most popular kernel is the squared expo-
nential, given by

κ
(
φ,φ′) = σ 2

varexp

(

−1

2

(
φ − φ′)T M

(
φ − φ′)

)

, (19)

where σ 2
var is the signal variance and M is a square matrix

of size d characterised by the length scales in each dimen-
sion. If an isotropic matrix is used then only one length scale
parameter σlen is required resulting in M = σ−2

len I , where
I ∈ R

d×d is the identity matrix.
Given the training set D, the predictive distribution for a

test input φ∗ is a Gaussian characterised by the mean f̄∗ and
variance σ 2∗ ,

f̄∗ = E
[
F(φ∗)

] = κT∗
(
K + σ 2

noise I
)−1

f , (20)

σ 2∗ = V
[
F(φ∗)

] = κ∗∗ − κT∗
(
K + σ 2

noise I
)−1

κ∗, (21)

where the vector κ∗ = κ(φ∗,Φ) = [κ(φ∗,φi )]ND
i=1, κ∗∗ =

κ(φ∗,φ∗), K ∈ R
ND×ND is the covariance matrix with ele-
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ments defined by K (i,i ′) = κ(φi ,φi ′), and I ∈ R
ND×ND

is the identity matrix. These expressions fully describe the
predicted outputs of a GP for query inputs. They specify the
expected mean of the output with a corresponding variance
as a measure of the uncertainty about the prediction.

The hyper-parameters σnoise, σvar, and σlen can be learned
from the training data. The most common method is to max-
imise the logmarginal likelihood using standard optimisation
techniques (Rasmussen and Williams 2006).

5.1.2 Learning global features with Gaussian processes

The first step in our algorithm for computing object class
and pose likelihoods is to learn global features from training
data. The output of this process is a set of GPs, one for each
feature element/object pair. Class and pose likelihoods are
generated online from observed data with these GPs.

In a training phase, each modelmi ∈ M is observed from
a random set of locations Φi = {φih}ND

h=1 and a point cloud
is acquired from a sensor. Each point cloud is processed to
compute a global feature vector f ih = [ fih j ]NF

j=1, where NF

is the number of elements in the vector. The set of locations
Φi yields a set of training feature vectors F i = { f ih}ND

h=1
for each training object. A separate GP, denoted by GP i j ,
is learned for each training object i and each element j in
the feature vectors from the set of inputs Φi and outputs
F i . For NM objects in the training set, a total of NM × NF

GPs are learned offline. The result is a set of GP models
GP i = {GP i j }NF

j=1 for each training object, that return a

mean f̄∗i j and variance σ 2∗i j for any query input φ∗.

5.1.3 Observation likelihoods

We now describe how to compute the likelihood of an input
point cloud given a class label and object pose. The likelihood
of a test observation f o acquired from a location φo (relative
to the observed object) is computed by matching the feature
vector to the predicted features from the learned GPs. In the
case of a single object model mi and a single feature vector
element j , the likelihood of the observed feature value given
the model is

p( foj |mi ,φo) = N
(
foj ; f̄oi j , σ

2
oi j

)
,

= 1

σoi j
√
2π

exp

⎛

⎝−1

2

(
foj − f̄oi j

σoi j

)2
⎞

⎠ .

(22)

We model the feature vector components as independent,
thus the likelihood of the observed feature vector is given by
the product of the univariate normal distributions

p( f o|mi ,φo) =
NF∏

j=1

N
(
foj ; f̄oi j , σ

2
oi j

)
. (23)

5.1.4 Dimensionality reduction

Point cloud feature vectors are often very high dimensional,
which means that many GPs need to be learned. Various
dimensionality reduction methods can be applied to project
the feature vectors onto a lower-dimensional space. Here, we
use Principle Component Analysis (PCA) (Jolliffe 2002) to
reduce the size of the feature vectors.

The training outputsF i for training object i are combined
into a matrix Fi ∈ R

ND×NF , where rows correspond to data
inputs and columns correspond to feature components. The
reduced feature vectors are derived from the original feature
vectors by

Fw
i = FiW i , (24)

where W i ⊆ R
NF×NW is a transformation matrix resulting

from Singular Value Decomposition (SVD). The transfor-
mation maps each feature vector f ih ∈ F i from the original
dimension of NF to a lower dimension NW . The rows of Fw

i

are extracted to form a new training set Fw
i = { f w

ih}ND
i=1.

Computing the likelihood of an observation f o for train-
ing object i requires the feature vector to be transformed
into the lower-dimensional space. This is done by applying
the transformation matrix W i that was determined for the
models in training. The likelihood function (23) for the test
observation f o becomes

p( f o|mi ,φo) ≈
NW∏

j=1

N
(
f w
oj ; f̄ w

oi j , (σ
w
oi j )

2
)

, (25)

where f w
oj are the components of the transformed observed

feature vector f w
oi = f oW i , and f̄ w

oi j are the components
of the transformed predicted feature vector from GP i with
corresponding variances (σw

oi j )
2.

Dimensionality reduction decreases the computation time
for calculating observation likelihoods because fewer GPs
need to be queried. It also has the benefit of inducing
independence amongst the components, which justifies our
approximation for computing the likelihood by a product of
independent normal distributions.

5.2 Belief representation with a particle filter

The likelihood function described above requires a class label
and pose estimate as input. Here, we describe a particle filter
estimator that maintains a joint distribution over class and
pose for each object. The method updates beliefs through
recursive Bayesian estimation. This is beneficial for multi-
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view classification because it is robust to small amounts of
noise (e.g., small localisation errors).

Each particle represents a single class and pose hypothesis
for an object, where its weight (likelihood) is computed as
above, and a collection of these particles represents a joint
distribution. The full set of particles is partitioned into two
subsets, one for particles associated to objects, and the other
for particles that represent unknown areas of the workspace.
Particles are reassociated and updated after each point cloud
observation, then resampled according to their weights. This
particle representation is very convenient for the MCAP
algorithm because sampled states are retrieved simply by
selecting a single particle from each object’s set of particles.

The set of particles Π consists of NΠ particles that repre-
sent a single state estimate of an object,

πυ = (ξυ, ηυ, ψυ, λυ), (26)

with x location ξυ , y location ηυ , orientation ψυ , and class
label λυ . The set Π is divided into two unique sets: an unob-
served set ΠU and an observed set ΠO . The unobserved set
consists of particles that are out of the sensor FoV or parti-
cles that are occluded behind occupied space, in other words
in unknown space. The observed set consists of all other
particles that may be in free or occupied space. Initially all
particles belong to the unobserved set.

The observed particles estimate the states of all objects
in the environment and the unobserved particles estimate the
unknown space. Particles move from the unobserved set to
the observed set if they become visible with a new observa-
tion. The visibility of a particle is determined by checking
for line-of-sight through the global occupancy grid G. Any
previous particles that were in the observed set remain in
the observed set, and once a particle is in the observed set it
cannot move to the unobserved set.

5.2.1 Probabilistic particle association

A single set of particles is used to estimate all the objects
simultaneously, which means that particles must be asso-
ciated to each object. Each observed particle that is in the
observed set as well as within the sensor’s range and FoV is
assigned to an observed object. The assignment of a particle
to an object is determined probabilistically.

The location of an object is approximated by its mean, and
the distance from the location of each particle to each object
is used to compute a weight according to

ωυ,n =
(
(ξυ − μn,x )

2 + (ηυ − μn,y)
2
)−1/2

∑N
n=1 ωυ,n

. (27)

The weights are normalised in order to interpret the associa-
tions as a probability. The cumulative probability distribution

is constructed from the weights and an object index n is sam-
pled for each particle to determine the final association.

Particles that are in the observed set but are not directly in
the sensor’s FoV and range, or are occluded, remain associ-
ated to the same object theywere associated to in the previous
observation. This means that objects that have been observed
in previous observations, but are unobserved in the current
observation, still remain in the belief.

5.2.2 Particle resampling

New observations provide additional information about the
observed objects. Accordingly, the state estimates must be
updated. This is done by updating the set of particles that are
associated to each object.

Following from the likelihood functions (23) or (25), a
weight is computed for each particle according to

ωυ,n = p( f n|λυ, (ξυ, ηυ, ψυ))
∑NΠ

υ=1 ωυ,n

, (28)

where f n is the feature vector extracted from the point cloud
zn belonging to object n. The weights are normalised by
dividing by the sum of the weights so that

∑NΠ

υ=1 ωυ,n = 1.
Given the weights, particles are resampled using Sequen-

tial Importance Resampling (SIR) (Doucet et al. 2001) to
generate a new set of particles. New particles are drawn (with
replacement) from the original set of particles in proportion
to their weights until the new set of particles is the same
size as the original set. Gaussian white noise is added to
the ξυ , ηυ , and ψυ components of each particle to intro-
duce a small amount of diversity. Finally, once all particles
have been drawn, the particle weights are reset to a uniform
distribution. The set of particles will converge to a tighter
estimate with more observations because particle hypotheses
with stronger likelihoods are more likely to be resampled.

6 Experiments in simulation

This section presents results obtained in simulation. We first
describe experiments that validate the performance of our
estimation algorithm. Then, we give results for two specific
simulation environments and results for a further 10 ran-
domly generated environments. Lastly, we present results
relating to the computation time of MCAP in comparison to
a myopic planning strategy.

6.1 Experiment 1: classification performance

This section presents results that evaluate the estimator pre-
sented in Sect. 5. These experiments use simulated and real
3D LIDAR data.
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6.1.1 Observation likelihoods for classification

For classification, the pose dependency can be removed by
taking the expectation over observation locations

p( f o|mi ) =
∑

φ′
o∈Φ ′

o

p( f o|mi ,φ
′
o)p(φ

′
o), (29)

where Φ ′
o is the set of observation locations relative to the

object. This is approximated by locations on a circle with
centre given by the centre of the observed point cloud and
radius given by the distance to φo. A discrete set of points
are selected so that all query inputs have an even density of
sampled locations. In our experiments, we select locations
with a separation of 0.2m.

The observations from the sampled locations are consid-
ered equally likely. This means that p(φ′

o) is uniform for all
φ′
o, allowing the expression to be written as

p( f o|mi ) = 1

|Φ ′
o|

∑

φ′
o∈Φ ′

o

p( f o|mi ,φ
′
o), (30)

where |Φ ′
o| is the number of sampled locations.

Classifying an object means determining the probability
of the object belonging to each class � given the observations,
which is expressed as p(�| f o). The partition of models into
subsets C� means that the class probability can be computed
from the average of the model probabilities

p(�| f o) = 1

N�

∑

mi∈C�

p(mi | f o). (31)

The term p(mi | f o) is calculated from the observation like-
lihoods in (29) by applying Bayes’ rule,

p(mi | f o) = p(mi )p( f o|mi )

p( f o)
∝ p( f o|mi ) (32)

where we assume uniform priors on the object models.
Averaging the probabilities in (31) accounts for the vari-

ation of the number of models in each class and removes the
bias of larger classes. The final probability for each class is
determined by normalising the probability distribution.

6.1.2 Results with simulated data

Classification performance was evaluated with synthetic
LIDAR (sparse 3D range) data from a Velodyne HDL-64E.
The data was generated using the Blensor simulation tool-
box (Gschwandtner et al. 2011) andused to train the classifier.
The training set consisted of 11 CAD-like models, grouped

Table 1 Confusion matrix for unoccluded synthetic LIDAR data (926
test point clouds)with 150 training examples for eachmodel, and feature
vectors reduced to 100 components

Truth / inferred CA MB PE SI TR

CA 261 1 0 0 0

MB 2 91 7 0 0

PE 4 2 77 0 22

SI 0 0 0 271 63

TR 29 2 0 0 94

Labels correspond to car (CA), motorbike (MB), person (PE), sign (SI),
and tree (TR). True positives shown in bold. F1 score is 0.84

into 5 classes (car, motorbike, person, sign, tree). Each object
was viewed from 150 random locations between 3 − 25m
from the object centres. The same set of locations were
used for each model. At each location, a point cloud obser-
vation was recorded and the viewpoint feature histogram
(VFH) (Rusu et al. 2010) descriptor was computed using
the Point cloud library (PCL) (Rusu and Cousins 2011). This
feature descriptor has 308 elements, which was reduced to
as few as 20 elements using PCA. GPs were trained with
2D data inputs (x and y locations of training locations) and
function values given by the components of the reduced fea-
ture vectors. The squared exponential kernel function was
used for the 2D inputs. Although VFH descriptors are scale
invariant, we observed variations of the descriptors at dif-
ferent distances due to the sparsity and variable density of
the data from the LIDAR scanner. For this reason, location
distances were considered and descriptors were not assumed
to be identical for the same viewing angle.

A separate test set was created by generating point clouds
from a set of random locations for each object model. The
total size of the test set was 926 point clouds. The VFH
descriptor was computed for each test point cloud and the
class estimate was computed using the trained classifier. For
classification, the final decision was made by taking the class
with the largest probability.

The confusion matrix in Table 1 summarises classifica-
tion results for unoccluded single views (descriptorswith 100
components). Most point cloud instances are classified cor-
rectly and the overall result achieves an F1 score of 0.84. All
classes return high precision and recall except the tree class
(precision= 0.75, recall= 0.53). This is seen by the large
number of false negatives with the person and sign classes,
and the large number of false positives with the car class.

For comparison, classificationwithVFHdescriptors using
k-NN clustering was performed. The full length VFH
descriptors computed in training from all training point
clouds were added to a k-d tree. Given a test feature vector as
input, the number of nearest-neighbours in the k-d tree were
tallied to determine the score for a class. The final classifica-
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tion result was selected as the classwith the highest score.We
found the best performance was with 25 nearest-neighbours.

We also comparedwith local featurematching by comput-
ing spin images (Johnson 1997) of point clouds at keypoints
chosen by the Intrinsic Shape Signature (ISS) keypoint detec-
tor (Zhong 2009). Matching a test observation to a training
example proceeded by determining keypoints and then find-
ing, for each one, the most similar keypoint in the training
point cloud. The most similar keypoint was determined by
the nearest-neighbour in a k-d tree that contained the fea-
ture vectors of the training object’s keypoints. Overlapping
matches (corresponding to the same keypoint in the training
point cloud) were removed. The total matching score for a
test observation was the sum of the distances in feature space
of thematched keypoints. An extra penaltywas added for any
unmatched keypoint. The final class was selected as the class
of the training example with the smallest total distance. In
our experiments we used an image width of 8 bins, and a
large search radius of 0.5m for the support cylinder, which
was necessary to capture enough points from the sparse data.

A comparison of our method with dimensionality reduc-
tion aswell as with k-NN clustering and spin imagematching
is shown in Fig. 2. As expected, more reduction of the
descriptors leads toworse classification performance. The F1
score reduces from 0.84 with 100 components to 0.70 with
20 components with 150 training instances. Compared to the
other methods, however, our method still performs well. k-
NN clustering achieves an F1 score of 0.78 and spin image
matching achieves anF1 score of 0.58. The poor performance
of spin image matching can be explained by the difficulty of
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Fig. 2 F1 scores for synthetic LIDAR data with varying size of feature
vector and training set. k-NN clustering and spin image matching with
full training set shown for comparison

computing keypoints and local features with sparse and vari-
able density data. The best performance is our approach with
100 components in the feature descriptors, however, with
fewer components k-NN performs best.

6.1.3 Results with limited training data

One motivation for this method is the difficulty of collecting
large amounts of field data to train classifiers. For this reason,
we compared the performance with a reduced training set.
The same data from Sect. 6.1.2 was used but the training data
was reduced from 1650 to 1100 by removing 50 examples
randomly from the training sets of each instance model (a
total of 550 examples all together). This is a reduction of
30%, which is a significant amount of time that translates to
many hours saved in the acquisition process.

We performed classification with the same test set as the
previous experiment. The F1 score for varying size of the
feature vectors is shown in Fig. 2 and a comparison of the
size of the training set is summarised in Table 2. The table
presents the F1 scores for each method and the reduction of
the classification accuracy as a percentage when the training
set is reduced. The table shows that using the GP classi-
fier with feature vectors of more than 40 elements is much
more robust than performing k-NN clustering or spin image
matching. It degrades by as little as 1.28% when 80 feature
elements are used, compared with 6.41% for k-NN clus-
tering and 10.34% for spin image matching. With smaller
feature vectors, however, the performance degradation of our
approach is significantly worse, up to 11.30% with 20 com-
ponents. This indicates that the compression is too large and
the boundaries between the features are not strong enough to
distinguish between the classes.

The reason for the robust performance of our approach
with large feature vectors is that a GP interpolates between
the elements in the training set. This behaviour offers pre-
dictions for queries that are not in the training set, which can
capture goodmatches. The standardmethods are restricted to
only finding matches with examples in the training set. If the
training set is sparse then there are many “blind spots” where

Table 2 F1 scores for the full training set (ND = 150) and reduced
training set (ND = 100)

ND = 150 ND = 100 Reduction (%)

GP-80 0.78 0.77 1.28

GP-60 0.76 0.75 1.32

GP-40 0.71 0.67 5.63

GP-20 0.70 0.62 11.40

k-NN 0.78 0.73 6.41

spin 0.58 0.52 10.34

Final columns shows performance reduction as percentage
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queries have very few close neighbours. GPs, on the other
hand, have infinite resolution to make queries and therefore
perform better with limited training data.

6.1.4 Results with real data and occlusions

Classification performance was further evaluated with real
LIDAR data (Velodyne HDL-64E), collected outdoors at the
University of Sydney (Patten et al. 2015). The objects (bar-
becue, box, desk, motorbike, picnic table, tree, wheelie bin)
were observed from locations on a circlewith radius 8−10m.
The training set size for each object was between 105 and 125
point clouds. VFH descriptors were computed for the point
clouds and separate GPs were learned.

The training locations were constrained to a circle to
ensure that the point clouds were not occluded. As such,
we used the orientation of the viewpoint locations for the
data inputs. Given the data was collected along a circle, the
periodic exponential kernel function defined as

κ(φ,φ′) = σ 2
varexp

(

−2 sin2
(
π |φ − φ′|/ρ)

σ 2
len

)

, (33)

was used instead of the squared exponential kernel function.
The data inputs are given by a single dimension, correspond-
ing to the orientation of the viewpoint with respect to the
ground truth object. The parameters σvar and σlen are defined
(and learned) in a similar way to the squared exponential
kernel function, and ρ is the period, which we set to 2π .

The test set was collected from a separate drive. Point
clouds were segmented into the different objects and stored
separately. Point clouds within a distance of 6−12m were
stored, in order to maintain a similar distance to the training
viewpoints. In total, the test set comprised 241 point clouds.
The posewasmarginalised out by taking the expectation over
orientations uniformly separated by 15◦.

The experiment with the real outdoor LIDAR data is more
difficult than the synthetic data because of the occlusions in
the test data. Overall, the classification is not as strong as
with the synthetic data, as shown by the confusion matrix
in Table 3 (feature vectors reduced to 80 components). The
table shows that all objects are recognised but there is more
confusion thanwith the synthetic data, indicated by the lower
F1 score of 0.53.The table shows there is particular confusion
of the picnic tablewith the desk, and confusion of thewheelie
bin with the box. This is to be expected as these pairs of
objects are visually similar.

Our method with varying dimensionality reduction is pre-
sented in Fig. 3. This reveals the same trend as the synthetic
data: more dimensionality reduction leads to worse classifi-
cation performance. With this dataset, the F1 score reduces
from 0.53 with 80 components to 0.25 with 20 components.

Table 3 Confusion matrix for real LIDAR data (241 test point clouds)
with between 105 and 125 training examples for eachmodel, and feature
vectors reduced to 80 components

Truth/inferred BQ BX DE MB PT TR WB

BQ 16 3 4 4 1 1 0

BX 0 23 2 9 3 1 2

DE 1 2 32 9 5 4 0

MB 0 1 5 25 5 0 0

PT 0 1 7 2 7 0 0

TR 3 1 3 3 1 14 0

WB 2 12 4 3 3 3 14

Labels correspond to barbecue (BQ), box (BX), desk (DE), motorbike
(MB), picnic table (PT), tree (TR), andwheelie bin (WB). True positives
shown in bold. F1 score is 0.53
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Fig. 3 F1 scores for real LIDAR data with varying size of feature
vector. k-NN clustering and spin imagematching shown for comparison

Also shown is the classification performancewith k-NNclus-
tering and spin image matching. In this case, spin image
matching (F1 score of 0.49) outperforms k-NNclustering (F1
score of 0.3). This supports the known notion that classifi-
cation with local features is more robust than global features
when dealing with occlusions. Our method, however, still
outperforms spin image matching with 80 components.

6.2 Experiment 2: fork environment

6.2.1 Experiment set up

Planning simulations were performed with synthetic LIDAR
data generated with Blensor, similar to Experiment 1. The
data was restricted to a 180◦ FoV by only keeping points in
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Fig. 4 Robot motions and sensor FoV for simulations

the domain [θ − π/2, θ + π/2], where θ is the heading of
the robot. The sensor range was also restricted to 20m.

Observationswere segmented to extract point cloud obser-
vations of each object. First, the ground was removed by
detecting the dominant plane in the point cloud data using
the RANSAC algorithm (Fischler and Bolles 1981) and then
removingpoints belonging to the plane. The remaining points
were partitioned by Euclidean clustering. Both procedures
were implemented with PCL.

The classifier was trained using the data described in
Sect. 6.1, which comprised 5 object classes. This experiment
used the reduced training set of 100 training inputs for each
object and a feature descriptor length of 80 elements. The
reduced training dataset was used because it results in faster
computation, but as seen in Fig. 2 and Table 2 this set of
parameters still gives good classification accuracy, therefore
we consider this a good balance between speed and perfor-
mance.

The robot was required to navigate between observation
locations and eventually to the goal. Locations were prese-
lected from a uniform grid, with a separation of 2m, and from
these locations a roadmap was generated. The robot could
move in the environment with a step size of 4m by using the
underlying roadmap. Initially, the roadmap was known to the
robot, however, obstacles were not known. Obstacles were
added at each stage by projecting the 3D occupancy grid to
the 2D ground plane, and adjusting edge weights between
roadmap nodes accordingly. The robot was constrained to
move on the 8-grid, excluding the backward motions, and
always faced the direction of travel, as shown in Fig. 4.

Simulations were performed with a number of variations
of our approach. We compared with different settings of
α = {0, 0.5, 1} where α = 0 is pure exploration, α = 1
is pure exploitation, and α = 0.5 balances both. Our method

was also applied without rollouts (MCAPw/o) such that only
the tree search part of the algorithm was implemented. We
compared with a greedy strategy that only considered the
value of the first expansion of actions. This strategy randomly
drew samples from the object beliefs to compute the infor-
mation gain in (11). This strategy is comparable to MCAP
that only expands the first set of actions and without rollouts.
Unless stated otherwise, the MCAP algorithm and its vari-
ations were given 50 iterations and the greedy strategy was
given 25 samples per available action. In many cases, the
greedy strategy has an advantage because it can potentially
plan up to 125 cycles. Finally, we compared with a passive
strategy that randomly selected the next location.

Performance was evaluated with two different metrics.
The first metric used was the total entropy of the observed
objects, computed from the joint state of class and pose. This
was determined by clustering the particles of the estimation
to the ground truth object locations and summing the entropy
of the particles of each cluster.

The second metric used was the Brier score (BS) (Brier
1950), which is a score function that measures the accuracy
of probabilistic predictions. It is different to other measures,
such as precision and recall, which measure classification
correctness based on the class with the highest probability.
BS accounts for the probabilities of each class hypothesis
and is useful for evaluating probabilistic classifiers.

The original BS is in the range [0, 2]. We scaled the values
to the range [0, 1] with the definition

BS = 1

2

NL∑

�=1

(
p� − pgt�

)2
, (34)

for a cluster of particles. The class probability p� was com-
puted by tallying the number of particles with class label
� and normalising over all classes. This score measures the
squared error of the predicted probability of a class p� with
respect to the object’s ground truth probability pgt� . Each
object has a ground truth probability of 1 for the true class
and 0 for every other class. If a prediction is perfectly correct,
then BS = 0, the best score possible. If a prediction is per-
fectly incorrect, that is a 100% probability of a false class,
then BS = (1 + 1)/2 = 1, the worst score possible. Any
other distribution of the probabilities is in the range [0, 1].

The first planning experiment was performed with the
environment in Fig. 5. This set up consisted of 10 objects
in a 28m × 28m square with minimum object separation
of 1m. The robot began at coordinate (−12,−12) (near the
bottom-left corner) with orientation π/2 and was given the
goal location at coordinate (12, 12) (near the top-right cor-
ner). As can be seen in the figure, there is a large tree that
blocks the straight line path between the start and goal. Due
to the tree, the robot must quickly decide to take the left or
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Fig. 5 Simulation environment 1 (fork) with 10 objects. Robot start
location is near bottom-left corner and goal location is near top-right
corner. Size is 28m × 28m

the right path, which gives this environment the name fork.
For this set up, the estimation used 4000 particles, initially
randomly distributed within the bounds of the environment
and with randomly selected class types.

Each planning method was executed 10 times for 5 bud-
gets of 40, 45, 50, 55, and 60m. The increment of 5m is
approximately one observation. At the end of each trial, the
total entropy and BS were measured.

6.2.2 Discussion

The results from the 10 trials for each planning method are
summarised in Fig. 6. The figure shows that balancedMCAP
has the lowest entropy and BS (best classification) for most
budgets. Exploitation is the second best performing method,
especially for classification as it is onlymarginallyworse than
balancedMCAP in some cases, andmarginally better in other
cases. In terms of entropy, random is significantlyworse (all p
values<0.051), which advocates an activemethod. Similarly
to balanced MCAP, the other strategies (MCAP w/o, exploit,
and greedy) improve with larger budgets. For the largest bud-
get, these methods have entropy values similar to balanced
MCAP.The reason is that the number of observations allowed
by the large budget is sufficient for most objects to be confi-
dently classified. In terms of classification, balanced MCAP
and exploitation perform best. The other strategies are worse,
having similar scores to random.

Exploration is the worst performing active method. Even
as the budget increases, the final entropy and BS do not
improve. The reason is that the environment is sufficiently
small to be fully explored with the allowed number of
observations. Once fully explored, the strategy has no
more to explore and the robot moves to the goal. The

1 t-Tests with respect to balanced MCAP.

other strategies, that also maximise information content,
often decide to improve object estimates before exploring
new area. This results in the robot making more useful
observations early on and overall within the allocated bud-
get.

Example paths for the MCAP algorithm with different
budgets are shown in Fig. 7. For the smallest budget, the
robot travels to the right and then along the shortest path to
the goal. As the budget increases, the robot still prefers to take
the path to the right. However, the robot begins to detour from
the shortest path and even performs loops to observe more
of the environment (Fig. 7c, d). With the longest budget, the
robot can explore all parts of the environment; it first detours
to the right, and on the return path, it travels towards the top
(Fig. 7e).

6.3 Experiment 3: corridor environment

6.3.1 Experiment set up

The second planning experiment was performed with the
environment in Fig. 8. The simulations were similar to the
first planning experiment, with the same sensor parameters,
classifier, and robot motion. In this experiment the environ-
ment was larger, here a 44m× 44m square, and it consisted
of 16 objects with minimum separation of 2m. The robot
began at (−20,−20) (near the bottom-left corner) with ori-
entation π/2 and goal location (20, 20) (near the top-right
corner). Due to the size of the environment, 5000 particles
were used for the estimation. In this environment, there is
an unimpeded straight line path from the start to the goal.
Along the path there are options to deviate left or right in
order to investigate other regions. We call this environment a
corridor because of the narrow passage connecting the start
and goal.

Each planning method was performed 10 times. For this
environment the experiments were performed for 5 budgets
of 65, 75, 85, 95, and 105m.

6.3.2 Discussion

The results for entropy and BS from the 10 trials for each
planning method are shown in Fig. 9. These show that
balanced MCAP is the best performing strategy. For most
budgets, balanced MCAP has the lowest entropy and BS.
The entropy for the shortest budget is very similar for bal-
anced MCAP, MCAP w/o, and exploration. However, as the
budget increases, balanced MCAP and MCAP w/o begin to
perform better than exploration. In terms of BS, balanced
MCAP and MCAP w/o perform best. The trend here, how-
ever, is different to entropy in that balanced MCAP more
significantly outperforms MCAP w/o with the two largest
budgets. The results also show that random is the worst
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Fig. 6 Final total entropy and Brier score for experiments in simulation environment 1 for different planners and budgets

(a) 40m (b) 45m (c) 50m (d) 55m (e) 60m

Fig. 7 Example paths (red) of MCAP algorithm with illustration of observations (grey) for different budgets in simulation environment 1. Ground
truth objects shown in black (Color figure online)

Fig. 8 Simulation environment 2 (corridor) with 16 objects. Robot
start location is near bottom-left corner and goal location is near top-
right corner. Size is 44m × 44m

performing method. While the final entropy and BS reduce
with larger budgets, it is significantly outperformed by the
other methods (all p values <0.05 for entropy and BS). The

strength of non-myopic planning is more emphasised in this
larger environment than the previous smaller environment.
In terms of entropy, greedy is significantly outperformed
(all p values <0.05). In terms of BS, greedy is most often
the worst strategy (p values <0.05 for budgets 65, 75, and
95m).

In comparison to the fork environment, exploitation is now
the worst performing active strategy and exploration is much
more comparable to balanced MCAP. The reason for this is
that the environment is larger, meaning that it cannot be com-
pletely explored with the limited number of observations.
Exploitation is too focused on improving object estimates, as
a result it does not have the foresight to detect more objects
in unknown regions. Unobserved objects penalise entropy
because particles are clustered to the ground truth object
locations. In contrast, an exploration strategy observes more
objects, so its final entropy and even its BS are better.

Example paths for MCAP with different budgets are
shown in Fig. 10. The paths show the same trend as the
fork environment: the robot travels along the shortest path
with the smallest budget and begins to deviate from this path
with larger budgets. There are some cases, for all algorithms,
when objects are missed, as illustrated in Fig. 10a. Addition-
ally, in some trials, objects are only observed from a single
viewpoint, particularly the small objects at the bottom-right
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Fig. 9 Final total entropy and Brier score for experiments in simulation environment 2 for different planners and budgets

(a) 65m (b) 75m (c) 85m (d) 95m (e) 105m

Fig. 10 Example paths (red) of MCAP algorithmwith illustration of observations (grey) for different budgets in simulation environment 2. Ground
truth objects shown in black (Color figure online)

of the environment (see Fig. 10a, b, c). This highlights the
difficulty of planning with a small budget because the robot
can only observe a subset of the objects. With longer bud-
gets, the robot has time to observe the environment more
completely and manages to view all objects with more than
a single observation (Fig. 10d, e).

6.4 Experiment 4: random environments

6.4.1 Experiment set up

The third planning experiment was performed with multiple
random environments. The previous experiments analysed
the average performance of multiple trials of each planning
method given the environment. In these random experiments,
the average is taken over different environments.

A total of 10 environmentswere randomly generated, con-
sisting of 10 objects (2 cars, 4 trees, 2 people, and 2 signs)
in a 32m × 32m square. Each planner was run once in each
environment with budgets 50 and 100m. Similar to previous
experiments, we used the same sensor model, classifier, and
motionmodel. The robot also began near the bottom-left cor-
ner and was given the goal location near the top-right corner.
Differently, 4500 particles were used for estimation.

6.4.2 Discussion

The mean (and standard deviation) entropy and BS from the
10 trials for the different planning methods and budgets are
given in Tables 4 and 5. They show that balanced MCAP has
the lowest entropy and BS for both budgets. MCAP w/o is
the second best performing method, except for the BS with
a budget of 50m. Greedy is the worst active strategy and
random is worst overall (both greedy and random have all p
values <0.05 for entropy and BS).

The experiment also emphasises the benefit of consider-
ing both exploration and exploitation when planning. In the
previous experiments, exploitation performed relatively well
in the smaller fork environment, but exploration performed
relatively well in the larger corridor environment. The envi-
ronments for the random experiments have a size in between
that of the fork and corridor environments, and the results
show that explore and exploit have very similar performance.
In all cases, however, balanced MCAP and MCAP w/o are
superior because they can benefit from both aspects.

The results indicate that there is a clear trade-off between
exploration and exploitation that may depend on the given
environment. It is an interesting area of research to better
analyse this trade-off and it is left for future work.
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Table 4 Final total entropy for
different planning algorithms
and budgets

Budget (m) Random Greedy Explore Exploit MCAP w/o MCAP

50 33.73 (9.24) 29.01 (5.32) 22.50 (2.00) 23.71 (3.29) 21.95 (2.19) 20.38 (3.80)

100 26.78 (7.39) 26.55 (9.05) 21.25 (2.12) 21.10 (3.96) 18.50 (2.38) 18.41 (2.61)

Results show the mean value (and standard deviation) from 10 different random environments

Table 5 Final Brier score for
different planning algorithms
and budgets

Budget (m) Random Greedy Explore Exploit MCAP w/o MCAP

50 0.34 (0.04) 0.34 (0.04) 0.29 (0.04) 0.29 (0.04) 0.30 (0.03) 0.27 (0.06)

100 0.32 (0.05) 0.30 (0.04) 0.29 (0.05) 0.27 (0.04) 0.26 (0.04) 0.26 (0.02)

Results show the mean value (and standard deviation) from 10 different random environments

6.5 Experiment 5: computation time

6.5.1 Experiment set up

The computation time of the proposed algorithms were anal-
ysed using the fork environment with the same start and goal
configuration. For the analysis, we compared the planning
time of MCAP, MCAP w/o, and greedy. Each planner was
run 10 times with tree search iterations of 25, 50, 75, and
100. For the greedy algorithm, the number of iterations cor-
responded to the number of samples taken for each candidate
observation location.

6.5.2 Discussion

The planning times for a budget of 50m are presented in
Table 6. The times reported in the table correspond to the
average times for each planning cycle over the 10 trials. The
point cloud prediction operation is the most computationally
demanding component of the planning system. In particular,
the ray-tracing operations take the most time because they
involve checking the state of (possibly many) voxels.

The results show thatmore iterations increase the planning
time for each strategy. Initially, with 25 iterationsMCAPw/o
has the smallest planning time, with greedy and MCAP hav-
ing similar times.Withmore iterations, however, the planning
time for MCAP increases more significantly than greedy.
MCAP w/o also increases but the average planning time is
always less than MCAP. So while the full MCAP strategy is
superior in terms of object classification certainty and cor-
rectness, it comes at a cost of computation.

The histograms in Fig. 11 provide amore detailed descrip-
tion of the computation times to help illustrate why MCAP
has longer planning times. The figure shows the distribution
of planning times for different number of iterations used by
the algorithms. An important observation is that both greedy
andMCAPw/o havemany cycles with 0s planning time. The
reason is that the robot is often in situations with only one
valid available action. This can be explained by two possible
scenarios: (1) the robot is located near obstacles and all but

Table 6 Computation times (in seconds) for greedy, MCAP w/o, and
MCAP with varying number of planning iterations

Iterations Greedy MCAP w/o MCAP

25 60 44 64

50 66 115 163

75 106 204 279

100 146 336 464

Greedy MCAP w/o MCAP
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Fig. 11 Planning time histograms. Columns (left to right) correspond
to greedy, MCAP w/o, and MCAP. Rows (top to bottom) correspond to
number of iterations 25, 50, 75, and 100. The x axes are measured in
seconds (intervals of 25 seconds) and the y axes measure the frequency
per bin

one option is blocked, and (2) the remaining budget is very
small and the robot only has the option to move towards the
goal. These two scenarios occur less frequently with MCAP.
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This indicates that a longer planning horizon prevents the
robot from moving into restrictive areas, where many obsta-
cles may block future paths, or from exhausting its budget
too quickly. Non-myopic planning enables the robot to have
more options at every planning stage. So while the compu-
tation time is longer for MCAP, it is because it actually has
the opportunity to plan more often.

The data reveals that greedy plans only 36% of the time,
in contrast to MCAP w/o that plans 76% and MCAP that
plans 84% of the time. In Table 6, MCAP plans 3× longer
than greedy or 1.5× longer thanMCAPw/o in the worst case
with 100 iterations. However, when the 0s planning times are
not included, MCAP plans on average 563s, which is only
1.5× longer than greedy (386s) and only 1.2× longer than
MCAP w/o (451s).

7 Experiments with an outdoor robot

In this section, we describe experiments with an outdoor
ground robot with a vertically-mounted 2D laser. We imple-
mented MCAP and two other algorithms (greedy and ran-
dom) for comparison. We first describe the experimental set
up, and then report results from two farm scenarios.

7.1 Experiment set up

7.1.1 Robot platform

Experiments were performed with the robot show in Fig. 12.
The robot has “Load-Haul-Dump” (LHD) kinematics; a front
and back chassis articulate around a single central joint. The
maximum angle the articulation joint can move is 0.9 rad,
corresponding to a minimum turning radius of 2.85m given
the 1.38m distance from the joint to each chassis.

The robot was equipped with a vertical 2D SICK laser
on the front left side as shown in Fig. 12b. The vertical
mounting means that each scan returned points on a verti-
cal semi-circle. Scans were continuously captured while the
robot drove between locations and the scans were combined
to form a 3D point cloud. The point clouds were restricted
to 20m. Prior to the experiments, the sensor was calibrated
using the method of Underwood et al. (2010).

The robot was given five motion primitives, illustrated in
Fig. 13a, that provided the observations shown in Fig. 13b–e.
The curved motion primitives were approximately 5m and
the forward action was approximately 3m. The primary use
of the forward motion was to navigate. Due to the narrow
FoV for the action, point cloud returns were ignored.

During the experiments, therewasmotion and localisation
noise, and consequently observation noise. The noise was
modelled in the predicted belief updates in the tree expan-
sion of MCAP by adding noise to the next location in each

(a) Outdoor robot with LHD kinematics.

(b) 2D SICK laser vertically-mounted.

Fig. 12 Robot platform and sensor used in outdoor hardware experi-
ments

node expansion. New nodes were expanded with the ideal
arc length and turning angle for each primitive. Then a small
amount of noise was added to the x and y locations, and
to the final heading angle. The predicted observations were
computed from the noisy locations.

During online execution, the robot location was updated
byGPS (RTK), which provided good accuracy outdoors. The
heading of the robot was updated using an onboard IMU. The
robot was equipped with a Nuvo-3000 industrial PC; all code
for planning and point cloud processing was written in C++
and ran on the robot using ROS (Quigley et al. 2009).

7.1.2 Experimental details

The classifier was trained with pre-collected data. This was
collected by manually driving the robot around training
objects with motions similar to the right primitive. Data was
collected from random locations from all angles around the
objects at distances between 2 and 20m. The number of train-
ing observations for each object varied, between 50 and 80.
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(a) Five motion primitives.

(b) Forward-left. (c) Forward-right.

(d) Left. (e) Right.

Fig. 13 Motion primitives and sensor FoVs for hardware experiments
with outdoor robot

The combined 3D point clouds were processed to remove the
ground and background objects. From the remaining points,
VFH descriptors were computed and used to train the GP
classifier. The full descriptors of 308 elements were used in
these experiments because of two reasons. First, the fewer
training examples limited the compressibility of the vectors.
Second, more severe performance reduction was observed
with smaller descriptors due to the noise and unpredictabil-
ity of the real data. In addition to training, the collected point
cloudswere also used to construct themodel occupancy grids
for the CastForward function (Algorithm 2).

The set of objects used in the experiment were a ute (pick-
up truck), hatch-back car, drum, small utility vehicle, petrol
tank on trailer, and a water tank on a trailer. The petrol tank
on trailer and water tank on trailer were grouped into a single
class due to their similar appearance and application.

Fig. 14 Set up for hardware experiment 1 with 5 objects (ute, small
utility vehicle, petrol tank on trailer, two drums). Robot start location
is bottom-left corner and goal region is top-right corner. Size is 24m×
36m

Similar to the simulation experiments, the robot was given
a start and goal location. For these experiments, the robot
started at the bottom-left corner of the environment. The
goal was selected as any location within 5m of a chosen
corner because of the difficulty to reach a precise location
with the limited motions. Each experiment began with the
right motion to capture an initial observation.

7.2 Experiment 1

The set up for the first hardware experiment is shown
in Fig. 14, which consisted of 5 objects (ute, small util-
ity vehicle, petrol tank on trailer, two drums) arranged in
a 24m × 36m rectangle. For safety, navigation was only
allowed if the robot had reasonable clearance from all objects
on predicted trajectories. Due to this constraint, objects were
separated by at least 5m so that more complex paths could
be considered.

Three trials were performed for MCAP, greedy, and ran-
dom. The robot was allocated a distance budget of 70m and
the goal regionwas selected as the top-right corner. Each trial
used 3000 particles for estimation.

The final entropy, BS, percentage volume of unknown
space, and computation time are reported in Table 7. The
mean values from the three trials are reported in the bottom
row. The results show that our proposed method achieves the
lowest mean entropy and BS. The values report that random
is consistently worst, having the highest entropy and BS for
every trial. For trial 2, greedy achieves a very low entropy but
the values for the other trials are not as good. This demon-
strates how greedy can sometimes perform well, but also it
can perform arbitrarily poorly. Greedy is very sensitive to
the initial conditions as well as to the action and observation
noise, while MCAP is much more consistent.

In addition to entropy and classification performance,
MCAP also explores the most area. The table reports the
percentage volume of unknown space, which is lowest for
MCAP. This is beneficial for active exploration in unknown
environments, when the number of objects is unknown and
the robot must explore the area in order to detect objects.
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Table 7 Results for 3 trials of
random, greedy, and MCAP in
hardware experiment 1

Random Greedy MCAP

E BS U T E BS U T E BS U T

Tr. 1 4.21 0.51 0.02 0 4.12 0.43 0.05 72 3.12 0.33 0.03 125

Tr. 2 4.52 0.46 0.31 0 2.17 0.37 0.27 50 3.21 0.27 0.26 72

Tr. 3 4.48 0.44 0.05 0 3.33 0.33 0.28 65 3.63 0.41 0.00 111

Mean 4.40 0.40 0.13 0 3.83 0.39 0.11 62 3.32 0.34 0.10 103

Values for entropy (E), classification accuracy (BS), remaining percentage of unknown space (U), and com-
putation time (T). Final row is mean values

The table also reports the average planning times. As
expected, MCAP has the longest planning time, spending on
average 103s, while greedy spends on average 62s. Although
MCAP must plan for longer, the result is better estimates
about the objects in the environment.

The point clouds of the observed objectswith their entropy
and BS are shown in Fig. 15. In the figure, each point cloud
observation is coloured differently. The point clouds show
that MCAP has a stronger focus on the utility vehicle and
the ute, which are observed three or more times. Greedy is
similar, except for one trial that does not observe the ute at all.
In comparison to random, more observations of these objects
result in lower entropies and BSs. In particular, in trial 1 and
2, random only observes the utility vehicle once, resulting in
a considerably larger entropy and BS.

The random strategy has the most uniform point den-
sity across objects, indicating that it does not focus on the
uncertain objects. Even though all objects are observed, the
viewpoints are not necessarily profitable and in many cases
the entropy and BS of objects are worse than MCAP or
greedy. An example of this is the ute in trial 1 for random.
The ute is observed four times, but due to its length many
observations only have partial coverage. The partial obser-
vationsmake the utemore difficult to classify and they are the
reason why it has high entropy and BS. MCAP and greedy
also suffer this problem, but they still better classify the ute
with the same (or fewer) number of observations.

The sub-optimality of the random strategy when given a
budget is highlighted by the traversed paths in Fig. 16. In all
random trials, the robot spends more time in the beginning
travelling to the far right of the environment or performing a
large loop. After this initial period, the remainder of the path
is almost a straight line to the goal region. The outcome is
that time is wasted in the beginning, resulting in poor classi-
fication of the objects further from the start.

The figure also highlights the benefit of non-myopic plan-
ning. BothMCAP and greedy generatemore consistent paths
than random but MCAP better utilises its observations given
the budget. In all greedy trials, the robot moves to the top of
the environment and with the unaccounted excess budget it
backtracks.MCAP, on the other hand, plans a longer horizon,
which allows the robot to be more flexible in the beginning

andmake useful observations. The behaviour results in a bet-
ter balance between object certainty and object discovery.

7.3 Experiment 2

The set up for the second hardware experiment is shown in
Fig. 17. It consisted of 4 objects (small utility vehicle, petrol
tank on trailer, two drums) arranged in the same rectangle as
the first hardware experiment with similar separation condi-
tions. Similar to the first hardware experiment, 3000 particles
were used for estimation.

The purpose of this experiment was to investigate the
behaviour of the planning algorithms in a significantly dif-
ficult environment. To this end, a drum was intentionally
placed in a highly occluded location at the top-right of the
environment, the goal region was selected as the top-left
corner, and a small budget of 60mwas allocated. This combi-
nation made observing the drum difficult and planning more
imperative.

The results for one trial of MCAP, greedy, and random
are presented in Table 8. MCAP has the lowest total entropy
of all the methods. In terms of BS, however, random has a
slightly smaller value than MCAP and greedy.

The point clouds of the observed objects are shown in
Fig. 18 and the paths with the illustrated observations are
shown in Fig. 19. These reveal that MCAP was the only
strategy to detect the occluded drum. The path generated
by MCAP takes the robot to the right of the environment,
which enables the robot to observe the drum. Both greedy
and random perform a circle near the start, after which the
budget is nearly exhausted and the robot drives towards the
goal region. Along the second half of their paths, they do
not make many useful observations, in particular they do not
observe the top-right corner of the environment. Although
the planning time for MCAP is significantly more than for
greedy, it is because MCAP plans more often. Without the
foresight, greedy exhausts its budget too quickly and has no
opportunity in the later part of the mission to make decisions,
except for the straight path to the goal. MCAP, on the other
hand, positions the robot in a better region of the environ-
ment that enables the robot to make more observations of all
objects and the free space. As seen in Table 8, MCAP com-
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R1

BS 0.66 E 1.19 BS 0.48 E 6.30 BS 0.47 E 3.09 BS 0.53 E 5.11 BS 0.40 E 5.37

R2

BS 0.33 E 3.48 BS 0.50 E 5.11 BS 0.72 E 3.53 BS 0.43 E 7.28 BS 0.34 E 3.20

R3

BS 0.33 E 3.59 BS 0.52 E 3.48 BS 0.36 E 5.21 BS 0.42 E 5.09 BS 0.14 E 5.04

G1

BS 0.45 E 1.92 BS 0.45 E 3. 0SB28 .58 E 6.38 BS 0.27 E 4.37

G2

BS 0.18 E 1. 0SB29 .62 E 5.52 BS 0.56 E 3.40 BS 0.24 E 5.33

G3

BS 0.31 E 3.30 BS 0.30 E 4.94 BS 0.24 E 3.06 BS 0.36 E 2.91 BS 0.11 E 2.47

M1

BS 0.46 E 2.20 BS 0.07 E 1. 0SB28 .29 E 5.34

M2

BS 0.17 E 2.46 BS 0.34 E 3.40 BS 0.39 E 3.46 BS 0.33 E 3.31 BS 0.13 E 3.43

M3

BS 0.14 E 3.11 BS 0.28 E 5.13 BS 0.40 E 4.85 BS 0.39 E 2.80 BS 0.44 E 2.26

Fig. 15 Observed point clouds for all trials in hardware experiment 1. Each row shows final result of a single trial. Row labels indicate algorithm
(R = random,G = greedy,M = MCAP) and trial number. BS is Brier score, E is entropy
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(a) Random 1. (b) Random 2. (c) Random 3.

(d) Greedy 1. (e) Greedy 2. (f) Greedy 3.

(g) MCAP 1. (h) MCAP 2. (i) MCAP 3.

Fig. 16 Travelled paths (red) with illustration of observations (grey)
for all trials in hardware experiment 1. Ground truth objects shown
in black. (Trajectories as measured by the GPS unit mounted on the

articulation joint. Apparent side-stepping is due to lateral movement of
articulation joint between successive motions.) (Color figure online)
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Fig. 17 Set up for hardware experiment 2 with 4 objects (small utility
vehicle, petrol tankon trailer, twodrums).Robot start location is bottom-
left corner and goal region is top-left corner. Size is 24m × 36m

pletely explores the environment, while greedy (and random)
have over 20% of the environment unexplored.

8 Discussion and future work

In this paper, we have presented a new approach for active
object classification from 3D range data in outdoor envi-
ronments. We proposed a new problem formulation, time-
constrained active object classification, and presented an
initial solution algorithm, MCAP, that retains the conver-

gence properties of MCTS and POMCP. We also presented
an estimation algorithm that uses a particle filter and Gaus-
sian process regression to compute the joint likelihood of
pose and class from point cloud observations.

We began by evaluating our algorithms in simulation in
comparison with passive perception and a one-step greedy
approach. Because the time-constrained active object classi-
fication problem takes a time/distance budget as a parameter,
we evaluated these algorithms for a range of budget values.
The results indicated that MCAP used the available budget
more efficiently than the other algorithms and planned more
informative views. This result supports our expectation that
non-myopic planning is beneficial for this problem.

We also demonstrated MCAP using a real robot in an
outdoor environment. This demonstration showed that it is
feasible to implement our algorithms online, onboard a robot.
We compared the performance of MCAP to passive percep-
tion and a greedy approach as in the simulation experiments.
Here, the training data and sensor observations were subject

Table 8 Results for 1 trial of
random, greedy, and MCAP in
hardware experiment 2

Random Greedy MCAP

E BS U T E BS U T E BS U T

Tr. 1 4.09 0.41 0.23 0 3.24 0.42 0.24 9 2.94 0.42 0.00 178

Values for entropy (E), classification accuracy (BS), remaining percentage of unknown space as percentage
(U), and computation time (T)

R

BS 0.50 E 2.01 BS 0.42 E 7. 0SB27 .45 E 2.53

G

BS 0.51 E 1.56 BS 0.41 E 3. 0SB64 .35 E 4.70

M

BS 0.40 E 2.95 BS 0.50 E 1.56 BS 0.46 E 4.11 BS 0.29 E 3.15

Fig. 18 Observed point clouds for all trials in hardware experiment 2. Each row shows final result of a single trial. Row labels indicate algorithm
(R = random,G = greedy,M = MCAP). BS is Brier score, E is entropy
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(a) Random. (b) Greedy. (c) MCAP.

Fig. 19 Travelled paths (red) with illustration of observations (grey) for all trials in hardware experiment setup 2. Ground truth objects shown in
black (Color figure online)

to sensor noise. The pattern of behaviour observed in these
experiments was similar to that in simulation.

Although we did not optimise our code, its performance
was sufficient for our demonstrations. Planning time ranged
from seconds to minutes per observation. However, optimis-
ing online execution time is an important area of future work.
Certain aspects of our algorithms are parallelisable and can
exploit the current trend towards increased availability of
embedded multi-core computing. Combined with a tuned
implementation, it is reasonable to expect that our algorithms
are feasible for use in practical applications.

MCAP is presented as a general algorithm for active per-
ception, not just for object classification. Another rich area
of future work is to replace the estimation algorithm with
estimators for other tasks, or with variants tuned for spe-
cific scenarios. MCAP could also benefit from application-
specific rollout policies that exploit domain knowledge. This
has been shown to improve the performance of similar algo-
rithms in other contexts, and it would also apply here.

The main conclusion we draw from our work is that
active perception is key to robust perception outdoors. Our
experiments clearly showcaseswhere traditional passive per-
ception is severely limited in its ability to gather high-quality
data efficiently. This efficiency is necessary to advance the
practical application of outdoor robots, particularly in agri-
culture, where crop surveillance, autonomous weed manage-
ment, and autonomous harvesting rely on robust perception
of objects in the natural world.
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Appendix 1: Calculating entropy

The state vector of an object is given by b = (N (μ,Σ), p)
where the components of the pose are assumed to be nor-
mally distributed with mean vector μ = [μx , μy, μθ ] and
covariance matrix Σ = diag(σx , σy, σθ ) for the x location ,
y location, and orientation angle. The class of the object is
represented by the probability vector p = [p�]NL

�=1.
For the state vector of an object, the entropy of the joint

state can be expressed as

H(b) = −
∫

x

∫

y

∫

θ

NL∑

�=1

p(x, y, θ, �) log
(
p(x, y, θ, �)

)
dx dy dθ,

which can be decomposed up into the continuous variable
(pose) and the discrete class label to give

H(b) = −
∫

x

NL∑

�=1

p(x, �) log
(
p(x, �)

)
dx,

where x = (x, y, θ).
From the definition of conditional entropy

H(b) = H(X, L) = H(L) + H(X|L),

where X = [X,Y,Θ] is a continuous random vector for the
pose components, and L is a discrete random variable for the
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class label. The first term is the probability over the classes
which is simply given by

H(L) = −
NL∑

�=1

p� log
(
p�

)
.

Expanding the second term yields

H(X|L) =
NL∑

�=1

p�H(X|L = �).

For the estimation method described in this paper, the condi-
tional entropy H(X|L = �) is computed from the particles
with class label � and calculating the entropy of amultivariate
Gaussian distribution

H(X|L = �) = 1

2
log

(
(2πe)3|Σ |),

where | · | is the determinant of the matrix, and the power
3 comes from the dimension of x. We simplify this expres-
sion and assume each dimension (x, y, θ) to be independent,
therefore, |Σ | = σ 2

x σ 2
y σ 2

θ .

Appendix 2: Proof of Lemma 1

In this proof we show that the recursive reward value for
a node is equivalent to the empirical average of all rollout
reward values for all simulations beginning at the node.

Let T = τmax represent the maximum depth of the tree.
For a leaf node, that has no children or rollout reward, the
average reward is given by Q̄T = ηT RT = ηT 1

WT

∑WT
i=1 R

i
T .

Now consider a node one level above the leaf nodes at
depth T −1. The immediate reward is the average of all sam-
ple rewards QT−1 = 1

WT−1

∑WT−1
i=1 r iT−1. The rollout reward

consists of one step such that rT−1 = ηT rrT . Expanding the
recursive definition gives

Q̄T−1 = ηT−1RT−1 + 1

WT−1

⎛

⎝rT−1 +
∑

vc∈Children(v)

Wvc Q̄vc

⎞

⎠ ,

= ηT−1 1

WT−1

WT−1∑

i=1

r iT−1 + 1

WT−1

⎛

⎝ηT rrT +
∑

vc∈Children(v)

Wvc Q̄vc

⎞

⎠ ,

= 1

WT−1

⎛

⎝
WT−1∑

i=1

ηT−1r iT−1 +
WT−1∑

i=1

ηT r iT

⎞

⎠ ,

= 1

WT−1

WT−1∑

i=1

Ri
T−1,

where the cumulative reward Ri
T−1 = ∑T

j=T−1 η j r ij =
ηT−1r iT−1+ηT r iT is the sum of the immediate reward and the
immediate reward of the leaf node. The third line is obtained

by moving the rollout reward into the last summation and
using the definition of MCTS that the visit count of a parent
equals the sum of the visit counts of its children plus one
for the rollout. In other words, WT−1 = 1 + ∑

vc∈Children(v)

Wvc . By

induction, the result holds for all higher-level nodes. ��
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