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Abstract A novel strategy is presented to determine the
next-best view for a robot arm, equipped with a depth
camera in eye-in-hand configuration, which is oriented to
autonomous exploration of unknownobjects. Instead ofmax-
imizing the total size of the expected unknown volume that
becomes visible, the next-best view is chosen to observe the
border of incomplete objects. Salient regions of space that
belong to the objects are detected, without any prior knowl-
edge, by applying a point cloud segmentation algorithm. The
system uses a Kinect V2 sensor, which has not been consid-
ered in previous works on next-best view planning, and it
exploits KinectFusion to maintain a volumetric representa-
tion of the environment. A low-level procedure to reduce
Kinect V2 invalid points is also presented. The viability of
the approach has been demonstrated in a real setup where
the robot is fully autonomous. Experiments indicate that the
proposed method enables the robot to actively explore the
objects faster than a standard next-best view algorithm.
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1 Introduction

Autonomous robot exploration and 3D reconstruction of a
scene may be very time consuming if not guided by active
perception, even in tabletop scenarios. An active perception
behavior usually drives the robot by computing the Next Best
View (NBV) to observe the most relevant areas of the envi-
ronment, given the data acquired so far. Traditional NBV
algorithms attempt to maximize the information gain by
exploring unknown or incomplete parts of the scene. How-
ever, a straightforward maximization of the volume of the
unknown space may not be the proper solution as the robot
may prioritize large occluded areas that do not contain any
interesting object. Moreover, NBV planning is usually per-
formed by constraining the viewpoint to lie on a viewing
sphere around the object, but the location of the objects may
be unknown in advance.

This paper proposes a novel approach for NBV plan-
ning of a robot arm equipped with an eye-in-hand range
sensor in a tabletop scenario. The robot gives precedence
to the exploration of the objects in the scene without any
prior knowledge about their shape and position. Such non-
model-based approach is achieved by applying a point cloud
segmentation algorithm to the sensor data and then by assign-
ing a saliency value to each segment. The NBV system
prioritizes viewpoints that observe the segmentwith the high-
est saliency. We show that after point cloud segmentation a
simple heuristic can be adopted to identify meaningful seg-
ments that belong to the objects. In particular, a method for
point cloud segmentation is adopted based on Locally Con-
vex Connected Patches (LCCP) by Stein et al. (2014), which
is available within the PCL library. The exploitation of point
cloud segmentation for active scene exploration has been
considered in few previous works.
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A further contribution is the computation of the NBV on
the GPU through a modified version of KinFu. The KinFu
Large Scale (KinFu LS) project is an open source imple-
mentation of KinectFusion (Newcombe et al. 2011) in the
PCL library. The system exploits the GPU NBV algorithm
developed in Monica et al. (2016) and the environment is
modeled as a volumetric 3D voxel grid on the GPU using a
Truncated SignedDistance Function (TSDF). It is also shown
how viewpoint directions can be extracted directly from the
KinFu TSDF volume, using a local contour extraction algo-
rithm. The proposed approach is fully autonomous, it only
requires an initial short scan of the environment, from one
side, and it does not assume the existence of a dominant
plane in the scene. In the experimental setup the robot arm is
equipped with a Kinect V2 sensor. To the best of our knowl-
edge, this is the first work that reports the use of Kinect V2
for NBV planning. Kinect V2 has a higher resolution and a
higher field of view with respect to Kinect V1. Moreover,
Kinect V2 has proven to be two times more accurate in the
near range and it presents an increased robustness to artifi-
cial illumination. A novel procedure has also been developed
for Kinect V2 depth image pre-processing. Experiments in
environments with multiple complex objects show that the
system is able to reconstruct the scene around the objects
faster than a traditional NBV planner which maximizes the
volume of the unknown space.

The paper is organized as follows. Section 2 provides
an overview of the state of the art. Section 3 describes the
proposed active perception system. Section 4 illustrates the
experimental results. Section 5 concludes the paper and pro-
vides suggestions for possible extensions.

2 Related work

The two closest works to ours that considered NBV planning
from point cloud segmentation are Wu et al. (2015) and Xu
et al. (2015). Both methods have been evaluated in scenes
without or with few stacked objects. In Wu et al. (2015) an
active object recognition system was proposed for a mobile
robot. A feature-based model was used to compute the NBV
in2Dspacebypredictingbothvisibility and likelihoodof fea-
ture matching. Experiments were reported with box-shaped
objectswhere themobile robotwas not autonomous but itwas
manually placed as dictated by theNBV algorithm.Main dif-
ferences are that this work focuses on an autonomous robot
arm and that objects have more complex shapes. In Xu et al.
(2015) a graphcut object segmentation is performed on an ini-
tial robot scan, usingKinectV1, throughKinectFusion.Then,
the PR2 robot performs proactive exploration to validate
the object-aware segmentation by combining next-best push
planning and NBV planning. NBV planning is performed
only on pushed objects for scan refinement. The procedure

for robot motion planning is not described. Another differ-
ence is that in our work NBV is computed on the GPU.

The most common assumption for NBV planning is to
determine the optimal placement of the eye-in-hand sensor
on a viewing sphere around a target location. An objective
function is usually chosen which maximizes the unknown
volume as proposed by Connolly (1985) and Banta et al.
(2000). Pito (1999) used a turntable and ensured an over-
lap among consecutive views. In Reed and Allen (2000)
and Vasquez-Gomez et al. (2009) sensor constraints were
included to minimize the distance traveled by the robot, but
the methods were evaluated in simulation. In Yu and Gupta
(2004) NBV was aimed at reducing ignorance of the con-
figuration space of the robot. Potthast and Sukhatme (2014)
proposed a customizable framework for NBV planning in
cluttered environments where a PR2 robot estimates the vis-
ibility of occluded space using a probabilistic approach.Kahn
et al. (2015) presented amethod to plan themotion of the sen-
sor to enable robot grasping by looking for object handles
lying within occluded regions of the environment.

Several NBV approaches assume that the location of the
target object is known and do not cope with the problem of
detecting the most relevant regions of the environment to be
explored. Indeed, in Torabi and Gupta (2010), Kriegel et al.
(2012), Foix et al. (2010), Morooka et al. (1998), Li and
Liu (2005) and Walck and Drouin (2010) a single object in
the environment was considered. Another less sophisticated
strategy is to adopt a turntable to rotate the object observed
from a fixed sensor. In Kriegel et al. (2012) a next-best scan
planner was proposed for a laser stripe profiler aimed at max-
imizing the quality of the reconstruction. In Kriegel et al.
(2011) a nonmodel-based approachwas introduced for NBV
using the boundaries of the scan and by estimating the sur-
face trend of the unknown area beside the boundaries. Some
authors have addressed the NBV problem assuming a simple
geometry of the objects to be scanned (Chen and Li 2005),
or adopting simple parametric models like superquadrics
(Whaite and Ferrie 1997). In Welke et al. (2010) and Tsuda
et al. (2012) approaches have been developed for humanoid
active perception of a grasped object.

In model based approaches the environment is actively
explored to discover the location of objects of interest whose
template or class is known in advance (Kriegel et al. 2013;
Atanasov et al. 2014; Stampfer et al. 2012; Patten et al.
2016). Kriegel et al. (2013) presented an exploration sys-
tem, combining different sensors, for tabletop scenes that
supports NBV planning and object recognition. In Atanasov
et al. (2014) an active hypothesis testing problem was solved
using apoint-based approximate partially observableMarkov
decision process algorithm. Stampfer et al. (2012) performed
active object recognition enrichedwith common features like
text and barcode labels. In Patten et al. (2016) a viewpoint
evaluationmethodwas proposed for online active object clas-
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sification that predicts which points of an object would be
visible from a particular viewpoint given the previous obser-
vation of other nearby objects.

As mentioned above active exploration strategies have
also been proposed where the robot interacts with the envi-
ronment by pushing the objects (van Hoof et al. 2014; Xu
et al. 2015). In vanHoof et al. (2014) the robot autonomously
touched the objects to resolve segmentation ambiguities
using a probabilistic model. However, NBV planning was
not considered. Beale et al. (2011) exploited the correlation
between robot and objects motion data to improve segmen-
tation.

Several works have addressed the problem of change
detection for scene reconstruction using attention-based
approaches. Most attention based approaches do not con-
sider active exploration using NBV sensor planning. Herbst
et al. (2014) presented a method for online 3D object seg-
mentation and mapping from recordings of the same scene at
several times. Attention based systems have been proposed
to direct gaze of humanoid robots or stereo-heads toward
relevant locations. Bottom up saliency maps were used in
Orabona et al. (2005) from blobs of uniform color. In mobile
robotics attention driven methods have been investigated to
maintain a consistent representation of the environment as
the robot moves (Finman et al. 2013; Drews et al. 2013).
In Finman et al. (2013) segmentations of objects were auto-
matically learned from dense RGBDmapping. A method for
novelty detection based on Gaussian mixture models from
laser scan data was introduced in Drews et al. (2013).

3 Proposed method for next-best view planning

In traditional non-model based approaches next-best view
planning is performed in two phases. In the first phase, can-
didate view poses are generated. In the second phase, all the
poses are evaluated according to a score function to find the
next-best view pose. The proposed pipeline to compute the
NBV, illustrated in Fig. 1, differs from traditional approaches
as it introduces an intermediate phase between viewpoint
generation and evaluation. In the intermediate phase the input
point cloud is segmented into clusters and a saliency value is
computed for each point cloud segment. The aim of the point
cloud segmentation phase is to automatically detect segments
that belong to the objects of the scene. In the evaluation phase
potential view poses are associated to point cloud segments
and the NBV is searched among view poses in decreasing
order of segment saliency.

A more detailed overview of the proposed view planning
pipeline is reported in Algorithm 1. The view generation
phase is performed by a contour extraction algorithm (line 1),
detailed in Sect. 3.1, which extracts contour points, i.e. points
at the border of incomplete surfaces. Contour extraction also

Fig. 1 Pipeline of the view planning algorithm. The grey background
highlights the intermediate phase

Algorithm 1: View planning
Input: WS: 3D volumetric environment representation
Output: Next-best view
1: Contour ← ContourExtraction(WS)
2: ∀b∈Contour b.V iewpoints ← GetViewpoints(b)
3: PointCloud ← ExtractSurfacePts(WS)
4: Segments ← SegmentPointCloud(PointCloud)
5: Saliency ← SegmentSaliency(Segments)
6: Segments ← OrderBy(Segments,Saliency)
7: for i from 1 to size(Segments) do
8: SContour ← FindNear(Contour ,Segments[i])
9: SV iewpoints ← ⋃

b∈SContour b.V iewpoints
10: Scores ← EvaluateViewpoints(SV iewpoints)
11: SV iewpoints ← OrderBy(SV iewpoints,Scores)
12: for j from 1 to size(SV iewpoints) do
13: if Scores[ j] > ScoreT H then
14: return SV iewpoints[ j]
15: end if
16: end for
17: end for
18: return {no suitable viewpoint found}

produces a view direction for each contour point. Then, from
each view direction multiple view poses are generated, as
shown in Fig. 2, mainly to increase the probability of finding
a reachable pose for the robot manipulator. In particular, for
each direction four additional view directions towards the
same contour point are sampled within a small solid angle
(15◦). To convert each view direction into a pose for the
sensor, a distance from the contour point must be selected,
compatible with the sensor minimum and maximum sensing
distance. Although view poses may be generated by select-
ing multiple distances, in this work a fixed distance of 80cm
was adopted, which was empirically determined by evaluat-
ing the average maximum distance that the robot is able to
reach from the objects in the current experimental setup. In
addition, a rotation angle around the view direction must be
chosen. Eight samples for each view direction are generated
at 45◦ intervals, starting from an arbitrary initial orientation.

In line 3, a point cloud (PointCloud) is extracted from the
TSDF volume using the marching cubes algorithm, already
available in KinFu. Marching cubes generates a mesh from
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Fig. 2 Flowchart of viewpoint generation (line 2 inAlgorithm 1). Each
candidate view direction generates 40 view poses for the sensor

the isosurface between positive (empty) and negative (occu-
pied) TSDF voxels. The vertices of the mesh define the point
cloud. In the segmentation phase (line 4) the point cloud is
segmented using the LCCP algorithm. Then, a saliency value
is computed for each segment (line 5), as described in Sect.
3.2. Finally, the segments are ordered by decreasing saliency
(line 6).

In the viewpoint evaluation phase (lines 7–17) view poses
are associated to segments and are processed by decreasing
segment saliency. In particular, all contour points close to
the current segment are determined (line 8). Given the set
PC ≡ PointCloud of all points in all segments, a contour
point p is close to the current segment S if the nearest point
to p in PC belongs to S. All view poses generated by the con-
tour points of the current segment are then retrieved (line 9).
View poses associated to a segment are evaluated by assign-
ing a score proportional to the expected information gain, as
in traditional NBV approaches. Indeed, the expected infor-
mation gain of each view pose is given by the amount of
unknown voxels visible from that pose, which is available
from the TSDF volume (Monica et al. 2016). A voxel con-
tributes to the score only if it falls inside a sphere with radius
20cm larger than the bounding sphere of the segment.

View poses associated to the current point cloud segment
are then ranked and processed in decreasing order of score.
If the expected information gain of a view pose exceeds a
threshold value (line 13) that pose is considered the NBV.
Otherwise, if the expected information gains of all the view
poses of the current segment are below the threshold, the
algorithm moves to evaluate the view poses of the next
most salient segment. In summary, the proposed procedure
is aimed at giving priority to active exploration of salient
segments of unknown objects, not fully reconstructed, rather
than favoring viewpoints that blindly try to minimize the size
of the unknown space.

3.1 Contour extraction from TSDF volume

The TSDF volume is a volumetric representation of the envi-
ronment used by the KinectFusion algorithm. The space is
subdivided into a regular 3D grid of voxels and each voxel

holds the sampled value v(x, y, z) of the Truncated Signed
Distance Function R3 → R, which describes the signed dis-
tance from the nearest surface, clamped between a minimum
and a maximum value. The TSDF is positive in empty space
and negative in occupied space. Each voxel also contains a
weight w, initialized to 0, that counts the number of times
the voxel has been observed, up to a maximum amount. The
TSDF value v and the weight can be used to distinguish
between empty, occupied and unknown voxels as follows:

⎧
⎪⎨

⎪⎩

w = 0 → unknown voxel

w > 0

{
v ≤ 0 → occupied voxel

v > 0 → empty voxel

(1)

Rarely observed voxels have a low weight, while completely
unknown voxels have 0 weight. In unexplored space, or deep
inside the surface of objects, voxels are unknown.

In NBV planning a frontier is defined as the region
between seen-empty voxels and unknown space. A frontier is
a region that can be explored, since the viewing sensor might
be placed in the empty space next to the frontier to observe
the unknown space. Occupied voxels do not belong to the
frontier, since the sensor can not see through them. However,
occupied voxels lying next to a frontier have implications for
NBV planning. Indeed, observation of the region of space
in close proximity to occupied voxels next to a frontier can
extend the perception of the surface of the object those occu-
pied voxels belong to.

In the context of this work a contour is defined as the
set of empty voxels that are near to occupied voxels next to
a frontier, i.e. a contour consists of voxels that are near to
both an occupied voxel and an unknown voxel. To exclude
false positive known voxels from being processed, due to
noise, a voxel is considered known if observed at least 5
times, i.e. w ≥ Wth , where Wth = 5 is a lower bound
threshold. Given the 6-connected neighborhood N 6

e and the
18-connected neighborhood N 18

e of a voxel at position e, the
voxel belongs to a contour if the following conditions hold:

⎧
⎪⎨

⎪⎩

w (e) ≥ Wth ∧ v (e) > 0

∃ u ∈ N 6
e | w (u) < Wth

∃ o ∈ N 18
e | w (o) ≥ Wth ∧ v (o) ≤ 0

(2)

A simplified 2D example is shown in Fig. 3, using the
Von Neumann neighborhood (4-connected) and the Moore
neighborhood (8-connected) in place of the 6-connected
neighborhood N 6

e and the 18-connected neighborhood N 18
e

used in the 3D case. In the previous view the sensor observed
the object from the right side, thus the view was partially
obstructed and the cells in the lower left part of the image are
not observed and left unknown. The cross marks a computed
contour cell.

123



Auton Robot (2018) 42:443–458 447

Fig. 3 A simplified 2D example of the contour extraction algorithm
using Von Neumann neighborhood (4-connected) andMoore neighbor-
hood (8-connected). In the previous view the sensor observed the object
from the right side. A computed contour cell is marked with the cross.
The thicker square highlights the Moore neighborhood of the contour
cell. The green segment represents a frontier. Known and occupied cells
are displayed in red, known and empty cells are in white, unknown cells
are in dark grey (Color figure online)

Given the previous definitions a method to compute a
potential view direction from each contour voxel is described
next. For optimal observation, the sensor should observe the
object perpendicularly to its surface. Thus, the opposite of
the surface normal computed on the occupied voxel next to
the contour voxel can be used as potential view direction.
The normal to the surface can be computed from the TSDF
volume as the gradient ∇v (x, y, z) of v.

Given a neighborhood Ne of a voxel at position e, the
normal may be approximated as (normalization omitted):

ne =
∑

c∈Ne

v (c) · c − e

‖c − e‖ (3)

which, for a 6-connected neighborhood, reduces to

ne =
⎡

⎣
v (x + 1, y, z) − v (x − 1, y, z)
v (x, y + 1, z) − v (x, y − 1, z)
v (x, y, z + 1) − v (x, y, z − 1)

⎤

⎦ (4)

since (c − e) /‖c − e‖ are unary vectors of the coordinate
system.

The limitation of this approach is shown in Figs. 4 and 5.
In both examples the sensor takes a first observation from the
bottom, at position A. The observed volume is displayed in
light grey. An object, marked with a dashed line, is partially
observed in the red region. The volume behind the object
remains unknown (black). The surface normal for the com-
puted contour cell is displayed as a red arrowpointing outside
the object. The generated potential viewing pose (B) from the
surface normal is shown as the red triangle. In Fig. 4 for a
rounded object surface the surface normal provides a good
direction for the next view. However, for objects with sharp
edges (like boxes), as illustrated in Fig. 5, the normal at the

Fig. 4 Generation of the next potential viewpoint for a rounded object.
Viewpoints B (computed from the surface normal) and C (computed
from the frontier normal) are very similar

Fig. 5 Generation of the next potential viewpoint for an object with
sharp edges. Only viewpoint C computed from the frontier normal
allows the observation of the unknown volume behind the sharp edge

contour cell does not provide a suitable view direction since
it does not allow the observation of the region of the object in
the unknown space behind the edge. Indeed, in this second
example at location B the sensor can not acquire any new
information, since the lower plane of the box has already
been observed from the initial view.

To overcome this limitation, we propose a method that
computes thepotential viewdirections using thenormal to the
frontier, i.e. the normal to the unknown volume. The normal
to the frontier is indicated as view C . While in Fig. 4 for a
rounded object the viewing pose is rather similar to the one
computed by the surface normal, in Fig. 5 for a sharp edge
view C provides a much better view direction to observe the
object from the side.

In this work we use a fast local approach to approximate
the normal of the frontier using the gradient of the weight
function ∇w (x, y, z) which can be computed as

ne =
∑

c∈N26
e

w′ (c) · c − e

‖c − e‖ (5)
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Fig. 6 Left a jug observed from the current sensor viewpoint. Center
the 3D mesh reconstructed by KinFu. Right the volumetric representa-
tion (rotated view), with occupied (white) and unknown (black) voxels

where the 26-connected neighborhood of a voxel is used to
reduce noise and sampling effects.

Since w (c) is a positive integer value, Eq. 5 uses a modi-
fied weight function w′ defined as

w′ (c) =
{

−Wth if c occupied

min (w (c) − Wth,Wth) otherwise
(6)

For occupied voxels weight w is set to −Wth , since we want
the normal to point away from them. Otherwise, w is first
centered around 0 and then truncated to Wth .

In practice, after extraction of all the contour voxels with
their view directions (line 1 in Algorithm 1), similar contour
voxels are reduced into a contour point by a region growing
algorithm. Two contour voxels at position e1 and e2, with
view direction n1 and n2 are considered similar if

{
‖e1 − e2‖ < Dth

‖n1 · n2‖ < Ath
(7)

Each group of similar voxels is reduced to a single contour
pointwith an associated viewdirection by averaging the posi-
tions and the view directions of the voxels.

Figures 6 and 7 show an example of contour extraction
and viewpoint computation. In Fig. 6 the sensor observes a
jug from the current NBV and a partial 3D representation
is produced by KinFu. As shown by the ternary volumetric
representation, voxels behind the object remain unknown.
Contour voxels are extracted and clustered as illustrated in
Fig. 7. The normal vectors point outwards towards the empty
space. Thus, from that directions the robot may be able to
observe the unknown space behind the object.

3.2 Saliency of point cloud segments

This section illustrates how the segmentation of the point
cloud, extracted from the TSDF volume, is performed and
how the saliency value of each segment is computed (lines
4–5 in Algorithm 1). The procedure is illustrated in Fig. 8.
The point cloud is segmented by the LCCP (Stein et al.

Fig. 7 Left contour voxels (black) and the contour points (red). Right
contour points with normals. A contour point represent a group of sim-
ilar contour voxels (Color figure online)

Fig. 8 Proposed procedure for point cloud segmentation and compu-
tation of the saliency value of each segment

2014) algorithm, available in the PCL library. LCCP par-
titions the input point cloud into a set of Segments (line 4
in Algorithm 1) by merging patches, called supervoxels, of
an over-segmented point cloud. Supervoxels are generated
by the a Voxel Cloud Connectivity Segmentation algorithm
(VCCS) by Papon et al. (2013).

VCCS requires knowledge about the normals to the point
cloud, unless points are acquired from the same viewpoint,
which is not applicable in our system. Normal vectors could
be computed as the normals to the faces of themesh extracted
by the marching cubes algorithm. However, we obtain the
vertex normals with minimal overhead by using the gradient
of the TSDF volume, as shown by Eq. 3 in Sect. 3.1, using a
6-connected neighborhood which is is already available for
marching cubes operations.

The saliency function is a heuristic model that should
provide an objectness measure, i.e. it should provide higher
values for segments that belong to real objects of the scene.
In this work the saliency of each segment is computed as
a function of two features: the segment roundness and the
degree of isolation.

The roundedness of a segment S is estimated as the ratio
of the minimum and maximum sizes of the Oriented Bound-
ing Box (OBB) of S. The sizes (d1, d2, d3) of the OBB are
defined in a local reference frame TOBB centered at the mean
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point of the segment whose axes are given by the eigenvec-
tors of the covariance matrix of the points (principal axes of
inertia). More formally,

d1 = max
c∈S

(
c′
x

) − min
c∈S

(
c′
x

)

d2 = max
c∈S

(
c′
y

)
− min

c∈S

(
c′
y

)

d3 = max
c∈S

(
c′
z

) − min
c∈S

(
c′
z

)
(8)

where c is a point of S in the world reference frame and c′ is
the transformed point in the local reference frame

c′ = T−1
OBB · c (9)

The minimum and maximum sizes of the OBB of S are then

dmax = max
i∈{1,2,3} (di )

dmin = min
i∈{1,2,3} (di )

(10)

We define the degree of isolation of a segment as the
fraction of points for which the distance to points belong-
ing to other segments is at least Bth . Given a segment
S ∈ Segments and the set Ŝ of all the points not in S, the
degree of isolation of S is given by

F(S) =
∥
∥
∥
{
c ∈ S | ∀ o ∈ Ŝ , |c − o| > Bth

}∥
∥
∥

‖S‖ (11)

where ‖S‖ is the total number of points in S. Equation 11
can be efficiently computed using a KdTree radius search
of size Bth . Feature F has three benefits. First, it is meant
to reward isolated segments belonging to partially observed
objects, since a large part of their boundary is not shared
with any other segment. Second, this heuristic is helpful for
noise rejection as noisy segments, not well separated from
other segments, often have a large boundary. Third, Eq. 11
penalizes small segments.

Finally, the saliency value of a segment S is computed as

Saliency(S) = F(S) · dmin

dmax
(12)

so that saliency is proportional to the degree of segment iso-
lation and it grows the more the maximum and the minimum
sizes of the OBB are similar. An example of a segmented
point cloud with saliency values is shown in Fig. 9. It can be
noted that the segment isolation factor reduces the saliency
value of noisy segments (inside the red ellipse).

Figure 10 shows the effect of Bth on the saliency. As Bth

increases, the saliency value of the noisy segments at the front
decreases. However, when Bth is too high, all the points of
the small segments are rejected and, therefore, small objects

Fig. 9 Example of point cloud segmentation and saliency evaluation.
Brighter segments have higher saliency value. (1) a picture of the sce-
nario, (2) saliency evaluated by segment roundness alone, (3) saliency
evaluated by segment isolation alone, (4) saliency evaluated by both
segment roundness and isolation according to Eq. 12. The segment iso-
lation factor reduces the saliency of the noisy segments inside the red
ellipse (Color figure online)

assume a zero saliency value (black color). Hence, for the
experimental evaluation reported inSect. 4.2, the value Bth =
0.02 m was chosen.

3.3 Kinect V2 depth image pre-processing

This section describes a low-level pre-processing filter to
improve the quality of Kinect V2 depth data. The Kinect2
driver (Freenect2) provides twopre-processingfilters: a bilat-
eral filter and an edge-aware filter. The proposed filter is
executed at the end of the standard filtering pipeline in place
of the edge-aware filter, which does not strongly contribute to
the removal of invalid points. It is a known issue that Kinect
V2 often produces incorrect measurements near the borders
of occluded surfaces, as shown in Fig. 11. We are concerned
about locating two types of invalid points and removing them
from the depth map.

Points visible by the camera but falling in the shadowof an
IR emitter have a low accuracy. We call these points shadow
points. Shadow points are due to the displacement between
the IR emitter and the camera (Fig. 12), which is approxi-
mately Δ = 8cm. In this work we are less concerned about
depth image restoration of the regions that are not directly
observed by the camera, as in Liu et al. (2013), because the
NBV system usually observes the same region of space from
multiple viewpoints and the measured data are merged by
KinFu.

To detect shadow points we look into the regions of occlu-
sion where a background object is observed only by the
camera, but that are not illuminated by the IR emitter (yel-
low areas). The geometry of the sensor field is illustrated in
Fig. 13. Let u and v be the horizontal and vertical image

123



450 Auton Robot (2018) 42:443–458

Fig. 10 Saliency computed after the initial scan in experiment 2 described in Sect. 4.2, using Bth ∈ {0.005, 0.01, 0.02, 0.05, 0.1(m)} (from left to
right)

Fig. 11 Top left a scene as seen from the sensor. Top right the image
from the depth camera.Lower left the point cloud acquired by the sensor,
filtered by the Freenect2 driver. Lower right the point cloud filtered by
our method; both shadow points and veil points are correctly removed

Fig. 12 The Kinect V2 sensor with IR camera, RGB camera and IR
emitters

coordinates of the sensor, starting from the upper left corner.
Let also be the intrinsic parameters of the IR camera defined
as follows: [ fu, fv] the focal lengths, [mu,mv] the princi-
pal point, [umax , vmax ] the depth image size and [Δ, 0] the
displacement between the IR emitter from the IR camera,
which are aligned horizontally. Given a measured distance
zuv along the sensor axis z at image coordinates [u, v], the
coordinates of the measured point referred to the IR camera
are given by

xuv = u−mu
fu

· zuv

yuv = v−mv

fv
· zuv

(13)

Fig. 13 The Kinect V2 (on the left) observes a scene composed by an
object (in the center) and a background plane (on the right). The object
partially occludes the background plane. Three kinds of occlusions are
possible: camera only (yellow), IR emitter only (blue), both (red) (Color
figure online)

Fig. 14 Illustration of the horizontal angles α and β of the camera and
IR emitter with respect to the observed points

while the horizontal angle, shown in Fig. 14, referred to the
camera is

αuv = atan

(
xuv

zuv

)

+ π

2
= atan

(
u − cu

fu

)

+ π

2
(14)

which is monotonically increasing with respect to u. How-
ever, when referred to the leftmost IR emitter, the x coordi-
nate becomes

x ′
uv = u − mu

fu
· zuv + Δ (15)
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Algorithm 2: Kinect V2 shadow points removal
Input: v: vertical coordinate
Input: zuv : depth image
1: β ′

max ← −∞
2: for u from 0 to umax − 1 do
3: x ′ ← u−cu

fu
· zuv + Δ

4: β ′ ← x ′
zuv

5: if β ′ ≤ β ′
max then

6: RemovePoint(u,v)
7: else
8: β ′

max ← β ′
9: end if
10: end for

and the horizontal angle becomes

βuv = atan

(
x ′
uv

zuv

)

+ π

2
(16)

Unlike αuv , the value of βuv is not monotonically increasing
with respect to u. It can be observed that an increase in u
which causes a decrease in βuv means that the depth mea-
surement zuv suddenly increased, i.e. the sensor is no longer
observing an occluding object but the object behind it.

Let p j be an observed point in the shadowof the IR emitter
(yellow area in Fig. 14). Let also be α j the angle from the
camera origin, computed using Eq. 14. There exists a point
pi on the object along the illumination ray O ′ p j . There also

exists a point pk inside angle ̂OO ′ p j that belongs to the
object. At most we can choose pk ≡ pi . Since pk belongs to
̂OO ′ p j , thenβk ≥ β j . Point pk also belongs to the interior of

angle ̂O ′Op j as the object does not intersect segment Op j .
Then, αk < α j . Therefore, a necessary condition for a point
p j being in shadow is the existence of a point pk that satisfies
both βk ≥ β j and αk < α j . Thus, the depth measurements
are removed if:

β j ≤ max
k | αk<α j

βk (17)

i.e., since α is monotonic with respect to u:

atan

(
x ′
uv

zuv

)

≤ max
k ∈ {0..(u−1)} atan

(
x ′
kv

zkv

)

(18)

which can be efficiently computed in parallel for each v ∈
{0.. (vmax − 1)} as shown in Algorithm 2.

Although it is very likely that a point pk is observed by
the sensor, since the object is near the sensor and the res-
olution is very high, condition 17 is still heuristic. Indeed,
in real scenarios an object may be closer to the sensor than
the Kinect V2 minimum range, hence pk may not be really
observed. Moreover, only a necessary condition was demon-

Fig. 15 The experimental setup (left). Motion planning environment
based on Moveit! (top right). Screenshot of KinFu output during the
initial scan phase (bottom right)

strated. Indeed, some valid points may be misclassified as
shadow points.

In the pre-processing phase invalid points called veil
points are also removed as shown in Fig. 11. Veil points
are caused by the lidar technology, which tends to interpo-
late points near the object border with the background. Veil
points are removed if an angle higher than Θmax = 10◦ is
detectedwith respect to the observing ray. In particular, given
a point pi on the depth image, the point is removed if there
is a point pk in its Von Neumann neighborhood so that

∣
∣
∣
∣

(pk − pi ) · pi
‖pk − pi‖ · ‖pi‖

∣
∣
∣
∣ > cos (Θmax ) (19)

4 Experimental evaluation

4.1 Robot setup and experimental procedure

The experimental setup (Fig. 15) used for the evaluation of
the proposed NBV system consists of a robot arm (Comau
SMART SiX) with six degrees of freedom. The robot has a
maximum horizontal reach of about 1.4 m. A Kinect V2 sen-
sor is mounted on the end-effector and it has been calibrated
with respect to the robot wrist. The developed software runs
under the ROS framework on an Intel Core i7 4770 at 3.40
GHz, equipped with an NVidia GeForce GTX 670. Collision
free robot movements are planned using the MoveIt! ROS
stack.

Occupied and unknown voxels are considered as obsta-
cles in the motion planning environment. Experiments have
been performed on a workspace of size 2 m×1.32 m. The
volumetric representation of the environment within KinFu
uses voxels of size 5.8 mm. In the motion planning environ-
ment voxels are undersampled to 4cm. KinFu is fed with
the robot forward kinematics as in Monica et al. (2016),
Newcombe et al. (2011), Roth and Vona (2012) and Wagner
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et al. (2013) to improve the accuracy of point cloud registra-
tion with respect to the standard sensor ego-motion tracking
approach.

The experimental procedure consists of the following
steps.At the beginning of each experiment the environment is
completely unknown and the robot, starting from a collision-
free configuration, takes a short initial scan of the scene, from
one side, using KinFu. Then, the system iteratively computes
the NBV as described in Algorithm 1. If the motion planner
finds a collision-free path the robot is moved to the NBV.
Otherwise, the NBV is skipped. KinFu is turned on when
the robot reaches each planned next-best view configuration.
Since Kinect needs to be moved for KinectFusion to oper-
ate properly the sensor is slightly tilted around the NBV by
rotating the robot wrist. The volumetric representation of
the environment is, therefore, updated by KinFu after each
observation. For the evaluation of the proposed approach for
active exploration the experiments were concluded after the
fifth NBV.

4.2 Experiments

Experiments have been performed in four different scenarios
shown in Fig. 16. Each experiment contains multiple objects
with complex geometry. In particular, in experiment 1 the
environment comprises two stacks of objects, while exper-
iment 2 has been performed in a cluttered scene with eight
objects.

The performance of the proposed method was compared
to a standard approachwhere theNBV is chosen at each itera-
tion as the viewpoint that maximizes the size of the expected
unknown volume of the whole environment that becomes
visible. The standard approach has been developed by skip-
ping the point cloud segmentation phase and by assigning the
same saliency value to all points. A video of experiment 4 is
available for download (http://rimlab.ce.unipr.it/documents/
RMonica-auro-2016.avi).

Quantitative data about the average computational time
for each phase are reported in Table 1. The average time
for point cloud segmentation and saliency computation is
about 23% of the total time. A first advantage of the pro-
posed method is that it completes the five next-best views
faster than the standard approach. The average times for
motion planning and robotmovement are rather similar, since
these are fixed costs due to the experimental setup, as well
as the running time for updating the collision map of the
motion planning environment (planner map update). Also,
the time required for viewpoint generation is very short (2.1
seconds for five views), since the computation is performed
on the GPU directly on the TSDF volume. The running time
required for the computation of the NBV is reported as a
subtotal. It can be noted that for the NBV computation phase
our method is 3.9 times faster than the standard approach,

Fig. 16 The experimental scenarios used for the evaluation

Table 1 Average total time (seconds) and standard deviation over the
four experiments for each phase

Phase Method

Proposed Standard

Segm. + saliency 46.1 ±2.5 –

Views generation 2.1 ±0.1 2.1 ±0.1

Views evaluation 26.0 ±4.1 288.5 ±39.0

Subtotal 74.2 ±4.8 290.6 ±39.0

Planner map update 46.0 ±1.6 44.6 ±0.4

Motion planning 88.1 ±17.9 78.3 ±13.8

Robot motion 110.5 ±3.9 108.5 ±7.7

Total 318.7 ±19.1 522.0 ±42.0

even though the standard approach does not require point
cloud segmentation and saliency evaluation.

The main difference between the two approaches in the
time required to compute a NBV lies in the viewpoint eval-
uation phase. The standard approach evaluates all candidate
viewpoints generated in the environment (on the order of
thousands), most of which are located on the edges of the
supporting table. On the contrary, being able to focus only on
the most salient segments, the proposed method rarely eval-
uates more than two hundreds candidate viewpoints at each
iteration. Indeed, the proposed method is strictly focused on
the exploration of the salient segments, whose extension is
smaller than the size of all the unknown regions of the envi-
ronment.

In Fig. 17, an example of the generated viewpoints is
shown. The total number of candidate viewpoints for all
segments is 91960. Using the standard approach all view-
points would be evaluated to find the optimal NBV. Instead,
our method focuses only on the most salient segment and,
therefore, only 960 viewpoints are evaluated. In this case, a
reachable pose for the robot was found among these view-
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Fig. 17 Candidate viewpoints (represented by arrows) for the pro-
posed approach (experiment 1, third NBV). Left candidate viewpoints
of all segments.Right candidate viewpoints for themost salient segment
only

Table 2 Saliency values and number of view poses for the point cloud
segments in Fig. 17 (in descending order of saliency) up to the first
segment not belonging to the objects (part of the supporting table)

Saliency No. of poses Description

0.589 960 Cork jug (top part)

0.565 3640 Cork jug (bottom part)

0.510 1680 Plastic jug (top part)

0.459 1560 Box under cork jug

0.424 600 Plastic jug (bottom part)

0.312 1080 Ball

0.300 400 Box under plastic jug

0.212 240 Box under plastic jug

0.177 320 Box under plastic jug

0.172 7720 Part of the table

points. If a reachable pose had not been found the system
would have evaluated the second most salient segment, and
so on. In Table 2 the saliency values of the point cloud
segments are shown aswell as the number of associated view-
points. Had the algorithm tried other segments after the most
salient one, the number of evaluated viewpoints would have
increased up to 10,480, which is the total number of candi-
date viewpoints actually pointing towards the objects. The
proposed saliency function is working properly even with
some degree of over-segmentation by the LCCP algorithm.
Indeed, some of the objects are segmented in multiple parts.
For example, both jugs are split into two segments and one
of the boxes is segmented into three parts. Nonetheless, each
of those parts received a high saliency.

In Table 3 marks are reported that indicate whether each
NBV points towards the objects or not. In the proposed
approach all next-best views pointing towards the objects
always occur before any other view, not focused on the
objects. In the standard approach next-best views pointing
towards the objects occur in an unpredictable order. There-
fore, it is possible to conclude that a second and more
important advantageof the proposed approach is that it allows
a more rapid exploration of the objects thanks to point cloud
segmentation and saliency evaluation at the segment level.

Table 3 Marks showing NBVs pointing towards the objects (�) or not
(×), for all the experiments

Method Exp. NBV

1 2 3 4 5

Proposed 1 � � � � ×
2 � � � × ×
3 � � � × ×
4 � � � � �

Standard 1 × � × � ×
2 � × × × �
3 × × � × �
4 × × � × ×

This conclusion is also supported by the graphs in Fig. 18,
which show the number of unknown residual voxels near the
objects over the first five next-best views.

Images of the planned next-best views for experiment 1
are reported in Figs. 19 and 20. Images of the planned next-
best views for experiment 3 are reported in Figs. 21 and 22. In
experiment 1 the robot focuses on the objects for the first four
views. Afterwards, as there are no reachable viewing poses
to observe the right side of the objects, due to kinematic
constraints, the robot explores a region of space that does not
contain any object. In particular, the robot observes the space
on the supporting table in the front of the objects, which is
incomplete due to noise. A similar behavior is evident, for
the proposed approach, in experiment 3. Conversely, it can be
noted that the standard approach prioritizes exploration of the
unknown voxels occluded by the objects as shown, for exam-
ple, in the first two views of experiment 3. In the third view of
experiment 3 the standard approach takes a frontal observa-
tion of the objects, but in the fourth view the robot observes
again a region of the supporting plane without any object.

In some cases at the beginning of the exploration, after
one or two next-best views, the standard approach achieves a
lower number of unknown residual voxels. An example can
be seen in Fig. 18 for experiment 1, after the second NBV.
This is due to the fact that in the standard approach when the
robot observes the unknown voxels occluded by the objects
it also partially observes the back of the objects, since the
sensor has a large field of view (70◦ × 60◦).

The final voxel-based reconstruction is shown in Fig. 23
for all experiments. The reconstruction of the objects is
always more complete for the proposed method. Some
unknown voxels are still present, mostly due to unreachable
poses aimed at observing the back or below the objects, as
stated above. Also, it can be noted that most of the irrel-
evant voxels around the back panel of the scene remained
unknown for the proposed method, while these voxels have
been observed by the standard NBV approach.
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Fig. 18 The graphs show the
number of unknown voxels near
the objects in the scene for the
first five next-best views

Fig. 19 Images of experiment 1 using the proposed method (left to right). Top saliency map of point cloud segments; middle 3D volumetric
representation; bottom planned robot next-best views

4.3 Evaluation of depth image pre-processing

The proposed Kinect V2 depth image pre-processing filter
(Sect. 3.3) has been evaluated in the scenario shown in Fig. 24
(top-left). The environment contains only planar surfaces
to facilitate ground truth annotation. A bounding box was
defined around the workspace to remove the background of
the room. Thus, any point that does not belong to a plane can

be considered as an outlier. Depth images were obtained by
averaging 30 frames (one second) acquired by the sensor to
simulate the noise-reduction effect of theKinFu algorithm.A
maximum distance threshold of 3cmwas defined to consider
a point as belonging to a plane.

In Fig. 24 it can be noted that our pre-processing method
successfully removes the shadow on the left of the box-
shaped object. The total number of false negatives, i.e. outlier
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Fig. 20 Images of experiment 1 using the standard NBV approach. Top 3D volumetric representation; bottom planned robot next-best views

Fig. 21 Images of experiment 3 using the proposed method (left to right). Top saliency map of point cloud segments; middle 3D volumetric
representation; bottom planned robot next-best views

Fig. 22 Images of experiment 3 using the standard NBV approach. Top 3D volumetric representation; bottom planned robot next-best views

points not belonging to any plane, are reported in Table 4 as
well as the number of measurements, i.e. the number of valid
points reported by the algorithms. Our algorithm reports a
significantly lower number of outliers compared to the stan-

dard filtering algorithms already available in the Freenect2
driver (a bilateral and an edge-aware filter). Being conserva-
tive, however, it also reports a slightly lower number of valid
measurements.
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Fig. 23 3D volumetric representation of the environment in the four experiments after five next-best views: proposed method (top), standard
approach (bottom)

Fig. 24 Top left the scenario used for testing the proposed depth image
pre-processing filter. Top right image preprocessed by the Freenect2
bilateral filter only. Bottom left image preprocessed by the Freenect2
bilateral and edge-aware filters. Bottom right image preprocessed by
the Freenect2 bilateral filter and our filter. The image is displayed in
color although the algorithm operates on the depth map only. Outliers
points are displayed in red (Color figure online)

Table 4 Number of measurements and false measurements produced
by each algorithm

Method Measurements Outliers

Bilateral 83,125 1874

Bilateral+Edge-aware 81,611 849

Bilateral+ Proposed filter 79,756 182

In Sect. 3.3 it was pointed out that the proposed filter for
shadow points removal only provides a necessary condition
and that false positives may still be present. Evaluation of
false positives was carried out in a simulated environment
shown in Fig. 25, which contains a ground plane, a wall,

Fig. 25 The simulated environment, with object size 4cm (top) and
16cm (bottom). White area illuminated by the emitter only. Grey area
illuminated and properly acquired by the camera. Red shadow visible
by the camera. The vertical blue band in the bottom image is a region
of space that is neither illuminated by the emitter nor observed by the
camera

and an object (long box). The object is at a distance of 1.5
m from the wall and the Kinect V2 sensor is placed at 1
m from the object. The sensor view of the wall and ground
plane is partially occluded by the object. The IR emitter and
the camera were simulated as separate entities according to
the Kinect V2 technical specifications. The shadow points
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Table 5 False discovery rate of shadow points

Sensor angle (◦) −60 −30 0 30 60

Object width (cm) 4 41% 50% 50% 47% 42%

8 0% 1% 4% 5% 7%

16 1% 0% 0% 14% 5%

removal filter was tested by varying the width of the object
and the observation angles of the sensor around the object.
Table 5 reports the ratio between the incorrectly removed
points and all the removed points (false discovery rate). For
normal-sized object (8–16cm width) the false discovery rate
is low. However, for thin objects (4cm width) as the one
displayed in Fig. 25 (top) the false discovery rate is over
40%.This is due to the fact that light from the emitter can pass
behind a thin object and illuminate part of the background
which could be correctly perceived by the real sensor, but it
is actually removed by the proposed filter. It may be noted,
however, that this negative result is quite rare as it happens
only if a thin object is in front of a far background; moreover,
in these cases only the background region is affected.

5 Conclusions

In this work a novel formulation of the next-best view prob-
lem was presented that prioritizes active exploration of the
objects without using any prior knowledge about the envi-
ronment. The next-best view is selected among candidate
viewpoints that observe the border of incomplete and salient
regions of space. A point cloud segmentation algorithm was
adopted to extract salient point cloud segments associated to
the objects.

The proposed approach has some limitations and, there-
fore, a number of directions are open for future research.
The heuristic for saliency evaluation has proven robust to
detect common objects, however, thin objects or parts usually
receive a low score. Hence, computation of segment saliency
can be improved by considering more advance features. Fol-
lowing the results achieved in Tateno et al. (2015) and Uck-
ermann et al. (2012, 2014) the quality and robustness of the
point cloud segmentation phase can also be improved by per-
forming a real-time segmentation. Indeed, real-time segmen-
tation computed on the TSDF volume is a promising research
line. Technical limitations of the current robotic setup are
mainly due to the small workspace of the robot arm and to
the minimum sensing distance of the Kinect sensor. Finally,
a natural extension of this work is the inclusion of object
recognition techniques based on point cloud segmentation
(Varadarajan and Vincze 2011) and the application of the
active perception system for intelligent robot manipulation.
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