
Auton Robot (2017) 41:367–383
DOI 10.1007/s10514-016-9587-8

Making sense of words: a robotic model for language abstraction

Francesca Stramandinoli1,2 · Davide Marocco2 · Angelo Cangelosi2

Received: 31 August 2015 / Accepted: 23 June 2016 / Published online: 1 July 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Building robots capable of acting independently
in unstructured environments is still a challenging task for
roboticists. The capability to comprehend and produce lan-
guage in a ‘human-like’ manner represents a powerful tool
for the autonomous interaction of robots with human beings,
for better understanding situations and exchanging informa-
tion during the execution of tasks that require cooperation. In
this work, we present a robotic model for grounding abstract
action words (i.e. USE, MAKE) through the hierarchical
organization of terms directly linked to perceptual and motor
skills of a humanoid robot. Experimental results have shown
that the robot, in response to linguistic commands, is capable
of performing the appropriate behaviors on objects. Results
obtained in case of inconsistency between the perceptual
and linguistic inputs have shown that the robot executes the
actions elicited by the seen object.

Keywords Developmental robotics · Language modeling ·
Sensorimotor knowledge · Symbol grounding · Embodiment

B Francesca Stramandinoli
francesca.stramandinoli@iit.it

Davide Marocco
davide.marocco@plymouth.ac.uk

Angelo Cangelosi
A.Cangelosi@plymouth.ac.uk

1 iCub Facility Department, Istituto Italiano di Tecnologia,
16163 Genoa, Italy

2 Centre for Robotics and Neural Systems, Plymouth
University, Devon PL48AA, UK

1 Introduction

The decreasing costs of sensor technology and computa-
tional power achieved during the last decade is leading to
a new generation of robots that can act and perform behav-
iors independently. For the autonomous interaction of a robot
with humans, a combination of verbal and non-verbal com-
munication skills is needed. Indeed, robots that will help
humans in everyday life need to be able to communicate
appropriately. Personal domestic robots endowed with the
capability to comprehend and produce language in a ‘human-
like’manner can facilitate the interactionwith human beings.
However, the implementation of behaviors that can make the
interaction with robots natural and intuitive for their human
users, is one of the challenges that roboticists are still facing.

Different directions have been taken in the attempt
to model language in artificial systems. Pure symbolic
approaches (Landauer and Dumais 1997), by studying lan-
guage in isolation from other cognitive skills, as mere
symbol manipulation capabilities, have failed in their imple-
mentation in robots. According to the embodied approach
instead, language has to be grounded in perception andmotor
knowledge (Barsalou 1999). However, the representation of
abstract concepts poses a classical challenge for grounded
theories of cognition. Indeed, given their weak perceptual
and cognitive constraints with the physical world, abstract
concept acquisition cannot be simply resolved by directly
linking words to the entities and concepts to which they
refer.

We present a model for grounding abstract action words
(i.e. USE, MAKE) in sensorimotor experience. In particu-
lar, we propose a general mechanism for grounding abstract
action words through the hierarchical organization of terms
directly linked to the perceptual and motor knowledge of a
humanoid robot (Cangelosi et al. 2010).
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The outline of this paper is as follows. In Sect. 2 studies
on the embodiment and combinatoriality of language and the
motor system are presented; the section also describes the
goal of the study. In Sect. 3 we present related computational
models, while Sect. 4 describes the model we propose for the
grounding of abstract action words. In Sect. 5 we introduce
the training of the model. Section 6 contains the results of
the study, while in Sect. 7 we draw conclusions and present
an outlook on future work.

2 Embodiment and combinatoriality of language
and the motor system

Studies presented in neuroscience (Pulvermüller et al. 2001;
Hauk et al. 2004; Tettamanti et al. 2005; Buccino et al. 2005)
and the behavioral sciences (Buccino et al. 2005; Scorolli and
Borghi 2007) have demonstrated that language is embod-
ied in perceptual and motor knowledge. According to this
embodied perspective, language skills develop together with
other cognitive capabilities and through the sensorimotor
interaction of an agent with the environment. In such a con-
text, particular attention has been given to the representation
of actionwords,which are verbs referring to actions like pick,
kick, lick. Through electroencephalography (EEG) record-
ings it has been shown that the processing of action words
causes differential activation along the motor strip in the
brain, with strongest in-going activity occurring close to the
cortical representation of the body parts (e.g. hands, legs,
lips) primarily used for carrying out the actions described by
the processed verbs (Pulvermüller et al. 2001). Other stud-
ies have shown that action word meanings have correlates in
the somatotopic activation of the motor and premotor cortex
(Hauk et al. 2004). Moreover, transcranial magnetic stimula-
tion (TMS) studies and behavioral experiments have shown
that the processing of action-related sentences modulates the
activity of the motor system (Buccino et al. 2005); according
to the effector used in the action described by the processed
action word, different sectors of the motor system are acti-
vated (Buccino et al. 2005).

Psychological studies and theories on the embodiment
of language have been proposed as well. According to the
perceptual symbol systems (PSSs) theory, conceptualization
requires the simulation of past experience (Barsalou 1999).
For example, when thinking about an object, the neural pat-
terns in the brain formed during earlier experience done with
it, are reactivated. The neural underpinnings of this simu-
lation could be found in wide neural circuits that involve
canonical and mirror neurons (Rizzolatti et al. 1996). In
other studies performed in the field of language compre-
hension (Glenberg and Kaschak 2002), it has been observed
that sentences are understood by creating a simulation of the

actions that underlie them (Action-sentence Compatibility
Effect).

In contrast to other forms of communication, language
is a combinatorial system that permits the conveyance of
new messages and concepts by combining words together.
A finite number of terms (i.e. lexicon) can be combined and
permuted according to specific structural rules (i.e. grammar)
in order to convey new meanings (Pinker 1994). Growing
evidence has suggested that the human motor system is
also hierarchically organized; that is, low level motor prim-
itives can be integrated and recombined in different action
sequences in order to perform novel tasks (Mussa-Ivaldi
and Bizzi 2000). Studies investigating how the brain accom-
plishes action organization have been proposed in Grafton
and Hamilton (2007). The authors have argued that action
organization is based on a hierarchicalmodel, which includes
different levels of motor control: (i) the level of action inten-
tion, (ii) the level of object-goal to realize the intention, (iii)
the level of kinematic that represents the actions required
to achieve the movement goal, and (iv) the level of mus-
cle that coordinates the activation of muscles to produce the
movement goal. Moreover, in DeWolf and Eliasmith (2011)
authors have presented the Neural Optimal Control Hier-
archy (NOCH), proposed as a framework for biologically
plausible models of neural motor control. The simulation of
the NOCH framework has suggested that the integration of
control theory with the basic anatomical elements and func-
tions of the motor system can be useful to have a unified
account on a variety of motor system data. In our work for
the implementation of the motor behaviors performed by the
robot we were inspired by the ‘schema theory’ proposed in
Arbib and Érdi (1998), according to which complex human
behavior are built through the hierarchical organization of the
motor system within which reusable motor primitives can
be re-organized into different motor sequences. For exam-
ple, when we want to drink a cup of coffee we segment
this complex action into a combination of low level prim-
itives, like for example the reaching, grasping and bringing
to the mouth of the cup. This theory has inspired many
other studies on the hierarchical organization of the motor
system. For example, in Mussa-Ivaldi and Bizzi (2000) it
has been suggested that low level motor primitives can be
integrated and recombined in different action sequences in
order to perform novel tasks. The authors have proposed
that modular primitives are combined in the spinal cord in
order to build the internal representation of a limb move-
ment.

Taken together these studies suggest that both language
and the biological motor system are based on hierarchical
recursive structures that can enable the grounding of concepts
and language in perception andmotor knowledge (Cangelosi
et al. 2010).
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2.1 Embodied abstract language and hierarchical
categories

The representation of abstract concepts poses a challenge
for grounded theories of cognition. Different scholars have
claimed that embodiment plays an important role even in rep-
resenting abstract concepts; theories based on “simulations”
(Barsalou 1999), “metaphors” (Lakoff and Johnson 1980)
and “actions” (Glenberg and Kaschak 2002) have been pre-
sented. In Barsalou (1999) it has been proposed that some
abstract concepts arise from simulation processes of internal
and external states. In particular, abstract concepts require
to capture complex multi-modal simulations of temporally
extended events, with simulations of introspections being
central (Barsalou 1999); indeed, introspection gives access to
subjective experiences linked to abstract concepts (Wiemer-
Hastings et al. 2001). Considering that abstract concepts
contain more information about introspection and events,
simulators for abstract words develop to represent categories
of internal experience (Barsalou 2009). Hence, according to
this approach, abstract concepts, differently from concrete
ones, require the activation of situations and introspections.
Another theory proposed on the embodiment of abstract lan-
guage revolves around the concept of “metaphor”.According
to this approach, there are image-schemas derived from sen-
sorimotor experience that can be transferred to experience
which is not truly sensorimotor in nature (Lakoff and John-
son 1980). Human beings have an extensive knowledge about
their bodies (e.g. eating) and situations (e.g. verticality) that
they can use to metaphorically ground abstract concepts
(Barsalou 2008); for example, love can be understood as eat-
ing (e.g. “being consumed by a lover”), while an affective
experience like happy/sad can be understood as vertical-
ity (e.g. “up/down”). The idea that embodiment plays an
important role for representing abstract concepts has been
supported by other scholars. For example according to Glen-
berg and Kaschak (2002), sentences including both concrete
and abstract words are understood by creating a simulation of
the actions that underlie them. Indeed, abstract concepts con-
tainingmotor information can be represented by usingmodal
symbols.Moreover, through behavioral and neurophysiolog-
ical studies it has been shown that the comprehension of
abstract words activates the motor system (Glenberg et al.
2008). Hence, according to these studies, abstract concepts,
similarly to concrete ones, can be grounded in perception and
action.

However, other scholars have suggested that abstract con-
cepts are only partially grounded in sensorimotor experience.
Indeed, according to the theory proposed in Dove (2011),
although most concepts require two types of semantic repre-
sentations [i.e. (i) based on perception andmotor knowledge,
and (ii) based on language], abstract concepts tend to depend
more on linguistic representations. According to the Lan-

guage and Situated Simulation (LASS) theory presented
in Barsalou et al. (2008), both the sensorimotor and lin-
guistic systems are activated during language processing.
However, concrete and abstract concepts activate different
brain areas depending on their contents; moreover, accord-
ing to the task to be performed (e.g. lexical decision vs.
imagination task) there is a higher engagement of linguistic
versus sensorimotor areas. For example, in lexical decision
tasks using the linguistic system represents a shortcut as it
allows to respond immediately without necessarily accessing
the sensorimotor information used for conceptual meaning
representation (Borghi et al. 2014). Other scholars have pro-
posed the “WordsAs social Tools” (WAT) theory (Borghi and
Binkofski 2014) that accounts how different kinds of abstract
concepts and words (ACWs) are represented; words repre-
sent tools that permit to act in the social world. Indeed, the
acquisition of ACWs reliesmore on language and on the con-
tribution that other people can provide to the clarification of
word meanings. In Kousta et al. (2011) authors have claimed
that words which refer to emotions should be categorized in
a group distinct from concrete and abstract words. This pro-
posal was motivated by the fact that concrete, abstract and
emotion words received different ratings in term of concrete-
ness, imageability and context availability.

Given the current debate in the field and the complex-
ity of the matter, the representation of abstract concepts
is increasingly proving to be an extremely complex task.
Studies conducted on children’s early vocabulary acquisi-
tion (McGhee-Bidlack 1991) have shown that, when children
learn to speak, they first learn concrete nouns (e.g. object’s
name) and then the abstract ones (e.g. verbs). While con-
crete terms refer to tangible entities characterized by a direct
mapping to perceptual-cognitive information, abstract words
referring to many events, situations and bodily states (Barsa-
lou 1999; Wiemer-Hastings and Xu 2005) have weaker
perceptual-cognitive constraints with the physical world.
Hence, during the process of word meaning acquisition, the
mapping of perceptual-cognitive information related to con-
crete concepts into the linguistic domain occurs earlier than
the mapping of perceptual-cognitive information related to
abstract concepts. However, the transition from highly con-
crete concepts to the abstract ones is gradual; that is, the
categorization of concrete and abstract terms cannot be sim-
ply regarded as a dichotomy (Wiemer-Hastings et al. 2001)
but there is instead a continuum in the level of abstractness,
according to which all words can be categorized. The most
influential theories proposed on the learning and represen-
tation of categories/concepts are the Prototype Theory and
the Exemplar Theory. According to the Prototype Theory,
concepts are represented by characteristic features, which
are weighted in the definition of prototypes used for judging
the membership of other items to the same category (Rosch
and Mervis 1975). According to the Exemplar Theory, a
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concept is represented by the exemplars of the categories
(i.e. a set of instances of it) stored in the memory. A new
item is classified as a member of a category if it is suffi-
ciently similar to one of the stored exemplars in that category
(Nosofsky et al. 1992). In the context of the Exemplar The-
ory, it has been proposed the instantiation principle (Heit
and Barsalou 1996), according to which the representation
of superordinate concepts evoke detailed information about
its subordinate members (i.e. exemplars). In Murphy and
Wisniewski (1989) the authors conducted a categorization
study that has shown that when an object is placed in an
inappropriate scene, there is more interference for the iden-
tification of the exemplars of superordinate concepts than
for basic level concepts. According to the classical theory
of categorization, words can be organized in hierarchically
structured categories (Gallese and Lakoff 2005) along which
the level of abstraction can vary considerably. For example,
in the hierarchy of categories “furniture/chair/rocking chair”,
“furniture” is a superordinate word (i.e. generalization w.r.t.
the concept related to the basic word “chair”) while “rock-
ing chair” is a subordinate word (i.e. specialization w.r.t. the
concept related to the basic word “chair”). In this framework,
basic and subordinate words (e.g. “chair”, “rocking chair”),
refer to single entities and they can be seen as more concrete
words than the superordinate ones (e.g. “furniture”) which
refer to sets of entities that differ in shape andother perceptual
characteristics (Borghi et al. 2011).Moreover, categories like
“furniture” that do not have corresponding motor programs
for interacting with them, represent general and abstract con-
cepts.

Among the different lexical categories (i.e. noun, verb,
adjective, adverb, etc.), abstract action words represent
a class of terms distant from immediate perception that
describe actions (i.e. verbs) with a general meaning (e.g.
USE, MAKE) and which can be referred to several events
and situations (Barsalou 1999;Wiemer-Hastings et al. 2001).
Therefore, they cannot be directly linked to sensorimotor
experience through a one-to-one mapping with their physi-
cal referents in the world. For example, themeaning of words
like USE andMAKE is general and it depends on the context
in which they occur (Barsalou et al. 2003). In a scenario in
which a person is interacting with a set of tools, the meaning
ofUSE is specified by the particular tool employed during the
interaction (e.g.USE [a]KNIFE,USE [a]BRUSH),while the
meaning of MAKE depends on the outcome of interactions
(e.g. MAKE [a] SLICE, MAKE [a] HOLE).

2.2 Goal of the study

In this work we present a model based on Recurrent Neural
Networks (RNN) for the grounding of abstract action words
(i.e. USE and MAKE) achieved through the hierarchical
organization ofwords directly linked to perceptual andmotor

knowledge of a humanoid robot; indeed, building on our pre-
vious work (Cangelosi and Riga 2006; Stramandinoli et al.
2012) we attempt to extend the “grounding transfer mech-
anism” from sensorimotor experience to abstract concepts.
Our proposal is that words that refer to objects and actions
primitives canbegrounded in sensorimotor experience,while
abstract action words require linguistic information as well.
Linguistic information permits to create the semantic ref-
erents of terms that cannot be directly mapped into their
referents in the physical world (Stramandinoli et al. 2010,
2012; Stramandinoli 2014). The semantic referents of these
words are formed by recalling and reusing the motor and
perceptual knowledge directly grounded during previous
experience of the robot with the environment. Words directly
linked to sensorimotor experience, combined in hierarchical
structures through language, permit the indirect grounding of
abstract action words. We propose such a hierarchical orga-
nization of concepts as a possible account for the acquisition
of abstract action words in cognitive robots.

The aim of this work is twofold. On the one hand, the
robotic platform is enabled to ground themeaning of abstract
action words and scaffold more complex behaviors through
the sensorimotor interaction with the environment; on the
other hand, the proposed model permits the investigation of
the relation between perceptual andmotor categories, and the
development of conceptual knowledge in a humanoid robot.

3 Related computational models

Recently, roboticists have started to investigate some of the
issues related to language development. However, attempts
to model the acquisition of abstract language in robots are
in fact non-existent. Different models have focused on the
acquisition of words related to objects and actions but none
of them addressed the problem of grounding abstract cate-
gories. For example, Sugita and Tani (2005) have proposed a
model for the acquisition of the meaning of simple linguistic
commands; amobile robot acquires themeaning of two-word
sentences through the translation of linguistic commands into
context-dependent behaviors. In Yamashita and Tani (2008)
a humanoid robot has learned to generate object manipula-
tion behaviors by a functional hierarchywhich self-organizes
through multiple time-scales in the activity of the neural net-
work based model. In Dominey et al. (2009) a model for the
learning of a cooperative assembly task has been presented;
a user can guide the robot through an arbitrary, task rele-
vant,motor sequence via spoken commands and the robot can
acquire on the fly themeaning of novel linguistic instructions
and new behavioral skills by grounding the new commands
in combinations of pre-existing motor primitives. In Kalkan
et al. (2013) the interactions of a robot with its environment
have been used to create concepts typically represented by
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verbs in language. In Yürüten et al. (2012) a model for the
learning of adjectives and nouns from affordances has been
presented; the iCub humanoid robot is enabled to learn nouns
and adjectives from sensorimotor interactions and to predict
the effects of the interaction with objects (e.g. labeled as
verbs). All the described models have focused on the learn-
ing of different lexical categories (e.g. adjectives, nouns and
verbs) which can be directly mapped into physical referents
in the real world (i.e. concrete concepts). In Stramandinoli
et al. (2012) sequences of linguistic inputs consisting of verbs
only, have led to the grounding of “higher-order” concepts
(e.g. ACCEPT, REJECT, etc.) grounded in basic motor prim-
itives (e.g. PUSH, PULL, etc.). Indeed, in contrast to basic
concepts that can be directly grounded in the sensorimotor
experience of an agent, “higher-order” concepts are typically
based on combinatorial aspects of language. Higher-order
symbolic representations were indirectly grounded in action
primitives directly grounded in sensorimotor experience.
Simulation results have shown thatmotor primitives have dif-
ferent activation patterns according to the action’s sequence
in which they are contained. However, recently it has been
argued that there is a need for modeling work in the context
of cognitive robotics experiments on language learning (i.e.
for the grounding of both concrete and abstract concepts) to
explicitly take into account the richer human embodiment
(Thill et al. 2014).

4 Model description

In this paper we present a robotic model based on Recur-
rent Neural Networks (Jordan 1986; Elman 1990) for the
grounding of abstract action words in a humanoid robot;
the grounding of abstract action words is achieved through
the integration of different input signals (i.e. vision, proprio-
ception and language). Although the proposed experimental
setup is limited, given the exemplification made in the rep-
resentation of the multi-modal inputs, it attempts to suggest
a general mechanism for grounding abstract action words
through the combination of perceptual knowledge and motor
primitives. Indeed, abstract action words are grounded by
linking non-verbal knowledge, both perceptual (e.g. visual
features of objects like KNIFE, BRUSH, etc.) and behavioral
(e.g. action primitives like CUT, PAINT, etc.), to language.
We conducted our experiments using the iCub humanoid
robot, an open-source platform for research in embodied
cognition, artificial intelligence and brain inspired robotics
research (Metta et al. 2008). The iCub software architecture
is based onYARP (Metta et al. 2006) which is an open source
and multi-platform framework for humanoid robotics, con-
sisting of a set of libraries, protocols and tools that support
distributed computation and that can be used for inter-process
communication across a network of machines. The proposed

model represents the first attempts in grounding the meaning
of abstract action words in perceptual and motor experience.

4.1 Software architecture

In this work the grounding of abstract action words is
achieved through the integration of the linguistic, visual
and proprioceptive input modalities in a recurrent artificial
neural network model. The visual and motor inputs have
been recorded from the iCub sensors, while the linguistic
inputs have been encoded as binary vectors for which the
“one-hot” encoding has been adopted. The general overview
of the implemented software architecture is presented in
(Fig. 1). The iCub robot exchanges information with our
software architecture through the iCub Module that han-
dles the exchange of data from/to the robot. In particular,
the iCub Module sends the proprioceptive data recorded
from the robot’s encoders to the Neural Network Model. The
Neural Network Model computes the new joint values and
the iCub Module sends them back to the robot. In addition
to that, the iCub Module sends the visual stream read from
the iCub cameras to the Object Detector module, which
classifies objects according to their features and sends the
generated visual input to the Neural Network Model. Addi-
tionally, the Object Detector module extracts the position
of the segmented objects and sends this information to the
Head Tracker module that moves the head of the iCub robot
to the position received on-line. The visual stream read from
the iCub cameras and the segmented objects are displayed
through yarpview devices, which are the image viewers pro-
vided by the YARP middleware (Metta et al. 2006). For the
implementation of the Object Detector and Head Tracker,
we used some of the modules available in the iCub software
repository that were adapted to be integrated with our soft-
ware architecture.

4.2 Neural network model

For modeling the mechanisms underlying motor and lin-
guistic sequences processing, Partially Recurrent Neural
Networks (P-RNNs) have been used (Jordan 1986; Elman
1990). Our model is based on a three-layer Jordan P-RNN
(Jordan 1986), characterized by feedback connections from
the output to the input units (Fig. 2). A Jordan network is
a discrete-time P-RNN in which the processing occurs in
discrete steps and the relation between input/output units is
governed by a functional equation that can be either linear or
non-linear. The activation of the output units at time (t − 1)
are available in the input layer (i.e. state units) at time (t) via
connectionswhichmay bemodified during the training of the
network. The feedback of the output neurons allows the net-
work’s input units to see the previous output, and hence the
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Fig. 1 Overview of the software architecture

subsequent behavior can be shaped by the previous responses
of the robot.

4.2.1 Input and output coding

The input layer of the neural network consists of five units
(Fig. 2) which are action’s names (14 neurons), joint’s angles
(7 neurons), object’s names (12 neurons), object’s features
(16 neurons) and state units (7 neurons), respectively. Further
details on the different input modalities are provided below:

– Language: The linguistic input consists of sequences
of words (i.e. verbs and nouns) arranged in two sep-
arate units of the network, which are action’s names
and object’s names (Cangelosi and Parisi 2004). Experi-
ments on the neural processing of verbs and nouns have
shown that the left temporal neocortex plays a crucial
role for nouns processing, while action’s words process-
ing involves additional regions of the left dorsolateral
prefrontal cortex (Perani et al. 1999). Themodelwas con-
ceived with two different linguistic input units (a-priori
knowledge of word’s classes) in order to be able to ana-
lyze the activation values of hidden units for different
classes of words.

– Proprioception: The proprioceptive data (i.e. joint angles
of the robot’s right arm) were recorded from the iCub’s
sensors while the robot performed target action primi-
tives. Additional details on how we recorded the motor
data are provided in Sect. 4.2.2.

– Vision: From the visual stream captured by the robot’s
cameras, object features (i.e. dimension, color and shape)
were extracted. In Sect. 4.2.3 additional details on how
we generated the visual input are provided.

The neural network outputs words associated to actions
and objects, motor responses and the representation of object
features. The proprioceptive output is sent back to the state
units in the input layer by copying it; the state units contain
the activation values of the proprioceptive output units of the
network at time (t − 1) that become available to the input
layer at time (t). The hidden units of the model (13 neurons),
by integrating perceptual, motor and linguistic knowledge,
encode the meaning of words. The selected number of hid-
den neurons was large enough to ensure a sufficient number
of degrees of freedom for the network function and small
enough to minimize the risk of loss of generalization.

4.2.2 Proprioceptive data set

For initiating the physical interaction of the robot with the
environment, we have assumed that the iCub has already
developed some basic skills (i.e.motor primitives like PUSH,
PULL, etc.). For the performance ofmore complex behaviors
the robot combines motor primitives into action sequences.
Indeed, by exploiting the results presented in Cangelosi and
Riga (2006) andStramandinoli et al. (2012), action primitives
(e.g. CUT, HIT, PAINT, etc.) are built by combining low
level motor primitives (e.g. PUSH–PULL, LIFT–LOWER,
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Fig. 2 Partially recurrent neural network model

MOVE_L–MOVE_R) iterated for a certain number of time
steps. For example, the CUT action is built by iterating the
PUSH–PULL motor primitives several times. In particular,
each training sequence for the motor data consists of six
elements, which corresponded to three iterations of the same
action (e.g. the training sequence for the CUT action consists
of PUSH–PULL, PUSH–PULL, PUSH–PULL).

Motor primitives were planned by defining the iCub end-
effector pose (i.e. position xd and orientation αd in the 3D
Cartesian space) corresponding to the movement to be per-
formed by the arm of the robot (Oztop and Arbib 2002).
Position and orientation (Eq. 1) refer to the root frame
attached to the waist of the iCub; the orientation αd , is rep-
resented in axis/angle notation [three components for the
rotation axis (i.e. αx , αy, αz) and one component for the
rotation angle expressed in radians (i.e. θ )]. The desired
task-space behavior is mapped into the appropriate joint tra-
jectories (i.e. q) by solving the inverse kinematics problem
that determines the values of the seven joints (Eq. 3) of the
iCub right arm (Shoulder Pitch θsp, Shoulder Roll θsr , Shoul-

der Yaw θsy , Elbow θe, Wrist Pronosupination θwpr , Wrist
Pitch θwp and Wrist Yaw θwy). Given the position xd ∈ R

3

and orientationαd ∈ R
4 of the iCub end-effector for different

motor primitives:

xd = [xyz]T ∈ R
3 (1)

αd = ([αxαyαz]T , θ) ∈ R
4 (2)

the joint space vector q ∈ R
7 is determined by solving the

inverse kinematics problem by using the Cartesian interface
available in the iCub software repository (Pattacini et al.
2010):

q = [θsp θsr θsy θe θwpr θwp θwy]T ∈ R
7 (3)

During the recording of joint values, motor primitives
started and ended from the same home position (i.e. x =
−0.29, y = 0.16, z = 0.0); the orientation of the end effec-
tor was fixed (i.e. αx = 0.12, αy = 0.76, αz = −0.64,
θ = 3.0). Half of the primitives were iterative (Table 1a) and
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Table 1 Action’s name, object’s name and positions from which the
iCub arm joint values were recorded

Action’s name Position Object’s name

x y z

(a) Iterative actions

CHOP −0.24 0.16 0.0 KNIFE

−0.29 0.16 0.0

CUT −0.21 0.16 0.0 SAW

−0.29 0.16 0.0

HIT −0.29 0.16 0.05 HAMMER

−0.29 0.16 0.0

POUND −0.29 0.16 0.08 STONE

−0.29 0.16 0.0

DRAW −0.29 0.21 0.0 PENCIL

−0.29 0.16 0.0

PAINT −0.29 0.24 0.0 BRUSH

−0.29 0.16 0.0

(b) Non-iterative actions

SLICE −0.24 0.13 0.0 SLICER

−0.29 0.16 0.0

SLIT −0.21 0.11 0.0 BLADE

−0.29 0.16 0.0

HOLE −0.29 0.1 0.05 NAIL

−0.29 0.16 0.0

HOLLOW −0.29 0.22 0.08 PIN

−0.29 0.16 0.0

SCRIBBLE −0.22 0.21 0.05 PEN

−0.29 0.16 0.0

SCRAWL −0.24 0.24 0.02 CRAYON

−0.29 0.16 0.0

later used to ground the meaning of the word USE, while the
remaining ones were non-iterative (Table 1b) and employed
for the grounding of MAKE. The positions for which the
joint values were recorded are shown in Table 1.

The CHOP–CUT actions are defined as a movement of
the robot arm along the x axis, the HIT–POUND actions
are defined along z, while the DRAW–PAINT on the y axis.
The recorded joint values, before being sent to the neural
network model, are normalized in the interval [0, 1] by using
the following formula:

normalize( ji ) = ji − Jmin

Jmax − Jmin
(4)

where Jmin and Jmax represent the minimum and maximum
values that the joint ji to be normalized can assume. Accord-
ing to the joint values received in input, the neural network
model computes the new joint values to be sent to the iCub
robot; before being sent to the robot, the new joint values
are de-normalized in the original interval, according to the

following formula:

denormalize( ji ) = Jmin + norm( ji ) × (Jmax − Jmin) (5)

Concerning the use of the appropriate grip (e.g. precision
vs power grasp, that in our experiment were preprogrammed)
it was selected depending on the dimension of the tool
employed during the task. Tools of big dimensions required
a power grasp, while for small tools a precision grasp was
used.

4.2.3 Visual data set

The visual representations of features extracted from the
objects used to perform actions are shown in Fig. 3a, b.
Objects features are represented as a 4 × 4 binary matrix
(Mi j ) in which each element can assume either value 0 or
1. The features extracted from the objects presented to the
robot are dimension, color and shape. The first element of the
matrix (M11) is related to the dimension of the object. The
second, third and forth element of thematrix (M12,M13,M14)
encode the color of the object, while the remaining twelve
elements (M21, M22, M23, M24, M31, M32, M33, M34, M41,
M42, M43, M44) are related to the shape of the object. For
example, the first binary matrix in (Fig. 3a) corresponds to
the representation of a KNIFE with the following features:
its dimension is small (M11 is 0), its color is red (M12, M13,
M14 are 1, 0, 0) and its shape correspond to a predefined
shape category (M21, M22, M23, M24, M31, M32, M33, M34,
M41, M42, M43, M44 are 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0).

We collected a training set that consists of 24 sequences
including the motor, perceptual and linguistic inputs.

5 Training of the model

Studies conducted on developmental psychology and neuro-
physiology have revealed that perception and motor learning
are pre-linguistic (Jeannerod 1997). That is, children acquire
some motor behaviors and the capability to perceive objects
before they learn to name them. In our experiments the iCub
robot first develops some basic perceptual and motor skills
necessary for initiating the interaction with the environment;
hence, the robot can then use such knowledge to ground lan-
guage. In particular, the robot is trained to recognize simple
objects (e.g. KNIFE) and learn some higher-order behaviors
(e.g. CUT). Following the approach used in our previous
work (Cangelosi and Riga 2006; Stramandinoli et al. 2012),
higher-order behaviors (e.g. CUT) are built based on the com-
bination of basic motor primitives (e.g. PUSH and PULL).
After the robot has acquired such simple visual and motor
skills, it can use them for interacting in its environment
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Fig. 3 Binary matrices
representing the feature of the
objects used to perform:
iterative actions (a),
non-iterative actions (b)

according to the received linguistic description. In Sect. 5.1
we describe the implemented training strategy.

5.1 Training stages

Taking inspiration by the aforementioned findings, the train-
ing of the neural network model was organized in three
incremental stages:

1. Pre-linguistic training: The robot is trained to recognize
a set of objects (e.g. KNIFE, HAMMER, BRUSH, etc.)
and learn object-related actions (e.g. CUT, HIT, PAINT,
etc.). Actions are both iterative and non-iterative and they
are obtainedby combiningmotor primitives; for example,
the action primitive CUT is obtained by performing the
motor primitives PUSHandPULL iteratively.During this
stage the robot learns to recognize objects and perform
actions independently from each others. That is, we do
not train the robot to CUT [with] KNIFE but to learn
how a KNIFE looks like, and how to perform the CUT
action (independently from the usage of a specific tool).
Table 1 contains the full list of objects and actions used

for the training of the robot. The neural network model
receives the proprioceptive input and the visual features
of object’s. The model outputs the next joint state and the
representation of object’s features.

2. Linguistic-perceptual training: This is the first stage
of language acquisition. The model is trained to name
actions and objects (two-words sentences consisting of a
verb followed by a noun e.g. CUT [with] KNIFE); these
words are directly grounded in perception and motor
experience. The model, which was previously trained to
performactionprimitives and recognize object’s features,
during this stage receives in inputs the labels to be asso-
ciated to actions and object’s features. Given that in this
stage the robot has to translate a linguistic commands
(as CUT [with] KNIFE) into a behavior, it performs the
action by using the appropriate tool.

3. Linguistic-abstract training: Abstract action words (i.e.
USE, MAKE) are grounded by combining and recall-
ing the perceptual and motor knowledge previously
linked to basic words (i.e. Linguistic-perceptual train-
ing). To derive the meaning of abstract action words the
robot, guided by linguistic instructions, organizes the
knowledge directly grounded in perception and motor
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knowledge. The model receives linguistic inputs related
to abstract action words and outputs the corresponding
behavioral patterns (i.e. next joint state). This phase of the
training represents the abstract stage of language acqui-
sition when new concepts are formed by combining the
meaning of terms acquired during the previous stage
of the training. Novel lexical terms can be continually
acquired throughout the course of the robot’s develop-
ment through new sensorimotor interactions with the
environment to which correspond new linguistic descrip-
tions. Given that in this stage the robot has to translate a
linguistic commands (as USE [a] KNIFE) into a behav-
ior, the robot performs the action by using the appropriate
tool.

At the end of the training, semantic meanings are formed
via lexicon organization that recalls the perceptual knowl-
edge and motor sequences in which the lexicon is grounded.
In particular, the successful training of the model enables the
robot to ground the meaning of words like USE and MAKE
in the perceptual (e.g. features extracted fromKNIFE,HAM-
MER, BRUSH, etc.) and motor experience (e.g. actions
like CUT, HIT, DRAW) previously grounded. In the pro-
posed hierarchical organization of lexical categories, words
like KNIFE, HAMMER, CUT, HIT, etc., representing basic
words, are directly grounded in perceptual and motor experi-
ence through a one-to-one mapping. Words like USE and
MAKE, referring to different events and situations, are
characterized by a one-to-manymapping; that is, a single lin-
guistic label (e.g. USE) is associated to different basic words
(KNIFE, PENCIL) (Borghi et al. 2011).We propose the hier-
archical organization of concepts created by the model as a
general and useful mechanism for the acquisition of abstract
action words.

5.2 Learning algorithm

The aim of the training of the neural network model (Algo-
rithm 5.1) is to ground the meaning of abstract action words
in sensorimotor experience. In response to linguistic instruc-
tions the model has to generate the appropriate behavior and
to recall the the representation of object’s features.We define
a function for evaluating the performance of the model in an
offline mode; for such evaluation we select the mean square
error (MSE). For the tuning of the neural network parame-
ters we used the back-propagation algorithm. By finding the
optimal values of the network weights that minimize the dif-
ference between the target and the actual output sequences,
through the back-propagation algorithm the network learned
the mapping between input and output values that permit-
ted to perform the desired tasks. In the proposed study, the
back-propagation algorithm was not used for mimicking the

learning process of biological neural systems (Yamashita and
Tani 2008), but rather as a general learning rule. Similar
results could be obtained using other biologically more plau-
sible learning algorithm (see Edelman 2015 for a proposal
to reconsider some common assumptions made in the mod-
elling of the brain and behavior).

Algorithm 5.1: Back-Pr. Learning(Data)

Load net, params, data set
if simulation mode is training
then Randomize initial weights [-0.1, 0.1]

for i ← 0 to maxCycles

do

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Reset delta accumulation
for p ← 0 to patternSetSequenceSize

do

⎧
⎨

⎩

Reset inputs to 0
Initialize state units to 0.5
Learn the I/O mapping

Update network’s weights
Compute MSE
if MSE≤ threshold
then Terminate algorithm

return (Output V alues)

The maximum number of iterations of the learning algo-
rithm was set to 10, 000. In order to avoid over-training of
the network, the training was terminated as soon as the error
reached the threshold value of 0.001 (stopping criterion).
Indeed, the back-propagation algorithm as a possible stop-
ping criteria includes that the total error of the network falls
below a predefined threshold value or that a certain num-
ber of epochs are completed; in this work a combination of
the two (i.e. whichever of the two occurs first) is used. The
threshold value for the error was selected by training several
networks and measuring the performance of each of them.
The activation function of neurons in the hidden and output
layers is a logistic function defined in the interval [0, 1]; the
logistic function introduces non-linearity in the training and
improves the convergence of the algorithm. The network’s
initial weights were drawn randomly from a uniform distri-
bution defined in the interval [−0.1, 0.1].

The training of the neural network model was imple-
mented in batch mode according to which all the inputs in
the training set are sent to the network before the weights
are updated. For our work, the batch training has observed to
be significantly faster and to produce smaller errors than the
incremental training. Through the batch back-propagation,
weight updates were summed over the presentation of the
whole training sequences and subsequently the accumulated
weight updates were performed. During each iteration of the
algorithm, the accumulation of the variation of the weights
was reset to zero; furthermore, for each pattern set the inputs
were set to zero and the state units initialized to 0.5. Hence,
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the new weight updates for the whole pattern set were com-
puted for a certain number of epochs or until the stopping
criterion was met (Algorithm 5.1).

Given the linguistic, proprioceptive and visual inputs, the
model learns to predict the next joint state and produces the
visual representations of objects. Carrying out several simu-
lations, it has been possible to find the network’s parameters
that minimize the expected training and test error and hence
to find the neural network model that allows the robot to
properly perform the desired task.

6 Experimental results

Before presenting the results obtained on the neural net-
work model described in Sect. 4, the evaluation settings are
described.

6.1 Evaluation settings

The model was trained through back-propagation to learn
the associations between words, and motor sequences and
visual representations of objects; the training was performed
for 25 random seeds. As already described in Sect. 5, the
implemented training strategy consisted of three incremen-
tal stages, each of which corresponded to training the model
in response to different configurations of the input signals. At
the end of the second and third stage of the training, in order
to understand how the model responded to the variation of
the stimuli in input and further investigate how internal rep-
resentations of objects are related to action representations,
the performance of the model was evaluated in response to
an incompatible condition test. We analysed the response
of the model in case of inconsistency between the linguis-
tic and visual inputs; objects and actions that the robot had
previously learned to name, were referred using incompati-
ble linguistic labels. In particular, two different incompatible
condition tests were performed:

– Incompatible noun condition: to analyse the response of
the model when the name of the object is incompatible
with the object seen by the robot.

– Incompatible verb condition: to analyse the response of
the model when the name of the action is incompatible
with the behaviour that the robot usually performs with
the presented object.

The linguistic input provided to the robotwas either incon-
sistent with the objects perceived orwith the actions typically
associated to the presented objects.As such, this testwas used
to verify how the robot responded when the received linguis-
tic command was in contrast with the perceived context.

In Sects. 6.2, 6.3 and 6.4 we present the results achieved
during the three incremental stages of the training presented
in Sect. 5.

6.2 Phase I: Pre-linguistic training

The first training stage of the model aimed at endowing
the robot with basic perceptual and motor skills necessary
for grounding higher-order concepts. The robot learned to
classify objects according to their visual properties and to
perform some predefined motor behaviors. In particular, the
model was trained in a supervised manner to recognize
12 objects and perform 12 actions obtained by combining
low-level motor primitives. The training was performed by
activating the visual and proprioceptive inputs only, while
the linguistic ones were silent. The training was success-
fully completed, and objects and actions were correctly
categorized. The success of this training stage permitted the
acquisition of the basic perceptual andmotor knowledge nec-
essary in the next stages of the training for the grounding of
language.

6.3 Phase II: Linguistic-perceptual training

The second stage of the training enabled the robot to acquire
linguistic capabilities through the direct naming of objects
and actions. Connections between the motor/perceptual
inputs and the linguistic labels were created.

6.3.1 Sensorimotor mapping

In order to have a quantitative measure of the similarity
between the output and target joint values over time, the
Dynamic Time Warping (DTW) was performed (Sakoe and
Chiba 1978). In particular, we computed the DTW for the
actual joint values produced by themodel, and the target joint
values used for the training of the robot. Results are presented
in the gray-maps in (Fig. 4). Each row of the gray-map rep-
resents the actual joint values computed by the model, while
columns represent the target joint values.

By displaying the results of the DTW in the gray-map lay-
out in (Fig. 4), it is easier to visualise the capability of the
model to categorize the proprioceptive inputs and analyse the
performance of the robot in executing the desired behaviour.
In particular, fromFig. 4a it is possible to observe that five out
of the six iterative actions (i.e. CHOP, CUT, HIT, POUND,
DRAW) have the lowest DTW values (corresponding to cell
of darker gray in the map) when compared to their corre-
sponding target values (cells on the main diagonal). For the
PAINT action, the lowest DTW value is obtained when the
output joint values are compared against the target joint val-
ues of the CUT action; this means that the robot, when asked
to PAINT, it performs an action that in terms of joint values
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Fig. 4 Gray-map showing the DTW performed on joint values: itera-
tive actions (a), non-iterative actions (b)

is closer to the CUT than the PAINT action. From Fig. 4b
it is possible to observe that all the six non-iterative actions
were very well performed and classified. Given the similarity
among the six non-iterative actions, the DTW has low values
in correspondence of more than one target; nevertheless, in
this case the lowest DTW is registered on the main diagonal
of the gray-map (Fig. 4b).

The performance of the robot in terms of action execution
for the non-iterative actions is better than the iterative ones.
However, the mapping of the joint values associated to the
non-iterative actions was easier than learning the mapping
of the joint values associated to the iterative ones, which
required to repetitively alternate the values of the robot’s
encoders from the home to the target values.

6.3.2 Incompatible condition test

Activation values of hidden units recorded during the incom-
patible condition test were analysed. In particular, in order to
compare the hidden activation values recorded at each time
step during the compatible and incompatible conditions, a
temporal hierarchical cluster analysis has been performed.
As a measure of dissimilarity between pairs of observations,
the Euclidean distance has been used. Due to lack of space,
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Fig. 5 Incompatible noun condition (e.g.“CHOP [with] KNIFE”
became “CHOP [with]HAMMER”). Results of the hierarchical clus-
tering of hidden units at the time steps T = 0 (a), T = 5 (b), and
T = 11 (c)

in this paper we show only results of the hierarchical cluster
analysis for the timesteps 0, 5, 11. However, during the other
timesteps the obtained dendrograms are either equal to the
one for timestep 0 or 5–11.

Incompatible noun condition test The results of the hier-
archical clustering of hidden values at the time steps T = 0,
T = 5 and T = 11 are presented in (Fig. 5), where
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dendrograms compare the activation values recorded dur-
ing the compatible condition “CHOP [with] KNIFE” to
the activation values recorded during the incompatible con-
dition “CHOP [with] HAMMER”. The incompatibility is
related to the KNIFE/HAMMER nouns. Despite the robot
seeing a KNIFE, the word HAMMER is used to refer to the
object. The dendrograms in (Fig. 5) show that the obser-
vations are organized in three main clusters that pair the
inputs related to the six iterative actions. The hidden values
related to the incompatible condition “CHOP [with]HAM-
MER” are clustered together with CHOP. This means that
the activation values of hidden units during this incompatible
condition are similar to the activation values of hidden units
recorded during the compatible condition “CHOP [with]
KNIFE”.

Incompatible verb condition test The results of the hier-
archical clustering of hidden values at the time steps T = 0,
T = 5 and T = 11 are presented in (Fig. 6); such den-
drograms compare the activation values recorded during the
compatible condition “CHOP [with] KNIFE” to the acti-
vation values recorded during the incompatible condition
“DRAW [with] KNIFE”. In this test the inconsistency is
related to the substitution of the verb CHOP with DRAW.
Despite in front of the robot there is a KNIFE, the verb
DRAW is used to refer to the action to be performed with
the presented object. The dendrograms in (Fig. 6) show that
the observations are organized in three main clusters that
pair the inputs related to the six iterative actions. The activa-
tion values related to the incompatible condition “DRAW
[with] KNIFE” are clustered together with CHOP. This
means that the activation values of hidden units during this
incompatible condition test are similar to those recorded
during the compatible condition. The incompatible condi-
tion tests seem to suggest that, in case of inconsistency,
the perceptual input is stronger than the linguistic one and
it triggers the behaviour expected to be performed with
a specific object. The results of this test can be helpful
in understanding the mechanisms underlying positive, as
well as, negative compatibility effects observed in behav-
ioural experiments (Borghi et al. 2004; Tucker and Ellis
2004).

6.4 Phase III: Linguistic-abstract training

The last stage of the training has enabled the iCub to learn
abstract action words and acquire higher-order categories.
New concepts were formed by combining the lexical terms
acquired during the previous stage of the training. Since such
lexical terms are directly connected to perceptual and motor
experience, they recall the previously grounded perceptual
and motor knowledge (multi-modal symbols).
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Fig. 6 Incompatible verb condition (e.g. “CHOP [with] KNIFE”
became “DRAW [with] KNIFE”). Results of the hierarchical cluster-
ing of hidden units at the time steps T = 0 (a), T = 5 (b), and T = 11
(c)

6.4.1 Sensorimotor mapping

The similarity between the output and target joint values over
time has been calculated by performing the DTW. The out-
put joint values, recorded after each action, were compared
to the corresponding target values (Fig. 7). For both itera-
tive and non-iterative actions it is possible to observe that
the lowest DTW is obtained when the actual output joint val-
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Fig. 7 Gray-map showing the DTW performed on joint values: itera-
tive actions (a), non-iterative actions (b)

ues are compared to their corresponding targets (Fig. 7a, b).
The performance of the robot in executing action primitives
improves after the third stage of the training.

6.4.2 Incompatible noun condition test

We analysed the response of the model in case of inconsis-
tency between the linguistic and visual inputs. In particular,
the incompatible noun condition was tested to analyse the
response of the model when the name of the object is incom-
patible with the object perceived by the robot (e.g. “USE [a]
KNIFE” became “USE [a]HAMMER”). Activation values
of hidden units recorded during the compatible and incom-
patible conditions were analysed by performing the temporal
hierarchical cluster analysis. Figure 8 shows the results of
the hierarchical clustering of hidden units at the time steps
T = 0, T = 5 and T = 11; the dendrograms compare
the hidden activation values recorded during the compati-
ble condition “USE [a] KNIFE” to the hidden activation
values recorded during the incompatible condition “USE [a]
HAMMER”. In this case, the incompatibility is related to the
KNIFE/HAMMER nouns. Despite the robot sees a KNIFE,
the word HAMMER is used to refer to the object placed in
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Fig. 8 Incompatible noun condition (e.g. “USE [a] KNIFE” became
“USE [a] HAMMER”)). Results of the hierarchical clustering of hid-
den units at the time steps T = 0 (a), T = 5 (b), and T = 11 (c)

front of the robot. The hidden values related to the incompat-
ible condition “USE [a] HAMMER” are clustered together
with “USE [a] KNIFE”. This means that the activation val-
ues of hidden units during this incompatible condition test are
very close to the activation values of hidden units recorded
during the compatible condition.

The results obtained in the incompatible noun condition
test has confirmed that in the case of inconsistency between
the perceptual and linguistic input, the robot executes the
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Fig. 9 Hidden units activation values in the space of the three princi-
pal components. Data displayed in four groups: Training II Iterative-
Actions, Training II Non-Iterative Actions, Training III Iterative-
Actions, and Training III Non-Iterative-Actions

actions elicited by the seen objects. This suggests that the
proper naming of objects and actions supports action cate-
gorization and that seeing objects automatically elicits the
representations of their affordances (i.e. all the motor acts
that can be executed on particular objects to obtain a desired
effect).

6.5 Representations of abstract action words

After all the stages of the training were successfully com-
pleted, to better understand the internal dynamics of the
model, the activation values of hidden units were analysed
by performing the Principal Component Analysis (PCA).
Observations are displayed in four groups representing
respectively the activation values in the space of the first three
principal components for the Training II and III for Iterative-
Actions, and the Training II and III for Non-Iterative-Actions
(Fig. 9). The observations related to the iterative actions
recorded during the second and third stage of the train-
ing almost fully overlap (e.g. data displayed by red and
green markers). The same consideration can be done for
non-iterative actions (e.g. data displayed by blue and black
markers). This confirms that hidden units during the sec-
ond and third stage of the training follow a very similar
activation pattern. These results suggest that the acquisi-
tion of concepts related to abstract action words (e.g. USE
and MAKE) requires the reactivation of similar internal rep-
resentations activated during the acquisition of the basic
concepts that are hierarchically organized to ground a partic-
ular abstract action word. This seems to suggest that even the
semantic/conceptual representation of abstract action words
requires reusing motor and perceptual representational capa-
bilities (Barsalou 1999).

7 Conclusions

In this work we proposed a model for the acquisition of
abstract actionwords grounded in the in perceptual andmotor
knowledge of a humanoid robot. Although the proposed
experimental setup is limited, given the exemplificationmade
in the representation of the multi-modal inputs, it suggests
a general mechanism for grounding abstract action words
through the combination of perceptual knowledge and sim-
ple motor primitives in humanoid robots. The implemented
architecture is based on partially recurrent neural networks
(Jordan 1986), which enabled the modelling of the mecha-
nisms underlying motor and linguistic sequence processing.
The training of the model was incremental and consisted of
three stages that permitted to acquire perceptual and motor
knowledge first, to learn words directly grounded in per-
ceptual and motor knowledge subsequently, and to ground
abstract action words through the hierarchical organization
of the words directly linked to perceptual and motor knowl-
edge at the end.

Experimental results have shown that the robot was able
to perform the behaviour triggered by the linguistic input
and the perceived object; the joint values produced by the
robot were not identical to the values of the ones used for the
training, but the difference was still acceptable to reproduce
the requested behavior. The presence of clusters in the hid-
den units of the model suggested the formation of concepts
from the multi-modal data received in input by the network.
Results obtained in the incompatible condition tests showed
that in case of inconsistency between the perceptual and lin-
guistic inputs, the robot executed the actions elicited by the
seen object.

Directions for future research include the grounding of
language in tool affordances through statistical inference.
Despite being clear that language needs to be grounded in
sensorimotor experience, it is also necessary to go beyond
simple sensorimotor grounding (Thill et al. 2014). To this
end, statistical inferencewill be adopted in grounded theories
ofmeaning. Embodied theories ofmeanings in a probabilistic
framework can lead to “hybrid models” in which some con-
cepts are directly grounded in a robot’s sensorimotor experi-
ence while, for other concepts, statistical inference will per-
mit to go beyond the available data and acquire new concepts.
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