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Abstract System monitoring can help to detect anomalies,
but crafting monitors for robot systems is difficult due to
the inherent complexity, changing, and uncertain operating
environment. We address this challenge by automatically
inferring system invariants and synthesizing those invariants
into monitors to detect faults with an approach inspired by
state of the art software engineering methods. Our approach
is novel in that: (1) It automatically derives invariants from
messages; (2) The invariants types are tailored to match
the spatial, temporal, and architectural attributes of robotic
systems; and (3) It automatically classifies and synthesizes
invariants into an online invariants monitor node. We have
assessed the approach in the context of two unmanned aerial
vehicle systems running robot operating system. We found
thatmonitoring the inferred invariants can reduce system fail-
ure rates when facing unexpected contexts from 76 to 11 %,
and can detect differences between the lab environment and
the field deployments.

Keywords Invariant · Monitor synthesis · Robot Operating
System (ROS) · Unmanned Aerial Vehicle (UAV)

1 Introduction

Robot systems that operate in unstructured and uncertain
environments are difficult and often infeasible to test under
the full range of conditions they will encounter. As such,

B Carrick Detweiler
carrick@cse.unl.edu
http://nimbus.unl.edu

1 Nebraska Intelligent MoBile Unmanned Systems (NIMBUS)
Lab, Department of Computer Science and Engineering,
University of Nebraska-Lincoln, 220 Schorr Center, Lincoln,
NE 68588, USA

it is relatively common to develop monitors that can detect
conditions that may lead to failures and to attempt to take
corrective actions. Such monitors are commonly crafted by
engineers with the domain knowledge to understand what
could constitute abnormal behavior. For robot systems oper-
ating in unstructured and varied environments, developing
monitors becomes increasingly challenging as the system
and its operating environment grow in complexity.

Consider, for example, the scenario illustrated in Fig. 1
where a small Unmanned Aerial Vehicle (UAV) is auto-
nomously following and attempting to land on a moving
platform whose location is continuously fed to the UAV. An
implementation in Robot Operating System (ROS)1 consists
of several distributed processes that communicate through
dozens of message channels. An engineer developing a mon-
itor to detect anomalies for such a UAV landing system is
likely to focus on a small subset of variables and relation-
ships between variables. For example, amonitorwould likely
check whether the positions of the UAV and the platform are
aligned when landing is initiated, and whether the speed of
the platform is less than a safe maximum.

There are, however, many other aspects worth monitoring
that are more subtle and may not be considered by the engi-
neer given the number of variables and relationships involved
and thewide rangeof operating conditions. For theUAVland-
ing system, for example, it would be useful to have monitors
to check whether the platform is horizontal and not rotating
when landing, the UAV’s angles are not greater than a mul-
tiple of the UAV’s commanded velocity, or that changes in
the UAV internal Inertial Measurement Unit (IMU) are fol-
lowed by changes in the external localization system. The
goal of this work is to support the automatic generation of
such invariants and the associated monitors.

1 Robot Operating System (ROS), http://www.ros.org.
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Fig. 1 UAV attempting to land on a moving platform

1.1 Approach overview

In this article, we propose an approach to automate the syn-
thesis of invariant monitors for robotic systems through the
analysis of their traces. Our approach is inspired by exist-
ing software engineering approaches for automated invariant
inference (covered in Sect. 2.2). The core idea of this type of
approach is to infer system invariants from traces collected
during system execution, iteratively instantiating potential
invariants from a set of invariant templates utilizing the trace
values, and dropping or refining the invariants that are vio-
lated by other trace values.

Existing techniques to automatically infer invariants have
been shown useful for generating invariants that serve as pre
and post conditions for functions. The application of these
techniques to large distributed robotic systems, however, has
been limited. We conjecture that this is due to the focus on
the generation of low level invariants, which is impractical
for these large systems. In addition, these systems do not take
into account the physical nature of robot systems and there-
fore lack domain-specific invariants that capture the temporal
and spatial aspects of robotic systems, Finally, these tools
cannot be easily integrated into distributed robot systems,
such as ROS, which is used in a large number of robot sys-
tems. In this work we set out to tackle these challenges.

At a conceptual level, the proposed approach first infers
likely invariants from successful runs collected in traces.

Then, it automatically synthesizes a monitor that is inserted
into the robotic system as a ROS node to detect invari-
ant violations in future runs. When there is an invariant
violation, the monitor will log it or take a user-specified
recovery action ranging from blocking messages to exe-
cuting a new control action. These recovery actions must
be carefully designed to not cause additional failures, and
their associated tradeoffs analyzed. This can be challeng-
ing in the general case, but reasonable for specific contexts.
For instance, in the UAV landing scenario, aborting a land-
ing is a typically safe action that is preferable to a failed
landing. The recovery actions can also be tied to the soft-
ware state so that the UAV, for instance, does not try to
abort a landing when it is searching for the landing plat-
form.

Figure 2 shows the workflow of the approach, which dif-
fers from existing dynamic invariant inference frameworks
(e.g., Ernst et al. 1999, 2006; Gabel and Su 2008; Hangal
and Lam 2002) in the areas with bold labels. The system
only requires three inputs: the target system S, a configu-
ration file CFG, and a training set of activities T S. In the
context ofROS, the system S consists of the nodes and launch
files that make up the robot system. The configuration file,
CFG, is a custom XML-file that defines the ROS-topics to
examine and the safe actions to take in case of an invari-
ant violation. Finally, the training set of activities, T S, are
the activities to be executed by the robot (e.g., landing a
UAV on a moving platform) that serve as a model of correct
behavior.

In the invariants inference block of Fig. 2, the target sys-
tem S is automatically instrumented to capture the messages
passed between the ROS nodes in the system. We call the
instrumented system S′. When S′ is executed on the dif-
ferent training activities, T S, a set of Traces is generated,
where each trace will contain a sequence of variable-value
pairs found in the system communication messages. The
approach then attempts to instantiate the invariant templates
tailored for robotic systems or to refine already generated
invariants based on the information found in Traces. The
invariant templates used and the topics to be examined
in the traces are defined by CFG. The monitor infer-
ence block starts by classifying the generated invariants to
prune the less useful ones. The final output is the system

Fig. 2 Approach workflow
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with modifications that include an extended ROS launch
file that remaps the system messages to pass the needed
data through an automatically synthesized monitor node
in order to detect invariant violations and launch counter-
measures.

While we have implemented our approach for ROS,
we note that it could also be implemented on many other
robotic systems made of distributed nodes that sense, actu-
ate, and communicate through some formofmessage passing
scheme (e.g., LCM,2 Microsoft Robotics Developer Stu-
dio3, CLARAty4 ). Doing so would require tailoring certain
lower-level aspects associated with instrumentation, trace
generation, and monitor generation, that are often coupled
with each middleware. In addition, the approach may not be
applicable to components of robot systems that have hard
real-time constraints where adding delays due to the moni-
tor or corrective actions could violate real-time constraints.
Systems such as ROS, however, operate at a higher level
and do not make any real-time guarantees so the approach is
appropriate for many ROS systems.

In this work we test our approach on two case studies.
The first corresponds to the system shown in Fig. 1, the UAV
landing system. We found that with the synthesized invari-
ants monitor the UAV landing system was able to handle
situations that it was not designed to handle, such as when
the landing platform was already occupied, when there were
additional fake landing platforms, when there was a strong
wind, and when the platform was broken. The second is a
UAV-based water sampling system from an unrelated project
that has conducted hundreds of missions in the field (Ore
et al. 2015). In this study, we found that a monitor encoding
invariants generated with traces collected on indoor trials
showed a number of violations when tested outdoors due
to differences in sensor rates and the outdoor environment.
This led to a refinement of the indoor test environment to
better match the outdoor environment. In addition, it led to
the discovery of a subtle bug (under particular conditions,
the pump was turned on without water) that was not dis-
covered in hundreds of field tests, but probably contributed
to the early breaking of several pumps. These case studies
illustrate the power of automatically generated monitors for
robots.

1.2 Contributions

This article is a significant extension and revision of our prior
conference article on inferred invariants (Jiang et al. 2013).

2 Lightweight Communications and Marshalling (LCM), https://code.
google.com/p/lcm/.
3 Microsoft Robotics Developer Studio http://msdn.microsoft.com/
en-us/robotics/.
4 CLARAty Robotic Software, https://claraty.jpl.nasa.gov.

Specifically, we provide additional detail on the invariant
generation and new invariant templates in Sect. 4. We have
also extended our monitor generation approach to statisti-
cally prune the set of invariants based onpositive andnegative
tests (Sect. 5.1), provide details on our monitor synthesis
(Sect. 5.2) and configuration methods (Sect. 5.3). Finally, in
Sect. 6, we evaluate the performance of the approach in more
detail on the UAV landing scenario and on a new UAV water
sampling case study.
Our main contributions are the:

– Development of novel invariant templates that account
for critical properties in robotic systems, such as those
characterizing the relationship between variables that
have a continuous distribution such as sensors values,
those including a time component to capture the deriva-
tives of raw variable values, those that can differentiate
among system operating modes, those characterizing the
architecture of the robotic system, and those capturing
temporal properties of the program behaviors (e.g., pub-
lish ordering of different message types).

– Capture and processing of traces through high-level and
lightweight system instrumentation (just the message
passing channels). Operating at this granularity enables
the system characterization of the behavior of a system’s
nodes or families of nodes, with the corresponding gen-
eration of higher-level invariants.

– Implementation of a version of the approach that auto-
matically classifies the quality of the inferred invariants
based on their failure prediction power and synthesiz-
ing those invariants into a monitor node that can be
seamlessly integrated into existing ROS-based robotic
systems. The monitor can be tailored to trigger actions
when an invariant is violated.

– Assessment of the approach in the context of two UAV
systems to better understand its potential. Our experi-
ments revealed that themonitor can reduce system failure
rates when facing unexpected scenarios from 76 to 11 %.
In addition, the inferred invariants can be used to check
changes in deployment conditions anddeveloper’s expec-
tations.

2 Background

Our work aims to enable the automatic generation of sys-
tem invariant monitors that can detect anomalous behavior
in distributed robotic operating systems. Since we imple-
mented our tool specifically on ROS, we first introduce and
discuss details of this robotic system and use it to convey the
elements of similar architectures. We then give background
on Daikon, the invariant inference engine on which we build.
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2.1 ROS

ROS is a software framework for robot software develop-
ment, which provides operating system-like functionality
on a heterogeneous computer cluster. Nodes are the basic
elements, each being a process launched under ROS, and
communicating with each other through topic messages and
services. A topic works like a message bus, where nodes
can publish to and subscribe from; the messages published
on topics are user defined data structures. Multiple nodes
can publish or subscribe to one topic. In contrast, a service
can only be provided by one server, and the client nodes
can communicate with the server node through a call. All
these communications are registered and directed by a mas-
ter server node.

ROS also provides several ways to configure the system at
launch time through an XML-format launch file. This adds
flexibility by enabling the restructuring of the publisher-
subscriber and service architecture and the redefinition of
parameters without changing the source code. Similarly, at
runtime, the master node contains the ROS parameter server
which provides a dictionary-based representation to access
and change parameters that are used by the nodes at runtime.

Our approach targets all these ROS elements, analyz-
ing and monitoring the data in messages, services, and
parameters, and manipulating launch files to transparently
implement the monitoring process.

2.2 Invariant inference in daikon

Our work was inspired in part by the evolution and matu-
rity gained by techniques and tools available to infer likely
program invariants. Our toolset builds specifically on daikon
(Ernst et al. 1999, 2006), one of the pioneer approaches with
probably the most sophisticated toolset openly available.5

The invariants produced by daikon are an analogue of a low
level program specification in the form of a method pre- or
post-conditions over the method parameters, such as x ! =
null, y > 0, x mod y = 0, and array[] = {1, 2, 3}. Since
these invariants are generated based on the data available
in program traces, they can only characterize the behavior
present in those traces. This means that the inferred invari-
ants may not always hold as they can under-approximate the
program behavior (when certain behavior is not exposed by
trace) or over-approximate it (when the trace lacks the behav-
ior that would invalidate an inferred invariant). In spite of
these limitations, such invariants have been used extensively
as part of many software testing, debugging and verification
techniques.

5 The daikon invariant detector, http://groups.csail.mit.edu/pag/
daikon/.

Daikon provides several language-specific front-end tools
for program instrumentation and an extensible invariant tem-
plate set. Front-end tools insert probes into the target program
(more specifically at methods’ entries and exits) to enable the
capture of variable-value pairs at those particular execution
points. They also generate a .decl file containing the vari-
ables captured at eachprogrampoint.During execution, these
probes output variables’ values to the data traces in daikon’s
format (.dtrace files). Next, at inference time, the invariant
templates are used to initialize and check for invariants on
the data traces, and developers can extend this template set.
The inference engine follows these steps: (1) Given variables
declared in .decl and daikon’s configuration parameters, it
initializes all possible invariants on the variables based on the
invariant templates. (2) It reads the data from the .dtrace,
checks all the invariants initialized in the first step, and dis-
misses or refines them if the data in the trace violates them;
This step is repeated until the end of the trace. (3) After
finishing reading the trace data, it filters out unjustified or
redundant invariants based on the settings, and finally out-
puts the invariants remaining. For example, given a template
invariant var X > constant and a trace of six variable-value
pairs collected from time t1 to t6, tr = [t1 : a = 1; t2 : b =
3; t3 : a = 1; t4 : a = 2; t5 : a = 1; t6 : a = −1], daikon
would instantiate the invariant template as a > 0 after read-
ing that the value of a at t1 and then at t3 are greater than
zero, but then refine this invariant to a > −2 at t6 when
value a = −1 is observed; for variable b an invariant may
be inferred but not reported as there may not be enough val-
ues to support that instantiation. Our approach extends the
front-end, the set of invariant templates, and it incorporates a
new component to perform further invariant refinement and
monitor synthesis.

3 Related work

In this section we explore the related work in two contexts:
invariant detection andmonitoring, and robot executionmon-
itoring and distributed debugging.

3.1 Invariant inference and monitoring

In the context of daikon, our contribution provides a new
front-end that operates at conceptually different program
points that are associated with the message publishing or
service calls, new invariant templates specially evolved for
robotic systems, and the incorporation of those invariants
into a monitoring node. Before we delve further into our
approach, we further discuss other related approaches to
invariant inference.

DIDUCE (Hangal and Lam 2002) was among the first to
use invariants for runtime monitoring and diagnosis, which
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is something we are doing as well with the invariants we
infer. DIDUCE instruments java bytecode, focuses on pro-
gram states at particular program points (procedure calls
and heap accesses), and relaxes invariants or reports them
to users when detecting anomalies. Instead, our approach
operates in the context of message-passing and service-
oriented architectures supporting distributed robotic systems,
does not instrument the program source code, incorporates
domain specific invariants, and can take corrective mea-
sures (like interrupting certain messages) to prevent system
crashes.

Several other complementary efforts have emerged in
the last few years, ranging from those attempting to refine
state invariants to those attempting to infer richer invariants
(Gabel and Su 2008; Yang et al. 2006; Csallner et al. 2008;
Sagdeo et al. 2011; Beschastnikh et al. 2011). To improve
invariant generation, researchers have taken advantage of
static analysis to guide dynamic invariant inference. For
example, PRECIS proposed generating invariants through
program path guided clustering (Sagdeo et al. 2011). Their
approach records inputs and outputs together with predicates
for branch conditions, and uses linear regression on inputs
and outputs grouped by predicate words to infer path invari-
ants. DySy uses symbolic execution to infer more general
invariants, as it combines concrete executions of actual test
cases with simultaneous symbolic executions of the same
tests to produces abstract conditions as program invariants
(Csallner et al. 2008). In our work, we did not apply sta-
tic or symbolic analysis because of the scale as we are
facing large scale distributed robotic systems instead of a
class or a function. Consequently, our approach is based
on the analysis of traces without any dependence on source
code.

The body of work on specification patterns (e.g., Autili
et al. 2015; Dwyer et al. 1999; Ghezzi and Kemmerer 1991;
Grunske 2008; Konrad and Cheng 2005) that define a rich set
of operators to characterize a broad set of temporal, real-time,
and probabilistic behaviors is extensive. The work associated
with automatic inference of such patterns, however, has been
much more limited and mostly limited to temporal invariants
that encode simple rules on events’ order. Javert is one tool
that can extract and compose temporal patterns from event
traces, and its extension allows for simultaneously learn-
ing and enforcing general temporal properties over method
call sequences (Gabel and Su 2008, 2010). We have imple-
mented a subset of such temporal invariant inference on
publishedmessages and called services.We specifically infer
the ordered-pair interval invariant, which states that an event
always happens after another event within certain time and
events in between. Some follow up efforts on invariant detec-
tion also aimed to characterize higher level of abstractions.
Henkel and Diwan (2003), for example, derived algebraic
class specifications, while Beschastnikh et al. (2011) derived

models such as call graphs. Most of these efforts focused on
interactions between components, and the results are often
in the form of finite state machines (FSM) or call structures.
Lorenzoli et al. (2008), for example, developed a dynamic
analysis algorithm called GK-tail combining the ideas of
invariant detection and temporal property mining to pro-
duce an even richer extended finite state machines (EFSMs).
We leave the incorporation of these extensions to future
work.

3.2 Monitoring and debugging robotic systems

In the context of robotic systems, monitoring for error detec-
tion is a well known area (Pettersson 2005). The potential
for missing information, unreliable and imprecise sensors,
and the stochastic nature of the operating environment often
makes monitors a necessity. Existing efforts can be broadly
categorized into model-based or data-driven, based on how
they build the system model (invariants in our approach) to
detect anomalies.

With model-based approaches engineers model each state
and use this model to estimate the current system state (i.e.,
normal or faulty). They are commonly used, for example,
when designing control systems, where precise models tar-
get problems fairly close to the hardware as well as the raw
sensor data. In the context of quad-rotor UAVs similar to the
ones we used in our study, there have been several recent
efforts that attempt to detect specific known anomalies by
model-based approaches. For example, Gillula and Tomlin
(2012) proposed a framework using reachability analysis in
a way that prevents the control system from taking an unsafe
action. Muller and Sukhatme (2014) generate risk-aware tra-
jectories for landing a quad-rotor in the presence of obstacles.
Sattar and Dudek (2014) develop a model of human-robot
interaction to minimize risk while taking into account task
specifications, communication, execution costs, and other
factors with an underwater robot.

The data-driven approach does not need an a priori model;
instead it tries to infer an abstract model (usually through
a statistical analysis) of the original system from the data,
and it uses the inferred model to detect faults. For exam-
ple, Golombek et al. (2010, 2011) presented one example
of such a model that works on message-passing robotic sys-
tems,mapping each system’s internal data exchange between
component to an event. Then, it infers a probabilistic model
on the event sequences, which is a histogram of the inter-
val time between any two events, by which it could detect
component failures, resource starvation, and asynchronous
communication errors. Mendoza et al. (2012) build a Hidden
Markov Model by observing the ground robot over time and
then uses this data to develop a monitor to detect collisions
and other faults. Our approach also infers one of such tempo-
ral invariants as the ordered-paired interval invariant, which
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captures not only the time but also the events happening in
the interval.

There exist efforts aimed at diagnosing and remediating
anomalous behavior based on models defined by domain
experts. Steinbauer et al. (2005), for example, presented
a solution for real-time fault detection and repair of con-
trol software of autonomous robots. Their diagnosis system
uses model-based diagnosis for fault detection and localiza-
tion, and a repair module that executes predefined actions to
recover the system from the fault.

Our approach is complementary to these approaches and
was first presented in (Jiang et al. 2013). In our earlier work,
we initially presented the concept of inferring andmonitoring
invariants for robot systems and evaluated it on a UAV land-
ing system, however this early work had a more limited set
of invariants and a synthesizer that included manual steps. In
this work, we extend the invariant templates and generation
technique tomore general invariants that were not considered
by domain experts, automatically prune the set of invariants,
provide additional details on the automated configuration and
monitor synthesis, and evaluate the approach on two case
studies. The approach is implemented within ROS, which
makes it directly applicable to a large set of existing robotic
systems.

Although with the broader goal of facilitating robot pro-
gramming, the graphical state-space programming interface
(Sattar et al. 2010; Li et al. 2011) also uses invariants. Con-
trary to our approach, invariants are not inferred, but rather
used to determine the actions available to a user at a par-
ticular program state defined by satisfied invariants. Such
approach could be used to enrich the monitors synthesized
by our approach if a user is meant to be a part of that loop.

In the context of distributed system debugging, Reynolds
et al. (2006) state that developers usually focus on two kinds
of bugs: structure and performance. A structural bug results
in processing or communication happening at the wrong
place or in the wrong order. Most debugging approaches for
networked distributed systems (e.g., Reynolds et al. 2006;
Barham et al. 2004; Chen et al. 2004) tend to collect event
sequences as causal paths, and check those sequences against
expected properties. Along similar lines, our approach cap-
tures temporal and architecture invariants (see Sect. 4.2.3).
A performance bug, for example computational time or com-
munication bandwidth, results in processing that consumes
too much or not enough of some important resources. Our
approach also infers some invariants of system performance
such as message frequency and delays.

4 Invariant inference

In this work we aim to capture invariants that are more spe-
cific to robotic systems. We do this through the development

of an invariant inference and amonitor synthesis components
that enable the generation and checking of new invariant
types (illustrated in Table 1) that reflect the spatial, time,
architectural, and temporal nature of robotics systems. We
now proceed to describe each component in more detail.

4.1 Trace generation and translation

The goal of trace generation is to collect enough data into
traces to infer the target invariant types. Because of the invari-
ants we aim to generate, we want each record in the traces
to include the time stamp, the message type, the message
values, and the message topic. The existing ROS’s rosbag
tool6 is able to meet these requirements for topics but it lacks
information about services, ROS parameters, and ROS archi-
tecture, so we need to enrich the default ROS traces with the
required information. The basicmechanismswe use to enrich
traces consist of remapping the topics and services using the
standard ROS remap command and adding a ROS node that
we call the “recording node,” which publishes the missing
information.

To record service usages, our approach first queries the
ROS master node at the beginning of execution to get the list
of all the available registered services. Next, it remaps each
original service to the recording node, which publishes each
transaction on a regular ROS topic that can be logged with
rosbag. In addition, the recording node creates a new service
that relays the request and response messages between the
client and the original server. For illustration, consider the
system at the top of Fig. 3. In the original system, the client
node calls a service named /s1.As illustrated at the bottomof
Fig. 3, our approach remaps the original service to /rec/s1,
and makes the recording node relay the service. Then, every
time a service is called, the recording node publishes the ser-
vice messages including the request and response messages,
the client node, the real server node and the response time,
and the rosbag tool records it all into the trace. As we shall
see in Sect. 6, service relaying does introduce a small delay,
which is on the order of Ethernet network latency.

Figure 4 illustrates how our approach captures parame-
ters and architectural information. To capture global system
parameters, the recording node queries the ROS master to
get the parameters set on the server, and then publishes
them to the newly incorporated “parameter” topic. The query
occurs at configurable time intervals (typically on the order
of every second), only publishing changed parameters to
minimize redundant messages. Similarly, the architectural
information is collected by the recording node through a
series of queries to the ROS master to retrieve publish-
ers, subscribers, service providers, and serviced clients. The
recording node takes a snapshot of the architecture at a con-

6 ROS Bag utility, http://wiki.ros.org/Bags.
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Table 1 New invariants templates

Invariant type Characterization Formulation (constants abbreviated by cnst) Examples (from the case studies)

Time-related Topic and message’s content
frequency, variance, and change
rate

Given topic with messages m containing
variable v, and a window size w,
compute: topic_ f requency,
m.numVar_variance, and
m.numVar_changeRate, to derive:

On the frequency of the iRobot topic:

cnst.lwr ≤ topic_ f requency ≤
cnst.upper

i Robot_ f requency > 2.05Hz

cnst.lwr ≤ m.v_variance ≤
cnst.upper

On the rate of change of the iRobot
location on the x-axis:

cnst.lwr ≤ m.v_rate ≤ cnst.upper −0.45 <= i Robot.x_rate <= 1.01

Polygon Relationships between two
variables

Given variables x and y:
∩n
i (cnst.ai x + cnst.bi y + cnst.c[>=

| <=]0)
where cnst.a, cnst.b, cnst.c are
constants

On the area defined by the UAV.location
with respect to iRobot.location:
U AV .y + 0.0554∗i Robot.y > 1.89∩
U AV .y − 0.990∗i Robot.y <

0.151 ∩ ...

Architecture Inter-node communication graph
capturing messages and services

Given resource R (topic or service): On the nodes subscribed to UAV.pose (a
single node in this case):

R : (max_node_set,min_node_set) UAV.pose = ({vicon},{vicon})

Temporal Temporal properties associated
with pairwise events’ sequences

Given events A and B: On the temporal dependency between
IMU and POSE messages:

A is followed by B or A → B
(( Ā∗AB̄∗B)+)):

I MU → POSE :
{0.00005, 0.0621, 2, 2}

{minT ime,maxT ime,minEvents,
maxEvents}

Fig. 3 Example of remapping service

Fig. 4 Architecture and parameter recording

figurable time interval, and it reports revised architectures.
The topic architecture information is presented as a map
of topics to publishers and subscribers: {topic1 : {pubs :
{pub1, pub2, . . .}, subs : {sub1, sub2, . . .}}, . . .}; while the ser-
vice architecture information is just a map of services to
servers: {service1 : server1, service2 : server2, . . .}.

Once traces are collected, the approach performs a trans-
lation into daikon’s format to later enable the generation
of the target invariants. Variables in daikon’s format must
be grouped by locality, also known as program points. For
example, method entry and exit points are considered pro-
gram points by daikon’s inference engine. Only the variables
available at the same program point are analyzed together
to compute invariants. For example, daikon would attempt
to infer the relationship between variables x1 and x2 at the
entry point of method A, but it would not attempt to make
inferences between x1 or x2 at the entry point of method A
and the variable y at entry point of method B.

For the systems we are analyzing, capturing traces at the
method or even at the class level would generate too much
and often not very meaningful data. So instead, our approach
clusters topic messages consumed and published at the node
level to better capture the behavior of the overall system. The
key insight is that the entry values in the messages consumed
by a node are likely to define its behavior, affect its outputs,
and become evident in the published messages. To leverage
that insight, for a target node,we pair each publishedmessage
with the messages in each subscribed topic.

For example, in the ROS system shown in Fig. 5, each
ellipse represents a node, rectangles show topics, and the
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/a/car_pose

/a/subject_ctrl_state
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Fig. 5 Program points in a ROS system

Fig. 6 Sample trace (top) and message pairings (bottom)

directed edges tell the publish and subscribe relations. At
the center of the graph is the node /a/car_ctrl 1©, which
publishes to the topic /a/cmd_subject_ctrl_state 0© and
subscribed to /a/car_pose 1©, /a/subject_ctrl_state 1©
and /a/subject_pose 1©. The top of Fig. 6 contains a sample
trace that includes a time stamp, the topic, and the message.
The bottom of the figure shows the result of translating that
trace around the program point /a/car_ctrl. The cluster-
ing of messages around the program point is performed by
pairing each published message on /a/cmd_subject_ctrl_
state, with the latest values ofmessages published in the sub-
scribed topics /a/subject_ctrl_state, /a/car_pose and
/a/subject_pose. The translation of this trace results in four
pairings for the chosen program point.

For services, the translator retrieves the messages (request
and response) on the service calls from the service-recorded
topic, and groups these messages into corresponding service
program points. For architectural and parameter messages,
our approach reads and converts them into the data trace
format and represents them as string variables. The trace gen-
erator and translator’s operating options can be set through
the configuration file, including what messages to monitor,
what type of data to collect, and the length of the program
point message chains.

There are a number of additional considerations in this
process. First is the number of messages considered in
the pairing. In our implementation we only considered the
last messages on each subscribed topic before publishing
a message because we assume that the newest information
is the most valuable. Considering multiple messages may
be useful to better characterize nodes significantly affected
by intermediate messages. That would require, however,
more complex and expensive invariants to take advan-
tage of that information. Second, our analysis as described
only targets one node. But targeting multiple nodes by
clustering may be of interest to form a richer chain of
potential influence. Increasing the chain of potentially influ-
ential publishers may capture new interesting invariants,
but it also increases the size of the program point mak-
ing invariant generation and monitoring more complex and
expensive, and it is also more likely to report accidental
relationships.

4.2 Invariants types

The goal of the invariant inference is to generate invariants
that hold for all trace data. The process is depicted in the
pseudocode in Algorithm 1. It consumes themsgsPairings
produced by the trace generation and translation process
described in Sect. 4.1, and the set of templateI nvariants
that we have illustrated before and will describe in more
detail next. The algorithm iterates over each message pairing
mPair (line 3), and each invariant template (line 4), analyz-
ing whether it is part of an existing invariant or if it has the
potential to create a new invariant (e.g., message on a new
topic or on an unseen pair of topics,messagewith new event).
If it is part of an existing invariant, then the mPair data is
used to revise the invariant (line 6) either by refining it (e.g.,
by relaxing the bounds) or by dropping it altogether (e.g.,
if the temporal relationship between two events no longer
holds). If it is not, then a new invariant (line 8) is instantiated
using the data inmPair (and in previous mPairs as needed
depending on t I nv).

The process we used to derive these particular invariant
templates was incremental, starting with the ones provided
with daikon, and evolving them to capture properties that are
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often used in the specifications of robotic systems. This evo-
lution took advantage of a multi-year collaboration and the
mixed expertise of the co-authors in robotics (to suggest prop-
erties that may be generally useful) and program analysis (to
assess their feasibility in terms of cost and precision). In the
end, the invariant types reflect three distinguishing attributes
of robotic systems: they operate under time constraints, they
operate under physical space constraints, and they react to
the user input and the sensed environment. In addition, when
implemented on a dynamic publish-subscriber middleware,
particular architectural dependencies emerge. Our invariants
types reflect each one of those attributes. We discuss each
type in detail next.

Algorithm 1 Invariant Inference
1: function Infer(msgsPairings, templateI nvariants)
2: in f erred Inv ← ∅
3: for each mPair in msgsPairings do
4: for each t I nv in templateI nvariants do
5: if in f erred Inv.exist(t I nv, mPair ) then
6: in f erred Inv.revise(t I nv, mPair )
7: else
8: in f erred Inv.instantiate(t I nv, mPair )
9: end if
10: end for
11: end for
12: return in f erred Inv

13: end function

4.2.1 Time-related invariants

In robotic systems, the program state is intrinsically defined
not just by the variables’ values, but also by how those val-
ues change over time. This new type of invariant template
leverages the program points’ time-stamps to characterize
messages and their rate of change.

The simplest of the new templates serves to characterize
messages’ frequency and variance. For frequency, this takes
the form of cnst.lwr ≤ topic_ f requency ≤ cnst.upper .
For the UAV landing system detailed in Sect. 6.1 and Fig. 1,
this type of invariant is useful to detect, for example, stale
location data that may direct the UAV through an erro-
neous navigation pattern when the communication is broken.
The variance invariant takes a similar form as cnst.lwr ≤
m.v_variance ≤ cnst.upper , and can help detect data that
does not fit a given distribution.

A more complex time-related invariant aims to capture
the derivative of continuous raw variables. For example,
the derivatives of distance traveled over time may render
velocity or acceleration invariants. This type of invari-
ant also takes the form of cnst.lwr ≤ m.v_rate ≤
cnst.upper . In our scenario, a common instance of such an
invariant is minV eloci tyU AV ≤ U AV .distance_rate ≤

maxV eloci tyU AV , which can detect wrong localization
data as it will be shown in our case study.

Computation: To infer these invariants, we take advantage
of the time stamps attached with the observation at the pro-
gram points. We added these three new invariant templates
in daikon to associate the time component with variables
at a program point. The computing procedure uses a mov-
ing window (its size parameterizable) on a trace file and the
associated time-stamps to compute frequency, variance, and
change rate of all variables present at a program point. Then,
the minimum and maximum values for frequency, variance,
and change rate observed across the whole trace are instanti-
ated as invariants. The procedure complexity is a function of
the trace andwindow sizes. In practice usingwindow sizes of
5–10 elements was sufficient for messages published at 10s
of Hz, but these may change depending on the variability of
the observed variables.

4.2.2 Polygon invariants

To reflect the notion of spatial bounds, we introduce invariant
templates that define relationships between two variables7

that can be characterized through a convex polygon. For
example, if our operating scenario was bounded by the
dimensions of a room, this invariant template would ide-
ally be instantiated and refined into a polygon similar to the
shape of the room. This invariant template takes the form of
∩n
i (ai x + bi y + c[>= | <=]0) that defines a polygon of n

sides.

Computation: To infer this invariant, every time a new
variable-value is read from a trace, it is checked against the
polygon. If it resides inside the polygon, it is ignored, else if
the observation is within a specified distance from the poly-
gon, the polygon is relaxed by computing the convex hull
that includes the new observation (Eddy 1977), otherwise it
is discarded.We note that this type of invariant can also char-
acterize relationships between variables that are not spatial
per se. Consider the UAV acceleration and its pitch and roll
for example. Ideally, these variables are linearly correlated.
However, wind velocity may introduce variation in these
relationships that can only be captured through the richer
invariants like the ones we are proposing.

4.2.3 Architecture invariants

Distributed robotic systems have a dynamic architecture that
can be tweaked for different deployment conditions. When
misused, this flexibility can often lead to erroneous con-

7 The cost of generating invariants with more than two variables was
exponential and hence prohibitive unless it was focused on a small set
of topics.
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Fig. 7 A ROS system. Wrong deployment setting represented with
dashed lines

figurations, causing additional or missing topics or nodes.
Take the ROS program shown in Fig. 7 for example. The
correct architecture is shown with the solid lines, where
the node /a/car publishes to the topic /a/car_pose and
/a/U AV publishes to /a/subject_pose. Since the two
nodes /a/car and /a/subject are spawned from the same
source code but with different remapped names, it is easy
for users to create mappings that cause incorrect con-
nections as shown with the two dashed lines in Fig. 7.
Although the messages’ values may look correct, the sys-
tem could be operating on the wrong messages, and be
generating the wrong control inputs for the UAV and the
car. The architecture invariants could help detect such prob-
lems. They take the form of the maximum and minimum
nodes set using some particular communication resources
as {resource : (max_node_set,min_node_set), ...}. For
Fig. 7, for the topic /a/subject_pose, the invariant of pub-
lishers is /a/subject_pose : ({/a/uav}, {/a/uav}), which
means that there must be only one node named /a/uav pub-
lishing to this topic. If the system is launched with incorrect
mappings as shown by the dashed lines, this architecture
invariant will be violated, because /a/uav does not pub-
lish to topic /a/subject_pose and /a/car publishes to this
topic.

Computation: To infer these invariants, we take advantage
of the richer trace we generated to include information about
the system architecture. We analyze the trace records on the
architecture topic, updating the minimal and maximal set of
subscribers and publishers per topic, and the clients on each
service. To update the maximal set, we perform a union oper-
ation between the existing set of publishers and subscribers
and the ones in the incoming record. To update the minimal
set we perform the intersection.

4.2.4 Temporal invariant

A temporal invariant expresses order of events’ sequences.
For example, in our UAV landing system, the pid_ctrl node
should not publish control messages until it gets the iRo-
bot and the UAV position messages, a landing event should
always be followed by a decrease in thrust, and a moving for-

Fig. 8 Event trace and interval analysis

ward event should always follow a pitch command. We have
focused on a temporal invariant inference template to cap-
ture such sequences called ordered-pair interval. It expresses
that an event A is followed by event B, with other events
interspersed as long as they are not A or B. More precisely
it expresses ( Ā∗AB̄∗B)+. It can also specify the interval
between events in terms of time or number of events. This
invariant captures theminimumandmaximum timeandnum-
ber of events in the interval.

Consider the trace of events a, b, and c, and their times as
shown in the first column of Fig. 8. Looking first at just the
ordered-pair ab, the inference engine finds four instances of
the pattern, presented in the second column. It then computes
the interval invariants shown at the bottom of this column.
The first two invariants are themaximumandminimum inter-
val between the events, which indicate that once a happens
b should happen within 1 unit of time. The maximum and
minimum event sets in the interval are empty, which means
b should follow a without any other events in between. So,
event sequences like acb or aab would violate this invariant.
From the same trace, it can infer similar invariants for other
event pairs like ac (third column) or bc (fourth column).
Computation:To infer this invariant the approach initializes
all potential ordered event pairs. Upon reading an event from
the trace, it updates all the ordered-pair intervals. If the inter-
val time is larger than a configurable threshold , or the size of
the event set is greater than another configurable threshold,
we remove this interval or set because we interpret it as a
weak relationship. In practice, the interval times we use are
relatively small (on the order of tenths of a second) since
most events in the systems we analyzed are tightly coupled.

5 Monitor synthesis

Now that we have discussed how we analyze system traces
to infer new types of invariants, we will describe the moni-
tor synthesis process in detail. The input to this procedure
is a set of invariants, and the output is a monitor node
that will be integrated into the system to check the inferred
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Fig. 9 Monitor synthesis work flow

invariants automatically. As shown in Fig. 9, the workflow
involves two components, I nvariantClassi f ication and
Monitor Synthesis, that we now describe in more detail.

5.1 Invariant classification

During the inference process, invariants that are statis-
tically justified are outputted, while the rest are dropped.
This pruning procedure brings at least two benefits. First, it
reduces the monitoring overhead of checking those weaker
invariants, which can be significant. For instance, in the case
study in Sect. 6.1, checking 1206 polygon invariants adds
an average of 1.4 ms latency. Second, because of the insuf-
ficient samples of system’s behaviors exposed by the traces,
some invariants tend to under-approximate the systembehav-
ior, and hence are too fragile. For example, as we shall see
in Sect. 6.2, the polygon invariant inference generates about
n2 polygons for a program point with n variables, and these
polygons need lots of samples to make them stable. These
invariantsmay also obfuscatemeaningful invariant violations
among the reported broken invariants.

Our approach provides an extra layer of pruning the set
of inferred invariants, as shown in Fig. 9, testing the invari-
ants against passing, but also failing traces, to understand
the value of the generated invariants to detect failures. In a
sense, we treat each invariant as a binary classifier of system
and measure the performance of these classifiers. Intuitively,
if an invariant is not violated in any successful run but it is
violated in all failed runs, then it is an ideal classifier with the
highest performance to detect faults. On the other hand, if an
invariant is violated by both the successful and failed runs,
then it may be a poor classifier. To do this classification, we
check each invariant to compute the true negative and false
positive rates using successful traces, while we get the true
positive and false negative rates from failed runs. Since it is
convenient to have a single value to score each invariant, we
also compute the precision, recall, and the F-score (Wit-
ten and Frank 2005). Last, we use these computed values to
determine what invariants to filter. The implementation also
allows for theChecker component to work independently of
the filter in order to allow for comparisons between different
data traces. This is convenient, for example, to compare the
effects of different environments in the generated invariants.
We will see the application of this in Sect. 6.2.

5.2 Monitor synthesizer

The last step of our approach is the monitor synthesis. Given
a set of generated invariants on messages, architectures, and
events, the synthesis process consists of the creation of a
monitor node that checks whether the system violates the
inferred invariants. We have three sources of data that need
to be monitored: messages on topics, messages relayed by
services, and parameters and architecture information that
need to be queried from the ROS server.

For messages on topics, the monitor simply subscribes
to the desired topics, and every time it receives a message
it computes the necessary additional variables (e.g., mes-
sage frequency, variable variance, change rate), checks the
corresponding set of invariants, and finally reports if any of
them are violated by the message. Since these invariants are
boolean expressions, such checks are quite straightforward.
For messages coming from a service, the monitor operates in
a similar fashion except that it needs to intercept the service
communication as per the ROS mechanism. For parameters,
the monitor queries the ROS master every specified inter-
val (typically on the order of every second), and does the
same check as it does to other invariants. For the architecture
invariants, the monitor also queries the master node every
specified interval to get the architecture information, then it
checks if any nodes are within the inferred sets. To check
order-paired interval invariants, the monitor keeps a timed
trace per event-pair.When the first event of a pair is observed,
the intermediate events are recorded until the second event
of the pair is observed. At that point the set of events is com-
pared against the inferred ones to check for violations.

The monitor also encodes the actions to be taken if an
invariant is violated. The recovery actions our approach cur-
rently supports are shown in Table 2, including raising a
warning, blocking messages causing a violation, publishing
a message, calling a service, and unregistering an unknown
node. The default action is raising a warning. We leave it
to the developer to determine if one of the other recovery
actions is appropriate to take the system to a reachable safe
state. For instance, if the code being monitored sends a mes-
sage to another component of the system to start an action,
then it may make sense to block this. Or if there is a control

Table 2 Supported recovery actions

Recovery action Relevant invariants User defined

Raise a warning Any No

Block bad message Topic and service Yes

Publish a message Any Yes

Call a service Any Yes

Unregister unkwn pub Architecture No
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action that is safe under a wide range of settings, then that
action could be initiated if there is a violation.

We acknowledge that developing cost-effective recovery
actions can be challenging. Particular care must be taken to
ensure that the recovery action itself does not lead to addi-
tional failures, or to more costly failures. This is especially
important since there will likely be false positives where
the monitor detects a violation that would not necessarily
lead to a failure. As discussed, a richer training data set can
help by reducing the number of false positives and also by
informing the developer on the contexts under which inferred
invariants are checked. But ultimately the developer must
make an assessment of the likelihood of safely transition-
ing to a target state, and the likelihood that that target state
is safe. In practice this process often entails exploring that
space first at design time and then also during development.
For example, during our project development we initially
activate the warnings for all violations (default mode), and
then incrementally identify violations or classes of violations
leading to failures with enough frequency and cost that tak-
ing a corrective action becomes an enticing, cost-effective
proposition. Throughout this process we also identify partic-
ular contexts under which such violations should be assigned
different weights. For instance, we configured the system to
only execute an abort landing command if the system is cur-
rently in the landing configuration and only produce invariant
warnings during translation periods. In the end, the developer
must make an assessment of whether the likely costs and
benefits associated with performing a no-action is prefer-
able to performing an action. In this work we have found
that making general assessment is challenging, but there are
many particular instances for which it works remarkably
well.

5.3 Configuration

The whole system for inference and monitoring can be con-
figured through a XML-format configuration file. A brief
example is shown in Fig. 10. Under the tag scope the ele-
ments to be recorded in the trace are specified (two topics,
a service, an architecture, and a temporal pattern). The loca-
tion of the bag trace and the invariant generated are specified
under the detect tag. The tag check defines how to clas-
sify and filter the inferred invariants, where the element
success gives the directory containing the additional suc-
cessful runs while f ail provides the failed runs, and the
attribute threshold defines the threshold to filter out invari-
ants. Under the tagmonitor , the recovery actions are defined
and assigned to the monitored program points in the tag
scope. The block tag specifies on which topics or services
the message will be blocked. Under the action tag a par-
ticular message to a topic will be published as defined by
the value tag. The violation tag specifies the program

Fig. 10 Configuring the approach

points at which those actions will take place if a violation
occurs.

In the monitor tag of the configuration file, the action is
defined under the block tag and works for all state invari-
ants on messages on topics and services. The user can
define on which topics or services the monitor is going to
drop the messages if invariants are violated. In Fig. 10,
the monitor will block the “bad” messages on the top-
ics /a/cmd_subject_ctrl_state and /a/task_waypose.
Thus, for these two topics, the messages are not just
consumed by the monitor, but also intercepted and only re-
published if they do not violate any invariant. The monitor
can also block a service. These kinds of actions can be useful
in preventing the system from getting into an abnormal state
driven by the “bad” messages. The monitor can also publish
a particular message on some topic or call some service with
some arguments. These actions are defined in the action tag.
These actions can be applied to any kinds of invariant vio-
lations by declaring them in the violate tag. For example,
in Fig. 10, the action labeled with f will be taken when any
invariant is broken on the program points labeled as a, c, e.

6 Case studies

In this section, we present two case studies to assess our
approach and explore its potential.

In the first case study, we explore if the invariant mon-
itor with associated actions can reduce a system’s failure
rate, and how effective the new invariants are at detect-
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ing execution anomalies. In the second case study, we
explore whether inferred invariants can be helpful to dis-
tinguish meaningful differences between a testing and a
deployed environment. All the invariant inferring tests
were conducted on a Macbook Pro laptop, with a 2.5
GHz Intel Core i5 processor, 4 GB 1600 MHz DDR3
memory.

6.1 Case study 1: UAV landing on moving platform

To start assessing our approach, we applied it on a system
designed to land a UAV on a moving platform. The target
system was introduced in Fig. 1 and has three main com-
ponents: the UAV (Ascending Technologies Hummingbird),
the moving platform (iRobot Create with a mounted landing
platform of 50 cm× 50 cm, following its standard “vacuum”
motion pattern), and a control system we wrote that tracks
the iRobot and directs the UAV in its pursuit. For ease of
evaluation, we run the UAV and iRobot in a Vicon motion
capture room and provide the UAV with the position of the
iRobot.

6.1.1 Setup

The training to collect traces process was conducted under
what we determined were normal operating conditions. The
UAV can takeoff from anywhere in a 8 m × 8 m room, the
iRobot wanders in the room, and the control system drives
the UAV towards the iRobot. The UAV attempts to land on
the iRobot when its center is within 15 cm of the iRobot’s
center for 1.5 s. These values were derived empirically under
normal operating conditions with a goal of balancing the
success rate with the speed of landing. Overall, the success
rate for this system is still relatively low (approximately 55
%), but we did not further refine the system to see if the
invariant monitoring approach could also detect and avoid
such failures under normal conditions.

To generate invariants for the system, we collected trace
bags from 83 successful runs frommore than 150 total trials.
We consider a run successful when the UAV lands on the

iRobot, turns off its motors, and remains on the platform for
5 s. On average, each run took about half aminute. Among all
the messages in the collected bags, we chose those published
on four topics containing a total of 56 variables for invariant
detection and monitoring. The topics i Robot andU AV con-
tained the current position (x, y, z) and attitude (pitch, roll,
yaw) for these vehicles and the task topic contained the tar-
get position and attitude for the UAV. The fourth topic, state,
contained state information (e.g., startup, launch, hover, task,
land, shutdown) of the controlling system. In the end, the
trace files for invariant generation contained over nine mil-
lion variable-value pairs.

Next, the processed data traces were fed to the extended
daikon inference engine. Besides the default invariant tem-
plates, we activated the time-related and polygon invariant
templates (at the time of the assessment we had not imple-
mented the other templates yet), and run daikon twice to get
the condition invariants based on the value of statemessages
and then invariants for each state partitioned. The inference
process took 6min 20 s to generate 1059 invariants from these
traces consisting of 465 default, 362 time-related, and 232
polygon invariants. This process is known to be polynomial
with respect to the number of variables (Perkins and Ernst
2004) so identifying what nodes and topics to monitor, and
techniques for reducing the number of invariants tomonitor is
critical—we further discuss this in Sect. 7. With these invari-
ants and the actions defined in the configuration file, the tool
synthesized themonitor node and a revised launch file so that
the monitor could run alongside the original system without
the need for recompilation. The recovery actions the monitor
encoded are blocking the “bad” messages and publishing a
commandmessage to bring the UAV to the task state to abort
a landing. We did not use the classification/filtering in this
case study as that component was developed after this study
was conducted.

We evaluated the effectiveness of the invariant monitor on
seven different system scenarios (shown in Table 3). These
scenarios were developed to test the performance of the sys-
tem with and without the synthesized monitor under normal
conditions (similar to the training set, except the iRobot was

Table 3 Evaluation scenarios

ID Name Description Success criteria

s1 Normal Similar to training conditions Succeeds on landing

s2 Wind Blowing 8–38 KPH wind Succeeds on landing

s3 Occupied landing Platform is occupied by another object Succeeds if it avoids landing

s4 Fragile platform Platform will tip if the UAV lands near the edges Succeeds on landing

s5 Slowed link iRobot position information given at a slower rate Succeeds on landing

s6 Stealing vehicle Fake iRobot position is manipulated to “steal” the UAV Succeeds on landing

s7 False airport iRobot position is incorrect and no vehicle is located there Succeeds if it avoids landing
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Table 4 Summary of results across all scenarios

Scenario % Success Avg. time to land (s) Sample invariants violated during failures

Without monitor
successes 23.8%

S1 Normal 35 35.5 polygon(U AV .x, i Robot.x)
polygon(U AV .y, i Robot.y)

S2 Wind blowing 0 42.25 polygon(U AV .x, i Robot.x)

polygon(U AV .y, i Robot.y)

polygon(I MU.roll, I MU.acc_y)

polygon(I MU.nick, I MU.acc_x)

S3 Occupied landing 0 – U AV .z ≤ 0.371295

S4 Fragile platform 20 39 −0.0593147 ≤ U AV .r x ≤ 0.145754

−0.106682 ≤ U AV .r y ≤ 0.0836237

S5 Slowed link 20 42 i Robot_ f req ≥ 2.04876

S6 Steal vehicle 20 41.6 −0.457771 ≤ i Robot.x_rate ≤ 1.01126

−0.532218 ≤ i Robot.y_rate ≤ 0.962376

S7 False airport 0 – U AV .z ≥ 0.245868

Scenario % Success Avg. time to land (s) Reinitiated landings

With monitor
successes 89.4%

S1 Normal 95 62.8 1.7

S2 Wind blowing 100 141.8 4.8

S3 Occupied landing 100 – –

S4 Fragile platform 80 145.6 16.2

S5 Slowed link 80 106.4 6

S6 Steal vehicle 80 147.6 –

S7 False airport 100 – –

constrained to a smaller 4 m × 6 m area) and under stress.
The stress testing scenarios contain unexpected events that
the system developer may not have anticipated, but that the
monitor may be able to detect. For the “s3 occupied landing”
and the “s7 false airport” scenarios we consider landing as
a failure and a canceled landing as a success, while for the
other scenarios we set the same criteria for success as set for
the training process.

6.1.2 Results

For each of the scenarios, we performed 5 trials with and
without the invariant monitor, except for the normal sce-
nario where we ran 20 trials. Table 4 summarizes the results.
Over all the test scenarios, the base system without the mon-
itor succeeded 23.8% of the time, while with the monitor it
succeeded 89.4% of the time. The system with the monitor
worked more safely that it did without the monitor, succeed-
ing with a higher rate across all scenarios.

For the successes, the base system took an average of 35.5
s to succeed, while the system with the monitor took 62.8 s
to succeed. The increased time per trial is due to invariant
violations while attempting to land that cause the system to
abort and try again. Figure 11 shows a box plot depicting the

Fig. 11 Time to land

average time in seconds with and without the monitor and
the variance in these measurements (only for the scenarios in
which the system without the monitor successfully landed).
Without the monitor, the average time has a low variance
within each scenario and over all scenarios. With the mon-
itor there is a high variance in the time to success. This is
caused by landings that are aborted, causing another land-
ing attempt, when invariants are violated. Not all of these
invariant violations, however, are linked with imminent fail-
ures. The monitor only allows the UAV to land when all the
invariants are satisfied. In the best case, this will happen on
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the first attempted landing, but in most cases it requires a
number of landing attempts within a single trial.

For the approach to be cost-effective, the cost of a failure
must be higher than the frequency of violated invariants times
the cost of taking a corrective action. In this particular case
study, not-crashing the vehicle clearly outweighs delaying
the landings, making the approach appealing in this setting.
Like argued earlier, inferring invariants at a higher level of
granularity and on an activity with limited variability reduces
the number of invariant violations, ultimately contributing to
the effectiveness of the approach.

In addition, we also analyzed the performance overhead of
adding the monitor. On average, the monitor adds a 0.35 ms
latency to the published messages. For comparison, moving
a ROS node from running locally to another computer on an
Ethernet network adds approximately 0.5 ms to the latency.
Thus, the overhead of themonitor is less than that of changing
the distribution of nodes in a distributed ROS system.

We now look at the details of three of the scenarios (“nor-
mal,” “wind blowing,” and “fragile platform”) and examine
the invariants and contexts, before brieflydiscussing the other
scenarios (“occupied landing,” “slowed link,” “stealing vehi-
cle,” and “false airport”).

Normal scenario: In the normal scenario, most failures were
caused by the iRobot’s suddenly changing direction while
the UAV was trying to land. Figure 12 (top) shows the suc-
cessful and failed landings with and without the monitor in
the test area where the iRobot was operating. The thicker
rectangle indicates the boundary of the area. The iRobot
will often drastically change directions when it hits a wall,
although it occasionally chooses to follow the wall. That is
why most of the crashes without the monitor are located
towards the borders. We also see that the overall number of
failures for the “normal” scenario increased from 45 to 65
% as compared to training due to the smaller operational
area of 6 m × 4 m for “normal” versus 8 m × 8 m for
training. The single failure with the monitor occurred as
the UAV landed on the platform but slid off of it because
of its incoming speed (even though the speed was within
the limits of training scenarios). When the iRobot quickly
changes direction, the monitor detects violations of one of
the inferred polygon invariants which characterize the rela-
tions between the U AV and i Robot positions, speeds, and
rotations during the landing process. Figure 12 (middle)
shows the y axis polygon invariant between the UAV and
iRobot (U AV .y + 0.0554∗i Robot.y ≥ −1.89 ∩U AV .y −
0.990∗i Robot.y ≤ 0.151 ∩ U AV .y − 1.081∗i Robot.y ≥
−0.202∩U AV .y+1.732∗i Robot.y ≥ −4.664∩...) without
the monitor running. When the UAV takes off, it is outside
of this constraint. It then moves over the iRobot and initiates
the landing sequence. As seen in the figure, the UAV violates
the polygon invariant while still trying to land and crashes.

Fig. 12 Normal scenario area (top), invariant violation without moni-
tor (middle), and with monitor (bottom)

In contrast, Fig. 12 (bottom) shows the same scenario with
the monitor enabled. In this case, whenever the invariants are
violated, the landing is restarted. Eventually, the UAV is able
to successfully land while staying within these constraints.

Wind blowing scenario: In the wind blowing scenario, the
strongwind provided by a fan breaksmany invariants derived
from the normal setup. Neither the system, nor the moni-
tor were designed to explicitly consider wind. However, the
monitor is able to detect violations of the UAV and iRo-
bot positions and the roll and acceleration of the UAV, as
described in Table 4. Figure 13 (top) shows the locations
where landings occurred. None of the landings occurred
within 2 m of the blower where the wind speed was up to of
33 KPH, which prevented the landing sequence. Even away
from the fan, the system without the monitor was unable to
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Fig. 13 Wind blowing scenario area (top), invariant violation without
monitor (middle), and with monitor (bottom)

successfully land. The system with the monitor was able to
detect invariant violations to prevent the landing when it was
unsafe and was able to land every time. Figure 13 shows
two different trials without the monitor (middle) and with
the monitor (bottom) for the polygon invariant. This partic-
ular invariant involves the relationship between nick/pitch
and acceleration on the x-axis. In Fig. 13 (middle) the UAV
leaves the polygon and crashes almost immediately when
it attempts to land when it is outside the polygon invariant
region, as indicated by an x in the figure. In Fig. 13 (bottom)
the violation of the invariant while using the monitor leads to
a landing reinitialization, avoiding a crash. The other landing
reinitializations in Fig. 13 (bottom) came from the violation
of other monitored invariants.

Fragile platform scenario: In the fragile platform scenario
(see Fig. 14), the landing platform was broken so that it tilted
if the UAV did not land in the upper right quadrant as shown
in Fig. 14. The monitor detected the error when checking the
violation of the invariants on iRobot.rx and iRobot.ry which
indicate the horizontal angle of the platform. Figure 15 (mid-
dle) shows one of the angleswithout themonitor. The straight
lines indicate the bounding constraint inferred. As shown by

Fig. 14 UAV attempts to land on fragile platform

Fig. 15 Fragile platform scenario area (top), invariant violation with-
out monitor (middle), and with monitor (bottom)

the line, the UAV started to land on the platform, but then
the platform tilted and the UAV fell off and crashed. Fig-
ure 15 (bottom) shows the same setup with the monitor. In
this case, the UAV initialized landings three times, but in the
first two the landing was canceled when the constraints were
violated. Overall, with the monitor the UAV was able to suc-
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cessfully land 80 % of the time, while without the monitor it
was only successful 20 % of the time.

Occupied landing scenario: In the occupied landing sce-
nario, the monitor detected that the platform was occupied
since it could not decrease its height to match that of the
platform as it did in the normal case. The invariant is shown
in Table 4 as U AV .z ≤ 0.371295, which means in normal
cases the height of the UAV should be lower than 0.371295
to finish its landing sequence. The monitor detected the vio-
lation on the invariant, and it canceled the landing, which we
consider a success.

Slow link scenario: In the slow link scenario, the message
rate from the iRobot position was periodically (every 5 s)
slowed down to 0.5 Hz. to mimic a faulty positioning sen-
sor or a radio link that drops packets. The monitor detected
this abnormal situation by the invariant i Robot_ f req ≥
2.04876 on message frequencies as shown in Table 4. When
the position of the iRobot was published at a low frequency,
themonitor interrupted the landing sequence to avoid crashes
as it thought the link was not reliable.

Stealing vehicle scenario: In the stealing vehicle scenario,
we published fake iRobot positions to try to get the vehi-
cle to land in another location when the iRobot was moving
in the upper half of the target area. The monitor detected
this anomaly through a violation of the invariant on the
change rates of position messages. In Table 4, the invari-
ant are −0.457771 ≤ i Robot.x_rate ≤ 1.01126 and
−0.532218 ≤ i Robot.y_rate ≤ 0.962376, which indicated
the ranges of the iRobot’s speed. In this case, when the posi-
tions of the iRobot changed too quickly, the UAV kept flying
without landingon either the false or the right platform.When
the iRobot was moving in the lower half of the cage and no
other location was published, the UAV would try to land,
which we considered a success.

False airport scenario: In the false airport scenario there
was no iRobot, instead a false location was published. If the
false location was outside the region where the UAV had
previously seen the iRobot, then the UAV refused to go to
that location and filtered out these false messages. If the false
location was in the correct range, the UAV attempted to land.
However, the monitor could tell the difference of the height
between the false and correct platforms, so the UAVwith the
monitor would not land on the false airport.
Summary: Overall, in this case study we can see that:

– The inferred invariants monitor decreases the failure rate
when encountering unexpected situations from 76 to 11
%, but its efficiency may suffer;

Fig. 16 Indoor and outdoor water sampling (Ore et al. 2015)

– Although existing invariant templates serve to detect
execution anomalies, the two new invariant types (2-D
polygon and time-related) contributed to the detection of
execution anomalies. In four out of the seven scenarios,
the anomalies can only be detected by the new invariants.

6.2 Case study 2: water sampling UAV

Since invariants are known to be useful in analyzing a pro-
gram’s evolution, we conjecture that, in robotics, invariants
may also be helpful in detecting issues associated with
changes in the environment. In this case study, we explore
that conjecture using aUAVwater sampling systemwherewe
had access to bags of trace data from test and deployed runs
(Ore et al. 2015). The system is designed to autonomously
fly over a body of water, approach predefined locations, and
sample the water through a pump, as shown in Fig. 16. Since
the water pump can only work within 1 meter of the water,
the most challenging part of this system is the precise height
control over water. To do this, the system uses a combina-
tion of ultrasonic sensors, air-pressure altimeter, GPS, and
conductivity sensors to estimate the height above water.

6.2.1 Setup

The system was first tested in a controlled environment, as
shown in Fig. 16, where the UAV flew over and sampled
water from a fish tank. We collected trace bags from 16 suc-
cessful indoor runs, when the UAV started 2–3 m away from
the fish tank, flew over the tank, then descended and sam-
pled water three times, and finally flew back and landed. We
identified, with the guidance of the core developer, the most
critical topics worth monitoring during the water sampling
stage. We selected the default invariant templates, and the
new time-related, polygon, architecture, and temporal invari-
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ant templates. This effort generated a 49.2MBdata trace with
44 variables, and inferred 711 invariants including 242 ones
from daikon’s default templates, 77 time-related, 385 poly-
gon, 4 architecture and 3 temporal ones from our extended
invariant templates in 117 s. We then used the classifier and
three additional successful indoor traces to further prune the
set of invariants. The resulting pruned set had 533 invariants,
which included 229 default, 64 time-related, 233 polygon, 4
architecture, and 3 temporal invariants. The noticeable reduc-
tion in the number of polygon invariants was expected given
that the number of training runs was not enough to discard
many accidental relationships found between pairs of inde-
pendent variables. For example, our approach inferred an
invariant combining theUAV’s speed and heading angle even
though they are intuitively independent. Still, this was dra-
matic enough to indicate that the filtering process for this
type of invariant needs to be more aggressive. We discarded
these invariants from further analysis of this system.

6.2.2 Evaluation

We used a bag from a successful outdoor run in which the
system flew about 30 m over the lake of more than 1 km2,
sampled water from it, and checked it against the set of
inferred invariants. We found that, excluding the polygon
invariants, 276 were shared by the indoor and outdoor envi-
ronments, while 24 were broken as is shown in Table 5.

Among the violated invariants, a few are worth high-
lighting because they reflect environmental changes. The
frequency invariant on pose conveys that localization sig-
nals operate at least at 20 hz. That is true when operating in
the indoor environment with Vicon support. Outside, how-
ever, localization is provided by GPS which operates at a
much slower frequency and hence the violation. This change
from Vicon to GPS also generates a violation of the archi-
tectural invariants, and the ordered-pair temporal invariant
as the lower frequency of the GPS signal made the interval
between imupose greater than expected. The violation of
acceleration and attitude invariants are caused by the more
aggressive maneuvers performed by the PID controller as the
UAV navigates larger distances and fights the wind. Based
on this, the water sampling team revised the indoor test envi-
ronment to better match the outdoor.

Through an analysis of the invariants with the primary
developer we were also able to find and explore several erro-
neous assumptions. For example, the developerwas surprised
by the lack of an invariant indicating that, when the pump is
on, the connectivity sensor should always be wet. To explore
this issue we incorporated in the invariant list this suppos-
edly missing invariant, and then used the checker against all
the bags to help pinpoint the data that violated this invari-
ant. We provided this finding to the developer, and ended up
locating a subtle problem in the on-board pump controller

Table 5 Check result of outdoor testcase

Invariants violated

sampler_raw.H2O1 >= 306

sampler_raw.H2O5_variance <= 14.0

pose.rotation.x <= 0.0535418

pose.rotation.y >= −0.0804302

pose.translation.x >= −1.99948

pose.translation.y < pose.translation.z

pose.translation.y <= 0.32948

pose_Freq >= 20.0

imu.acc_angle_nick >= −4284

imu.acc_angle_roll < imu.mag_z

imu.acc_angle_roll <= 2516

imu.acc_x_calib >= −747

imu.acc_y_calib >= −439

imu.angle_nick >= −5099

imu.angle_roll <= 3192

imu.angvel_nick < imu.mag_z

imu.angvel_nick <= 2173

imu.height_re f erence! = 0

imu.mag_x <= 772

imu.angleYaw_variance >= 5934.0

pose : ({vicon}, {vicon})
gps : ({}, {})
imu → pose : {0.0000524, 0.0621, φ, 2 × raw + 2 × imu}

that would erroneously set the pump state. This extraneous
pumping while the pump was not in water likely resulted in
the early failure of a previous pump.

Overall, this case study shows that the proposed approach
can be useful to check:

– Developers’ expectations and assumptions, and help pin-
point the context of the inconsistencies if there is an
invariant violation.

– Differences of system behaviors under various environ-
ments or deployments.

7 Conclusion and future work

We have introduced a general approach for automated invari-
ant inference andmonitoring, and instantiated it in the context
of ROS so that robotic systems implementedwith this operat-
ing system can leverage it with minimal effort. The approach
is able to automatically infer specialized invariants for a
robotic system based on a training set, and to detect the
violation of those invariants to avoid failures under vari-
ous scenarios. The case studies illustrate the potential of the
approach and toolset in failure detection, potential recovery
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when facing unexpected situations, and checking for differ-
ences between deployed environments.

The case studies also show the approach limitations. An
essential limitation is that the inferences are generated based
on the observed behavior of the system, and these observa-
tions are partial and incomplete. They are partial in that they
reflect particular dimensions of the system behavior that we
deem worth capturing based on the analysis of their cost-
effectiveness. They are incomplete in that the training set is
finite, and often small. This means that the inferred invariants
may over-approximate the potential system behavior (miss-
ing some violations), and they may also under-approximate
it (generating false positives). Other limitations are those
associated with our current set of inference templates, their
refinement, and the implementation of the different stages of
the approach.

In the short term, we continue to evolve the inference
templates and aim for a broader assessment of the approach
in practice. Longer term, we are interested in exploring the
application of filters based on the variance and pedigree of
a variable as well as the automatic identification of redun-
dant messages. Within the area of monitoring, we would
like to further investigate sampling schemes that can reduce
overhead while minimizing information loss without rely-
ing on the engineer’s domain expertise. We would also like
to explore richer invariants that can encode the information
in multiple message sequences and that can support proba-
bilistic expressions to better capture the uncertainty present
in robotic systems. Last, we would like to enrich the actions
we support after an invariant is evaluated. Satisfied invariants
could help refine the space of programmable actions available
to the user. Alternatively, violated invariants could be recti-
fied so that minimally reformulated messages that remain
within the system invariants are guaranteed to be published.

Acknowledgements This work was partially supported by Air Force
Office of Scientific Research #FA9550-10-1-0406, United States
Department of Agriculture National Institute of Food and Agriculture
#2013-67021-20947, and National Science Foundation CSR-1217400.
Any opinions, findings, and conclusions or recommendations expressed
in this material are those of the authors and do not necessarily reflect
the views of these agencies.

References

Autili, M., Grunske, L., Lumpe, M., Pelliccione, P., & Tang, A.
(2015). Aligning qualitative, real-time, and probabilistic property
specification patterns using a structured english grammar. IEEE
Transactions on Software Engineering, 41(7), 620–638.

Barham, P., Donnelly, A., Isaacs, R. & Mortier, R. (2004). Using mag-
pie for request extraction and workload modelling. In: OSDI’04
Proceedings of the 6th conference on Symposium on Opearting
Systems Design and Implementation (pp. 259–272).

Beschastnikh, I., Brun, Y., Schneider, S., Sloan, M. & Ernst, M. D.
(2011). Leveraging existing instrumentation to automatically infer

invariant-constrained models. In: ESEC/FSE ’11, Proceedings of
the 19th ACM SIGSOFT Symposium and the 13th European Con-
ference on Foundations of Software Engineering (pp. 267–277).
New York, NY: ACM.

Chen, M. Y., Accardi, A., Kiciman, E., Lloyd, J., Patterson, D., Fox,
A. & Brewer, E. (2004). Path-based failure and evolution manage-
ment. In: Proceeding NSDI’04 Proceedings of the 1st conference
on Symposium on Networked Systems Design and Implementation
(pp. 309–322).

Csallner, C., Tillmann, N. & Smaragdakis, Y. (2008). Dysy: Dynamic
symbolic execution for invariant inference. In: ICSE (pp. 281–
290).

Dwyer, M. B., Avrunin, G. S. & Corbett, J. C. (1999). Patterns in
property specifications for finite-state verification. In: ICSE ’99,
Proceedings of the 21st International Conference on Software
Engineering (pp. 411–420). New York, NY: ACM.

Eddy, W. F. (1977). A new convex hull algorithm for planar sets. ACM
Transactions on Mathematical Software (TOMS), 3(4), 398–403.

Ernst,M.D.,Cockrell, J., Griswold,W.G.&Notkin,D. (1999).Dynam-
ically discovering likely program invariants to support program
evolution. In: ICSE (pp. 213–224).

Ernst, M. D., Perkins, J. H., Guo, P. J., Mccamant, S., Pacheco, C.,
Tschantz, M. S., et al. (2006). The daikon system for dynamic
detection of likely invariants. Science of Computer Programming,
69(1), 35–45.

Gabel, M. & Su, Z. (2008). Javert: fully automatic mining of general
temporal properties from dynamic traces. In: FSE (pp. 339–349).

Gabel,M.& Su, Z. (2010). Online inference and enforcement of tempo-
ral properties. In: ICSE ’10, Proceedings of the 32nd ACM/IEEE
International Conference on Software Engineering - Volume 1 (pp.
15–254). New York, NY: ACM.

Ghezzi, C. & Kemmerer, R. (1991). Astral: An assertion language for
specifying realtime systems. In A. van Lamsweerde & A. Fugetta
(Eds.), Lecture Notes in Computer Science, ESEC ’91 (Vol. 550,
pp. 122–146). Berlin: Springer.

Gillula, J. H. & Tomlin, C. J. (2012). Guaranteed safe online learning
via reachability: Tracking a ground target using a quadrotor. In:
2012 IEEE International Conference on Robotics and Automation
(ICRA).

Golombek, R., Wrede, S., Hanheide, M. & Heckmann, M. (2010).
Learning a probabilistic self-awareness model for robotic systems.
In: IROS (pp. 2745–2750).

Golombek, R., Wrede, S., Hanheide, M. & Heckmann, M. (2011).
Online data-driven fault detection for robotic systems. In IROS
(pp. 3011–3016).

Grunske, L. (2008). Specification patterns for probabilistic quality
properties. In: ICSE ’08, Proceedings of the 30th International
Conference on Software Engineering (pp. 31–40). New York, NY:
ACM.

Hangal, S. & Lam, M. S. (2002). Tracking down software bugs using
automatic anomaly detection. In: ICSE (pp. 291–301).

Henkel, J., & Diwan, A. (2003). Discovering algebraic specifications
from java classes. In ECCOP (pp. 431–456). Springer.

Jiang, H., Elbaum, S. G., & Detweiler, C. (2013). Reducing failure
rates of robotic systems though inferred invariants monitoring. In
2013 IEEE/RSJ International Conference on Intelligent Robots
and Systems (pp. 1899–1906). Tokyo, November 3–7, 2013.

Konrad, S. & Cheng, B. (2005). Real-time specification patterns. In
ICSE 2005. Proceedings of 27th International Conference on Soft-
ware Engineering (pp. 372–381).

Li, J., Xu, A. & Dudek, G. (2011). Graphical state space program-
ming:Avisual programming paradigm for robot task specification.
In ICRA 2011 IEEE International Conference on Robotics and
Automation (pp. 4846–4853). Shanghai, May 9–13, 2011.

123



1046 Auton Robot (2017) 41:1027–1046

Lorenzoli, D.,Mariani, L. & Pezzé,M. (2008). Automatic generation of
software behavioral models. In ICSE ’08, Proceedings of the 30th
International Conference on Software Engineering (pp. 501–510).

Mendoza, J., Veloso, M. & Simmons, R. (2012). Motion interference
detection in mobile robots. In 2012 IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS) (pp. 370–375).

Muller, J.&Sukhatme,G. (2014).Risk-aware trajectorygenerationwith
application to safe quadrotor landing. In 2014 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS 2014)
(pp. 3642–3648).

Ore, J. P., Elbaum, S., Burgin, A., & Detweiler, C. (2015). Autonomous
aerial water sampling. Journal of Field Robotics, 32(8), 1095–
1113.

Perkins, J. H. & Ernst, M. D. (2004). Efficient incremental algorithms
for dynamic detection of likely invariants. In Proceedings of the
ACM SIGSOFT 12th Symposium on the Foundations of Software
Engineering (pp. 23–32).

Pettersson, O. (2005). Execution monitoring in robotics: A survey.
Robotics and Autonomous Systems, 53, 73–88.

Reynolds, P., Killian, C., Wiener, J. L., Mogul, J. C., Shah, M. A. &
Vahdat, A. (2006). Pip: Detecting the unexpected in distributed
systems. In NSDI’06 Proceedings of the 3rd conference on Net-
worked Systems Design and Implementation (pp. 115–128).

Sagdeo, P., Athavale, V., Kowshik, S. & Vasudevan, S. (2011). Pre-
cis: Inferring invariants using program path guided clustering. In
ASE ’11, 26th IEEE/ACM International Conference on Automated
Software Engineering (ASE) (pp. 532–535).

Sattar, J. & Dudek, G. (2014). Reducing uncertainty in human-robot
interaction: A cost analysis approach. In Experimental Robotics
(pp. 81–95). Springer.

Sattar, J., Xu, A., Dudek, G. & Charette, G. (2010). Graphical state-
space programmability as a natural interface for robotic control.
In ICRA 2010, IEEE International Conference on Robotics and
Automation (pp. 4609–4614). Anchorage, AK, May 3–7, 2010.

Steinbauer, G., Morth, M. & Wotawa, F. (2005). Real-time diagnosis
and repair of faults of robot control software. In RoboCup (pp.
13–23).

Witten, I.H.,&Frank,E. (2005).Datamining:Practicalmachine learn-
ing tools and techniques (2nd ed.). Burlington:MorganKaufmann.

Yang, J., Evans,D.,Bhardwaj,D.,Bhat, T.&Das,M. (2006). Perracotta:
Mining temporal API rules from imperfect traces. In ICSE (pp.
282–291).

Hengle Jiang is a software engi-
neer at LI-COR Biosciences,
Lincoln, Nebraska. He received
his B.S. in 2002 from Qing-
dao University and M.S. in
2014 from Computer Science
and Engineering Department at
the University of Nebraska-
Lincoln, where he was a research
assistant in Nebraska Intelli-
gentMoBileUnmanned Systems
(NIMBUS) Lab. His research
interests include software test-
ing and analysis for small aerial
robots.

Sebastian Elbaum is a Pro-
fessor in the Computer Science
and Engineering Department at
the University of Nebraska -
Lincoln. His research aims to
improve system dependability
through testing, monitoring, and
analysis. He is the recipient of
an NSF Career Award, IBM
Innovation Award, Google Fac-
ulty Research Award, and 4
ACM SigSoft Distinguished
Paper Awards. He served as Pro-
gram Chair for the ISSTA 2007
and ESEM 2008, and as Co-

Editor for the Information and Software Technology Journal. He is
currently on the Editorial Board of the ACM Transactions on Software
Engineering and Methodologies Journal and is the program co-chair
for the 2015 International Conference on Software Engineering. He is
a co-founder of the EUSES Consortium, the E2 Software Engineering
Group at UNL, and theNimbusUAVLab at UNL.He received his Ph.D.
from the University of Idaho, and a Systems Engineering degree from
Universidad Catolica de Cordoba, Argentina.

Carrick Detweiler is an Assis-
tant Professor in the Com-
puter Science and Engineer-
ing department at the Univer-
sity of Nebraska - Lincoln.
He co-directs and co-founded
the Nebraska Intelligent MoBile
Unmanned Systems (NIMBUS)
Lab at UNL, which focuses on
developing software and systems
for small aerial robots and sen-
sor systems. Carrick obtained his
B.A. in 2004 from Middlebury
College and his Ph.D. in 2010
from MIT CSAIL. He is a Fac-

ulty Fellow at the Robert B. Daugherty Water for Food Institute at
UNL and recently received the 2014 College of Engineering Henry Y.
Kleinkauf Family Distinguished New Faculty Teaching Award. He is
currently lead PI onNSF andUSDAgrants, including aNational Robot-
ics Initiative Grant. In addition to research activities, Carrick actively
promotes the use of robotics in the arts through workshops and collab-
orations with the international dance companies Pilobolus and STREB.

123


	Inferring and monitoring invariants in robotic systems
	Abstract
	1 Introduction
	1.1 Approach overview
	1.2 Contributions

	2 Background
	2.1 ROS
	2.2 Invariant inference in daikon

	3 Related work
	3.1 Invariant inference and monitoring
	3.2 Monitoring and debugging robotic systems

	4 Invariant inference
	4.1 Trace generation and translation
	4.2 Invariants types
	4.2.1 Time-related invariants
	4.2.2 Polygon invariants
	4.2.3 Architecture invariants
	4.2.4 Temporal invariant


	5 Monitor synthesis
	5.1 Invariant classification
	5.2 Monitor synthesizer
	5.3 Configuration

	6 Case studies
	6.1 Case study 1: UAV landing on moving platform
	6.1.1 Setup
	6.1.2 Results

	6.2 Case study 2: water sampling UAV
	6.2.1 Setup
	6.2.2 Evaluation


	7 Conclusion and future work
	Acknowledgements
	References




