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Abstract Survey-class autonomous underwater vehicles
(AUVs) typically rely on Doppler Velocity Logs (DVL) for
precision localization near the seafloor. In cases where the
seafloor depth is greater than the DVL bottom-lock range,
localizing between the surface and the seafloor presents a
localization problem since both GPS and DVL observations
are unavailable in themid-water column. This work proposes
a solution to this problem that exploits the fact that current
profile layers of the water column are near constant over
short time scales (in the scale of minutes). Using observa-
tions of these currents obtained with the Acoustic Doppler
Current Profiler mode of the DVL during descent, along with
data from other sensors, the method discussed herein con-
strains position error. The method is validated using field
data from the Sirius AUV coupled with view-based Simul-
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taneous Localization and Mapping (SLAM) and on descents
up to 3km deep with the Sentry AUV.
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1 Introduction

Autonomous Underwater Vehicles (AUVs) have emerged as
the platform of choice for awide variety of survey tasks in the
commercial, oceanographic, and military domains. Within
the oceanographic community, AUVs are used for tasks
such as seafloor mapping (e.g., Caress et al. 2012; Kelley
et al. 2005), habitat monitoring (e.g., Williams et al. 2012),
optical surveys (e.g., Singh et al. 2004a), high-resolution
magnetic surveys (Tivey et al. 1998), climate change research
(Schofield et al. 2010) and localizing hydrothermal and
hydrocarbon plumes (German et al. 2008; Camilli et al.
2010, respectively). An advantage of AUVs over other ocean
observation methods is the potential for reduced costs (i.e.,
decreased dependence on manned surface vessels) as well as
increased mission duration—especially as long-range AUVs
mature (Hobson et al. 2012; Furlong et al. 2012) and longer
duration missions (on the order of weeks or months) increas-
ingly become a reality.

As with present AUV operations, navigation is a cru-
cial element for long duration missions. This problem is
especially acute in deep water where the time and power
costs associated with surfacing for Global Positioning Sys-
tem (GPS) position fixes is prohibitively high. A variety of
methods exist in deep water (Kinsey et al. 2006; Paull et al.
2014 provide surveys of the state of the art) with Doppler
Velocity Log (DVL) navigation (e.g., Brokloff 1994; Kin-
sey and Whitcomb 2004) being the predominant method for
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AUVs operating within 200–300 m of the seafloor. Precision
navigation in the mid-water column (i.e., below the sea sur-
face and more than a few hundred meters from the seafloor)
is more difficult (Kinsey et al. 2006, 2014) and presents
challenges for AUVs operating in this region. This implies
that few methods are available for deep-diving AUVs during
descent from the sea surface to the ocean floor. For example,
the Sentry AUV conducts operations at depths up to 6000
m and during long descents can horizontally drift hundreds
of meters from the launch position. Like most deep-diving
AUVs, Sentry relies on Ultra Short Base Line (USBL) nav-
igation (e.g., Peyronnet et al. 1998) during these descents
and the position of the AUV is tracked from the ship and,
upon acquisition of DVL bottom-lock near the seafloor, the
AUV’s USBL position is transmitted via acoustic modem to
the AUV thereby enabling the necessary navigation correc-
tion. This paradigmhas two drawbacks: (1)USBLnavigation
is noisy and provides position estimates at ∼10 s intervals;
and (2) requires the continuous presence of an expensive
dedicated surface vessel. LongBaseLine (LBL) can also pro-
vide navigation during descent but require time-consuming
deployment of transponders (Hunt et al. 1974; Yoerger et al.
2007). Thus, developing methods that improve navigation in
themid-water columnwhile reducing the dependency on sur-
face vessels or a-priori infrastructure would reduce the costs
and supervision associated with AUV missions.

This paper proposes a localization solution in the mid-
water column that takes advantage of the near constant
current profile layer velocities over short time periods. A
common assumption in the oceanographic community is that
the water currents are constant during the period in which
they are observed, a period of minutes (Visbeck 2002). For
deepdivingAUVsoperating in the openocean, such asSentry
, currents are constant over time scales of hours. The AUVs
typically descend at 30–40m/min andAcousticDoppler Cur-
rent Profilers (ADCPs) possess ranges of 40–120m. Thus
the observable period for each water current velocity layer
is on the order of minutes during which the ocean cur-
rents will change negligibly. When fused with other sensor
observations,we show that there is improved localizationper-
formance forAUVsoperating in both shallowanddeepwater.

This paper is organized as follows: Sect. 2 provides a liter-
ature review with a focus on mid-water column localization.
Section 3 presents our ADCP-aided localization method.
Section 4 applies the ADCP localization method to 2D and
3D simulated cases. Section 5 implements localization with
the ADCP sensor-aiding using real data on a shallow water
instance coupled with view-based SLAM. Section 6 applies
the filter to data collected during deep water missions. Sec-
tion 7 compares the experimental results presented in this
paper and discusses their implications. Section 8 concludes
the paper with a summary of the contributions along with
suggestions for the direction of future work.

Previous work by the authors has reported the theory of
ADCP-aided localization, illustrative examples and initial
experimental results (Medagoda et al. 2010, 2011)—these
prior results are summarized here for completeness (Sects.
3, 4.1, and 5, respectively). This paper expands on this prior
work in a number of ways. First, this paper provides a more
extensive literature review including how this work distin-
guishes itself from other work in ADCP-aided navigation
(Sect. 2). Second, we introduce a strategy to marginalize out
older states for computational efficiency and study the impli-
cation of adding carrier phase GPS (Sect. 4.2). The effects
of these improvements are studied using new simulations
for deeper water and longer timescales (Sect. 4.2.2). Third,
we implement and assess this method on data obtained on
deep-water AUV dives and report the details associated with
implementing this method in deep-water including incorpo-
rating sensor error checking information (Sect. 6). Finally,
this paper summarizes and compares all of the simulations
and experiments, and analyzes the drivers for localization
performance using this method (Sect. 7).

2 Mid-water localization

AUV georeferencing is typically achieved by fusing infor-
mation from multiple sensors to estimate the vehicle’s
position and orientation in space. Depth and attitude esti-
mates can be directly obtained from existing sensors—e.g.,
hydrostatic pressuremeasurements provide accurate absolute
depth information and Attitude Heading Reference Systems
(AHRSs) provide orientation measurements [though there
is significant variance in accuracy, cost, and power (Kinsey
et al. 2006)]. Horizontal XY position estimates are more dif-
ficult to obtain. GPS is available on the ocean surface, but
does not penetrate the water. DVLs provide velocity-over-
ground information when within bottom-lock distance of the
seafloor and when coupled with an attitude sensor provide
dead reckoning. A variety of frameworks are employed to
fuse navigation sensor data; such as the Extended Kalman
Filter (EKF) framework, although other probabilistic esti-
mation techniques can be utilized (Paull et al. 2014). This
allows for near-optimal estimation, although optimality can
be tradedoff for stability in alternative implementations (Kin-
sey et al. 2014). GPS and DVL observations are unavailable
in themid-water column and thus other solutions are required
for localization.

2.1 Time-of-flight acoustic localization methods

Traditional solutions to georeference during a descent or
ascent include time-of-flight acoustic localization methods
such as USBL and LBL. USBL requires a ship to track the
vehicle acoustically, thus requiring a tending vessel for the
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duration of the mission. This may not always be possible,
for example under ice. LBL requires an acoustic transponder
network, which includes deploying and surveying in the bea-
cons. To reduce the set-up requirements, single fixed beacons
can be utilized (Paull et al. 2014). Regardless of the method,
themissionwill be limited to the range of the acoustic beacon
network—typically 1–10km ranges with ∼10 m accuracy
(Kinsey et al. 2006; McPhail and Pebody 2009).

2.2 Localization using an IMU

IMUs employ accelerometers and gyroscopes to provide
body-relative accelerations and rotation rates to constrain the
position, velocity and attitude estimates through integration
of the outputs. Given an IMU capable of gyrocompassing
(observing the locally projected 15 deg/hr rotation of the
Earth), the position error growth is approximately δp ≈
δωR0t (Titterton and Weston 2004). δp is the position drift,
δω is the gyro bias, R0 is the radius of the Earth, and t is
time.

Thus a navigation-grade IMU (often in excess of $100k
USD (Kinsey et al. 2006) with 0.01◦/h gyro bias, will achieve
∼1 km/h position drift without aiding. Alternatively, a tac-
tical grade IMU (approximately $16k USD) with 1◦/h gyro
bias will achieve ∼100 km/h position drift without aiding.
Once underwater, when the vehicle is within DVL range of
the seafloor, ∼ 0.2% distance traveled position error growth
(2σ ) is possible when DVL is coupled with a navigation-
grade IMU (Napolitano 2004; iXSea Accessed 22-03-2012).

2.3 Localization using a DVL

The DVL operates by sending out an acoustic pulse andmea-
sures the Doppler shift of the return pulse from the seafloor
(colloquially referred to as ’DVL bottom-lock’). By using
four sensor beams with different orientations, the 3D veloc-
ity of theDVL can be determined. The fourth sensor provides
redundancy in the estimation of the current profile velocities
(Gordon 1996). The result is a velocity estimatewith an accu-
racy of ∼10 mm/s (2σ ) for a 1200 kHz DVL.

Low-frequency (300kHz) DVL can be in continuous use
for altitudes less than ∼200m. The DVL sensor provides
measurements of the seafloor-relative velocity of the AUV.
By combining this information with an appropriate heading
reference, the observations can be placed in a global ref-
erence frame and integrated for underwater dead reckoning
(Brokloff 1994;Whitcombet al. 1999;Kinsey andWhitcomb
2004).

2.3.1 Localization using the DVL water-track mode

The DVL water-track mode provides a measurement of the
velocity of the AUV relative to a user-programmable water

sampling volume, instead of the seafloor like the DVL. It is
a built-in capability of DVLs requiring only software config-
uration changes (Gordon 1996). It operates by sending out
an acoustic pulse and relying on scatterers, such as plank-
ton, to reflect back the pulse. Using the Doppler effect, the
velocity of the scatterers relative to the instrument can be
determined. Since it is assumed that the scatterers move with
the water currents, the DVL water-track measures the veloc-
ity of the water column currents relative to the sensor which
can be used for dead-reckoning—albeit not referenced to
the seafloor (Brokloff 1997). By time-gating the signal for
a specific time period, a user-programmable water sampling
volume is measured. This method assumes that currents are
horizontally homogeneous across a water layer to arrive at a
water current estimate (Gordon 1996).

2.3.2 Acoustic Doppler current profiler (ADCP)

TheADCP (Brumley et al. 1991) is anothermode of the same
DVL sensor and operates similarly to the DVL water-track
mode. The ADCP processes returns at different times instead
of one. This allows the sensor to measure water currents at
different ranges, segmenting the observation into measure-
ment cells. This is illustrated in Fig. 1.

By using 4 differently aligned sensor beams and assuming
horizontally homogeneous currents, the 3D velocity of the
current can be determined in a similar manner to the DVL
mode. The result is a current estimate with an accuracy of
∼ 20 mm/s (2σ ) observing 2 m/s currents for a 1200 kHz
instrument.1

Acoustic Doppler Current Profilers (ADCPs) have tradi-
tionally been used by the oceanographic community to esti-
mate water current profiles for scientific studies. The existing
method applies least-squares to fuse loweredADCPandDVL
bottom-lock information (Visbeck2002). This approachdoes
not address ADCP sensor biases (Gordon 1996) and sensor
uncertainties as their effects on the overall current profile
are assumed minimal. However, biases have implications on
the velocity estimates of an AUV-mounted ADCP used for
localization during descent or ascent. Furthermore, this prior
work does not seek to estimate the ADCP position.

2.4 Vehicle model based navigation

Using a model of the vehicle dynamics to predict how the
vehicle will move given the estimated control actions (such
as thrusters) allows additional information to be fed into
the localization algorithms. In Hegrenaes and Hallingstad
(2011), the vehicle model aids the localization by modeling
the AUV dynamics given control actions and a local water
current estimate. This implementation uses an IMU as the

1 09/19/2009 email from Teledyne RD Instruments.
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Fig. 1 The ADCP mode of the DVL sensor operates by looking at the
returns from scatterers in the water column along each of the 4 beams.
This information can be combined to arrive at the 3D velocity of the
water currents relative to the ADCP sensor in a similar way to the DVL

sensor. By time-gating the signal return, differently distanced water
currents can be estimated. This is in contrast to the DVL water-track
mode, since the ADCP mode measures multiple water currents spread
spatially

prediction stage of an Extended Kalman Filter (EKF). The
vehicle model provides input to the update stage, facilitated
by adding a correlation term to the state vector, which has
a first-order Markov bias model. A navigation-grade IMU
coupled with a vehicle model and DVL water-track mode
estimates of currents can achieve ∼60 m over 30 min (2σ )
position uncertainty growth after acquiring DVL bottom-
lock (Hegrenaes and Berglund 2009). The assumption is a
time-varying current in themeasuredwater samplingvolume.
Prior to DVL bottom-lock, the position uncertainty growth
is ∼450m over 30 min (Hegrenaes and Berglund 2009). As
time progresses, this conservative constraint approaches the
worst case water current velocity uncertainty.

3 ADCP sensor aiding with water layers

An alternative to using the DVL water-track mode is to use
the ADCPmode to provide spatially-mapped finer-depth res-
olution current estimation. This introduces the possibility of
improved vehicle motion estimates. The standard parame-

trization of the ocean for lowered ADCP is to layer the ocean
into discrete, isocurrent layers (Visbeck 2002), or depth cells.
This standard will be applied in this paper. This relies on the
assumption of horizontal homogeneity across the water cur-
rent layer (Gordon 1996).

In parallel to our work (Medagoda et al. 2010, 2011) was
that of Stanway (2011) and Stanway (2012). In Stanway’s
work, a least squares approach to estimate water currents
and vehicle pose was applied. GPS, ADCP, DVL and mag-
netic compass heading are utilized for localization. His work
addresses practical ADCP implementation issues for deep
water localization, such as ADCP sensor configuration and
diagnostics during AUV ascents, which complements our
work. The recursive least squares approach is similar to the
computational complexity of the delayed-state filter (with
marginalization) used in this paper.

In comparison, this work has explored the incorporation
of SLAM and retaining the entire state history of the filter for
relinearization purposes. Reinearization (Kaess et al. 2011)
of the Jacobians is undertaken to improve consistency in lin-
earizing filters such as non-linear least squares and the EKF.
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Fig. 2 ADCP-aiding method sequence a Initial GPS position and
velocity are known, and water velocities can be estimated. b The AUV
moves, and re-observes the same depth cells. c The estimated AUV

velocity in the world frame can be updated, and new depth cells, shown
in red (bottom right), can be added to the filter

This is due to the linearization point being around the esti-
mate (which contains error) and not the unknown true state.
Through smoothing, past states are better estimated. The
Jacobians then can be recalculated. Relinearization requires
increased computational cost. Due to a more general frame-
work in this paper, the IMU, TDCP GPS and view-based
SLAMcan be incorporated. The incorporation of ADCP bias
estimation in the filter is undertaken in this paper. Stanway’s
work does not incorporate bias estimation, nor are uncer-
tainty bounds analyzed. The illustrative example in Sect. 4.1
outlines how both Stanway’s and this paper’s method works.
An uncertainty analysis of our method is also undertaken.

3.1 ADCP estimation and navigation aiding process

We assume that initially the AUV has position and velocity
estimates in the navigation frame at the sea surface fromGPS,
illustrated in Fig. 2a. With the initial measurement from the
ADCP sensor, body-relativewater depth cell velocities below
the vehicle are observed using eachADCPmeasurement cell.
These observations can be used to estimate the full current
profiles in the navigation framebyusing the estimatedvehicle
velocity at the surface.

The vehicle then submerges and GPS measurements stop.
When another ADCP measurement is made, the vehicle re-
observes the same depth cells, shown in Fig. 2b. Given the
estimatedwater current velocity of the re-observed depth cell
and the body-relative velocity of these depth cells from the
ADCP, a filter can simultaneously update the estimate of the
vehicle velocity and current profile velocities as shown inFig.
2c. This assumes that the water current velocity in this depth
cell remains constant, which is realistic over a re-observation
period of minutes (Visbeck 2002). This is in addition to the
horizontal homogeneity assumption for the ADCP footprint
during the descent. New water current velocity states are ini-
tialized when ascending due to temporal and spatial changes.

New depth cells can also now be estimated as the vehicle
changes depth as shown in the bottom right of Fig. 2c in red.

The result is an estimate of the vehicle motion and a water
columncurrent profile.When thevehicle iswithinDVLrange
of the seafloor, this velocity constraint on the vehicle is also
incorporated into the filter.

3.2 Extended information filter with current profiling

Vehicle pose states,ADCPbias (outlined in Sect. 3.2.2) states
and water current velocity are all estimated simultaneously.
Water velocity states are parameterized as isocurrent depth
cells, each with an associated velocity vector. An Extended
Information Filter (EIF) is applied to estimate the states of the
vehicle given the various vehicle sensor measurements (Wal-
ter et al. 2007). This allows the water current layer depth cell
states to be estimated, alongwithmaintaining the correlations
between the states. TheEIFalso allows relinearization (Kaess
et al. 2011) of the Jacobians if required and can incorporate
view-based SLAM (Mahon et al. 2008) if applicable, which
is not computationally feasible with a naive EKF implemen-
tation. It also enables the entire state history of the vehicle to
be viewed for analysis, as it acts as a delayed state smoother.

Vehicle pose states such as position, velocity and attitude,
ADCP bias states and water current velocity states are stored
in a state vector of the form

x̂+(tk) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x̂+
P1

(tk)
...

x̂+
PnP

(tk)

x̂+
bc,1

(tk)
...

x̂+
bc,nb

(tk)

x̂+
vc,n

(tk)
...

x̂+
vc,nv

(tk)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣
x̂+
P (tk)

x̂+
bc

(tk)

x̂+
vc

(tk)

⎤
⎥⎦ (1)

123



1212 Auton Robot (2016) 40:1207–1227

where x̂+
P (tk) =

[
x̂+T
P1

(tk), . . . , x̂
+T
PnP

(tk)
]T

is a vector of

past and present pose states where nP is the number of

vehicle pose states, x̂+
bc

(tk) =
[
x̂+T
bc,1

(tk), . . . , x̂
+T
bc,nb

(tk)
]T

is a vector of past and present ADCP bias states where
nb is the number of ADCP bias states and x̂+

vc
(tk) =[

x̂+T
vc,1

(tk), . . . , x̂+T
vc,nv

(tk)
]T

is a vector of past and present

ADCP water current velocity states where nv is the number
of water current velocity states. In this this paper, nP = 9.
nb is initialized at 60 in this paper, with the state number
increasing at a desired rate (in this case every 5 min). nv

begins at 60, and then increases as more water current states
are observed during vertical motion. As shown later, these
states can be marginalized if no longer observed, without
effecting the estimation of present states. This prevents an
unbounded increase in the computation cost. The covariance
between the pose states and the water current states are in the
form

P̂+(tk) =

⎡
⎢⎢⎣

P̂+
PP (tk) P̂+

Pbc
(tk) P̂+

Pvc
(tk)

P̂+T
Pbc

(tk) P̂
+
bcbc

(tk) P̂
+
bcvc

(tk)

P̂+T
Pvc

(tk) P̂
+T
bcbc

(tk) P̂+
vcvc

(tk)

⎤
⎥⎥⎦ (2)

In the information form, the filter maintains the matrix Y,
which is the inverse of the covariance matrix

Ŷ+(tk) = [P̂+(tk)]−1 (3)

and the information vector y, which is related to the state
estimate by

ŷ+(tk) = Ŷ+(tk)x̂+(tk) (4)

The information vector has the form

ŷ+(tk) =

⎡
⎢⎢⎣
ŷ+
P (tk)

ŷ+
bc

(tk)

ŷ+
vc

(tk)

⎤
⎥⎥⎦ (5)

and the information matrix has the form

Ŷ+(tk) =

⎡
⎢⎢⎣

Ŷ+
PP (tk) Ŷ+

Pbc
(tk) Ŷ+

Pvc
(tk)

Ŷ+T
Pbc

(tk) Ŷ
+
bcbc

(tk) Ŷ
+
bcvc

(tk)

Ŷ+T
Pvc

(tk) Ŷ
+T
bcbc

(tk) Ŷ+
vcvc

(tk)

⎤
⎥⎥⎦ (6)

Observations, which include ADCP measurements, are
assumed to be made according to

z(tk) = h(x(tk)) + ν(tk) (7)

in which z(tk) is an observation vector, h(x(tk)) is the sensor
model relating states to observations, and ν(tk) is a vector of
observation noise with covariance R(tk). New information
from sensor measurements are incorporated into the infor-
mation vector and matrix

ŷ+(tk) = ŷ−(tk) + i(tk) (8)

Ŷ+(tk) = Ŷ−(tk) + I(tk) (9)

in which

i(tk) = ∇T
x h(tk)R−1(tk)(z(tk) . . .

−h(x̂−(tk)) + ∇xh(tk)x̂−(tk)) (10)

I(tk) = ∇T
x h(tk)R−1(tk)∇xh(tk) (11)

where x̂−(tk) is the a priori state estimate and ∇xh(tk) is
the Jacobian of the observation with respect to the state.
Using this framework, the recursive non-linearweighted least
squares solution to the states can be estimated.

3.2.1 ADCP observation equation

Given the 3D velocities output from the ADCP, the observa-
tion function for each ADCP measurement is

hADCP,i = Cb
n(−vnv +

∑
W jvnc, j ) + bc,i + νADCP (12)

where:

– hADCP,i =ADCPmeasured current vector in the ithmea-
surement cell

– Cb
n = Coordinate transform from navigation/world frame

to ADCP/body frame
– vnv = Vehicle velocity in the world/navigation frame
– W j =Weighting function for each water current velocity

from depth cell j, outlined in Gordon (1996)
– vnc, j =water current velocity from depth cell j. Each depth
cell contains a current velocity state in the X and Y direc-
tion, which represents the average velocity of the current
through that layer

– bc,i = Bias in the ith measurement cell in the body frame
– νADCP =Random noise in the ADCPmeasurement, with

standard deviation given by the sensor manufacturer

The ADCP measurement equation correlates the vehicle
velocity and water current velocities.

3.2.2 ADCP biases

It is important to consider any biases in the measurements,
as they will provide a large source of error, and will result in
the filter becoming overconfident if left unmodeled. Sources
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of ADCP biases include measurement cell dependent biases,
such as (a) beam and sensor misalignment, (b) beam geom-
etry; and (c) signal/noise ratio and biases dependent on
changing depth, including temperature, pressure, scatterers
and sound speed estimate error (Gordon 1996; Atkinson
2008). In this paper, these ADCP biases are estimated as
the summed effect on the measurement cell observation in
the body frame.

Estimation of bias states enables localization corrections
and their uncertainty can bemodeled. In order to improve the
observability of the ADCP sensor relative biases (bc,i ) and
allow disambiguation from the true currents (vnc, j ), rotation

about heading is required, due to the transformation Cb
n in

Eq. 12.
The ADCP bias with time can be modeled as a first-order

Markov process in a similar way to how a time varying,
bounded bias can be modeled with IMU sensors (Flen-
niken IV 2005):

˙bc,i = − 1

τbias
bc,i + νbias (13)

where τbias is the expected rate change of theADCP sensor (a
tuned parameter). νbias is a zero-mean normally distributed
random variable with

σbias =
√
2 f σ 2

bias dri f t

τbias
(14)

where σbias dri f t is the standard deviation of the bias in the
long term, and limits the magnitude of the bias. It is a tuned
parameter, which is given by the manufacturer as 1 cm/s.
f is the frequency at which the process model operates.
τbias is a tuned parameter that can be be determined through
accounting for the expected bias drift rate, which depends on
a number of factors as described previously. In this paper,
a conservative time constant of 500 s is used and provided
good performance on the experimental data.

4 Vertical descent simulation

This section explores the performance of the ADCP local-
ization algorithm given vertical descent in simulation—first
in two-dimensions and then in six-dimensions.

4.1 Two degrees-of-freedom simulation

The example in Sect. 3.1 and Fig. 2a–c can be simulated
to illustrate the operation and performance of the filter,
including how the errors evolve in the states. This simula-
tion illustrates how both Stanway’s and this paper’s method
works. A 1-dimensional current field is simulated in which

Table 1 Parameter values used in the 2DOF simulation

GPS receiver Lassen iQ GPS receiver

Initial GPS position fix accuracy 10 m (2σp)

Initial GPS velocity accuracy 0.04 m/s (2σv)

AUV descent rate 0.2 m/s

ADCP make and model RDI 1200 kHz

ADCP measurement uncertainty 0.02 m/s (2σa)

ADCP range 30 m

Water current depth cell size 1 m

Simulation time 1000 s

Simulated depth 240 m

DVL accuracy 0.006 m/s (2σDV L )

DVL range 40 m

DVL acquisition time 1000 s

ADCP and DVL update rate 3 Hz

Maximum currents 20 cm/s

the vehicle is descending, and free to move left or right (but
not into and out of the page). The vehicle experiences unmod-
eled drag (in the localization filter) which causes it to move
with the currents. The vehicle is also assumed not to pitch
resulting in two degrees-of-freedom (2DOF) in translation.
To further simplify the analysis of this example, the bias
states are not simulated nor estimated. Table 1 lists parame-
ter values used for the 2DOF simulation.

To facilitate analysis, the full state history, or smoothed
solution, of the information filter is used. All poses are kept in
the state estimator. Figure 3a show the position of the ADCP-
aided estimate before DVL bottom-lock is obtained. The
ADCP-aided estimate also has access to the ADCP obser-
vations. The ADCP-aiding filter position uncertainty growth
is approximately 40 m (2σ ).

Figure 3b show the position estimate after DVL bottom-
lock is obtained for the entire state history. The DVL
bottom-lock allows the entire velocity history to be con-
strained due to the correlations of vehicle velocity with water
current velocity states, according to the ADCP measure-
ments (12). The observation of DVL body-relative velocity is
back-propagated to the entire descent because these correla-
tions are accounted for in the Information Filter through the
corrected water current estimates. The ADCP-aiding filter
position uncertainty growth is now approximately 6 m (2σ ).

Figure 4a show the vehicle velocity errors before DVL
bottom-lock for the entire state history. The velocity uncer-
tainty slightly increases with time because of information
loss from a finite number of uncertain measurements from
the ADCP during the descent. Information loss is defined
as the increase in velocity uncertainty as velocity estimates
are extracted through re-observing the water currents with
the ADCP, which translates into position uncertainty due to
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Fig. 3 2DOF simulation position estimates for the entire state history
with theADCP-aiding filter a beforeDVL bottom-lock and b after DVL
bottom-lock

the position being the integral of velocity with time. This
increase in velocity uncertainty is negligible because of the
high number of re-observations of each current velocity bin
(up to 750 times in this case). The uncertainty in velocity is
primarily from the initial GPS velocity uncertainty, at 0.04
m/s (2σ ).

While undergoing descent prior to DVL bottom-lock, the
velocity error is observed to have a Markov nature. The ini-
tial velocity error (from the surface) remains as a ‘bias’ in
the vehicle velocity estimate during descent, since this error
exists in the initial measured water currents. Thus, no matter
how many subsequent measurements of the water currents
are made while underwater without GPS, this initial velocity
‘bias’ in the water currents can never be overcome without
another absolute velocity measurement.

(a)

(b)

Fig. 4 2DOF simulation velocity errors for the entire state history with
the ADCP-aiding filter a before DVL bottom-lock and b after DVL
bottom-lock

Figures 4b show the velocity errors after DVL bottom-
lock for the entire state history. The entire velocity history
estimate uncertainty is∼0.006 m/s (2σ ), only slightly higher
than the DVL accuracy, but for the entire dive. This slight
increase is the result of the small information loss due to
a finite number of uncertain measurements from the ADCP
during the descent.

The absolute velocity measurement from the DVL allows
the ‘bias’ in all of the water current measurements from the
initial GPS velocity to be reduced in magnitude according
to the uncertainty of the DVL. The errors and uncertainty
bounds for the post-DVLbottom lockwater current estimates
are shown to be consistent in Fig. 5b.Applying this correction
to all of the water currents reduces the previous uncertainty
in the vehicle velocity. Figure 6 shows the estimated water
currents from the filter post-DVL compared to the simulated
ground truth, showing close overlap.
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(a)

(b)

Fig. 5 The error in the water current estimate from the 2DOF simu-
lation a prior to DVL bottom-lock and b following DVL bottom lock

The 2DOF simulation has shown how the uncertainty
evolves and illustrates that while the velocity uncertainty
does increase in uncertainty during descent, the increase in
uncertainty is very low relative to the initial velocity uncer-
tainty. Once DVL bottom lock is acquired, the small increase
in uncertainty of velocity applies backwards in time as well.

4.2 Six degrees-of-freedom simulation

This section extends the 2D simulation to a more complex
and realistic six degrees-of-freedom (6DOF) AUV dive sim-
ulation with the following characteristics:

(1) An initialization phase for the GPS/IMU is first simu-
lated, using real output from a Novatel SPAN system for
realism. This allows the heading of the inertial system

Fig. 6 Current profile derived from the 2DOF simulation. Figure 5b
shows the error plots

to be resolved. In this phase, Time Differenced Carrier
Phase (TDCP) GPS is also available.

(2) A vertical dive phase, where no GPS fix or DVL bottom-
lock is available. The AUV rotates due to hydrodynamic
forces, providing higher observability and thus enabling
sensor bias estimation.

(3) After one hour, the AUV acquires DVL bottom-lock at
40 m and starts to measure velocity over ground.

(4) FollowingDVL bottom-lock, 30 s of DVLmeasurements
are undertaken to allow velocity over ground to be esti-
mated in combination with the IMU.

(5) The water current velocities are correlated with depth,
with a maximum current of∼15 cm/s—representative of
typical ocean current profiles (Visbeck (2002)).

This simulates a hypothetical mission undertaken by the
Sirius AUV (Williams et al. (2009)), where TDCP capable
GPS is installed. Table 2 summarizes the parameter values
used in the 6DOF simulation. In the subsequent simulation,
themeasurement cell biasmagnitudes are constrained to zero
within 1 cm/s (2σ ), in alignment with the RDI specification
(Gordon 1996) and the calibration report on the RDI ADCP
(Shih et al. 2000), which contains maximum biases of ∼1
cm/s. The biases change with time in a correlated fashion
(which accounts for changing depth during descent), simulat-
ing the bias effects described in Sect. 3.2.1. A value for τbias
in Eq. 13 of 500 s is used to simulate drifting biases over time
scale, although controlled experiments of the ADCP sensor
in real environments are required to identify a true value for
this parameter. This bias estimation is unique to our work
and is not performed in Stanway’s implementation.

A tactical-grade Honeywell HG1700A58 IMU was sim-
ulated, providing position, velocity and attitude constraints
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Table 2 Parameter values used in the 6DOF simulation

GPS receiver Novatel SPAN

Initial GPS position fix accuracy 10 m (2σp)

Initial GPS velocity accuracy 0.04 m/s (2σv)

AUV descent rate 0.2 m/s

ADCP make and model RDI 1200 kHz

ADCP measurement uncertainty 0.02 m/s (2σa)

ADCP range 30 m

Water current depth cell size 1 m

Simulation time 3605 s

Simulated depth 760 m

DVL accuracy 0.006 m/s (2σDV L )

DVL range 40 m

DVL acquisition time 3600 s

ADCP and DVL update rate 3 Hz

Maximum currents 20 cm/s

IMU Honeywell HG1700A58

IMU bias stability 1 ◦/h
AUV rotation rate 8 ◦/s
Bias magnitude (σbias dri f t ) 0.01 m/s (2σ )

Time constant of bias (τbias ) 500 s

TDCP GPS uncertainty 5 mm (2σ )

TDCP GPS rate 2 Hz

through the integration of the body rotation rates and acceler-
ations (incorporating IMU constraints was not undertaken in
Stanway’s implementation). The method used to incorporate
the inertial measurements into the filter is based on Lupton
and Sukkarieh (2009) and Lupton (2010). A global refer-
ence frame is used, and initial attitude is assumed accurate
for linearization purposes. Compensation for Earth rotation
(significant for heading estimation during long missions), as
calculated in Titterton and Weston (2004), is achieved with
the following equation, which is modified from Algorithm 1,
Line 9 in Lupton and Sukkarieh (2009):

�φt+1 = �φt + Et1
t (ωb

t − biasgyro−Ck
n	

n
e )�t (15)

where −Ck
n	

n
e is the apparent Earth rotation in the body

frame. The gyro and accelerometer bias states are augmented
into the filter. As illustrated in Sect. 4.1, the error growth in
position before DVL bottom-lock is dependent on the initial
velocity uncertainty while on the surface. A typical velocity
uncertainty of 4–8 mm/s (2σ ) in the horizontal directions is
possible with standard GPS by exploiting the carrier phase
on the GPS receiver (van Graas and Soloviev 2004). This
means that during descent, position error growth can also be
constrained to the 4–8 mm/s (2σ ) range, which is similar to
DVL velocity uncertainty.

TDCP (Soon et al. 2008) is a particular implementation of
carrier phase processing. It can be approximately modeled as

tracking the change in position of the vehicle (while on the
surface).

hT DCP (x̂(tk)) = pn(tk) − pn(tk−1) (16)

RT DCP = σ 2
T DCP (17)

The TDCP observation is dissimilar to the DVL observa-
tion, as it is a change-in-position measurement rather than
an instantaneous velocity measurement. The delayed state
structure of the EIF allows this observation between two
poses to be correctly accounted for (Soon et al. 2008). The
TDCP change-in-position measurement is assumed to have
an uncertainty of 5 mm (2σ ) occurring at 2 Hz. In Stanway’s
implementation, TDCP GPS was not considered.

4.2.1 AUV dynamic vehicle modeling

For the simulation, we assume that the vehicle has differen-
tial thrust to control heading and forward velocity (Fossen
1994). This information is used to generate the simulated
true motion of the vehicle given vertical thrust through the
water column. Within the filter, a dynamic vehicle model is
not used as it is beyond the scope of this paper. Pitch and roll
are set to zero in the simulation, although the filter estimates
these states. The vehicle model applies the following state
equations:

Mv̇ + C(v)v + D(v)v + Cb
n(mgn + bn) = τ (18)

v =

⎡
⎢⎢⎢⎣

ẋb

ẏb

żb

ψ̇

⎤
⎥⎥⎥⎦ (19)

τ =

⎡
⎢⎢⎢⎣

F1 + F2

0

F3

F1r − F2r

⎤
⎥⎥⎥⎦ (20)

M = diag{Mx , My, Mz, Iz} (21)

C(v) =

⎡
⎢⎢⎢⎣

0 0 0 −My ẏb

0 0 0 Mx ẋb

0 0 0 0

My ẏb −Mx ẋb 0 0

⎤
⎥⎥⎥⎦ (22)

D(v) = −diag{Dẋ |ẋb|, Dẏ |ẏb|, Dż |żb|, Dψ̇ |ψ̇ |} (23)

where

– ẋb, ẏb and żb are thewater relative velocities of the vehicle
in the body frame in the forward, starboard and down
directions respectively.

– ψ̇ is the yaw rotational velocity of the vehicle
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Table 3 Vehicle model
parameters used in the 6DOF
simulation

Symbol True value

Mx 500 kg

My 500 kg

Mz 225 kg

Iz 179.049 kg m2

Dẋ 500 kg m−1

Dẏ 800 kg m−1

r 0.2 m

– M is the inertia matrix (including added mass)
– C(v) is the matrix of Coriolis and centripetal terms
(including added mass)

– D(v) is the damping matrix
– τ is the vector of control inputs
– F1, F2 and F3 are the thrusts from the port, starboard and

vertical thruster respectively
– m is the true mass of the vehicle
– gn is the gravity vector in the navigation frame
– bn is the buoyancy force in the navigation frame
– r is the distance from the thruster to the center of mass
along the perpendicular direction of the applied force.

Vehicle parameters are estimated using Martin and Whit-
comb (2008) as a baseline, and listed in Table 3.

Additionally, a thruster model according to Healey et al.
(1995) and Fossen (1994) is utilized:

F = 0.4ρd4|n|n − 1

3
vT ρd3|n| (24)

where

– ρ is the density of water
– d is the diameter of the propeller
– n is the revolution speed of the thruster
– vT is the velocity of the water going into the propeller

4.2.2 Sirius simulation results for one hour descent

The increasing computational complexity with time nec-
essary to perform smoothing and maintain the full pose
history requires that we marginalize of all pose states in the
filter except those for the present and previous time step.
This was applied to provide run-time pose estimates and
uncertainties, effectively creating a delayed-state EKF. For
constant-time complexity in the filter, wemarginalized water
column states which will not be re-observed. Thus, this filter
implementation has the potential to be implemented in real-
time on a vehicle. This same strategy is applied in Sect. 6 for
the real-world deep-water missions.

(a)

(b)

Fig. 7 Sirius simulation a run-timefilter velocity 2σ uncertaintieswith
time. b An enlarged detail on the effect of the DVL bottom-lock on the
velocity estimates at 3600 s

Figure 7 shows the run-time filter uncertainty estimate of
velocity is constrained to ∼7 mm/s (2σ ) in the north and
east directions. This uncertainty in velocity during the dive
phase is from the initial velocity uncertainty after GPS/IMU
initialization and ADCP estimation on the surface, including
TDCP. The initial velocity estimate in the north direction
on the surface was near the boundary of the 2σ uncertainty
estimate. Thus, it will continue to be on the boundary, with
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(a)

(b)

Fig. 8 Sirius simulation a run-time filter position 2σ uncertainty with
time. A black line is drawn for a portion of the position uncertainty
bounds to illustrate the slight non-linearity of the uncertainty growth. b
An enlarged detail on the effect of the DVL bottom-lock on the position
estimate at 3600 s

the noisy north velocity estimate error exceeding the upper
2σ bounds. This is normal behavior for the filter as a result
of this initial velocity estimate. During descent prior to DVL
bottom-lock, the velocity error is observed to have a Markov
nature. The initial velocity error (from the surface) remains as
a ‘bias’ in the vehicle velocity estimate during descent since
this error exists in the initial measured water currents. This
is similar to the behavior observed in Sect. 4.1. In this case,
over the 3600s time span, the velocity uncertainty increases
slightly, implying that some information loss occurs from the
continual initialization of new water current depth cells.

As shown in Fig. 8a, just prior to DVL bottom-lock after
3600s, the position uncertainty estimate is∼16 m (2σ ) in the
north and east directions, or 15 m uncertainty growth com-

Fig. 9 Underwater localization methods and their approximate accu-
racy for a 1 h descent.USBLandLBL solutions are shown in green.Blue
is a IMU/vehicle model/DVL water-track navigation solution obtained
by extrapolating available results. The reported algorithm performance
is shown in red. The new localization method compares favorably in
this case with acoustic localization methods, and outperforms existing
self-contained techniques

pared to the surface uncertainty. Figure 8b shows an enlarged
detail of the effect of DVL bottom-lock on the position
estimates, with the 2σ position estimate uncertainty reach-
ing ∼7.5 m, or 6.5 m uncertainty growth from the surface
uncertainty of 1 m. The position estimates show a corre-
lated, but consistent, error with respect to the 2σ uncertainty
bounds. This shows that the north velocity estimates, with
errors exceeding their 2σ uncertainty bounds, once integrated
through the IMU model produce the expected, consistent
result for position uncertainty. The velocity uncertainty does
not necessarily equal the position uncertainty growth rate,
as a result of the non-linear IMU integration and the veloc-
ity estimate interacting with the ADCP bias estimation with
rotation. This results in non-trivial correlation between the
position and velocity estimates, captured through the infor-
mation matrix.

Figure 9 shows the performance for USBL, LBL, IMU/
vehicle model/DVL water-track, and our reported method
for a one hour descent to the seafloor. (2σ ) for USBL and
LBL are relatively constant and are∼10m. The IMU/vehicle
model/DVL water-track navigation solution (extrapolated
from available results) increases with time and has an error
of ∼ 120 m after 1 h. In comparison, our method accu-
mulates less than 20 m error during the descent and, after
DVL bottom-lock, the error decreases to less than 10 m. This
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demonstrates the ability of our method to provide accuracy
comparable to the acoustic localization methods but without
external infrastructure and at a higher update rate.

5 Experiments with the Sirius AUV and
View-based SLAM

Initial field experimentswere obtainedwith the SiriusAUV, a
modified version of themid-sized SeaBEDAUV (Singh et al.
2004b), owned and operated by the University of Sydney
Australian Centre for Field Robotics (ACFR) (Williams et al.
2009). Designed for high-resolution imaging, the AUV is
passively stable in roll and pitch. Navigation sensors include
a 1200 kHz RDI DVL/ADCP, Tracklink 1500 HA USBL
and a Lassen iQGPS receiver. Additionally, a stereo imaging
platform allows for six degree-of freedom view-based loop
closures (Mahon et al. 2008; Williams et al. 2010) when
near the seafloor (typically ∼2 m altitude). These experi-
ments employ a constant velocity processmodel tuned for the
most extreme dynamics of the vehicle. Attitude information
is supplied by the in-built magnetic compass and roll/pitch
tilt sensors in the RDI DVL/ADCP. These results were pre-
viously reported in Medagoda et al. (2011).

Experimental data is from a 2010 mission on coastal reefs
near the Freycinet Peninsula in eastern Tasmania (Williams
et al. 2012) in which Sirius completed a 3 h dive to 100 m
depth. DVL bottom-lock was unavailable during descent and
ascent. Ground truth measurements are provided by USBL;
position estimates are shown in Fig. 10. Additional informa-
tion and data from another site are reported in Medagoda
et al. (2011).

The full state history, or smoothed solution, of the fil-
ter is defined as the output of the EIF at the end of the
mission. All of the poses are maintained by the estimator.
The run-time filter is the maximum-likelihood estimate of
pose of the vehicle at that instance in the mission. Results in
Fig. 11a show how the ADCP method, without the USBL,
results in georeferencing for the subsequent seafloor view-
based SLAM-aided mission. Georeferencing uncertainty is
within 20 m (2σ ) position accuracy while the AUV is
near the seafloor, and after post-ascent GPS acquisition, the
accuracy of the seafloor portion is within 11 m (2σ ). The
ADCP was interleaved with the DVL at a ratio of 1:5, with
the ADCP operating at approximately 0.5 Hz. Despite low
ADCP update rates, it is possible to localize without an exter-
nal acoustic source (e.g., USBL). The ascent and descent
water current velocity states differ because of both temporal
(i.e., a 3 h time interval between the descent and ascent) and
spatial (i.e., ∼600 m horizontal distance) changes.

Figure 11a also shows the ability of SLAM loop-closure
to improve the ADCP-aided navigation. It shows that the
method can be improved with imagery due to loop closures,
but that the entiremission can be localizedwithout them. Fig-

(a)

(b)

Fig. 10 aOblique and bBird’s eye view of the trajectory for the Sirius
Freycinet mission, where DVL bottom-lock is only available at 40 m
altitude

ure 11a shows the effect of loop closures at ∼3500 s into the
mission—image feature matching identified that the AUV
has revisited a previous site in the mission resulting in a real-
timedecrease in uncertainty for thefilter. This and subsequent
loop closure observations constrain the position uncertainty
during the seafloor mapping portion of the dive, thus pro-
viding significantly improved localization for the seafloor
portion of the mission. This occurs after the post-ascent GPS
acquisition, due to the increased correlation of temporally
distant poses, as seen in Fig. 11a.

Figure 11b compares the filter result with the indepen-
dent USBL observations. During the descent, prior to DVL
bottom-lock, the realtime filter is inconsistent. Once DVL
bottom-lock is acquired, relinearization occurs with the EIF
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(a)

(b)

Fig. 11 a Sirius Freycinet position uncertainty estimates for filter in-
run and for the full state history, with and without loop closures b
Differences between filter results and USBL measurements, along with
2 σ uncertainties of this difference, showing that the filter is consistent
after DVL bottom-lock

and the error is reduced, providing evidence that the previ-
ously observed inconsistency was due to linearization error.
The relinearization was achieved by calculating Jacobians
for previous measurements with the present estimate of that
state, and then re-constructing the information vector and
matrix and solving for the state. These equations are shared
or modified from Eqs. 4, 9, 10 and 11.

ŷ+(te) = ŷ−(t0) +
te∑

tn=t0

i(tn) (25)

Ŷ+(te) = Ŷ−(t0) +
te∑

tn=t0

I(tn) (26)

ŷ+(te) = Ŷ+(te)x̂+(te) (27)

in which

i(tn) = ∇T
x h(te)R−1(tn)(z(tn) . . .

−h(x̂−(te)) + ∇xh(te)x̂−(te)) (28)

I(tn) = ∇T
x h(te)R−1(tn)∇xh(te) (29)

where tn is a measurement time between the beginning of
the descent (t0) to the end of the descent (te). This strategy is
applied on ascent as well, substituting the beginning of the
ascent for t0 and the end of the ascent for te. We observe that
the ADCP filter is consistent with the USBL observations,
validating the performance of the ADCP-aidingmethod. The
above results show how ADCP-aided navigation during the
descent and ascent of a mission, coupled with view-based
SLAM on the seafloor, allows georeferencing even with
infrequent ADCP measurements.

6 Deep water experiments with the Sentry AUV

Our ADCP-aided localization algorithm was validated in
deep water environments using data obtained with the Sen-
try AUV. Sentry is a 6000 m rated AUV designed and built
by Woods Hole Oceanographic Institution (WHOI) for geo-
physical, geochemical, andbiological surveys and is operated
by WHOI for the U.S. scientific community (Kinsey et al.
2011). The ADCP sensor is a 300 kHz RDI Navigator with
120 m maximum range with default settings, although with
reduced accuracy compared to the 1200 kHz sensor on the
Sirius AUV. The process model used for the vehicle is a
constant velocity model. The process noise is tuned to worst
case vehicle dynamics and no thruster model is incorporated.
Depth information is supplied by a Paroscientific depth sen-
sor and USBLmeasurements by a Sonardyne USBL system.
Attitude information is supplied by an Ixsea Phins INS gyro-
compass; however raw IMU measurements of acceleration
and rotation rates were not available. Our method is tested
on three dives—Sentry dive 220 in December 2013 and Sen-
try dives 273 and 281 in July 2014.

The dive site for 220 was at the Dorado Outcrop, located
west of Costa Rica in the Pacific Ocean. On this deployment,
Sentry dives to ∼3 km in over 6000 s, with a descent rate of
∼ 0.4 m/s. Initial velocity and position is estimated using the
USBL for the first 500 s of the descent, as the vehicle was
not equippedwithGPS. During 5354 s of descent, the vehicle
does not have DVL bottom lock and the USBL undergoes a
simulated blackout to illustrate the ADCP-aided filter. The
USBL serves as ground truth. The ADCP was run open-loop
interleaving 1:1 with the DVL.

For computational efficiency, themarginalized EIF is used
from the Sirius simulation. Imagery was not available; thus
view-based SLAM is not incorporated. During this descent, a
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Fig. 12 Data errors in the ADCP sensor for Sentry 220. The data in
blue is good data prior to the χ2 test. The data in maroon has failed the
percent good self-diagnostic of the sensor. The data in yellow exceeds
the error velocity threshold

Fig. 13 Sentry 220 position errors and uncertainty estimates for the
filter. The filter is consistent as the errors are within the 2σ bounds
for the uncertainty estimates. The error is the difference between the
estimate and the USBL ground truth

high amount of ADCP data errors were detected, as shown in
Fig. 12, reducing the effectiveADCP rate to 1.9Hz. The error
metrics used to reject measurements are an error velocity
threshold, percent good reported from sensor, and χ2 test
for normalized innovations. The cause of these data errors
are unknown and resolving them remains as future work.
The rejected measurements results in the correlations being
reduced throughout the descent.

Figure 13 shows the position error and uncertainty esti-
mates during the descent. DVL bottom-lock results in a
velocity and position correction once the altitude is below
approximately 240 m. The position uncertainty growth is
328 m (2σ ) prior to DVL bottom lock, giving an position
error growth rate of approximately 6.1 cm/s (2σ ). The veloc-
ity uncertainty during the descent is plotted in Fig. 14. The
velocity uncertainty following the combined USBL/ADCP
initialization is approximately 7.5 cm/s (2σ ). Thus the posi-
tion growth rate and velocity uncertainty are of similar
magnitude, with differences due to the estimation of ADCP
biases and the Markov nature of the estimation as discussed
in Sect. 4.2.2. Once DVL bottom lock is acquired, the posi-
tion uncertainty growth is ∼254 m (2σ ), with a position
uncertainty growth rate of 4.7 cm/s (2σ ) while the veloc-
ity uncertainty is reduced to 1.1 cm/s (2σ ) due to the DVL

Fig. 14 Sentry 220 North and East velocity uncertainty of the filter.
The red east velocity uncertainty mostly overlaps with the blue velocity
uncertainty. Increases in the velocity uncertainty during decent are due
to data errors which result in rejected measurements

sensor. This uncertainty reduction once DVL bottom lock is
acquired is less than what was possible in simulation in Sect.
4.2.2, due to the high amount of ADCP data errors resulting
in reduced correlation during the descent and the lack of IMU
data .

The velocity uncertainty estimates in Fig. 14 also increase
asADCPmeasurements are rejectedmore often, correspond-
ing to the errors identified in Fig. 12. Figure 15 shows the
position estimates compared to the USBL position measure-
ments. Over the 3 km descent a ∼350 m westerly drift is
experienced because of water currents. The final error in the
position estimation was 88 m, showing an advantage com-
pared to a zero drift assumption.

Sentry dives 273 and 281 were completed off the coast of
Oregon at the ASHES vent site, where Sentry descends to
approximately 1500 m. The descent rate is ∼0.6 m/s, higher
than Sentry 220 mission due to different ballasting. Initial
velocity and position is estimated using the USBL for the
first portion of the descent until the uncertainty in velocity
is 7.5 cm/s, allowing comparisons to the Sentry 220 mis-
sion. During the descent, the vehicle does not have DVL
bottom lock and the USBL undergoes a simulated blackout
to illustrate the ADCP-aided filter. Again, USBL serves as
the ground truth.

The marginalized EIF is again utilized and view-based
SLAM is not incorporated. Figures 16 and 17 show the data
errors associated with the ADCP sensor during these mis-
sions, showing lower error rates than the Sentry 220 mission,
although due to the reduced rate of ADCP measurements,
the effective ADCP rate is lower. Sentry 273 has an effective
ADCP rate of 1.6Hz,while Sentry 281 has an effective rate of
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(a)

(b)

Fig. 15 Sentry 220 a North and b East position estimates, compar-
ing the filter output and the USBL output. Note the vertical scale is
compressed compared to the exaggerated horizontal scale

Fig. 16 Data errors in the ADCP sensor for Sentry 273. The data in
blue is good data prior to the χ2 test. The data in maroon has failed the
percent good self-diagnostic of the sensor. The data in yellow exceeds
the error velocity threshold

Fig. 17 Data errors in the ADCP sensor for Sentry 281. The data in
blue is good data prior to the χ2 test. The data in maroon has failed the
percent good self-diagnostic of the sensor. The data in yellow exceeds
the error velocity threshold

Fig. 18 Sentry 273 position errors and uncertainty estimates for the
filter. Filter is consistent as the errors are within the 2σ bounds for the
uncertainty estimates. The error is the difference between the estimate
and the USBL ground truth. The unexpected jumps in error at approx-
imately 1300, 1600 and 1950 s are due to USBL measurement errors

1.8 Hz. In these missions, the ADCP runs on a timing trigger,
and thus the effective rate of ADCPmeasurements is slightly
less than Sentry 220 after including the effects of rejected
measurements. Thus, difference in conditions between all
the Sentry missions result in different effective ADCP rates.

Figure 18 plots the position error compared to the USBL
and uncertainty estimates during the Sentry 273 descent.
Unexpected jumps in error at approximately 1300, 1600 and
1950 s are due to USBLmeasurement errors—illustrating an
additional redundancy benefit of the ADCP-aided method in
the presence of noisy USBL. After ∼1700 s, the estimation
possesses 130 m of position uncertainty growth, with a 7.7
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Fig. 19 Sentry 281 position errors and uncertainty estimates for the
filter. Filter is consistent as the errors are within the 2σ bounds for the
uncertainty estimates. The error is the difference between the estimate
and the USBL ground truth

cm/s position uncertainty growth rate prior to DVL bottom
lock. Once DVL bottom lock is obtained, the position uncer-
tainty is reduced to 74 m with a growth rate of 4.4 cm/s. This
is comparable to Sentry 281 (Fig. 19) which has a similar
descent rate but higher effectiveADCP rate due to lessADCP
data errors. Sentry 281 has a position uncertainty growth rate
of 6.8 cm/s—lower than Sentry 273. This results in 138 m of
position uncertainty growth over the ∼2000 s prior to DVL
bottom lock. Once DVL bottom lock is obtained, the posi-
tion uncertainty growth is reduced to 70 m with a rate of 3.5
cm/s. Thus the increased effective ADCP measurement rate
has resulted in lower position uncertainty growth for these

similar missions, illustrating the effect of increased informa-
tion loss during the descent in a real-world scenario (Fig. 12).

These results show that the ADCP-aided filter provides
localization during long descents to deep ocean depths,
despite detectable errors (beyond biases and noise) in the
ADCP measurements. The method works in two different
environments, further verifying the utility of this technique.
Further work could include an IMU to detect errors and
uncertainty reduction by incorporating more sensors and
water currentmodeling into the estimation, alongwith spatial
correlation modeling of the water current profile.

7 Comparison of experimental results

Table 4 compares the experimental results presented in this
paper. FollowingDVL bottom lock, the simulated Siriusmis-
sion performs within 1% uncertainty per distance traveled,
incorporating TDCP GPS for high accuracy initial veloc-
ity uncertainty, and ideal sampling conditions resulting in a
3Hz effective ADCP measurement rate. Sirius experiments
at the Nuggets and Freycinet sites show higher uncertainty
in the initial velocity, reduced rate ADCP measurements
and no IMU, resulting in higher information loss during the
descent, reflected in the close to 20%uncertainty per distance
traveled. Sentry 220 provides higher effective ADCP rates,
during a longer mission, although the lack of IMU and infor-
mation loss during the descent results in 12% uncertainty per
distance traveled following DVL bottom lock. Given faster
descent rates of 60 cm/s for Sentry 273 and 281, the effects
of information loss are reduced, resulting in 6 and 7% uncer-
tainty per distance traveled respectively. Various drivers for
the uncertainty per distance traveled exist for our method

Table 4 A comparison of all results in this paper

Mission name F D T D/T Prior to DVL bottom lock After DVL bottom lock

E U U/T U/D E U U/T U/D

Sirius simulation 3 Hz 720 m 3600 s 20 cm/s 12 m 15 m 0.4 cm/s 0.02 5 m 7 m 0.2 cm/s 0.01

Sirius Nuggets* 1 Hz 30 m 150 s 20 cm/s 27 m 17 m 11.3 cm/s 0.6 8 m 6 m 4 cm/s 0.20

Sirius Freycinet 0.5 Hz 62 m 312 s 20 cm/s 57 m 27 m 8.7 cm/s 0.43 10 m 13 m 4.2 cm/s 0.21

Sentry 220 1.9 Hz 2141 m 5354 s 40 cm/s 251 m 328 m 6.1 cm/s 0.15 88 m 254 m 4.7 cm/s 0.12

Sentry 273 1.6 Hz 1054 m 1683 s 61 cm/s 129 m 130 m 7.7 cm/s 0.13 15 m 74 m 4.4 cm/s 0.07

Sentry 281 1.8 Hz 1189 m 2026 s 59 cm/s 135 m 138 m 6.8 cm/s 0.12 54 m 70 m 3.5 cm/s 0.06

Position error includes that added due to the USBL ground truth uncertainty. Position uncertainty excludes initial positioning uncertainty prior to
exclusively ADCP-aided localization
* Refer to Medagoda et al. (2011). Descent time with only ADCP includes attitude referencing from a compass or gyrocompass
F = Effective ADCP measurement frequency (approximate, after error checking)
D = Descent depth with ADCP only
T = Descent time with ADCP only
E = Position error (difference between USBL and ADCP-aiding)
U = 2σ position uncertainty growth
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including initial velocity uncertainty, effective ADCP mea-
surement rates, descent rate, and incorporation of an IMU.

8 Conclusion

This paper reports an ADCP-aided localization algorithm as
an alternative formof georeferencing for vertical dives during
AUV deployments and presents experimental results show-
ing its performance over a variety of missions. It has shown
the ability to achieve constrained error growth in position
estimates by incorporating ADCP measurements into the
navigation solution of a vehicle transiting between the sea
surface and the seafloor. This is achieved by incorporating
water current velocities as states in the estimation. Simula-
tions show ideal circumstances and the potential performance
of the ADCP-aidedmethod. Themethod outlined also allows
the incorporation of view-based SLAMtechniqueswithin the
formulation, and an entirely autonomously localizedmission
was presented in previous work. The method was also shown
to operate on real world experimental data for multi-hour
descents to depths up to 3 km. Thus, the reported method
can provide accurate AUV navigation for missions requiring
accurate underwater navigation close to the seafloor but that
lack DVL bottom-lock during descent and ascent.

These results have short and long term implications for
improved AUV autonomy. In the short term, this method
allows more flexible and cost-effective AUV operations by
reducing the dependency on expensive infrastructure (e.g.,
tending vessels, LBL transponders). Even if these infrastruc-
ture are employed, this method provides redundancy against
acoustic position measurement errors. Longer term bene-
fits include new capabilities for extended duration missions
and improved navigation in polar regions. Long-range AUVs
(Hobson et al. 2012; Furlong et al. 2012) are enabling the
long-duration biogeochemical process studies necessary for
understanding the effects of climate change on the ocean;
however, many of these missions will occur in the mid-water
column where our navigation capabilities are presently the
weakest. The results herein provide a solution in the verti-
cal degree of freedom and serve as a foundation for future
work in horizontal ADCP-aided navigation (Medagoda et al.
2015). This method could also enable new polar AUV mis-
sions where the presence of ice precludes obtaining GPS
measurements and there are increased demands on naviga-
tion and long duration autonomy (Crees et al. 2010; Nicholls
et al. 2006). These future applications pose new research
challenges. For example, in the case of untended long-term
monitoring and exploration using AUVs or underwater glid-
ers, tighter constraints on power consumption are imposed
whichwill limit the frequency ofADCPmeasurements (Todd
et al. 2011). As shown in Sect. 5, even infrequentADCPmea-
surements provide information which permits localization,

and determining whether it is feasible for such platforms is
an open problem. Additional future work will further vali-
date this approach by obtaining real time raw IMU sensor
acceleration and rotation rate data and verifying the poten-
tial performance of ADCP-aided navigation fused with IMU
data.
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