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Abstract We propose a holistic approach for three-dimen-
sional (3D) object reconstruction with a mobile manipulator
robot with an eye-in-hand sensor; considering the plan to
reach the desired view/state, and the uncertainty in both
observations and controls. This is one of the firstmethods that
determines the next best view/state in the state space, follow-
ing a methodology in which a set of candidate views/states
is directly generated in the state space, and later only a sub-
set of these views is kept by filtering the original set. It also
determines the controls that yield a collision free trajectory
to reach a state using rapidly-exploring random trees. To
decrease the processing time we propose an efficient evalua-
tion strategy based on filters, and a 3D visibility calculation
with hierarchical ray tracing. The next best view/state is
selected based on the expected utility, generating samples
in the control space based on an error distribution according
to the dynamics of the robot. This makes the method robust
to positioning error, significantly reducing the collision rate
and increasing the coverage, as shown in the experiments.
Several experiments in simulation and with a real mobile
manipulator robot with 8 degrees of freedom show that
the proposed method provides an effective and fast method
for a mobile manipulator to build 3D models of unknown
objects. To our knowledge, this is one of the first works
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that demonstrates the reconstruction of complex objects with
a real mobile manipulator considering uncertainty in the
controls.
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1 Introduction

Three-dimensional (3D) models from real objects have sev-
eral applications in robotics, for example, collision detection,
object recognition, pose estimation, etc. Therefore, a mobile
robot must have the ability of building 3D models of the
objects in its environment for interacting with them further.
The task of building a 3Dmodel of an object is known as auto-
mated 3D object reconstruction (Scott et al. 2003). Given
that the object is unknown, the reconstruction is a cycling
process of observing and deciding where to see next. First,
a range sensor is placed by the robot at a certain location
where a scan is taken. Then, if there are scans taken from
previous iterations, the new one is transformed to a global
reference frame and registered with previous scans. After
that, the robot has to compute the next sensor pose which
increases the reconstructed surface based on the available
information, such sensor pose is called next best view. The
reconstruction is finished when a termination criterion is sat-
isfied.

A next best view (NBV) is a sensor pose, position and ori-
entation, that sees (covers) the greatest amount of unknown
area while several constraints are kept. We assume that the
sensor is mounted on the end effector of a mobile manipula-
tor robot. Therefore, to plan theNBV requires to compute the
robot state and to determine a trajectory to reach the NBV.
In this paper we propose a method that plans the Next Best

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-015-9531-3&domain=pdf


90 Auton Robot (2017) 41:89–109

View/State (NBVS) and a trajectory to reach it, instead of
using only the sensor pose. A view/state is a collision free
robot state that satisfies the constraints of the next best view.
When the robot moves it does not correct its pose contin-
uously; the robot is re-localized after each scan using the
overlap between the partial model of the object and the new
scanned surface. The re-localization is done with respect to
a reference frame defined by the object.

A critical problem is that the reached robot’s state differs
from the planned one, due to the fact that the result from
an applied control is uncertain (Thrun et al. 2005). The dif-
ference between the planned sensor pose and the reached
sensor pose is called positioning system error (Scott et al.
2002). This error reduces the measurement precision, sam-
pling density, visibility and coverage. Furthermore, during
the execution of a trajectory the robot can collide with the
environment or the object.

In the early state of our research in this topic, we have
proposed an approach (Vasquez et al. 2009; Vasquez-Gomez
et al. 2014) that works for a freeflyer sensor. That approach
does not consider the robot constraints. Later, in Vasquez
et al. (2013) we have proposed a hierarchical ray tracing that
efficiently computes approximated robots visibility.

A preliminary version of some parts of this work have
been presented in Vasquez et al. (2014). In Vasquez et al.
(2014), we have proposed a deterministic utility function that
integrates several relevant aspects of the problem and an effi-
cient strategy to evaluate the candidate views. We have also
integrated the hierarchical ray tracing (Vasquez et al. 2013)
to the computation of the deterministic utility function. The
main differences between the work presented here and the
one presented in Vasquez et al. (2014) are the following:

1. In this work, we have proposed a planning method that
directly generates the robots controls yielding trajectories
to reach a view/state and an expected utility function that
reduces the collision rate during the execution phase.

2. We have also tested the proposed approach under several
conditions. In Vasquez et al. (2014) only one exper-
iment in the real robotic system is presented, in this
work we present two additional experiments that have
not been presented in Vasquez et al. (2014). One exper-
iment is made in an environment with obstacles and the
other presents the reconstruction of a complex object.
In this work we also present simulations comparing the
proposed approach versus the one presented in Kriegel
et al. (2012), as well as simulations under motion uncer-
tainty. These simulation results have not been presented
in Vasquez et al. (2014).

3. We have included new simulation experiments compar-
ing the expected utility versus a deterministic one in
a cluttered environment. These simulation experiments

show that the expected utility significantly reduces the
collision rate and increased the object’s coverage.

4. We have also integrated in this work the efficient ray
tracing (Vasquez et al. 2013) and the efficient evaluation
strategy (Vasquez et al. 2014), which makes it possible
to compute the expected utility in a reasonable amount
of processing time.

In more detail, here we propose a method that determines
a NBVS robust to positioning error. The proposed search-
based method ranks a set of candidate views/states with the
novel concept of expected utility. The expected utility is the
most likely utility that a view/state will have under position-
ing error conditions. To determine the expected utility we
generate several samples on the control space, based on the
error distribution, then we transform those samples to the
utility space and finally we compute the expected utility by
associating a probability to each sample.

One of the contributions of this work is the incorporation
of the expected utility, which is suitable for finding collision
free trajectories under control errors at the execution time.
Note that even if a motion planning method does find a col-
lision free trajectory at the planning time, due to imperfect
controls that trajectory might produce a collision with the
obstacles at the execution time due to noise on the controls.
The analysis presented in Sect. 7.2 estimates the probability
of finding collision free trajectories at execution time and
it is based on statistics over the trajectories generated with
control errors. In that analysis we compute the number of
samples required to guarantee with certain confidence that a
trajectory is collision free.

We present experimental results in a simulated environ-
ment. We also present experiments with a real robot where
several objects are reconstructed. In those experiments the
expected utility method significantly reduces the collision
rate and increases the reconstruction coverage.

The proposed approach provides an effective and fast
method for a mobile manipulator to build 3D models of
unknown objects. Effective means that a large percentage
of the object surface is reconstructed, in our experiments,
it is in the order of 95 %. Fast means that the processing
time to plan the NBV and a path to reach it takes typically
less than a minute for deterministic utility and the process-
ing time remains in the order of minutes for expected utility.
We present different experimental results. We validate the
effectiveness of our utility function, comparing it versus
information gain. The proposed utility function covers the
same surface’s percentage in a shorter processing time. We
also present experimental results with a real mobile manip-
ulator robot (see Fig. 1) with 8 degrees of freedom (DOF),
showing the effectiveness of the method to deal with real
objects.
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Fig. 1 The proposed method is able to plan each robot view/state in
order to reconstruct a real object. In our experiments we use a mobile
manipulator of 8 degrees of freedom to reconstruct several objects. A
Kinect sensor was mounted on the robot’s end effector

2 Related work

Since the 80’s the next-best-view (NBV) problem has been
addressed. For a detailed review of classical methods see
Scott et al. (2003). According to Scott et al. (2003), our
algorithm is volumetric and search-based, so we will mainly
review similar methods in this section.

The work of Connolly (1985) was one of the first in this
field, it represents the object with an octree and determines
the NBV with one of two approaches. The first one deter-
mines the NBV as the sum of normals from unknown voxels.
The second method, called planetary, determines the NBV
by testing views from a set around the object.

A pioneering work in the field of 3D scene reconstruction
is the one presented in Marchand and Chaumette (1999). In
thatwork the authors combine visual servoing andBayes nets
to generate motion strategies for 3D scene reconstruction.
Our work proposes different techniques such as sampling
based motion planning algorithms in the state space (config-
uration plus velocities), and an expected utility to deal with
controls errors at execution time.

Foissotte et al. (2009) propose an optimization algorithm
to maximize the amount of unknown data in the camera’s
field of view (FOV). However, optimization methods can
easily fall into local minimum. Krainin et al. (2011) pro-
posed a method in which the robot grasps the object and
moves it inside the camera’s FOV. In Aleotti et al. (2014),
the authors propose a method in which a robot manipulator
actively manipulates a target object and generates a com-
pletemodel by accumulation and registrationof partial views.
However, the robot might not have the ability to grasp and
move the object.

2.1 Path Planning for NBV

Few works have considered the problem of finding good
views and the problem of obtaining the robot paths to reach
them. In Torabi and Gupta (2012), the proposed method
plans a NBV in the workspace and then inverse kinemat-
ics is calculated to obtain a configuration that matches the
desired sensor location in the workspace. In this work, we
select views/states directly in the state space and we plan the
controls to reach them. In Kriegel et al. (2012), the authors
combine two approaches for determining the NBV, surface
based and volumetric based methods. First, they compute a
set of candidate paths over the border of the reconstructed
triangular mesh, then they evaluate the goodness on the vol-
umetric representation. Two important differences with our
approach are: (i) Kriegel et al. propose the use of information
gain (IG) to evaluate views, while in this work, the unknown
surface is measured to evaluate views (In Sect. 8.1.4, we
present a comparison of both approaches), (ii) in this work
we consider a mobile manipulator, while in Kriegel et al.
(2012), the authors consider a robot arm with perfect posi-
tioning.

In Torabi and Gupta (2012) and Torabi (2012) a mobile
manipulator robot is used to reconstruct an object. In that
work, the authors present a planner which integrates two
NBV algorithms, one for modeling the object and the other
for exploration of the environment. For simplifying the
problem of finding collision free paths, path planning is
decoupled, the mobile base and the manipulator do not move
simultaneously (i.e., when the mobile base is moving, the
manipulator will remain still and vice-versa). In contrast to
Torabi and Gupta (2012), in this work we assume that the
workspace is known by the robot, but we allow the robotic
base and the arm to move simultaneously and the controls
for the whole robotic system are directly generated by the
planning algorithms. We also take into account noise over
the robot’s controls. Furthermore, we introduce the expected
utility which is useful for reducing the collision rate at exe-
cution time.

The aim of the work presented in Kriegel et al. (2013) is
to obtain a high quality surface model allowing for robotic
applications such as grasping and manipulation. It inte-
grates 3Dmodelingmethodswith autonomous viewplanning
and collision-free path planning. That work uses rapidly-
exploring random trees (RRTs) and Probabilistic RoadMaps
(PRMs) to find collision free paths. However, the integration
of those planning methods in the resulting robotic system
is not described in detail. The work presented in Khalfaoui
et al. (2013) proposes an approach to determine the Next
Best View for an efficient reconstruction of highly accurate
3D models. The method is based on the classification of the
acquired surfaces into Well visible and Barely visible com-
bined with a best view selection algorithm based on mean
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shift. That work has been tested in a robotic cell including a
robotic arm. In Khalfaoui et al. (2013) the authors propose as
future work to deal with issues mainly related to path plan-
ning. A key difference between the work presented in this
paper and the approach presented in Kriegel et al. (2013) and
Khalfaoui et al. (2013) is that those works do not deal with
noise over the robot controls. The expected utility proposed
here finds collision free trajectories under control errors at
execution time.

In the recent work presented in Potthast and Sukhatme
(2014), the authors present an interesting information gain-
based variant of the next best view problem for a cluttered
environment. The authors propose a belief model that allows
them to obtain an accurate prediction of the potential infor-
mation gain of new viewing locations. However, the authors
do not deal with the problem of planning collision free paths
under motion uncertainty. In this work, we deal with that
problem.

2.2 Motion planning under uncertainty

There are several approaches for motion planning under
uncertainty. In Berg et al. (2010) a classification of these
types of methods is provided. This classification is based on
the type of uncertainty: (i) motion uncertainty, (ii) uncer-
tainty on the observation and state and (iii) uncertainty on
the environment itself. In this work, we consider uncertainty
in the controls and observations but we assume that the envi-
ronment is not uncertain. We deal with uncertainty on both,
controls and states, using a probabilistic motion model and
a model to estimate probabilistically a collision free state
and trajectory to reach it. We deal with uncertainty on the
observations using a probabilistic octree.

Motion planners that deal with uncertainty typically select
the less uncertain paths or trajectories based on an eval-
uation of candidates. Some selection criteria are minimal
uncertainty or the smallest collision probability. In Melchior
and Simmons (2007), an extension to the RRT (LaValle and
Kuffner 2001) is proposed, whichmodifies the extension step
in the RRTs performing simulations based on a stochastic
kinematic model. A set of simulations generates a set of par-
ticles representing the robot state. The particles are grouped
based on a given distance. Each group of particles represents
a possible state. In Kewlani et al. (2009) several extensions
to deal with uncertainty for RRTs are proposed. In particular,
the authors deal with rough terrains. The authors propose a
probabilistic model for the terrain and, based on this model,
a robot trajectory is selected.

The Probabilistic Road Map (PRM) technique (Kavraki
et al. 1996) has also been adapted to deal with uncertainty.
In Huang and Gupta (2009) the shortest path that satisfies a
threshold of the probability of collision is selected.

In a recent work, van den Berg et al. (2012) propose an
interesting local optimization approach to find locally opti-
mal stochastic controls. The authors deal with the case of
an specific non-linear systems with a Partially Observable
Markov Decision Process (POMDP). To make the prob-
lem tractable, the belief function is represented in a finite
dimensional space by consideringGaussian distributions and
implementing the Bayes filter as an extended Kalman filter.
The key idea is to recursively quadratize the optimal value
function based on the belief.

In contrast to previous work, in this paper we focus on
the effect that the uncertainty has over the task of next best
view/state planning for object reconstruction. In particular
we deal with the problem of generating collision free states
and trajectories to reach them. We use a probabilistic motion
model as the one proposed in Thrun et al. (2005). In the pro-
posedmethod the samples are used to determine the expected
utility to reconstruct an object, selecting the controls to reach
the view/state with the maximum expected utility.

3 Definitions and notation

The workspace, W , is a 3D Euclidean space, W = R
3

(LaValle 2006). Let Wobj be the object which is a closed
set of points in the workspace. We assume that the object
shape is unknown but the position and maximum size of the
object is known, with this information an object bounding
box, Wbox ⊂ W , is established containing the object to be
reconstructed, Wobj ⊂ Wbox . The unknown region is the
space that hides the object surfaces until a scan is made in
that region. Let Wunk denote the unknown region. At the
beginning of the reconstruction Wunk = Wbox .

We assume that the environment except Wbox is known.
LetOenv denote the other obstacles in the environment. LetO
denote the obstacle region so thatO = Wobj ∪Wunk ∪Oenv .
The free space, W f ree, is the complement of the obstacle
region W f ree = W \ O.

A range sensor is able to acquire a 21
2 image from the

scene, i.e., a set of 3D points with respect to the sensor’s ref-
erence frame. Let V denote the view space which represents
all possible combinations of the sensor position and orienta-
tion, V ⊆ R

3 × SO(3). Each element of V is called a view
and it is represented as v. The director ray of the sensor is a
vector that points in the orientation of the sensor.

The robot, A ⊂ R
3 , is the device in charge of plac-

ing the sensor at a given view. A configuration of the robot
is denoted by q. Our particular robot has eight degrees of
freedom (DOF). The position of the robotic base is defined
by x, y, the orientation of the robotic base is denoted by
θb, and θ1, θ2, θ3, θ4, θ5 denote the orientations of the links
of the robotic arm. The set of all possible configurations
is the configuration space, C. Let A(q) ⊂ W denote the
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physical space occupied by the robot and the sensor at con-
figuration q. The free configuration space is a subset of C
in which the robot is not in collision with the environment,
C f ree = {q|A(q) ∩ O = ∅}. Cobs = C \ C f ree. Let X
denote the state space in which a state, x ∈ X , is defined as
x = (q, q̇) (LaValle and Kuffner 2001). Thus, in this work,
the robot’s state is a configuration plus the velocities applied
to the robot’s degrees of freedom used to reach such config-
uration. Besides, those velocities are not perfect; we assume
noise over them, this noise appears in real robotic systems
(see Sect. 6).

We assume that the robot is controlled by a set of velocities
applied to each DOF, called control, u ∈ U . The variation
with respect to time of the robot’s state is given by the state
transition equation:

ẋ = f (x, u) (1)

The robot moves without correcting its pose continu-
ously, but the robot is re-localized after each scan using the
matching between the reconstructed point cloud and the new
scanned surface. Before the first robot motion, we assume
that the positions and orientations of the mobile base and the
arm are accurately known with respect to a reference frame
defined by the object bounding box.

4 Approach overview

Here, we present a brief overview of the whole strategy for
3D object reconstruction. Figure 2 shows the flow diagram
of the NBVS planning for object reconstruction. Below we
describe the strategy.

Fig. 2 3D object reconstruction with next best view/state planning.
The diagram shows the whole process of object reconstruction. The
processes related with the NBVS computation are filled in gray

The whole process involves two main parts: (i) 3D
reconstruction and (ii) next best view/state planning. Our
contributions in this work are mainly in the second part.

The 3D reconstruction consists of integrating a series of
scans of the object of interest taken from the different sensing
positions. The initial view/state is set arbitrarily, and the next
ones are determined by the NBVS planning algorithm. After
each scan, the sensor readings are integrated into an octree
that represents the object’s bounding box. From the octree the
occupied voxels that represent object surface are integrated
with the current surfacemodel via a registration processmade
possible by the overlap with the previous views. At the same
time the robot is re-localized based on this registration step.
Our planner assumes that the environment (including the
obstacles) is known, except the object bounding box. How-
ever, as the robot discovers the object to be reconstructed,
the proposed planner considers the new sensed information
to avoid collisions with the object to be reconstructed and to
find the next best view/state.

The NBVS phase starts by generating a set of view/ state
points in the configuration space which are ranked accord-
ing to a utility function. The utility function combines four
factors: (i) position, (ii) registration, (iii) surface, and (iv)
distance. To perform this evaluation efficiently, it is done
through several filters, so that the candidate view/state that
does not pass a filter is eliminated from the candidate set. The
factors that consume less processing time are evaluated first.

First the positioning factor is evaluated, the candidates in
collision are eliminated. Then the visibility of each view/state
is calculated using an efficient scheme based on Hierarchi-
cal Ray Tracing (see Sect. 5.4). To perform the registration
process, only the candidates that guarantee a minimum over-
lap with previous views are maintained. The next step is to
evaluate that amount of unknown voxels that are observed,
this factor is normalized by the total number of remaining
unknown voxels. For a reduced set of candidates a trajectory
to each candidate state is planned using the Rapidly Explor-
ing Random trees method. The candidate states are evaluated
according to their distance to the current robot state consid-
ering the path followed by the robot. Then, the remaining
candidates are ranked based on their expected utility. The
expected utility is the expected value of the utility that a
view/state will have under positioning error conditions. To
determine the expected utility we generate several samples
on the control space, based on the error distribution, then we
transform those samples to the utility space and finally we
compute the expected utility by associating a probability to
each sample.

Finally the best candidate according to the expected utility
is selected as NBVS. The 3D reconstruction—NBVS cycle
is repeated until the surface factor is lower than a threshold
(see Sect. 7.6), or no path was found for any of the candidate
views/states.
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Fig. 3 Partial Model of the scene. To the left is the reconstruction
scene. To the right is the partial model. The robot is represented by a
triangular mesh. Unknown voxels are painted in yellow and occupied
voxels are painted in blue (best seen in color) (Color figure online)

5 Observation model

In this section we describe the representation of the object
bounding box, the integration of the sensor readings and the
visibility calculation for a view/state.

5.1 Probabilistic octree

To represent the object bounding box, Wbox , we use a prob-
abilistic occupancy map based on the octomap structure
Hornung et al. (2013), which is an octree with probabilis-
tic occupancy estimation. See Fig. 3. In this representation
each voxel has associated a probability of being occupied.
We use a probabilistic octree because it is able to deal with
noise on the sensor readings. From now on we refer to a
probabilistic occupancy map as octree.

Similarly to the work presented in Kriegel et al. (2013),
in this work, we transform a sensed observation (a set of 3D
points) to classes. For doing so we use as elementary unit
the voxels. Depending on the probability of been occupied,
we classify each voxel with one of three possible classes: (i)
occupied, which represents surface points measured by the
range sensor, (ii) free, which represents free space and (iii)
unknown, whose space has not been seen by the sensor. Each
class has a defined probability interval. In our implementa-
tion the unknown voxel class has the interval [0.45, 0.55].
Class free has a probability less than 0.45 and class occu-
pied has a probability larger than 0.55. One main adventage
of defining these classes is that they allows us to know the
amount of overlapped surface (voxels classified as occupied)
between the new sensed surface and the partial model of the
object. The amount of overlap is central to achieve a success-
ful registration between the new data and the model of the
object (see Sect. 7.1).

5.2 Scanning

A scan recovers information of the workspace inside the sen-
sor’s frustum. Let F(vx ) denote the subset of the workspace
that lies inside the sensor’s frustum at the view vx . Due to the

Fig. 4 Examples of uniform ray tracing and hierarchical ray tracing.
a Uniform ray tracing. All sensor rays are traced in the octree. b Rays
traced in a coarse octree. c Ray tracing in a finer octree only for touched
voxels

fact that the sensor is attached to the end-effector of the robot,
we simply specify the frustumwithF(x). vx is calculated by
direct kinematics in order to get the pose of the sensor given
a robot state LaValle (2006). We use a Denavit–Hartenberg
model of our mobile manipulator robot to perform the direct
kinematics computation.

The set of points that belongs to the object surface is
denoted by S. S = {p|p = [x, y, z]T }. Let Siknown denote the
subset of the object surface that becomes known in the i-th
iteration (Torabi and Gupta 2012). The accumulated surface
after k scans is denoted by Sknown = ⋃

i=1:k Siknown . With
respect to a sensing state, x , the surface of the object discov-
ered is denoted by Sxknown .

5.3 Octree update

Once a scan has beenmade, the sensor readings are integrated
into the octree. Given an iteration i , for each point, p, of the
measured surface points, Siknown , a ray is traced between the
sensor position and p. The occupancy probability, p(n|z1:i ),
of a traveled voxel, n, is updated according to the octomap
sensor fusion model (Hornung et al. 2013).

5.4 Visibility calculation

The visibility calculation is the simulation of a scan inside
the octree. This simulation allows us to determinewhich type
of voxels are visible for a given sensor pose. Therefore, it
will help us to determine the goodness of a state (given the
associated sensor pose). Usually, this task is achieved with a
uniform ray tracing, it traces a number of rays inside the map
simulating a range sensor (Fig. 4a). However, such process
can be highly expensive if the voxels’ size is small. To reduce
the processing time, we use a variant of the hierarchical ray
tracing presented in Vasquez et al. (2013).

In Vasquez et al. (2013), we introduce a Hierarchical Ray
Tracing (HRT). It is based on tracing few rays in a rough res-
olution map; then, only when occupied voxels are touched
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by a ray, the resolution is increased for observing details
(see Fig. 4). The coarsest resolution where the HRT starts is
defined by a resolution parameter (a); when a is equal to 0
a uniform ray tracing is performed: for a > 0 the voxel size
increases by a factor of 2a times the original size. Such strat-
egy typically reduces the processing time needed to evaluate
a view in at least one order of magnitude. In our previous
work we only increase the resolution when an occupied vox-
els is touched. In this work, we increase the resolution when
occupied and unknown voxels are touched. The advantage
of refining the resolution for an unknown voxel is to discard
empty part of the space (voxels classified as free). In this
way the evaluation of the utility function will be more pre-
cise. Section 8.1.2 details several experiments where there is
60 % of processing time reduction with only a loss of 1 % of
coverage.

6 Probabilistic motion model

Amobilemanipulator has several sources of position error. In
the mobile base, the error comes up usually from the slipping
between the wheels and the ground; without a re-localization
process, the error is accumulated and the pose uncertainty
increases. The error sources of the armare kinematics calibra-
tion, dynamic errors and position between links (Lu 1989);
often a calibration step is performed and only residual errors
are kept, namely, the uncertainty of the links positions with
respect to the base does not grow. Given that the arm and
sensor are attached to the base, the sensor pose is affected
in position, and orientation and the error increments as the
robot executes larger trajectories.

6.1 Control with noise

The robotic base is controlled by linear and angular veloc-
ities. These velocities are not perfect. To model the imper-
fection of the velocities we use random variables with zero
mean and variance σ 2. Thus, the linear and angular velocities
are given by:

v̂ = v + εσ 2
v

ŵ = w + εσ 2
w

To obtain instances of this errorwe generate a random sample
of the error with zeromean and variance σ 2.We take samples
from a normal distribution. The imperfection of the robot
motion depends on the values of σ 2

v and σ 2
ω. Large values

correspond to large errors.

v̂ = v + sample(σ 2
v )

ω̂ = ω + sample(σ 2
ω)

Function sample generates a random sample of zero mean
and variance σ 2.

To model errors in the motion of the robotic arm a similar
approach is used, considering that the angular velocity of
each link of the robotic arm is not perfect. Thus

ω̂i = ωi + sample(σ 2
ωi

)

Typically, the motion of the robot arm is more accurate than
the robotic base. Thus, σ 2

ωi
will be smaller than σ 2

ω.

6.2 Numerical integration

To simulate the uncertainty over the robot motion we use
the Euler integration method over the robot state variables
(x, y, θb, θ1, θ2, θ3, θ4, θ5).

xt = xt−1 + v̂ cos(θb)t−1Δt

yt = yt−1 + v̂ sin(θb)t−1Δt

θb = (θb)t−1 + ω̂bΔt

θi = (θi )t−1 + ω̂iΔt

6.3 Probability of reaching the next state

The probability of reaching a next state after having applied
a single control is given by

p(xt |ut , xt−1) = p(εσv )p(εωb )

n∏

i=1

p(εωi ) (2)

In general to reach a new state more than a single control is
needed. Assuming independence of the controls over time,
the probability of p(xt |u1:t , x0:t−1) is given by:

p(xt |u1:t , x0:t−1) =
t∏

i=1

p(xi |ui , xi−1) (3)

7 View/state planning for object reconstruction

Object reconstruction is achieved by repeating the steps of
scanning, registration, model update, next best view/state
planning and execution of the calculated set of controls to
reach the planned view/state.

To plan the next best view/state (NBVS), we sample the
robot’s state space and rank those samples with a utility func-
tion, so that the sample with the highest evaluation is selected
as the NBVS. Our approach contrasts with related work
where the candidates are generated in the workspace and
inverse kinematics is required to reach them. The drawback
of those methods is that the robot might not be physically
able to reach a planned view (e.g. to observe the top of a
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given object). In addition, to generate samples in the state
space avoids inverse kinematics calculation.

Belowwe describe the utility function, the expected utility
calculation, an analysis of the number of samples required to
guarantee collision free trajectories, and the efficient evalu-
ation strategy to calculate the NBVS.

7.1 Utility function

The utility function ranks the candidate views/states accord-
ing to their goodness for the reconstruction process. We
propose a utility function as a product of factors:

g(x) = pos(x)· reg(x)· sur(x)· dist (x) (4)

where each factor evaluates a constraint, belowwedetail each
constraint. The utility function is a multiplication because if
any of the factors is zero then it is not a valid state and it is
worthless to calculate the others.

7.1.1 Positioning

pos(x) is 1 when a robot state is collision free, and a colli-
sion free path from the current state to the evaluated state is
available; otherwise it is 0.

7.1.2 Registration

To register the new scan, previous works have proposed to
assure aminimum amount of overlap (Vasquez et al. 2013) or
consider all causes of failure (Low and Lastra 2006). A min-
imum overlap is a necessary but not sufficient condition to
guarantee registration. However, it requires a small process-
ing time. On the other hand, to measure all causes of failure
guarantee a successful registration but is very expensive [as
described in Low and Lastra (2007)]. In this work, we pro-
pose a simple factor that is fast for evaluation, reg(x). It is 1
if a minimum percent of overlap with previous surfaces exist,
and 0 otherwise. See Eq. (5).

reg(x) =
⎧
⎨

⎩

1 if
oco(x)

oco(x) + uno(x)
> h

0 otherwise
(5)

where oco(x) indicates the amount of occupied voxels that
are touched by the sensor and lie inside Wbox , uno(x) is the
amount of unknown voxels in Wbox , and h is a threshold.
This factor allows us to evaluate a large amount of views
efficiently and has been tested in the experiments with a real
robot with good results.

7.1.3 New surface

sur(x) evaluates a view/state depending on how much sur-
face from the unknown volume is seen, i.e. the amount
of visible unknown voxels. Such function returns values
between 0 and 1. If no new information is obtained then
the function returns zero and the maximal amount of infor-
mation obtained corresponds to see the whole volume of the
object, in that case the function returns one. See equation (6).

sur(x) = uno(x)

untotal
(6)

where untotal is the total amount of unknown voxels inside
Wbox .

7.1.4 Distance factor

Candidate states are also evaluated according to their distance
to the current robot state. The function is shown in Eq. (7):

dist (xn) = 1

1 + ρ(x0, xn)
(7)

where ρ is the summation of theweighted Euclidean distance
between the nodes of the path P = {x0, x1, . . . , xn} between
the current robot state x0 and the candidate state xn , as defined
in Eq. (8).

ρ(x0, xn) =
n∑

i=1

√
√
√
√

m∑

j=1

w j (xi (a j ) − xi−1(a j ))2 (8)

where x(a j ) is the j-th degree of freedom of the state x ,
w j is a weight assigned that degree of freedom (we have
determined appropriated weights experimentally, see Sect.
8), and m is the number of degrees of freedom.

Unlike our previous approach, where a distance in the
workspace was defined (Vasquez-Gomez et al. 2014), this
distance measures the path followed by the robot, which in
most of the cases is not a straight line, i.e., the robot has to
avoid obstacles or needs a trajectory different to a straight
line due to non-holonomic constraints.

Note that this measure is already normalized between zero
and one, in the sense that if the robot does not move, the mea-
sure is one, and as the length of the robot motion increases,
tending to infinity, the measure tends to zero.

7.2 Expected utility

To deal with spatial uncertainty, we propose to evaluate a
candidate view/state with the expected utility instead of a
deterministic utility. The expected utility denotes the most
likely utility of a view/state, x , when a given trajectory
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between the robot current state, xc, and x is executed. In
other words, the average utility when the robot moves to the
indicated statemany times. Formally, let the utility of a candi-
date view/state, x , be a random variable Gx , with probability
distribution p(g). The expected utility of x is defined by Eq.
(9).

E(Gx ) =
∫ ∞

−∞
g · p(g)dg (9)

In the viewplanning problem, g depends on the shape, sur-
face and size of the object plus the restrictions described in
Sect. 7.1, therefore its calculation is very expensive. In addi-
tion, the distribution over the utility is not trivial to determine,
given that the error is modeled by a distribution over the con-
trol space, and such distribution has to pass through several
non linear transformations, from the control space, U , to the
state space, X , and then to the utility G. Given the previous
reasons, we approximate Eq. (9) with Eq. (10).

E(Gx ) ≈
k∑

i=1

gi · p(gi ) (10)

where k is a number of samples, gi the utility of the i-sample
and p(gi ) the probability of reaching that sample.

Next, we describe the expected utility calculation, sum-
marized in Algorithm 1. The idea is to compute the expected
utility using several states around x whose distribution
depends on the executed trajectory. The set of samples
is denoted by S = {s1, s2...sk}, S ⊂ X . The algorithm
generates the samples and for each sample, its utility and
probability of being reached is computed. Finally, the proba-
bilities are normalized and the expected utility is computed.

In detail, the algorithm generates k samples by simulat-
ing k times the execution of the trajectory as a stochastic
process. For each simulation, the algorithm starts from the
current state (line 2) and applies each control according to a
motion model (line 4). The sample motion model, described
by Thrun in Thrun et al. (2005), returns the next state given
a current state and an applied control; however the applied
control is perturbed with an stochastic error. Each generated
state, xt , is tested for collision (line 6), if one of them is in
collision then the candidate state, x , is denoted as unfeasi-
ble (line 7). Marking the candidate as unfeasible when at
least one generated state of the simulations is in collision is
a conservative strategy that could be replaced by a weighted
strategy. The last state of each simulation is taken as a sam-
ple (line 10). The utility of each sample is calculated using
Eq. (4) (line 9). To compute the probability of occurrence
of each sample, we assume independence of the errors over
time, therefore the probability of each sample is calculated
as the product of the probabilities of the occurrence of each
intermediate state (line 10). Finally, we normalize the prob-

abilities of the k samples and compute the expected utility
(lines 11 and 12).

Algorithm 1: Expected utility. The algorithm calculates
the expected utility, E(x), of a candidate view/state x . It
requires the candidate view/state, x , the current configu-
ration, xc, the sequence of controls τ = {u1, ...um} that
connects xc with x and the number of samples, k.
input : x , xc, τ , k
output: E(x)
for i ← 1 to k do1

x0 ← xc;2
for t ← 1 to m do3

xt ← SampleMotionModel(ut , xt−1) ;4
pt ← p(xt |xt−1, ut ) ;5
if xt ∈ Xobs then6

return Unfeasible;7

si ← xm ;8
gi ← g(si ); //Utility of the sample9
Pi ← ∏m

t=1 pt ; //Probability of the sample10

η ← 1
∑k

i=1 Pi
;11

return E(x) ← ∑k
i=1 gi · ηPi ;12

7.3 Analysis

In order to generate a sample state each control is perturbed
with a stochastic error, see Sect. 6. Sampling the error, ε,
using all the domain of the distribution, (−∞,∞), could
generate a sample far away from the mean. This situation
becomes important given that any sample that is in collision
makes the candidate to be discarded (line 7 of the Algorithm
1). To deal with this issue, we restrict the samples to a closed
interval, ε ∈ [−β, β], see Fig. 5a. Considering the errors for
a given control, we could form a hyper-volume R, where a
sample could fall. See Fig. 5b.
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p(
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μ−β β

(a) Error distribution (b) Sampling region in X

Fig. 5 a Shows the limits applied to the error distribution during the
sampling. b Shows the hyper volume R which is the region in X where
the samples could fall. R region could be intersected by O as shown in
the figure. The size of R depends on the distribution of the error and the
maximum values of the error, [−β, β].
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The hyper volume R does depend on both, the state tran-
sition equation and the sampling interval [−β, β]. However,
we do not need to know the exact shape of R, since we esti-
mate its volume by counting samples of final states generated
through simulations. That is, we estimate the volume R, by
simulating the robot trajectory using the state transition equa-
tion ẋ = f (x, u), numerical integration is used to obtain the
robot’s trajectories. The final robot’s states generating R are
the states that use the imperfect controls having a bound over
probabilistic density function given by the interval [−β, β].

It is important to detect collisions inside R before sending
the robot, this issue is related to howmany samples are drawn.
Below, we analyze how likely it is to detect a collision as
the number of samples, k, increases. Let us assume that the
obstacle regionO intersects R. The probability that a sample
does not hit the obstacle, event A, is equal to the probability
of falling into R and not in O , namely P(A) = P(O|R),
using the conditional probability definition:

P(A) = P(O ∩ R)

P(R)
(11)

given that O partitions R, P(R) = P(O ∩ R) + P(O ∩ R),
we rewrite Eq. (11) as:

P(A) = P(R) − P(O ∩ R)

P(R)
(12)

by the distributive property,

P(A) = 1 − P(O ∩ R)

P(R)
(13)

given that we know the sampling interval, [−β, β], we make
the probability P(R) = P(−β ≤ ε ≤ β), such probabil-
ity depends on the error distribution. In our experiments, we
assume a normal distribution and we sample ε inside the
interval [−3σ, 3σ ]. So, according to the “empirical rule” the
probability of P(−3σ ≤ ε ≤ 3σ) = 0.997. Once that we
have identified how to calculate P(R), we simplify the nota-
tion defining η as:

η = 1

P(R)
(14)

On the other hand, P(O ∩ R) should be computed as the
probability that a sample ε belongs to [−β, β] and at the same
time that ε belongs to an intervalEobs such that every ε ∈ Eobs
leads to a collision with the obstacle region. However, to
determine analytically Eobs is not trivial. In consequence an
approximation can be obtained through simulations.

For analysis purposes, let us assume γ = P(O ∩ R).
Substituting η and γ , we rewrite Eq. (13) as:

P(A) = 1 − ηγ (15)

Now, assuming that each sample is drawn independently, the
probability of drawing k samples and that not a single one
hits the obstacle is:

P(Ak) = (1 − ηγ )k (16)

Bounding (16) by an α, lead us to (1 − ηγ )k ≤ α, then,
solving for k:

k log(1 − ηγ ) ≤ logα (17)

k ≥ logα

log(1 − ηγ )
(18)

Therefore, assuming certain probability of intersection, γ ,
and for a larger enough k, we can expect with certain (1 −
α) probability that the real movement is collision free. For
example, making α = 0.01, η = 1

0.997 and γ = 0.05 the
number of samples should be more than 90 to be 0.99 sure
that the movement is collision free.

In practice, we perform extensive off-line simulations to
estimate the probabilityγ = P(O∩R). This is feasible, since
the environment is known, including the object’s bounding
box.

Thus, we estimate the probability of collision inside R,
that is, region O intersected with R, by counting the number
of final states that are in collision divided by the total number
of final states defining R.

7.4 Collision free trajectories with RRTs

The Rapidly Exploring Random Tree method (RRT) is a
data structure and algorithm that is designed for efficiently
searching non convex high-dimensional configuration or
state spaces (LaValle and Kuffner 2001). The RRT can be
considered as a Monte Carlo way of biasing search into
largest Voronoi regions. RRTs and relatedmethods have been
used in a variety of applications, for instance motion plan-
ning for humanoid robots (Kuffner et al. 2003), or to plan
navigation routes for a Mars rover that take into account
dynamics (Urmson and Simmons 2003). In Oriolo et al.
(2001), a sensor-based RRT, called SRT, is used for explo-
ration of 2D environments. In Karaman and Frazzoli (2011),
the authors have extended the RRT and other sampling-based
motion planning algorithms to find optimal paths.

In this work, we adapt the RRT Ext-Ext (LaValle and
Kuffner 2001) to plan robotic trajectories between the current
robot state and the candidate view/states. The RRT Ext-Ext
algorithm grows two balanced trees, one from the current
state and one from the candidate state.

One advantage of using an RRT is that the resulting
view/state will be at the same time collision free and will
satisfy the sensing constraints (e.g. the sensor will be point-
ing to the object to be reconstructed, new surface sensed from
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that state will be present and the amount of overlapping sur-
faces that facilitates the registration process will be enough).
Furthermore, such method directly gives us a set of controls
to reach such state. In contrast, if the goal is given as a sen-
sor pose, which will be reached by the robot using inverse
kinematics, then depending on the robotic system geometry,
it might happen that such sensor pose is not reachable.

7.5 Stop criteria

The stop criterion decides when next best view planning
task and the object’s reconstruction are terminated. Previ-
ous works have proposed several criteria based on the partial
model of the object (Torabi and Gupta 2012; Kriegel et al.
2012). However, to consider only the object is not enough,
i.e., the robot state can be in collision with the environment
or an obstacle may be blocking the way.

In this work, we have used two stopping criteria. In Sect.
8.1.4 we have used the number of scans as stopping criterion,
in order to make a fair comparison with the Information Gain
method. In the rest of the paper the reconstruction process is
stopped if the surface factor is lower than a threshold, or no
path was found for any of the candidate views/states. How-
ever, these criteria might be improved, for instance using
a criterion similar to the one proposed in Espinoza et al.
(2011), inwhich a bound over the number of samples is estab-
lished based on the probability that a sample does not provide
new coverage. Nevertheless, we believe that the problem
addressed in this work is more complex than the one pre-
sented in Espinoza et al. (2011). In this work the samples
that would establish the stopping criterion lie in the con-
figuration space rather than in the 3-D space. Note that in
sampling-based motion planning (only considering the prob-
lem of finding collision free paths) if a solution exists then
the probability of finding it tends to one as the number of
samples tends to infinity. But, to our knowledge, if a solution
does not exist then an ideal stopping criterion is unknown. In
the problem addressed in this work, useful sampling config-
urations must be collision free and reachable by a trajectory
under control errors and they must also provide new covered
objects surface. Consequently, finding the ideal stopping cri-
teria is not trivial and it deserves a careful analysis. We left
this for future work.

7.6 Efficient evaluation strategy

In order to evaluate the candidate states efficiently, we per-
form the evaluation through several filters according to the
utility function. If a candidate does not pass a filter then it
is deleted from the candidate view/state set. The factors that
consume less processing time are evaluated first, such that a
time consuming factor is only evaluate when the configura-
tion satisfies the others requirements.

1. Generation of candidates A set of samples is generated
by sampling the state spacewith a uniform distribution. If
the director ray of the sensor intersects the object bound-
ing box then the sample is considered as a candidate.
This step has constant complexity. (In our experiments
to generate ten thousands candidates requires less than a
second.)

2. Positioning filter This filter checks the positioning factor
of the utility function, pos(x). Here, we evaluate whether
or not the candidate x is collision free.

3. Visibility calculation This process calculates the visibil-
ity of a state. In other words, it determines the amount
of unknown and occupied voxels that are visible. These
quantities will be used by the following filters.

4. Registration filter This filter verifies if the candidates sat-
isfy the registration filter, reg(x), of the utility function.

5. Surface evaluationThis process evaluates the surface fac-
tor, sur(x), of the utility function.

6. Ranking The candidates are ranked depending on the
evaluation provided by the surface factor.

7. Selection of candidates In this step, the number of can-
didates is reduced to a small set, typically 25 samples.
We made this restriction given that the following step is
computationally expensive.

8. Motion Planning In this step, for each of the remain-
ing candidates a trajectory from the current robot state
is planned. We use a Rapidly-Exploring Random Tree
(RRT) Ext-Ext LaValle and Kuffner (2001) for each of
the candidates.

9. Expected utility calculation So far we have several can-
didates that are collision free, guarantee an overlap, see
unknown surface and have a collision free trajectory from
the current robot state. Based on these factors a deter-
ministic utility can be computed. In order to compute an
expected utility, for each state candidate several trajecto-
ries considering control errors are generated. This is done
using stochastic simulations, so that each state candidate
has several uncertain trajectories in order to calculate the
expected utility.

8 Experiments

In this section, we present a comprehensive set of experi-
ments. Three groups of experiments are presented: simula-
tion with perfect positioning (Sect. 8.1), simulations with
uncertainty in positioning (Sect. 8.2) and real robot experi-
ments (Sect. 8.4). Thefirst group of experiments evaluates the
processing time, the reconstruction of complex objects and
includes a comparison with the information gain approach.
The second group, simulations with uncertainty, shows the
advantage of the expected utility approach in terms of a
reduction of the collision rate. The third group of experiments

123



100 Auton Robot (2017) 41:89–109

show the behavior of the method in a real environment with
obstacles.

The variables that we measure in the experiments are: (i)
the percentage of coverage, it is computed as the ratio of
correspondent points over the total number of points in the
ground truth model; a correspondent point is a ground truth
point closer than a threshold (3 mm) to a built model point,
and (ii) the collision rate, calculated as the number of times
that the robot collides divided by the total number of times
that the robot executed a planned trajectory.

8.1 Simulations without motion uncertainty

The following experiments evaluate the performance of the
proposed NBVS planning method assuming perfect posi-
tioning. The first experiment measures the processing time
required to calculate the visibility of a view. The second
experiment measures the reconstruction coverage for dif-
ferent objects. The third experiment compares the proposed
utility function against the Information Gain approach.

8.1.1 Scene configuration

The object to be modeled is set over a table in the reconstruc-
tion scene. The sensor is mounted on a mobile manipulator
robot with eight degrees of freedom. See Fig. 3. Three differ-
ent objects were reconstructed: the Stanford bunny, a teapot
and a dragon (Fig. 6). Range sensing was simulated using the
Blensor Simulator (A Free Open Source Simulation Pack-
age for Light Detection, Ranging and Kinect sensors). Robot
motion was simulated with our own simulator. The scenes
can be downloaded from: https://jivasquez.wordpress.com.
The simulated sensor is a time of flight camera of 176 × 144
points. The parameters used in the simulation experiments
are depicted in Table 1.

8.1.2 Processing time of the visibility calculation

One of themost expensive aspects of theNBVSplanning is to
calculate the visibility of a view. The proposed Hierarchical
Ray Tracing (HRT) reduces the visibility computation time,
depending on the resolution parameter (Sect. 5.4). We have
tested different resolution parameters for the reconstruction
of the Bunny object. The results are summarized in Table 2.
The first column shows the resolution parameter a used for
the reconstruction. Remember that a equal to zero is equiva-
lent to a uniform ray tracing. The second column shows the
average time required to evaluate a single view that points
to the object. The third column shows the voxel size at the
roughest resolution, in which HRT starts. The fourth column
shows the coverage percentage after 12 scans of the Bunny.
A reduction of 60 % of the processing time is gained with
a = 1. For higher resolution parameters there is a further

Fig. 6 Synthetic objects and reconstruction scene. a Bunny. bTeapot.
c Dragon. d Reconstruction scene

reduction in processing time, until a = 4. Larger resolu-
tion parameters do not imply a time reduction, given that the
overhead of the ray tracing structure increases the processing
time.

In conclusion, HRT allows us to evaluate a large set of
views in a short time, making it possible that even a naive set
of random views could be useful to determine the NBVS. A
drawback of this method is that there is no finer ray tracing
for obstacles outside the bounding box. Therefore, the best
performance of the HRT is obtained when the object has a
clear space around it.

8.1.3 Reconstruction of complex objects

In this experiment, the method is tested with different
complex objects (the Bunny, the Dragon and the Teapot).
We present quantitative results to evaluate the performance
of the proposed approach. We use a resolution parameter
a = 2.

Figure 7 depicts several stages in the reconstruction of
the Bunny. Figure 8 shows the final representation of the
reconstructed objects. Table 3 presents average results for the
reconstruction of the objects in terms of the number of scans
needed to reconstruct the 3D model, the visibility computa-
tion time (Vis.), the motion planning processing time (M.P.)
and the percentage of covered surface.
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Table 1 Parameters for the
simulation experiments

Parameter Value

Number of state samples per iteration 10,000

Octree resolution 2 cm

Maximal number of nodes in the RRTs 10,000

Overlap threshold (h) 50 %

Distance weights (wi ) [10.0, 10.0, 0.5, 0.05, 0.05, 0.05, 0.05, 0.05]

Machine Intel core i5 microprocessor with 2 Gb of RAM

Stop criteria 12 scans

Table 2 View evaluation times using hierarchical ray tracing

Res. param. Time (s) Voxel size (m) % Coverage

0 0.185 0.02 97.66

1 0.063 0.04 96.35

2 0.035 0.16 96.26

3 0.024 0.32 96.25

Fig. 7 Stages of the Bunny reconstruction. Unknown voxels are shown
in yellow, occupied voxels are displayed in blue (best seen in color).
a First scan. b Robot planned path. c Planned NBVS. d Second scan
(Color figure online)

The results show that the method is able to plan each
view/state in order to reconstruct different complex objects
with a large coverage in an acceptable processing time.

8.1.4 Proposed utility versus information gain

We estimate the goodness of a view measuring four factors:
(i) positioning, (ii) overlap, (iii) unknown surface (amount
of unknown voxels) and (iv) path distance. The factor of
unknown surface is important given that it estimates how
much surface could be discovered in the next scan. Another
way to estimate how much surface could be discovered is

Fig. 8 Final representations (point clouds) from the reconstructed 3D
synthetic objects

Table 3 Reconstruction results for each object

Object Scans Vis. (s) M .P.(s) Coverage (%)

Teapot 12 48.92 79.05 93.90

Bunny 12 33.81 114.07 95.51

Dragon 12 32.45 95.60 87.26

computing the Information Gain (IG) of a scan (Kriegel et al.
2012). In this experiment we compare the use of the surface
factor in the proposed utility function versus the use of IG.
The comparisonwas doneby reconstructing theBunnyobject
5 times using the surface factor in our proposed utility (that
we will call deterministic utility, DU), and 5 times using
information gain instead of the surface factor (wewill call IG
to this function). In order to make a fair comparison against
the information gain method, the number of scans is used
as stopping criterion in the experiments, both methods are
stopped after 12 scans.

Figures 9 and 10 show the average surface coverage and
average unknownvolume, respectively. In this experiment IG
at initial iterations gets a higher coverage than DU, however
at the final iterations both approaches converge to the same
coverage.

In the IG approach all voxels inside the view frustum and
belonging to the volumeWunk are considered to select a new
sensing location, while in our approach only the voxels lying
on the surface ofWunk and inside the frustum are considered.
In our experiments we have observed that at the beginning
of the reconstruction, larger percentage of the objects vol-
ume will appear, compared with the percentage of the object
surface. The IG approach counts both the voxels truly belong-
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Fig. 9 Comparison of the average surface coverage using information
gain (IG) and the proposed utility (DU).Vertical lines show the standard
deviation. Both methods converge to the same coverage
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Fig. 10 Comparison of the unknown volume in the octree using infor-
mation gain (IG) and the proposed utility (DU). Both methods leave the
same unknown volume in the octree

ing to the object plus the volume of the free space behind the
object. This explains why the IG approach reports a larger
percentage of coverage at the beginning of the reconstruction
process. However, after several scans both utilities converge
to the same coverage.

Processing time for evaluating both functions is quite sim-
ilar. In our implementation, to evaluate DU for all candidates
takes an average time of 428 s., in contrast, IG factor takes
484 s., that is 13 % more than DU. It is worth to say that the
evaluation processing time of DU can be significant reduced
using the hierarchical ray tracing (Vasquez et al. 2013), as
demonstrated in Sect. 8.1.2.

As it was already mentioned, in IG approach all voxels
inside the view frustum are used to compute the information

gain, while using the HRT only voxels classified as occu-
pied inside the view frustum and belonging to the surface
of the object are considered to compute the progress in the
reconstruction process. An advantage of this is that voxels
classified as free do not need to be further refined. Thus, the
benefit of applying the HRT is that the detection of voxels
belonging to the object surface will be done at a finer reso-
lution but in a shorter time since free voxels do not need to
be refined. It might be possible to adapt the IG approach to
use the HRT method, but this will require further research.

8.2 Simulations under motion uncertainty

This experiment analyzes the expected utility method. Two
experiments are presented. The first experiment analyzes the
effect of the number of samples (k) over the collision rate.
The second experiment compares the expected utility versus
the deterministic utility under different conditions of motion
uncertainty.

8.2.1 Configuration

Imperfect controls aremodeled using two parameters, σv and
σw, which correspond, respectively, to a standard deviation
of an error on the linear and angular velocities. Larger val-
ues correspond to more imprecise motions. The values of
σv and σw were computed by statistical modeling using a
real robot. 70 repetitions were done to compute the error in
terms of angular velocity ω and 70 others to obtain the error
in terms of linear velocity. The error on the angular veloc-
ity was computed based on the difference between a perfect
rotation in place vs the measured executed one. Similarly,
the error on the linear velocity was computed based on the
difference between a perfect straight line translation vs the
measured executed one. Table 4 shows the standard deviation
of both the linear and angular velocities. We assume perfect
positioning of the arm therefore standard deviations of the
arm joints are zero.

The compared approaches are detailed below:

– Deterministic utility without motion uncertainty (DU).
This is the ideal case, and it corresponds to the best pos-
sible performance.

– Deterministic utility with motion uncertainty (DU-MU).
We expect to significantly improve this case using
expected utility. The model of the imperfect controls is

Table 4 Parameters of the
motion model

Parameter Value (mm/seg)

σv 1.65

σw 0.28
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Fig. 11 The figure shows the behavior of the collision rate as the num-
ber of samples, k, increases in the reconstruction of the Bunny object.
As the number of samples increases the collision rate decreases. When
k is larger than 400 the collision rate is zero. DU and DU-MU collision
rates are displayed to compare the performance of EU-MU; they are
constant given that the number of samples does not interfere with them

described in Sect. 6. The parameters σv and σw corre-
spond to the ones shown in Table 4.

– Expected utility with motion uncertainty (EU-MU).
Here, the same error model is used but the next best
view/state is determined using expected utility.

8.2.2 Number of samples k

This experiment shows the effect of the number of samples k
over the collision rate. Figure 11 shows that for EU-MU the
collision rate approximates zero as k increases. The graph
suggests that the collision rate exponentially converges to
zero as k increases, a expected behavior that matches with
the analysis presented in Sect. 7.3. The graph is only for the
Bunny object but the same behavior was observed for the
other two objects. An observed phenomenon of this experi-
ment is that even for a single sample the proposed expected
utility has a lower collision rate. This phenomenon is due to
the fact that motion planner returns a set of controls that take
the robot very close to a goal state, but does not reach it. For
example, a bidirectional RRT has a gap where the trees are
connected. To simulate the robot movement produces a bet-
ter approximation than assuming that the robot reaches the
goal state.

8.2.3 Comparison versus a deterministic utility

In this experiment, we compare the proposed expected utility
versus the deterministic utility. In a simulated environment,

Table 5 Coverage results for each approach. EU-MU increases the
reconstruction coverage and decreases the collision rate

Object Approach Mean cov-
erage

Max. coverage Collision rate (%)

Bunny DU 95.0 95.0 0

DU-MU 48.2 87.4 37

EU-MU 78.9 95.0 0

Teapot DU 93.6 94.5 0

DU-MU 41.3 68.2 60

EU-MU 86.1 92.9 0

Dragon DU 87.5 87.8 0

DU-MU 36.1 55.6 45

EU-MU 81.0 87.5 0

we reconstruct ten times the three different objects under
different conditions of motion uncertainty. We set k = 500.

Table 5 compares the reconstruction coverage and col-
lision rate for each object. In general, the results show
that expected utility successfully decreases the collision rate
and increases the reconstruction coverage. The coverage of
expected utility keeps closer to the top-line coverage. Fig-
ure 12 shows the mean coverage for the Bunny and Teapot
objects.

8.2.4 Cluttered environment

In this experiment we test the method in an environment with
many obstacles. This scenario is challenging for a robot that
has imperfect controls, given that it has to avoid collisionwith
the obstacles while it reconstructs the object. We compare
the proposed expected utility versus a method that uses a
deterministic utility. In both cases the robot has the same
noise over the controls (see Sect. 8.2). Figure 13 shows the
environment where the robot moves and a path generated by
the planner.

Table 6 shows results of the reconstruction of an object
in an environment with several obstacles, comparing the
deterministic utility vs the proposed expected utility. The
results are the average of five repetitions of the experiment.
The processing time is the average time for the whole next
best view/state determination. The simulations were exe-
cuted using a Core i3 machine with 2 GB of RAM. The
parameters of the experiment are the same to the parameters
of the real robot experiments (see Table 7).

The expected utility method is able to deal with a clut-
tered environment. The collision rate is zero and the surface
coverage is 73 %. In contrast, the collision rate for the deter-
ministic utility is very high (50 % ). This high collision rate
is due to the fact that the method is trying to maximize the
amount of coveraged surface, but often the views that cover
more surface are far from the current configuration and they
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Fig. 12 The coverage of the expected utility approach keeps very close
to the case where there is no motion uncertainty. At the end, EU-MU
is less than 5 % below than DU. DU-MU was not displayed given that
not a single reconstruction reached 12 scans

Fig. 13 Object reconstruction in an environment with several obsta-
cles. In this experiment the robot has to avoid collisions with the
obstacles while it reconstructs the target object. The left figure shows
the environment where the robot moves. The obstacles are a table with
the object to be reconstructed and nine chairs placed around the table.
The right figure shows a path generated by the planner to reach the next
best view/state

Table 6 Results of the reconstruction of of the Bunny object in an
environment with several obstacles

Performance metrics Deterministic utility Expected utility

Number of sensing
scans

2.0 12.6

Coverage 38.4 % 73.64 %

Remaining unknown
volume

0.085 m3 0.023 m3

Traveled distance
per scan

6.15 4.67

Collision rate 50 % 0 %

Processing time of
the planning
process

250 s 467 s

are more susceptible to collide during the robot’s motion.
The processing time increases because it is more difficult to
find a collision free path with many obstacles.

These simulation experiments show that the expected util-
ity significantly reduces the collision rate and increased the
object’s coverage.

8.3 Analysis of simulations results

Based on the simulations results, we conclude that: (1) the
proposedmethod can reconstruct complexobjectswith a high
coverage in a reasonable time. (2) The proposed method
achieves the same coverage compared to information gain
but requires less processing time thanks to the hierarchical
ray tracing. However, it might be possible to adapt the IG
approach to use the HRT method, this issue is left for future
work. (3) The proposed approach deals effectively with the
uncertainty in the controls of amobilemanipulator robotwith
8DOF based on the concept of expected utility. The expected
utility significantly reduces the collision rate and increased
the object’s coverage.

8.4 Real robot experiments

In this section,we present three experimentswith a real robot.
The first one has the objective to compare the deterministic
utility vs expected utility. The second experiment has the
objective of showing that the proposed method is able to
correctly work in an environment with obstacles. The third
experiment shows that themethod is able to reconstruct com-
plex objects.

All our experiments were done using the following hard-
ware. Themobile base is a PatrolBot robot, the arm is Katana
1806Mrobot,which ismounted on themobile base.AKinect
sensor is placed in the arm end effector. Planning, octree
update and registration are done in a laptop equipped with
a Intel core i5 microprocessor with 2Gb of RAM. Table 7
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Table 7 Parameters for the real robot experiments

Parameter Value

State samples per iteration 100,000

Maximal number of nodes in
the RRTs

10,000

Expected utility samples (k) 500

Minimal overlap threshold (h) 65 %

Distance weights (wi ) [10.0, 10.0, 0.5, 0.05, 0.05,
0.05, 0.05, 0.05]

Octree resolution 3 cm

Stop criteria 30 unknown voxels

presents the parameters used in the experiments. The octree
resolution (3 cm) is determined by the Kinect resolution. We
have selected such size of 3 cm for the voxels at the finest
resolution for allowing the voxels to be larger than the error
of the Kinect sensor. In this way, different sensor readings
of the same point will statistically correspond to the same
voxel. We have considered 3 cm as an upper bound of the
error considering that the distance between the sensor and
the object to be reconstructed would be less than 2 meters.

The remaining parameters were set taking into account
our analysis and the simulation results, however they were
calibrated according to the scene in order to get success-
ful reconstructions. The process to find the parameters was
to iteratively increase the value calculated in simulation,
until the robot was able to successfully reconstruct the
objects.

8.4.1 Experiment # 1: Chair: utility versus expected utility

This experiment performs the reconstruction of an office
chair using the mobile manipulator robot. Figure 3 (in Sect.
3) shows the experimental setup. As mentioned above, the
objective of this experiment is to compare the determinis-
tic utility function presented in Sect. 7.1 versus the expected
utility described in Sect. 7.2. In this experiment, the object is
reconstructed three times. In each reconstruction, each time
that the robot collides the experiment is terminated.

The results from Experiment # 1 are summarized in
Table 8. The performance metrics used in the comparison
are the statistical mean of the following elements: number
of sensing scans, unknown remaining volume of the object
at the end of the reconstruction process, traveled distance in
the configuration space computed using Eq. (8), number of
nodes in the robot’s path, collision rate, processing time per
iteration of the planning process, and processing time per
iteration of the registration process and octree update.

The performance metrics shown in Table 8 allows one to
observe that the main advantage of the expected utility over
the deterministic one is that the collision rate is significantly

Table 8 Results of Experiment # 1 comparing the deterministic utility
vs. the expected utility

Performance metric Deterministic utility Expected utility

Number of sensing
scans

4 14

Unknown volume 0.07 m3 0.018 m 3

Traveled distance 28.7 72.52

Number of nodes in the
robot’s path

70.5 56.8

Collision rate 15.38 % 2.04 %

Processing time of the
planning process

24.73 s 175.74 s

Processing time of the
registration process
and octree update

5.77 s 4.82 s

reduced. In this experiment the collision rate with determin-
istic utility was 15.38 % while the collision rate was only
2.04 % with expected utility. Other advantage of expected
utility is that the percentage of remaining unknown volume
is also smaller. A disadvantage of the expected utility is that
the processing time per iteration of the planning process is
larger compared with deterministic utility. This is because
it is based on simulations of the robot trajectories and sens-
ing states. In this experiment the processing time was almost
seven times larger. However, the processing time remains
in the order of few minutes. Furthermore, the processing
time can be improved with better hardware and implement-
ing some computations in parallel. Note that the expected
utility can be computed in parallel, using a different proces-
sor for generating each simulated robot trajectory yielding a
final state sample.

The smaller distance traveled and the smaller number of
sensing scans related to deterministic utility is explained
because each time that robot collides the experiment is
finished. Hence, with deterministic utility the robot rarely
reaches the threshold in terms of unknown voxels to stop the
reconstruction process.

Figure 14 shows the robot taking a scan of the object
during the experiment. Figure 15 depicts the object and the
point cloudmodel. Figure 16presents the voxels-basedobject
model after finishing the reconstruction process. Figure 17
shows two examples of planned paths and the ones com-
puted with an odometer, and Fig. 18 shows an example of
the registration process.

8.4.2 Experiment # 2: Object reconstruction in an
environment with obstacles

The objective of this experiment is to show that the method
is capable of reconstructing an object in an environment with
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Fig. 14 Example of a view/state

Fig. 15 Real object and point cloud model. a Lateral view. b Lateral
view. c Frontal view. d Frontal view

Fig. 16 Final voxel representation. a Lateral view. b Other view

obstacles. The suitcase to be reconstructed is in the center of
the scene. The robot and the obstacles are around the suit-
case. See Fig. 19. The output model of the reconstruction is
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Fig. 17 Examples of robot’s paths (best seen in color). The figures
compare the planned path (black dotted line) versus the executed path
(red continuous line) registered by the odometer. The blue dots represent
the samples used to compute the expected utility. The big cross indicates
the corrected robot position computed based on the registration of scans
(Color figure online)

Fig. 18 Example of the point cloud registration. The figure in the left
shows the data before registration and the figure in the right the data
after registration

shown in Fig. 20. Figure 21 depicts the sequence of planned
view/states to reconstruct the object. In this experiment the
method was capable to plan each view/state avoiding colli-
sions with the environment and the object.
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Fig. 19 Reconstruction scene with obstacles. a Reconstruction scene.
b Scene representation

Fig. 20 Accumulated point cloud of the object. a Front view. b Rear
view

Fig. 21 Sequence of robot view/states from where a scan was done.
The sequence shows that robot evades the object and completes the
reconstruction

8.4.3 Experiment # 3: Reconstruction of a more complex
object

This experiment shows the reconstruction of a more com-
plex object (a NAO robot). The object was placed over a
box and both were reconstructed. Figure 22 shows the
object and the reconstructed point cloud. Seventeen scans
were required to reach the stop criteria. Figure 23 shows
each view/state where a scan was taken. The mean time
for calculating each view/state was 118.6 s (using the

Fig. 22 Reconstruction of a NAO robot. Left figure shows the real
object. Right figure shows the reconstructed point cloud

Fig. 23 Sequence ofRobot view/states during the reconstruction of the
NAOrobot. In this sequence, the robotmoves itself to the left (upper side
of the figure) for scans 3–7. Then, the robot continues the reconstruction
of the object to the right (lower side of the figure)

expected utility approach). The collision rate was zero. This
experiment demonstrates that our method can reconstruct a
complex object, avoid collisions, and obtain a reasonable 3-D
model.

8.5 Analysis of experimental results

The experiments empirically validate the method, evaluate
its performance along various metrics, and demonstrate its
ability to perform well in different settings. In particular, we
have shown that expected utility significantly reduces the col-
lision rate (in our experiments the collision rate was reduced
to 2.04%). The experiments also show that themethodworks
correctly in an environment with obstacles. We have also
demonstrated that the method is able to reconstruct complex
3-D objects in a realistic environment with a mobile manip-
ulator robot.
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9 Conclusions and future work

Wehave presented amethod for next best view/state planning
for 3D object reconstruction. This is one of the first methods
that determines the view directly in the state space, follow-
ing a methodology in which a set of candidate view/states is
directly generated in the state space, and later only a subset of
these views is kept by filtering the original set. The method
proposes a utility function that integrates several relevant
aspects of the problemand an efficient strategy to evaluate the
candidate views. This method avoids the problems of inverse
kinematics and unreachable poses. Our approach is able to
deal with motion and observation uncertainty. Another con-
tribution of the approach is the evaluation of a candidate state
in terms of its expected utility, unlike previous approaches
where perfect positioning is assumed and only a determinis-
tic utility is considered. Our approach plans safe robot states,
in terms of collision between the robot and the environment.
An analysis of the expected utility algorithm was provided
and the behavior matches with the experimental results in the
real robot.

We compare the proposed approach with related works
both qualitatively and quantitatively. Qualitatively, this app-
roachmeasures the goodness of the path in terms of unknown
surface, overlap and the cost of each degree of freedom,
performing an efficient evaluation of the candidate views.
Quantitatively, this method achieves the same coverage but
with smaller processing time compared with previous works.
We have implemented the whole method both in simulation
and in a real mobile manipulator of 8 DOF with an eye-in-
hand sensor. The results show that the approach effectively
increases the object coverage and also decreases the rate of
robot’s collisions. To our knowledge, this is one of the first
works in which a method to reconstruct a 3D object is imple-
mented in a real mobile manipulator robot.

As future work, we would like to use the probabilities in
the octree representation of the space to estimate the good-
ness of the next sensing scan.We think that a promisingmod-
eling technique for planning the task of object reconstruction
is a partially observable Markov decision process (POMDP)
that allows one to take into account, both, the uncertainty of
reaching the state and the uncertainty in the observations.

We would also like to remove the assumption that the size
and approximate location of the object to be reconstructed is
known. A possible way of reaching this objective is roughly
segmenting the object from the background using RGB and
range data. However, such approach might generate non triv-
ial issues and would have to be tested experimentally.
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