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Abstract This paper describes a stochastic approach to
vehicle mobility prediction over large spatial regions [>5×5
(km2)]. The main source of uncertainty considered in this
work derives from uncertainty in terrain elevation, which
arises from sampling (at a finer resolution) a Digital Eleva-
tion Model. In order to account for such uncertainty, Monte
Carlo simulation is employed, leading to a stochastic analy-
sis of vehicle mobility properties. Experiments performed
on two real data sets (namely, the Death Valley region and
Sahara desert) demonstrate the advantage of stochastic analy-
sis compared to classical deterministic mobility prediction.
These results show the computational efficiency of the pro-
posed methodology. The robotic simulator ANVEL has also
been used to validate the proposed methodology.
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1 Introduction

It is well-known that before attempting a mission involv-
ing a ground vehicle in off-road conditions a reliable and
comprehensive analysis of the mobility capabilities of such
a vehicle is desired. This goal can be solved by means of
computer simulation, where terrain profile plays a key role.
Traditionally, this analysis considers nominal values for the
key variables involved in the simulation (e.g. elevation). This
leads to unreliable and limited results due to the uncertainty
present in those variables (Lessem et al. 1996; Peynot et al.
2014).

Terrain geometry information typically comes from
remote sensory sources (e.g. radar technology, imagerymeth-
ods, etc.). Those techniques lead to models of the terrain
with uncertainty associated with the spatial position of data
points. Thus, any elevation model of the terrain is corrupted
by uncertainty. Digital Elevation Models (DEMs) produced
by the US Geological Survey agency are a good example of
this issue (Zhou and Liu 2004).

Here, we describe a stochastic approach for vehiclemobil-
ity prediction over large regions [>5 × 5 (km2)]. In this
framework, a model of the terrain is created using geostatis-
tical methods. The performance of a vehicle is then evaluated
while considering the terrain profile. In order to account for
uncertainty, Monte Carlo simulations are performed, leading
to a statistical analysis. Uncertainty in elevation is due to the
new interpolated terrain model to a higher spatial resolution
than theoriginalDEM(throughageostatisticalmethod called
Ordinary Kriging (Chiles and Delfiner 2012)). The ultimate
goal is to compare different routes using different cost func-
tions in the path planning algorithm and various performance
indices.

Notice that this work is framed in the context of the next-
generation NRMM military software (the current software
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is described in Haley et al. (1979)). One requirement is that
such software can be executed on general-purpose comput-
ers available in current military vehicles or military camps
in battle fields. In this regards, the proposed approach means
an efficient solution in terms of computation burden, and
demonstrates its suitability on a standard-performance com-
puter.

The rest of the paper is organized as follows. Relatedwork
is reviewed in Sect. 2. Section 3 gives a general view of the
proposed methodology. Section 4 reviews some geostatisti-
cal tools used in this research and a subsampling approach is
also proposed to reduce the complexity of a large DEM. The
mobility prediction problem is explained in Sect. 5. Illustra-
tive examples are given in Sect. 6. Finally, conclusions and
future work are discussed in Sect. 7.

2 Related work

This paper addresses the problem of manned and unmanned
vehicles mobility prediction in off-road conditions. In this
context, a comprehensive survey of the state-of-the-art is
found in Papadakis (2013). As in that survey, many publica-
tions cope with 3D path planning in the vicinity of the robot
(Goldberg et al. 2002; Thrun et al. 2006). Those approaches
are generally not appropriate for planning longer routes over
large environments (e.g. Curiosity rover over a large Mar-
tian region or a military vehicle over a battle field) because
they are based on sensors that perceive only the surrounding
environment (e.g. stereovision, LIDAR).

Regarding the issue of path planning over longer routes, an
important research effort has been made in the field of com-
bining remote data with ground data. The focus of that work
has been mainly in the fields of obstacle avoidance (Stentz
et al. 2003) and robot location (Vandapel et al. 2006). In
this way, some ideas proposed in this paper were inspired by
the high-fidelity traversability analysis proposed in Helmick
et al. (2009) and the research related to combining remote and
ground data in Stentz et al. (2002); Vandapel et al. (2006). In
Helmick et al. (2009)mobility prediction is carried out online
(every 20–50 m) in order to find an optimal path between the
current robot position and a desired target. In this way, many
paths are randomly generated between the robot position and
the next waypoint; the robot motion is thus analyzed for each
path, and eventually the routewith the lowest cost is followed.

In our case, mobility prediction is planned for the entire
route before the vehicle moves (planning stage). In Vandapel
et al. (2006) a 3D elevation map is used to test the perfor-
mance of a vehicle traversing between two given points. In
this case, a kinematic-model-based analysis is performed.
But only a binary answer is given for each cell in the map:
traversable or non-traversable. After that, a path planner is
used to determine the path of least cost in terms of a perfor-

mance index. In Stentz et al. (2002) an unmanned air vehicle
that flies ahead of the vehicle is used to detect holes and other
hazards before the onboard vehicle sensors would be able to
detect them.

The research in Lessem et al. (1996) addressed the prob-
lem of stochastic mobility prediction in military vehicles.
However, uncertainty is arbitrarily selected depending on
“expert opinions”. The output is a speed map based on the
maximum and minimum speeds that a military vehicle can
achieve in each map cell. In contrast, in our methodology
uncertainty comes from a rigorous mathematical formula-
tion (ordinary Kriging). Furthermore, it results in an optimal
route between two desired points in terms of several perfor-
mance indices.

Another similar research to that described here is found
in Peynot et al. (2014). Here, the authors define mobility
prediction as the problem of estimating the likely behavior
of a planetary exploration rover in response to given control
actions on a given terrain. In this sense, uncertainty is in the
control rather than in the DEM/terrain map.

Mobility prediction has also been considered in terms
of the vehicle-terrain interactions (Ishigami et al. 2009;
Willoughby et al. 2006). In Ishigami et al. (2009), a statis-
tical method for mobility prediction considering uncertainty
in terrain physical properties (cohesion and internal friction
angle) is proposed. In this case, both a vehicle dynamicmodel
and a wheel-terrain contact model are employed for sim-
ulating the robot motion considering uncertainty in terrain
parameters.

In Karumanchi et al. (2010) a non-parametric learning
technique is presented to generate a mobility map based on
terrain elevation and wheel slip. Path planning takes advan-
tage of such map improving vehicle heading and velocity in
off-road slopes.

On the other hand, some research projects focus on the
reconstruction of a 3D surface (digital elevation map) from
sparse data obtained from a remote sensor (Hadsell et al.
2009; Kweon and Kanade 1992). However, these works do
not consider the secondgoal of our research, that is, stochastic
mobility prediction.

3 General framework

The first problem addressed in this paper is framedwithin the
context of estimating the values of a regionalized variable
(elevation) at places where it has not been measured and,
after that, analyzing the performance of a vehicle over such
terrain.

Figure 1 shows themethodology followed in this research.
Initially, a DEM1 is selected related to the environment

1 A DEM is defined as a set of elevation values which are recorded on
a regular grid (i.e. square form) (Fisher and Tate 2006).
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Fig. 1 Schematic view of the steps carried out in this research for
predicting the mobility of a ground vehicle over a large region [>5× 5
(km2)]

where the vehicle is going to operate. After that, a reduced-
order representation of the DEM points is obtained via a
subsampling approach. This is required in order to enable
an affordable computation of the variogram and Kriging
method. Once a set of representative points, in terms of
the variogram and elevation profile, are selected, the ordi-
nary Kriging method is applied. This procedure yields a
model of the terrain at a finer resolution (see Assumption 1).
This model can be applied to statistical simulation because
each interpolated point has an associated uncertainty (Krig-
ing variance). Next, the D* algorithm is applied in order to
obtain multiple routes between two points (i.e. starting point
and desired goal or waypoint). Finally, the optimal route is
given in terms of some performance indices (e.g. the shortest
path, the path with the lowest uncertainty, the flattest route,
etc.) (see Assumption 2).

Assumption 1 We assume that there is no uncertainty or
error associated to the original DEMof the terrain (positional
errors, data precision, etc.). In this paper, the uncertainty is
only considered after obtaining a model of the terrain at a
finer spatial resolution (new interpolated points), that is, after
applying Kriging.

Assumption 2 It is assumed that the method proposed here
will be used for themobility of car-like vehicles. In particular,
the testbed considered in this research is the known Humvee
military vehicle (AM General 2015). The reasoning behind
the spatial resolution of themodel of the terrain and the use of
a car-like kinematic model in the simulations are both based
on the dimensions and features of such vehicle.

The main features and limitations of this approach can be
summarized as follows:

– Global path planning is considered rather than local path
planning (planning in the vicinity of the vehicle). The lat-
ter problem is mainly related to detection and avoidance

of local obstacles using onboard sensors. In this sense,
this research does not ensure local obstacle avoidance. It
is assumed that a lower layer to the one proposed here
will be available in the real vehicle.

– This solution does not result in a binary answer, i.e. the
path is traversable or not; instead statistical data support-
ing each decision is given.

4 Reconstruction of a 3D terrain surface from
remote data: spatial prediction problem

This section introduces the geostatistical tools used in this
research (Sect. 4.1). The use of geostatistical tools is moti-
vated because the original DEM has a resolution that is
too coarse for vehicle mobility prediction (>30 m). Thus,
an interpolation strategy is required in order to obtain a
model of the terrain at a finer resolution. In our case, the
desired resolution is the double of the vehicle length, that
is, 10 m (Humvee’s length is 5 m, see Sect. 6 for details,
and Remark 1 for a discussion about this reasoning). The
most common approach is ordinaryKriging, which estimates
the elevation of points (at a finer resolution) depending on
the elevation and spatial arrangement of measured points
(variogram). However, before attempting Kriging, a sub-
sampling step is required in order to reduce the number of
points of the original DEM (Sect. 4.2). This step is necessary
to perform efficient geostatistics-related computations on a
standard-performance computer (as remarked in the intro-
ductory section).

It bearsmentioning that in this researchDEMof the terrain
are employed. Since the dimensions of the grid are known
and the number of observations in each row is known, the
implicit spatial relationships between elevation values can be
determined. There are mainly two types of DEM depending
on the coverage and on the resolution. The US Geological
Survey (USGS) agency produced a DEM with coverage of
the US with a resolution of 30m. A worldwide coverage is
offered by the SRTMNASA and NGA agencies. The SRTM
DEM have a resolution of 90m. More information about
those formats can be found in Webgis (2015).

Remark 1 There is not a clear answer to what is the most
appropriate spatial resolution in order to perform a reli-
able stochastic mobility prediction analysis. It is not known
whether any detailed study on this issue has been performed.
It appears that spatial resolution of data for 3D terrainmodels
should be dependent on the size of the vehicle, the variability
of the terrain, and on the nature of any natural or man-made
obstacles that the vehicle must negotiate. In this research,
a resolution of 10 m has been considered for the interpo-
lated model of the terrain (originally such model was 30- or
90-m resolution) because the length of the intended vehicle
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(i.e. Humvee military vehicle) has a length of 5 m. Smaller
resolutions to 10 m led to unfeasible solutions (impractical
computation time). This key point will be considered in the
coming research.

4.1 Fundamentals of geostatistics

Geostatistics aims at providing quantitative descriptions of
natural variables distributed in space time (Bivand et al. 2013;
Chiles andDelfiner 2012; Isaaks andSrivastava 1989; van der
Meer 2012; Webster and Oliver 2007). Furthermore, it deals
with a methodology to quantify spatial uncertainty. Geo-
statistical modeling is based on the statistical relationships
among themeasured points. It then produces an interpolation
function based on a covariance or variogram model derived
from the data, rather than an a priori model of the interpola-
tion function (as it is the case of deterministic interpolation)
(Bohling 2005). For that reason, geostatistics is data-driven
rather than model-driven.

4.1.1 Variogram

A variogram describes the statistical relationship between
points as a function of point separation. That is, it shows
how the dissimilarity between z(s) and z(s + h) evolves
with the separation, or lag distance, h (Chiles and Delfiner
2012; Isaaks and Srivastava 1989; Lakhankar et al. 2010).
In this sense, the variogram represents the spatial correlation
between available samples, and it is calculated according
to:

γ (h) = 1

2N

N∑

i=1

(
z(si ) − z(si + h)

)2
, (1)

where N is the number of data points, z(si ) is the elevation at
point si , and h represents the lag, that is, the vector separating
the locations of two variables (ASTM Standards 1996). For
instance, h = 1×d, . . ., d being the distance between points.
If points are sampled at 10m, then d = 10, and the variogram
is calculated for the “lag”: [10, 20, 30, . . .].

An empirical variogram provides information on the spa-
tial autocorrelation considering the raw data, but does not
provide information for all possible directions and distances.
For that reason, it is necessary to fit a model (i.e. a continu-
ous function) to the empirical variogram. There are several
variogram models, with the most common ones: spherical,
exponential and Gaussian. More information about theoret-
ical variogram models can be found in Chiles and Delfiner
(2012).

Some important features of a variogram model are:

– It starts at zero (for h = 0, z(si +h)− z(si ) = 0). Except
when there is a “nugget effect”, for further detail (Chiles
and Delfiner 2012).

– It generally increases with h.
– Range reflects the degree of dissimilarity of ever more
distant samples. If the variogram stabilizes at a certain
level, such level is called sill. In other words, the range
represents the value of the curve in the x axis when the
variogram reaches steady state, and the sill is the value
of such curve but in the y axis.

– Various ways can be considered to fit a variogrammodel,
including Chiles and Delfiner (2012) and Gorsich and
Genton (2000): manual fitting, least squares (automatic
fitting), and maximum likelihood. In this research, an
automatic least squares approach has been used.

Notice that it is expected the points that are close assume
close values because these values were generated under sim-
ilar physical conditions (“same geological environment”). In
contrast, at long distances the geologic conditions are differ-
ent, and greater variations are to be expected.

4.1.2 Ordinary Kriging formulation

Once a variogrammodel has beenfitted to sparse data, predic-
tions can be made using the Kriging formulation. There are
mainly three formulations of Kriging depending on whether
the mean of the data is known (simple Kriging) or not
(ordinary Kriging and universal Kriging). In the field of geo-
statistics, the most common approach is ordinary Kriging
(OK) (Li and Heap 2011; Srivastava 2013; Tsui et al. 2013;
Webster and Oliver 2007) because the mean is not known
a priori and because only spatial variability is meaningful.
Following the OK formulation, at every point where the ele-
vation is unknown, it is interpolated following a weighted
linear combination of the available samples (Isaaks and Sri-
vastava 1989)

Ẑ(s0) =
N∑

i=1

wi Z(si ), (2)

where Ẑ(s0) is the estimated elevation of the sample located
at s0 (new interpolated point), N is the number of samples,
and wi are the weights for the linear combination of known
samples Z(si ). The index i represents the samples available
in the dataset.

Ordinary Kriging minimizes the mean squared error of
prediction

min σ 2
e = E

[
Z(s0) −

N∑

i=1

wi Z(si )

]2

s.t.
N∑

i=1

wi = 1. (3)
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As shown in Isaaks and Srivastava (1989), the mean
squared error can be written as

σ 2
e = 2

N∑

i=1

wiγ (s0 − si ) −
N∑

i=1

N∑

j=1

wiw jγ (si − s j ), (4)

recall that γ (h) is the variogram model.
After differentiating the previous equation with respect to

the weights and setting the derivatives equal to zero, it leads
to

N∑

j=1

w jγ (si − s j ) + λ = γ (s0 − si ), (5)

where λ is the Lagrange parameter used for ensuring∑N
i=1 wi = 1 (Isaaks and Srivastava 1989). Using matrix

notation the previous system of equations can be written as

W = C−1D,

W = [w1, w2, . . . , wN , λ] ,

C =

⎧
⎪⎪⎨

⎪⎪⎩

γ (si − s j ), i = 1, . . . , N ; j = 1, . . . , N ,

1, i = N + 1; j = 1, . . . , N ,

1, i = 1, . . . , N ; j = N + 1,
0, i = N + 1; j = N + 1.

D = [
γ (s0 − s1), γ (s0 − s2), . . . , γ (s0 − sN ), 1

]T
. (6)

Once the weights are calculated, the predicted elevations
at the unknown locations can be estimated using Eq. (2).
Additionally, the error variance (or Kriging variance) for
each predicted point is obtained using Eq. (4). This Krig-
ing variance represents the uncertainty associated with each
new point. Stochastic analysis of the possible realizations of
those points can then be performed.

4.2 Subsampling a DEM

The reliability of an experimental variogram is affected by
the number of samples or its inverse, the density of data.
Evidently when all the points of the DEM are considered,
the variogram is obtained precisely. However, by increas-
ing the number of samples the computation time required
for calculating the variogram (and the subsequent Kriging-
based interpolation) increases as well. In this sense, this
section proposes a methodology that reduces dramatically
the computation time for calculating a variogram despite a
high correlation with respect to the variogram obtained if all
the point of the DEM were employed (see Remark 2).

Remark 2 As remarked in the introductory section, one key
requirement of the proposed approach deals with an effi-
cient computation. Efficiency is understood in terms of being
able to run the proposed methodology in a general-purpose

computer in a reasonable computation time (around 1–2 h
depending on the size of the environment considered). The
reason why the subsampling step has been added to this
methodology is because when the variogram and ordinary
Kriging functions were run over the entire datasets (e.g. the
two scenarios introduced in Sect. 6), the computation time
increased dramatically (several hours), even the computer ran
out of RAM memory (Intel Core i7 3 GHz, 16 MB RAM).
After adding this subsampling step, before running Kriging,
we were able to successfully apply Kriging and at a reason-
able computation time.

4.2.1 Geostatistical subsampling-literature review

The standard way to estimate the variogram is through the
Method of Moments (MoM) (Chiles and Delfiner 2012), Eq.
(1). In Webster and Oliver (2007), the authors point out that
in order to estimate a variogram following this method more
than 100–150 samples are required. The MoM is followed
in numerous papers where a set of discrete samples (100–
300 samples) are used for estimating the variogram (Basaran
et al. 2011; Bechler et at. 2013; Hosseini et al. 2014).

The work (Brus and Gruijter 1994) suggests a procedure
based on sampling theory in order to determine the samples
used for calculating the variogram. This procedure is based
on repeatedly selecting pairs of points; the first point is ran-
domly chosen, and the second point is chosen at distance h
from the first one. Notice that many publications follow a
similar approach (simple or systematic random sampling),
see for example Anderson et al. (2006) and Lakhankar et al.
(2010).

As shown in this paper, systematic sampling is effective
for variogram estimation, but shows a poor performance in
terms of fixing the elevation profile of the entire DEM.Recall
that this issue is fundamental in case of subsequent Krig-
ing (i.e. obtaining a new DEM at a finer spatial resolution).
Additionally, we demonstrate that the precision of a vari-
ogram does not only depend on the number of samples. In
fact, it depends on the sampling method. Additionally, those
papers neither present an analysis of the computation time
required nor statistical evidence of how well the samples fit
the variogram of the entire dataset.

On the other hand, the residual maximum likelihood
method (REML) constitutes a methodology for obtaining a
variogram (Kerry et al. 2010; Webster and Oliver 2007). In
this case, the three parameters that define a variogram (range,
sill, and nugget) are solved bymeans of an optimization prob-
lem (maximum likelihood problem). Specifically the model
parameters are obtained directly from the generalized incre-
ments of a covariance matrix of the full data. However, as
explained in Webster and Oliver (2007): it is computation-
ally intensive; it is only valid for three variogram functions;
and it too readily converges to a local optimum. For those
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reasons, we focus on the known method of moments in order
to estimate the variogram. Additionally, it bears mentioning
that REML has been applied to identify the optimal sampling
interval in order to get amap or set of samples before attempt-
ing Kriging (Kerry et al. 2010). This issue is not exactly
applied to the subsampling problem that we attempt in this
research.

4.2.2 Systematic sampling

The systematic sampling method arranges the population
according to some ordering scheme and then selecting ele-
ments at regular intervals (Thompson 2012). This strategy
matches properly with the structure of a DEM, and with the
research addressed here. Recall that in a DEM information
is recorded at regularly spaced intervals (raster form). For
example, if a USGS DEM sampled with a resolution of 30
m is considered, a sample would be selected every 30 m.

4.2.3 Stratified sampling via K-means algorithm

The stratified sampling approach is based on partition-
ing a given population into homogeneous subgroups or
“strata”. Each stratum is then sampled as an independent
sub-population, out of which individual elements can be ran-
domly selected. The principle of stratification is to partition
the population in such a way that the units within a stratum
are as similar as possible (Pengelly 2002; Rubinstein and
Kroese 2007).

The major concern regarding the stratified sampling
approach is how to separate the original DEM into differ-
ent strata. In our context, one reasonable approach is to find
such strata depending on elevation. However, this issue is
not simple because of the continuous nature of the eleva-
tion, especially in uneven terrain. To solve this problem,
K-means clustering has been considered (Wu 2012). Notice
that K-means has already been applied in geostatistics, see
for example (Arieira et al. 2011; Kumar et al. 2011). In such
publications, K-means is mainly used for stratifying a large
region into similar areas mainly in terms of habitat type and
soil type. Here, the K-means algorithm is used to split the
DEM in terms of elevation. After that, one or two points
are randomly selected within each strata. Figure 2 shows the
application of the proposed stratified sampling method to the
two scenarios considered in this research (those scenarios are
introduced in Sect. 6).

The key issue of this approach deals with the number of
centers used by the K-means algorithm. This is a major issue
related to any kind of algorithm based on K-means (Wu
2012). In this paper, the optimal value is obtained accord-
ing to the theoretical variogram fitted to the DEM (explained
subsequently).
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Fig. 2 Stratification of two types of DEM. The first one deals with
a 30-m resolution DEM and the second example is related to a 90-m
resolution DEM. Colors represent different layers or strata. a Death
Valley (CA, USA). No. strata = 15. b Sahara desert (Chad, Africa). No.
strata = 20

Notice that a method called DP-Means has been recently
proposed in order to solve this issue (Kulis and Jordan 2012).
Specifically, DP-Means uses a scale/penalty parameter to
control the creation of new clusters during clustering rather
than requiring a fixed K as in K-means. In this way, a new
cluster is only formed when a point is sufficiently far away
from all existing cluster centroids. It bears mentioning that
this solution is not applicable to our problem because we
do not need to cluster the elevation profile according to a
fixed number of strata. In fact, we are interested in testing
different strata/samples in order to reduce the error in fixing
a given variogram model (i.e. the variogram model of the
entire DEM).

4.2.4 Proposed methodology: combining systematic and
stratified sampling

Recall that the goal of the subsampling approach is to find
the minimum number of samples required such that the vari-
ogram of this reduced DEM fits the theoretical variogram of
the raw DEM. In order to solve this issue the properties of
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the variogram and the sampling methods must be taken into
account.

First, the variogram is calculated by Eq. (1). To obtain
a meaningful set of samples the reduced data set should be
as sparse as possible in order to cover the whole range of
distances in the original DEM. If this fact is not ensured, the
variogram would not fit properly the sill. On the other hand,
the set of samples should comprise the range of elevations
presents in the original DEM as much as possible. This issue
has an effect on the range of the variogram. Additionally, we
are interested in fitting the elevation profile in order to obtain
a meaningful model after applying the Kriging process.

One proposal of combining systematic and stratified sam-
pling approaches is motivated by the following fact. Notice
that the systematic sampling approach leads to a sparse set
of samples, which cover the entire dataset (Fig. 3a). This fea-
ture is not found using the stratified sampling approach (Fig.
3b). In fact, many samples are clustered at the top right cor-
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Fig. 3 Samples obtained after applying the systematic and stratified
sampling approaches to one of the scenarios considered in this work
(Death Valley, CA, USA), see Sect. 6 for further details. a Systematic
sampling, 127 samples. b Stratified sampling, 300 samples

ner. This is explained because of the hill in the environment
(this experiment is related to the Airport Lake region, which
is introduced in detail in Sect. 6). Recall that the stratified
sampling approach deals with getting samples regarding the
different strata (elevations) in the environment, those strata
are mainly present in the hill. On the other hand, the strat-
ified sampling approach captures properly the elevations in
the original DEM as observed in Fig. 2a, but the systematic
sampling approach has a worse result in terms of represent-
ing the terrain profile (i.e. elevations); see Sect. 6.2.3 for a
quantitative comparison of these methods. A filter has been
implemented to remove those samples that are very close,
and hence, to avoid redundancy in the samples.

5 Mobility prediction based on elevation
uncertainty

As already mentioned, the Kriging procedure not only pro-
duces a model of the environment at a finer resolution than
the original but also, and most importantly, the uncertainty
associated with each new point (error estimate), see Sect.
4.1.2.

The next step deals with analyzing the performance of a
vehicle moving between two given points, starting point and
goal point, considering this new model of the terrain. The
D* algorithm has been employed in order to obtain the opti-
mal route between the starting and goal points (Corke 2011;
Stentz 1995). In this research, three different cost functions
has been considered in order to obtain the optimal route.
The first cost finds the shortest route between the starting
point and the goal point. For that purpose, the D* cost func-
tion considers the Euclidean distance between points (x–y
plane). Notice that, in this case, uncertainty is not consid-
ered. This route is labeled as “min-distance”. The second
route is obtained as the shortest distance between the start-
ing and goal points but also minimizing the uncertainty. That
is, the variance associated to each point is also considered
in the D* cost function. From now on, this route is called
“min-uncertainty”. Finally, the route labeled as “min-slope”
represents the shortest route between the starting and goal
points but also minimizing the slope between points. It bears
mentioning that such slope is obtained estimating the eleva-
tion among the 8 neighbors around one point (i.e. the angle).
After that, the point with the maximum angle is saved in an
array paired with the sampled point. It means that when the
D* algorithm is employed those angles will be minimized
and it will result in the flattest route.

The following issue deals with checking the performance
of the vehicle over such routes. In this sense, the kinematic
model of a car-like vehicle is considered (LaValle 2006).
Furthermore, a motion controller is required, in this case, the
well-known pure pursuit path follower has been taken into
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Fig. 4 Airport Lake, Death Valley (CA, USA). USGS DEM (30-m resolution). a Overhead view (Google Earth). b Detail of this environment. c
DEM, raw samples (color represents elevation)

account (Amidi 1990). This step will allow us to estimate the
energy required to actually traverse each route.

Finally, nMonte Carlo simulations are performed in order
to analyze the effect of uncertainty in the energy required to
traverse each route. This idea is inspired by the following
references in the context of soil and Earth sciences: Davis
and Keller (1997), Fisher (1991), and Hunter and Goodchild
(1997). Specifically, a realization for each sample within the
desired route is generated according to its associated uncer-
tainty (Kriging estimate and Kriging variance).

5.1 Performance indices

One key aspect in order to perform the stochastic mobility
analysis of each route is related to the performance indices
considered. In this sense, five indices have been selected: (i)
length of the route, (ii) average value of the uncertainty, (iii)
variation of the elevation, (iv) energy required to traverse
each route, (v) average value of the slope considering the
Krigingvariance.The last indexhas beenobtained simulating
different realizations of the elevation of each point (according
to its associated uncertainty). Thus, it represents the average
slope between points after n Monte Carlo simulations (the
absolute value of the difference has been considered in order
to avoid problems with the sign).

The energy is calculated according to the following equa-
tion

E j =
2∑

m=1

N j∑

k=1

τm(k)vm(k), (7)

where j = 1, 2, 3 means min-distance, min-uncertain, min-
slope route, respectively; m represents the steering or the
traction motor, N is the number of samples of each route it
is related to the length of the route), τ is the torque, and v is
the linear velocity. Notice that the torque required for each
motor has been obtained from the following equation

τm = kt
Vs − kiωm

R
, ∀m = 1, 2, (8)

where kt is the torque constant of themotor, Vs is the nominal
voltage, ki is the inverse of the speed constant,ω is the angular
velocity, and R is the terminal resistance. Practical details
about those constants are given in Table 2, see Sect. 6.4.

6 Illustrative examples

6.1 Environments

In order to validate the methods proposed in this research,
two different scenarios have been analyzed.2 First, a region
of the Death Valley called Airport Lake (LAT: 35 52 30 N;
LONG: −117 37 30 W), see Fig. 4. The data were obtained
in the 7.5-min USGS format. This region covers an area of
11.34×13.65 (km2). It is important tomention that thisDEM
is represented in projected coordinates (i.e. UTM system).
On the other hand, a region of the Sahara desert in Chad
(Africa) has also been considered (LAT: 15 01 67 N; LONG:
21 16 50 E), see Fig. 5. The data were obtained in the SRTM
format. This region covers an area of 6.55× 8.18 (km2). As
in the previous case, this DEM is represented in projected
coordinates (i.e. UTM system).

Figures 4c and 5c show the rawDEMrelated to theAirport
Lake and the Sahara desert. The difference between them is
that in the former the points are sampled every 30 m and in
the latter are sampled every 90 m. For that reason, the first
DEM is denser than the second one.

To calculate the variograms and applying Ordinary Krig-
ing the Matlab mGstat toolbox has been employed (mGstat
2015). Additionally, the SRTM DEM was first processed
in ArcGIS suite (Esri) before using it in Matlab (spherical
coordinates to UTM). The stratified sampling approach has
been implemented taking advantage of the VL-Feat toolbox
(Vedaldi and Fulkerson 2015). The D* algorithm has been
implemented using the Robotics toolbox (Corke 2011).

2 Both DEMs were downloaded from Webgis (2015).
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Fig. 5 Sahara desert (Chad, Africa). SRTM DEM (90-m resolution). a Overhead view (Google Earth). b Detail of this environment. c DEM, raw
samples (color represents elevation)
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Fig. 6 Variograms (Airport Lake). The continuous line is the theoret-
ical variogram considering all the raw samples, the blue circles mean
the empirical variogram of each method. a Systematic sampling, 127

points. b Stratified sampling, 300 points. c Combined sampling, 156
points. d Combined sampling, 142 points

6.2 Subsampling algorithms

In this section the performance of the subsampling appr-
oaches before attempting Kriging and the mobility pre-
diction analysis is examined. In particular, the following
sampling approaches are compared: systematic sampling,
stratified sampling, and the method based on combining
systematic and stratified approaches. These methods have

been applied to the Airport Lake and the Sahara desert
regions.

It bearsmentioning that the tuning parameter (i.e. the num-
ber of points or strata) of each subsampling approach has
been selected in order to maximize the following metrics:
minimum number of samples, minimum computation time,
minimum error in range and sill, maximum correlation with
the variogram model (Pearson’s correlation coefficient), and
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maximum correlation with the elevation profile (Pearson’s
correlation coefficient).

6.2.1 Experiment 1: Airport Lake (Death Valley, CA, USA)

This section details the performance of the subsampling
approaches considering the Airport Lake. The stratified sam-
pling has been configured with 300 strata and one random
sample has been selectedwithin each strata (K-Means = 300).
The systematic approach has been configured in order to
obtain a random sample every 90 m leading to 127 samples.
Additionally, two configurations of the proposed method are
tested. The first one considered 15 strata and two random
points for each strata plus 127 samples from the systematic
sampling (156 points, 1 point was filtered). The second con-
figuration deals with 15 strata and one random sample per
strata plus 127 samples from the systematic sampling (142
points).

Firstly, we estimate the theoretical variogram of the entire
DEM. In this case, the raw DEM is composed of 34,741
samples leading to a computation time of 44 min (Intel Core
i7 3 GHz, 16 MB RAM). This variogram is automatically

fitted, through the least squaresmethod, by aGaussianmodel
(5th-order polynomial).

Figure 6a, b show the first experiments carried out in
order to check the performance of the systematic sampling
approach (127 samples, 0.1 s) and the stratified sampling
approach (300 samples, 0.2 s), respectively. The empirical
variograms do not fit the Gaussian model that represents the
entire DEM (black curve). An interesting conclusion from
these experiments is that the stratified sampling approach fits
the range of the Gaussian model (5167 vs 5273), but not the
sill (81164 vs 29814). In contrast, the systematic sampling
method has a smaller error in the sill (21371 vs 29814), but
there is a deviation in the range (4841 vs 5273). Notice that
the units of the sill and range are (m4) and (m), respectively.

Figure 6c, d displays the result obtained with the proposed
subsampling approach (156 and 142 samples). Observe that
the empirical variograms fit better the variogram model
obtained with the entire DEM. Especial mention is for the
case where two random samples are selected within each
strata (Fig. 6c). Here, as the range as the sill fit the theoreti-
cal variogrammodel (5089 vs 5273; 28529 vs 29814). Notice
that a deep quantitative analysis is addressed in Sect. 6.2.3.
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Fig. 7 Elevations (Airport Lake). Notice that the circles represents the subsampled points and the red profile the entire data set (raw samples). a
Systematic sampling, 127 points. b Stratified sampling, 300 points. c Combined sampling, 156 points. d Combined sampling, 142 points
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Fig. 8 Variograms (Sahara desert). The continuous line is the theoreti-
cal variogram considering all the raw samples, the blue circlesmean the
empirical variogram of each method. a Systematic sampling, 73 points.

b Stratified sampling, 195 points. c Combined sampling, 96 points. d
Combined sampling, 117 points

As shown in Figure 7, the points selected by the proposed
approach fit properly the elevation profile. Even though, in
this regard the best result is obtained using the stratified sam-
pling method.

6.2.2 Experiment 2: Sahara Desert (Chad, Africa)

This section focuses on the performance of the subsam-
pling approaches considering theSahara desert. The stratified
sampling has been experimentally configured with 65 strata
and three random samples per strata leading to 195 sam-
ples. The systematic approach has been configured in order
to obtain 73 samples. The two configurations of the pro-
posed subsampling approach are: 23 strata with one random
point for each strata plus 73 samples from the systematic
sampling. The second configuration is 23 strata with two ran-
dom samples per strata plus 73 samples from the systematic
sampling.

As in the previous experiments, the theoretical variogram
of the entire DEM is first calculated. In this case, the raw
DEM is composed of 6660 samples leading to a computa-

tion time of 1 min and 20 s (Intel Core i7 3 GHz, 16 MB
RAM). Figure 8a, b show the experiments carried out with
the systematic sampling and the stratified sampling approach,
respectively. The main result is that the empirical variograms
do not fit the Gaussian model that represents the entire DEM.
A similar behavior to the previous scenario is observed,
that is, the stratified sampling approach fits the range of the
Gaussian model (5167 vs 5273), but not the sill (81164 vs
29814). In contrast, the systematic sampling has a smaller
error in the sill (21371 vs 29814), but there is a deviation in
the range (4841 vs 5273).

Figure 8c, d display the result obtained with the proposed
subsampling approach (156 and 142 samples). Observe that
the empirical variograms fit the variogram model obtained
with the entire DEM. The best case is obtained when two
random samples are selected within each strata (Fig. 8c).
Here, as the range as the sill are similar to the theoretical
variogram model (5089 vs 5273; 28529 vs 29814). As in
the previous experiment, the proposed approach achieves
a proper performance fitting the elevation profile, see
Figure 9.

123



322 Auton Robot (2017) 41:311–331

Y [m]
-2000 0 2000 4000 6000 8000 10000

E
le

va
tio

n 
[m

]

740

750

760

770

780

790

800

810

Y [m]
-2000 0 2000 4000 6000 8000 10000

E
le

va
tio

n 
[m

]

740

750

760

770

780

790

800

810

Y [m]
-2000 0 2000 4000 6000 8000 10000

E
le

va
tio

n 
[m

]

740

750

760

770

780

790

800

810
Original
Test

Original
Test

Original
Test

(a)

(c) (d)

Y [m]
-2000 0 2000 4000 6000 8000 10000

E
le

va
tio

n 
[m

]

740

750

760

770

780

790

800

810
Original
Test

(b)

Fig. 9 Elevations (Sahara desert). Notice that the circles represents the subsampled points and the red profile the entire data set (raw samples). a
Systematic sampling, 73 points. b Stratified sampling, 195 points. c Combined sampling, 96 points. d Combined sampling, 117 points

Table 1 Summary of the performance of the subsampling approaches

No. points Comp. time Range (m) Sill (m4) ρ (variogram) ρ (elev. profile) Mean
residual (m4)

Airport Lake

Original DEM 34,741 44 min 5273 29,814 – – 8.5e3

Systematic sampling 127 0.1 s 4840 21,370 0.9988 0.9809 1.13e7

Stratified sampling 300 0.2 s 5167 81164 0.9916 0.9984 9.41e8

Combined sampling (2 points/strata) 156 0.1 s 5089 28529 0.9991 0.9862 4.73e6

Combined sampling (1 point/strata) 142 0.1 s. 4841 30332 0.9927 0.9882 2.22e7

Sahara desert

Original DEM 6660 1 min 20 s 3112 132 – – 1.97e−1

Systematic sampling 73 0.1 s 2626 75 0.9942 0.9868 2.14e4

Stratified sampling 195 0.1 s 2876 176 0.9757 0.9887 5.70e2

Combined sampling (1 point/strata) 96 0.1 s 2756 124 0.9942 0.9862 1.54e2

Combined sampling (2 points/strata) 117 0.1 s. 2897 143 0.9738 0.9944 3.16e5

6.2.3 Discussion about the subsampling experiments

In this section we analyze the results obtained with the
subsampling approaches in terms of the following metrics:
number of samples, computation time, range and sill of

the variograms, Pearson’s correlation coefficient between
the original variogram and the variogram obtained for
each sampling approach, Pearson’s correlation coefficient
between each elevation profile, and the mean of the squared
residuals between the experimental values and the fitted
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variogram model. In order to calculate the Pearson’s cor-
relation coefficients a 5th-order polynomial has been fitted
to the empirical variogram and to the elevation profile in
each case. Recall that those experiments were run in a
general-purpose computer (Intel Core i7 3 GHz, 16 MB
RAM).

Table 1 shows that the subsampling proposed method-
ology is worthy in terms of computation time and without
reducing the precision of the empirical variogram. Notice
that the best result is obtained with the two configurations
highlighted in the table (156 samples for the Airport Lake
and 96 samples for the Sahara desert). The deviation from
the original DEM is the smallest one considering all the met-

rics. It bears mentioning that the maximum similarity in the
elevation profile is usually achieved by the stratified sampling
approach. However, this approach yields a poor correlation
in terms of the variogram (Pearson’s correlation coefficient).
This research also draws the following points:

– The number of samples is not directly related to the
confidence of the empirical variogram. We demonstrate
that 156 samples (Airport Lake) and 96 samples (Sahara
desert) are better than 300 samples and 195 samples,
respectively (combined subsampling approach vs strat-
ified subsampling).

Fig. 10 Surface reconstruction
using ordinary Kriging
(stochastic model of the terrain).
The original resolutions were
30- and 90-m, respectively. The
new DEMs have a resolution of
10 m. Notice that blue color
means low uncertainty, <0.2
(m) for Death Valley and <0.05
(m) for Sahara desert. a Airport
Lake (Death Valley, CA, USA).
b Sahara desert (Chad, Africa)
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Fig. 11 Routes obtained using the D* path planner. Notice that the
min-uncertainty path goes closer to the actual sampled points. In con-
trast, the min-distance path follows a straight line between the starting
point and the goal. The mesh represents the interpolated model consid-
ering the nominal elevations (Kriging estimations)

– Regarding the sampling step, it is important to take into
account not only the elevation of the samples (stratified
sampling), but also the distance between points (system-
atic sampling). The solution that leads to the best metrics
is in fact a combination of both approaches (Pearson’s
correlation coefficient).

– The computation time can be dramatically reduced by
selecting the appropriate samples, instead of considering
the entire DEM (44 min vs 0.1 s, in case of the Airport
Lake environment).

– The suitability of the combined sampling approach is
demonstrated in terms of the range and sill of the vari-
ogram and the elevation profile.

It is important to remark that a slight variation in the shape
of the variogram (small deviation in the range or sill) has
no effect on the ordinary Kriging weights and the Kriging
estimates (elevations). It only affects the Kriging variance
(Isaaks and Srivastava 1989). For that reason, considering
the reduced-order datasets will not affect the Kriging perfor-
mance.

6.3 Ordinary Kriging and global path planning

Once a set of samples have been selected representing the
raw DEM, the next step deals with applying the ordinary
Kriging algorithm in order to obtain a new model of the
terrain at a finer resolution. In this case, 10-m resolution
models are desired, which leads to an affordable computa-
tion burden (see Remark 2 and discussion in Sect. 7). After
that, the D* algorithm is applied in order to obtain the opti-
mal route between two desired points. Recall that three cost
functions are evaluated: min-distance (the shortest route),
min-uncertainty (the route with the minimum uncertainty),
and min-slope (the flattest route).

Figure 10a details the result of applying ordinary Kriging
to the Airport Lake environment, and Fig. 10b deals with the
Sahara desert. Notice that the generated models fit properly
the original DEMs, see Figs. 4 and 5, respectively. Further-
more, it is important to highlight the small standard deviation

Fig. 12 Deterministic terrain
profile: representation of the 3D
map in terms of the maximum
slope between the 8-neighbors
around each point and D*
optimal path minimizing the
slope between points. Notice
that in order to estimate this map
the nominal value of the
elevation of each point has been
considered
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Fig. 13 Airport Lake (USA). Comparison of the three routes obtained
the D* algorithm considering the variance (uncertainty) of each point as
the cost function (min-uncertainty path), considering the elevation (min-

distance path), or the terrain profile (min-slope path). a Min-distance
route. bMin-uncertainty route. c Min-slope route

Fig. 14 Routes obtained using the D* path planner. The mesh rep-
resents the interpolated model considering the nominal elevations
(Kriging estimations)

(uncertainty) obtained. In both environments it is smaller than
0.2 (m) (blue color). Brighter colors mean larger uncertainty,
notice that they appear near the boundaries of the surfaces
because no samples are available for those regions (from the
subsampling step). The range in the standard deviation asso-
ciated to the Death Valley model is (0, 15.67) (m), the mean
value is 0.2 (m) with standard deviation 0.81 (m). For the
Sahara scenario the range is (0, 4.48) (m), the mean value is
0.05 (m) with standard deviation 0.18 (m).

After obtaining the newmodels of the terrainwithKriging,
the D* path planning algorithm is used to obtain the optimal
route according to a cost function. Figure 11 shows the min-
distance and the min-uncertainty routes for the Airport Lake.
As expected, the shortest route (straight-line) corresponds to
the min-distance line (red line). The min-uncertainty route
considers the variance of the elevation (uncertainty obtained

from Kriging). For that reason this route passes as close as
possible to the original sampled points (black dots).

Figure 12 displays a deterministic terrain profile illus-
trating the minimum slope between points (8-neighbors to
each point). In this sense, a path going through a brighter
region (yellow) would mean a flatter route (small varia-
tion in the elevation between one point and its neighbor).
On the other hand, hazards such as high slopes are repre-
sented by blue or red color, that is, the difference in elevation
between one point and its neighbors is larger than in a brighter
region. Notice that positive values (red color) mean positive
slopes (the vehicle would pitch up), and negative values (blue
color) represent negative slopes (the vehicle would pitch
down).

Figure 13 shows the three routes obtained with the D*
algorithm in the x–y plane. Observing these plots is even
easier to understand the difference between the three cost
functions. For example, the min-distance route follows a
straight line between the starting and the goal points, which
is expected. However, the min-uncertainty route follows a
different pattern. Although a longer path is generated, the
ground vehicle would move over a safer route where more
“certain points” are traversed (black points). The min-slope
route also takes a different path.

Figure 14 shows themin-distance and themin-uncertainty
routes regarding the Sahara desert scenario. Again the short-
est route (straight-line) corresponds to the min-distance line.
As expected, the min-uncertainty route passes fairly close to
the sampled points, although it means a longer path.

Figure 15 displays the deterministic terrain profile dealing
with the minimum slope between points. Notice that com-
pared to the previous scenario the Sahara desert is a flatter
scenario, the elevation range is smaller than 100 m. For that
reason, the slope angles are smaller than in the previous
environment (range 2.5◦–1.5◦). This fact explains why the
min-slope route is quite similar to the min-distance route.
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Fig. 15 Deterministic terrain
profile: representation of the 3D
map in terms of the maximum
slope between the 8-neighbors
around each point and D*
optimal path minimizing the
slope between points
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Fig. 16 Sahara desert (Chad). Comparison of the three routes obtained
the D* algorithm considering the variance (uncertainty) of each point as
the cost function (min-uncertainty path), considering the elevation (min-

distance path), or the terrain profile (min-slope path). a Min-distance
route. bMin-uncertainty route. c Min-slope route

Finally, Fig. 16 shows the three routes obtained with the
D* algorithm in the x–y plane. Notice the similarity between
the min-distance and the min-slope routes. The main differ-
ence still takes place with the min-uncertainty route. As in
the previous scenario, a longer path is generated, but with
the benefit of following a safer route (smallest uncertainty
regarding the true elevation of the terrain).

6.4 Mobility prediction

This section deals with analyzing the mobility of a vehicle
over the routes discussed in the previous section.Notice that a
maximum linear velocity of 1 (m/s) and a maximum steering
angle of 75◦ have been assumed for the testbed considering in
these experiments. The lookaheaddistance of the pure pursuit
algorithm is 4 (m), and the sampling period is 1 (s). More
technical data about the vehicle configuration is summarized

Table 2 Features of the vehicle considered in this research

Feature Value

Wheel radius (m) 0.25

Wheelbase (m) 2.5

Terminal resistance (�) 0.568

Torque constant (mNm/A) 158

Speed constant (rpm/V) 60.4

Speed/Torque gradient (rpm/mNm) 0.217

Rotor inertia (gcm2) 1320

in Table 2. Furthermore, the vehicle is equipped with two
Mason DC motors, model 253298 (one motor for traction
and another motor for steering).

It bearsmentioning that 150MonteCarlo simulations have
been carried out for each reference route and for each sce-
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Table 3 Summary of the three cost functions considered in this research

Length (m) Uncertainty (m) Elevation (m) Energy (Kw) Slope (◦)

Airport Lake (Death Valley, CA, USA)

Min-distance 12,794 0.05 830 241 2.46

Min-uncertainty 16,617 0.04 853 306 2.17

Min-slope 13,407 0.05 827 221 2.38

Sahara desert (Chad, Africa)

Min-distance 9079 0.12 766 172 1.33

Min-uncertainty 10,410 0.10 767 196 1.31

Min-slope 9216 0.19 765 174 1.59

nario. It means that a random value for the elevation of each
reference point has been generated according to the mean
value of the elevation and the Kriging variance.

Table 3 summarizes the performance of each route in
terms of the cost functions previously introduced (see Sect.
5.1). As expected, the shortest route is obtained employ-
ing the min-distance cost in the D* algorithm. The longest
route is obtained using the min-uncertainty cost because it
was shown it pursues to follow as much “true” samples as
possible.

The routewith the lowest uncertainty results from themin-
uncertainty cost. Recall that this value has been obtained
as the mean value of the Kriging variance. For that reason,
there is a clear difference between the values obtained in the
first scenario and those obtained for the second environment.
Uncertainty is larger in the Sahara desert because the original
DEM had a resolution of 90 m and the newmodel has a reso-
lution of 10 m. In contrast, the resolutions of the two models
of the Death Valley region are much more similar, 30 versus
10 m. Those results show the importance of uncertainty in
elevation and its relation with the spatial resolution.

The trajectorywith the lowestmean value for the elevation
is given by the min-slope cost. Again, this cost function is
given in terms of the average value of the mean elevation.
For that reason, when the deterministic terrain profile related
to the maximum slope angles between points is considered
by the D* algorithm, it is not surprising that it leads to the
flattest route.

One interesting conclusion is drawn from the last two
columns. First, notice that the energy spent for the twomotors
of the vehicle (steering motor and traction motor) is fairly
similar regarding the min-distance and the min-slope costs
because the length of the trajectories is similar in both cases.
Even in the first scenario the energy required for the min-
slope route is smaller than the min-distance despite the fact
it is slightly longer. This is explained because, according to
the current configuration of the vehicle (maximum steering
angle, maximum linear velocity, etc.), the min-distance route
requires more energy to be followed. On the other hand, it
bears mentioning that although the min-slope route achieves

the minimum value in terms of the mean elevation it does
not ensure the smallest value in the slope column. This is
not altogether unexpected because the min-slope route has a
larger mean uncertain value than the min-uncertainty route.
It means that after 150 runs the average value of the slope is
smaller when the uncertainty in elevation is smaller. Recall
that the index dealing with elevation is obtained as the aver-
age of the mean elevation for each route (Kriging mean), and
the column related to the slope results from simulating the
Kriging variance associated to each point during 150 runs.

The main conclusion of these experiments is that this
research demonstrates from a stochastic point of view that
the min-uncertainty route is more appropriate than the min-
distance and the min-slope routes if uncertainty in elevation
is considered. It means that a minimum value in the slope
(5th column in Table 3) would eventually lead to a lower
consumption. Recall that the fourth column, called Energy,
is only calculated for the x–y plane, it does not then account
for all the energy required to traverse the 3D world. This
issue is in fact shown through a realistic animation discussed
in the following section.

6.5 Realistic animation using ANVEL

The results obtained in this section validate the main con-
clusion drawn from the previous experiments.3 In particular,
the DEM of the Sahara desert environment has been loaded
in the robotic simulator ANVEL (Quantum Signal, http://
anvelsim.com), see Fig. 17a. After that, two different routes
have been defined: the first route constitutes a flat path, how-
ever in the second one the vehicle moves gradually through
a slope until the goal, see Fig. 17a, b. This scenario vali-
dates the importance of slope variable analyzed in previous
section and why the min-uncertainty trajectory results in the
most efficient route in terms of energy saving.

It bears mentioning that the original routes have been
shortened in order to perform an attractive animation (∼55

3 Videos about this realistic simulation are available at: http://www.ual.
es/personal/rgonzalez/videos.html.
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Fig. 17 Comparing the performance of the proposed methodology
through the realistic simulator ANVEL. Notice that the sameDEM than
used before has been loaded in ANVEL. a ANVEL configured with the

Sahara desert DEM. bRoutes followed by the vehicle (dist. =∼55m). c
Elevations. d Power required by the motor during the traverses. e Speed
during the traverses

(m) instead of the original ∼10 (km) routes). A similar vehi-
cle to the one used previously has also been employed in
ANVEL. In particular, a Jeep vehicle with a mass of 850
(kg) and a maximum velocity of 1 (m/s) has been employed.

As observed in Fig. 17c, the power required by the flat-
test trajectory (“route 1”) is smaller than that required by
the route where the vehicle has to face a slope (“route 2”)
despite the fact both routes traverse the same distance, 55 m.

In particular, the power of the first trajectory is 7300 [HP],
and the power required in order to traverse the second route is
10480 [HP]. This result demonstrates the conclusions drawn
in the previous section, that is, a flatter terrain is preferred
to a steepest route despite the traversed distance is the same.
Finally, Fig. 17d shows the forward speed of the vehicle dur-
ing the traverses. Notice that the speed achieved during the
first experiment is slightly higher than in the second case.
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This is not altogether unexpected because in the second route
a higher slip occurs.

7 Conclusions and future work

This paper presents amobility prediction strategy formanned
and unmanned ground vehicles planned to operate over large
regions (>5 × 5 (km2)). An important contribution of this
work is that we have demonstrated the importance of consid-
ering uncertainty in elevation in the cost function of the path
planning algorithm. It not only leads to a safer route but also it
couldmean a lower consumption.However, depending on the
criteria or objective selected, it might not mean the optimal
solution (e.g. when the shortest route is desired). Specifically,
two different environments with different elevation profiles
have been tested. The first one deals with a ∼13× 13 (km2)
region; the second environment has a dimensions of ∼8× 8
(km2). The reason why those two environments have been
selected is because they have two different DEM formats
and two different resolutions. The Airport Lake DEM has a
USGS format with 30-m resolution. The Sahara desert has an
SRTM format with 90-m resolution, which means points are
more sparse in the second DEM than in the first one. Notice
that 30-m resolution DEMs are only available for the US ter-
ritory so far, worldwide coverage is only available through
the SRTM format and 90-m resolution.

The computation burden is a major issue working with
actual digital elevation models of regions larger than 5 × 5
(km2) because large datasets have to be handled (e.g. Air-
port Lake DEM has almost 35,000 samples and the model
obtained with Kriging has almost 2 million points). For this
reason, identifying methods for obtaining a reduced-order
representation of that DEM constitutes a key point in this
field. In this research, a subsampling approach is proposed.
It certainly reduces computation time in the variogram calcu-
lation and in the Kriging step without reducing the precision
of the geostatistics-related metrics. Due to this contribution,
we have been able to perform Kriging over a reduced-order
representation of the DEMs. When we tried Kriging over
those scenarios with no subsampling algorithm the compu-
tation time increased dramatically (Intel Core i7 3 GHz, 16
MB RAM).

Future efforts will focus on combining uncertainty in ele-
vation with information from the terrain itself (i.e. terrain
trafficability). This issue will lead to more reliable and safer
routes. Firstly, taking into account uncertainty in elevation
will lead to more efficient routes, and secondly, considering
terrain informationwill reduce the risk of vehicle entrapment.
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