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Abstract The problem of avoiding obstacles while navi-
gating within an environment for a Unicycle-like wheeled
mobile robot is of prime importance in robotics; the aim of
this work is to solve such a problem proposing a perturbed
version of the standard kinematic model able to compensate
for the neglected dynamics of the robot. The disturbances are
considered additive on the inputs and the solution is based
on the supervisory control framework, finite-time stability
and a robust multi-output regulation. The effectiveness of
the solution is proved, supported by experiments and finally
compared with the dynamic window approach to show how
the proposed method can perform better than standard meth-
ods.

1 Introduction

Real-time obstacle avoidance for wheeled mobile robots
(WMRs) is an extensively researched field in robotics due
to an undeniable need for practical applications. In addi-
tion, a large variety of WMRs is subject to non-holonomic
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kinematic constraints; such robots (that cannot be stabilized
by smooth time-invariant static state feedback as proven in
Brockett 1983) cannot follow all trajectories at any time,
making the task more challenging.

Several algorithms and methods have been proposed to
tackle the problem depending on accessible informations.
Global solutions operate off-line, giving suitable optimized
paths between a starting point and a target; they perform
better while no unexpected situations occur. However, these
emerging situations may be handled by local path planners
which react faster using real-time sensors data; themain issue
with local planners comes from the non-optimal solution
they could provide using just local information. Local solu-
tionswere typically based on Potential Field (PF) approaches
derived from(Khatib 1985), inwhich the robot is driven along
a potential field whose minimum is at the target position and
each obstacle generates an additional repellent force. Within
the local planners directly derived from the PF approach, the
Vector Field Histogram (VFH) method firstly presented in
Borenstein and Koren (1991) (see also its more recent mod-
ifications Ulrich and Borenstein 1998, 2000) represents a
widely used solution to real-time obstacle avoidance. The
first experiments run on WMR showed the shortcomings
inherited after the PF approach: presence of traps and local
minima (Koren and Borenstein 1991). Thus, modifications
like VFH+ were proposed; this method, starting from a grid
map, evaluates the PF at each iteration for a subset of active
cells of themap, builds anobstacle histogramand reduces it to
a polar form tofinally compute the velocity commands.Alter-
native approaches were also presented, such as the Dynamic
Window Approach (DWA) (Fox et al. 1997), a predictive
technique in which the kinematics and the dynamics prop-
erties of the robot are taken into account and the control
inputs are derived from what is called velocity space after
an optimization step. As stated above, local planners cannot
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guarantee optimal results in robot navigation, and they are
commonly coupled with global planners, examples for both
VFH and DWA could be found in Ulrich and Borenstein
(2000), Kiss and Tevesz (2011), Maroti et al. (2013). Ulrich
and Borenstein (2000) proposes the VFH* approach, where
the VFH method is used to real time obstacle avoidance and
A* algorithm handles the global planning, while in Kiss and
Tevesz (2011) a receding horizon control is applied to global
DWA using global information to avoid local minima. For
the sake of completeness we cite also the velocity obstacles
(VO) method presented in Fiorini and Shillert (1998) used
for the navigation in dynamic environment and its recent
modification (Wilkie et al. 2009) which proposes the gener-
alized VO including kinematic constraints of the considered
robot.

In addition, to deal with model inaccuracies in litera-
ture various type of perturbations are considered; in Tayebi
and Rachid (2000), for instance, a constant input additive
disturbance is studied and compensated with an adaptive
approach. InDanwei andChang (2008) amost rigorous study
is carried out where slipping and skidding behaviours are
characterized and a study on the controllability is illustrated;
(Rubagotti et al. 2011) uses the formulation of (Danwei
and Chang 2008) and compensates the effects of matched
and unmatched perturbations with an integral sliding mode
approach. The contribution of this work is, thus, twofold.
Firstly, the authors consider a new formulation of the uni-
cycle model. In the considered representation, perturbations
are added to the classic kinematic model to compensate for
the neglected dynamics. These perturbations are additive to
the inputs, that comes from the intuition that if no command
is given to the WMR, then the robot will not move and, thus,
no perturbations have to be considered independently of the
control. Such a kind of disturbances could come from the set-
tling time of the PID controller, that translates the velocity
commands in current inputs and sends them to the motors.
To the best of the authors’ knowledge such a model has not
been considered before. In addition, a novel approach to local
real-time obstacle avoidance for unicycle-like WMR is pre-
sented,which is proven to be, under appropriate assumptions,
robust and finite-time convergent, as well as computation-
ally low cost. In the proposed solution, inspired by Efimov
et al. (2009), the controller and the kinematics of the WMR
are strictly tied to guarantee the avoidance. A supervisory
switching control is used to regulate two outputs: the first
objective is the stabilization of the system by regulating the
first output (distance from a target), the second objective is
related to the proximity of eventual obstacles while trying to
complete the main task. A supervisor has been designed to
oversee the switches between the two components of the con-
trol starting from (Efimov et al. 2009) and relaxing it with no
more need for dwell time and adding input disturbances. The
result is presented taking into account the notions of stabil-

ity for switched system (Liberzon 2003) and input-to-output
stability (Sontag and Yuan 1999; Hespanha et al. 2003).

2 Theoretical formulation

Consider the following system (a WMR model):

ẋ = f (x, u, d), z1 = h1(x), z2 = h2(x), (1)

where x ∈ R
n is the state, u ∈ R

m is the control input and
d ∈ R

m is a disturbance, the signal d ∈ � = {d ∈ L∞
m :

||d|| ≤ D} for some D ∈ R+.
We want to regulate the outputs z1 ∈ R

p1 and z2 ∈ R
p2

assuming that the functions h1 and h2 are continuous with
f : Rn+2m → R

n . It is needed to design a control u : Rn →
R
m that will provide the uOS1 property with respect to the

output z1, and will keep the second output z2 in a predefined
limit. In other words, to achieve the desired tasks it is needed
that for all initial conditions x0 ∈ R

n , d ∈ � and t ≥ t0 ≥ 0:

|z1(t, x0, d)| ≤ β1(|h1(x0)|, t − t0), (2)

|z2(t, x0, d)| ≤ max{σ(Δ), β2(|h2(x0)|, t − t0)}, (3)

the value of Δ is given, β and β1 areKL2 functions whereas
σ is a function of class K. It can be noted that (2) is exactly
the definition of the uOS property. The second output must
be smaller than σ(Δ). In the case |h2(x0)| > Δ the trajec-
tory should converge to a subset where |h2(x)| ≤ σ(Δ).
In addition, to solve the problem we need that the inter-
section between the sets h1(x) = 0 and |h2(x)| ≤ σ(Δ)

would not be empty, thus we assume the existence of a func-
tion ρ of class K and a scalar 0 < ρ0 < σ(Δ) such that:
|h2(x)| ≤ ρ(|h1(x)|) + ρ0.

2.1 Description of independent controls

Thus the problem consists in an output uniform stabilization
under constraints imposed on another output. Following Efi-
mov et al. (2009), assume that two right-continuous controls
ui : Rn → R

m , i ∈ {1, 2} are given solving an independent
stabilization for the corresponding output zi , i.e. the system

ẋ = f (x, ui (x), d), zi = hi (x),

1 A forward complete system ẋ = f (x, u, d), y = h(x) is called uni-
formly Output-Stable (uOS) with respect to output y and input d, if
for all x0 ∈ R

n and d ∈ � there exists a function β ∈ KL such that
|y(t, x0, d)| ≤ β(|h(x0)|, t − t0) for all t ≥ t0.
2 A continuous function g : R+ → R+ belongs to classK if it is strictly
increasing and g(0) = 0; A continuous function h : R+ × R+ → R+
belongs to classKL, if h(·, t) ∈ K for any t ∈ R+, and h(s, ·) is strictly
decreasing to zero for any s ∈ R+.
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is forward complete and has continuous solution x(t, x0, d),
in addition the system is uOSwith respect to the output zi and
disturbance d ∈ �. We also assume that during an activation
of u2 for all t ≥ 0

|z1(t, x0, d)| ≤ |h1(x0)|.

Next subsection is devoted to uniting of these controls in
order to solve the posed problem.

2.2 Supervisory control

Under the assumption of having two controls which solve the
output regulation for z1 and z2 independently, a supervisor is
proposed to oversee the activation of the controls to achieve
both required condition (2) and (3) simultaneously. The idea
is that the controller u2 is activated when |z2(x)| reaches a
thresholdΔ and remains active until the constraint |z2(x)| ≤
δ is satisfied, where 0 < δ < Δ is a given parameter. For this
reason we define two sets

X1 = {x ∈ R
n : |h2(x)| ≤ δ},

X2 = {x ∈ R
n : |h2(x)| ≤ Δ},

X1 ⊂ X2.

Then the control

U (t) = ui(t)(x(t)), i : R+ → {1, 2} (4)

is ruled by

t0 = 0, i(t0) =
{
1 if x(t0) ∈ X2,

2 otherwise,

while i(t) = i(t j ) for t ∈ [t j t j+1), and

i(t j+1) =
{
1 if x(t j+1) ∈ X1

2 if x(t j+1) /∈ X2
, (5)

where t j is a generic switching instant defined as follows:

t j =

⎧⎪⎨
⎪⎩
arg inf
t≥t j

{x(t) /∈ X2} if i(t j ) = 1

arg inf
t≥t j

{x(t) ∈ X1} if i(t j ) = 2
.

The controlU has the u1 part active if |z2| < Δ, whichmeans
that we are stabilizing the output z1 according to condition
(2). If |z2| becomes greater or equal than Δ, then u2 will
be activated driving z2 to a value less than δ according to
condition (3). Inside the set H = X2\X1 the control will not
be switched, this set acts as a hysteresis zone being helpful to
avoid a chattering phenomena of switching between u1 and

u2. A similar supervisor has been introduced in Efimov et al.
(2009), but in the present work the dwell time condition is
not imposed replaced by the following assumption:

Assumption 1 supx∈H,d∈�,i∈{1,2} | f (x, ui (x), d)| = F <

+∞.

This assumption states that the system velocity on the set
H is finite, then since F < +∞ and d ∈ � there exists
a dwell-time delay τD > 0 between any two switches, i.e.
t j+1 − t j ≥ τD for all j ≥ 0. The conditions for solution of
the posed problem using the supervisory control algorithm
(4), (5) are described in the following theorem.

Theorem 1 Let Assumption 1 be satisfied and β1(s, τD) =
λs for all s ∈ R+ and some 0 ≤ λ < 1. Then the system (1)
with supervisor (5) and control (4) is forward complete and
for all initial conditions x0 ∈ R

n, d ∈ � and t ≥ 0:

|z1(t, x0, d)| ≤ β1(|h1(x0))|, 0),
|z2(t, x0, d)| ≤ max{σ(Δ), β2(|h2(x0)|, t − t0)},
lim

t→+∞ |z1(t, x0, d)| = 0,

where σ(s) = β2(s, 0).

Proof The existence of dwell-time τD > 0 implies right-
continuity of the switching signal i(t), the same property
for the right-hand side of the system (1), (4), (5) (due to
composition limit rule) and continuity of the system solutions
with the absence of chattering. Since for both ui , i ∈ {1, 2}
the solutions of the system are well defined for all t ≥ 0, then
a finite-time escape phenomenon is impossible and solutions
of the switched system (1), (4), (5) are well defined for all
t ≥ 0.

By definition of a function from class KL, there exists
0 < T2 < +∞ such that δ = β2(Δ, T2). For both controls
the following inequalities are satisfied for the outputs:

⎧⎨
⎩

i(t) = 1 ∀t ∈ [t j , t j+1),

|z1(t, x(t j ), d)| ≤ β1(|h1(x(t j ))|, t − t j ),
|z2(t, x(t j ), d)| ≤ ρ ◦ β1(|h1(x(t j ))|, t − t j ) + ρ0,

(6)

⎧⎨
⎩

i(t) = 2 ∀t ∈ [t j , t j+1),

|z2(t, x(t j ), d)| ≤ β2(|h2(x(t j ))|, t − t j ),
|z1(t, x(t j ), d)| ≤ |h1(x(t j ))|.

(7)

Therefore, the following scenarios are possible. First, x(0) ∈

 = {x ∈ R

n : ρ ◦ β1(|h1(x)|, 0) + ρ0 ≤ Δ}, then
x(0) ∈ X2, i(0) = 1 and, according to (6), i(t) = 1 with
|z2(t, x(0), d)| ≤ Δ for all t ≥ 0 (the estimates (6) are satis-
fied for all t ≥ 0, this scenario corresponds to the casewithout
collisions in theWMR example). Second, x(0) ∈ X2 \
 and
there exists 0 < t1 < +∞ such that (6) is satisfied for
t ∈ [t0, t1) and
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|h2(x(t1))| = Δ,

|z1(t1, x(t0), d)| ≤ β1(|h1(x(t0))|, t1 − t0)

≤ β1(|h1(x(t0))|, τD)

= λ|h1(x(t0))| < |h1(x(t0))|.

Note that if t1 = +∞, then this case is identical to the first
scenario. Thus according to (7)

|z2(t, x(t1), d)| ≤ β2(Δ, t − t1) ∀t ∈ [t1, t2),
|z2(t2, x(t1), d)| = δ,

|z1(t, x(t1), d)| ≤ |z1(t1)| ≤ λ|h1(x(t0))| ∀t ∈ [t1, t2),

where t1 < t2 ≤ t1 + T2. Summarizing these estimates we
get

|z1(t, x(t0), d)| ≤ β1(|h1(x(t0))|, 0) ∀t ∈ [t0, t2),
|z2(t, x(t0), d)| ≤ β2(Δ, 0) ∀t ∈ [t0, t2),
|z1(t2, x(t0), d)| ≤ λ|h1(x(t0))|.

Next, there exists a sequence of time instants t2k , 0 ≤ k ≤
K ≤ +∞ with i(t) = 1 for all t ∈ [t2k, t2k+1) and i(t) = 2
for all t ∈ [t2k+1, t2k+2). Repeating the arguments above we
obtain

|z1(t, x(t0), d)| ≤ β1(|h1(x(t0))|, 0) ∀t ∈ [t0, t2k+2),

|z2(t, x(t0), d)| ≤ β2(Δ, 0) ∀t ∈ [t0, t2k+2), (8)

|z1(t2k+2, x(t0), d)| ≤ λk |h1(x(t0))|

for any 0 ≤ k ≤ K . Assume that K < +∞, then it means
that i(t) = 1 for all t ≥ t2K (the control u2 can be active on
a finite interval only by its definition) and from (6)

|z1(t, x(t0), d)| ≤ β1(|h1(x(t2K ))|, 0)
≤ β1(|h1(x(t0))|, 0) ∀t ≥ t2K ,

|z2(t, x(t0), d)| ≤ Δ ≤ β2(Δ, 0) ∀t ≥ t2K ,

lim
t→+∞ |z1(t, x(t0), d)| = 0,

i.e. it is a situation similar to the first scenario. If K = +∞,
then from (8) with k → +∞ we have the same properties,
consequently

|z1(t, x(t0), d)| ≤ β1(|h1(x(t0))|, 0) ∀t ≥ t0,

|z2(t, x(t0), d)| ≤ β2(Δ, 0) ∀t ≥ t0, (9)

lim
t→+∞ |z1(t, x(t0), d)| = 0.

Third, x(0) /∈ X2 and in this case there is a time instant t1 > t0
such that the estimates (7) are satisfied for all t ∈ [t0, t1)

|z2(t, x(t0), d)| ≤ β2(|h2(x(t0))|, t − t0),

|z1(t, x(t0), d)| ≤ |h1(x(t0))|

and |z2(t1, x(t0), d)| = δ. Since x(t1) ∈ X2 the following
system behaviour is similar to the second scenario and from
(9) we obtain

|z1(t, x(t0), d)| ≤ β1(|h1(x(t0))|, 0) ∀t ≥ t0,

|z2(t, x(t0), d)| ≤ β2(max{Δ, |h2(x(t0))|}, 0) ∀t ≥ t0,

lim
t→+∞ |z1(t, x(t0), d)| = 0.

Therefore, these estimates are satisfied in all three possible
scenarios for all t ≥ 0, that is necessary to prove. 
�

3 Application to unicycle-like WMR

Let us consider the following unicycle-like WMR kinematic
perturbedmodel, in which the input is affected by an additive
disturbance as explained in Sect. 1:

q̇x = cos(qθ )v(1 + d1),

q̇y = sin(qθ )v(1 + d1), (10)

q̇θ = ω(1 + d2),

where (qx , qy), qx , qy ∈ R, define the Cartesian position of
the robot, and qθ ∈ [0, 2π ] is the orientation of the robot with
respect of the world reference frame, v and ω are the control
inputs, respectively the linear velocity and the angular veloc-
ity. The additive disturbances on the inputs are unknown, but
supposed to be bounded, −1 < dmin ≤ di ≤ dmax , i = 1, 2.
The lower bound, dmin > −1, ensures that the disturbance
does not induce a change of sign of the control v. To achieve
the tasks the robot has to be driven to the origin avoiding
obstacles that it could, eventually, encounter during the path.
As a solution, two independent controllers can be designed
to reach the goals (i.e. stabilization at the origin and colli-
sion avoidance) with their posterior uniting (Efimov et al.
2009). These controls can be designed in order to regulate
two different outputs:

z1(qx , qy) =
√
q2x + q2y , (11)

z2(qx , qy)

= min

[
Y, max

1≤i≤N

(√
(qx − xoi )

2 + (qy − yoi )
2

)−1
]

,

(12)

where z1 is the distance from the origin and z2 is the inverse
of the distance from the closest obstacle represented by its
Cartesian position (xoi , yoi )i,...,N , with N is a finite number
of obstacles, Y > 0 is a parameter ensuring global bound-
edness of z2 and related with dimensions of the obstacles.
Clearly, driving z2 to a sufficiently small value means to
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move away from an obstacle avoiding it. Under the assump-
tion that between the obstacles there was enough space we
can consider one obstacle each time without loosing gener-
ality.

3.1 Control tasks

In this subsection two finite-time controllers (ui , i ∈ {1, 2})
are designed for (10); the former one is designed to regulate
the output z1 (11), for the stabilization part, and the second
one is to regulate the output z2 (12), providing the collision
avoidance. The main feature of these controls is that all con-
trol tasks are solved not asymptotically, but in a finite time
(Guerra et al. 2014).

3.1.1 Stabilization

It is required to design a control u1 in order to drive the
robot to the desired point, in our case the origin. Consider
the output z1(qx , qy) and the Lyapunov function V1 = 0.5z21.

Let us define θ0 = arctan

(
qy
qx

)
3 and α = qθ − θ0 − π ,

α ∈ [−π, π), the deviance from the desired final orientation
θ0 + π , then:

V̇1 = ż1z1 (13)

= qx q̇x + qyq̇y√
q2x + q2y

√
q2x + q2y (14)

= qx q̇x + qyq̇y; (15)

by applying simple trigonometric rules, one can rewrite
qx = z1 cos θ0 and qy = z1 sin θ0. Using the equalities just
depicted and by substitution from (10), it follows that

V̇1 = v(1 + d1)z1 (cos qθ cos θ0 + sin qθ sin θ0) . (16)

Using the equality cos (α − β) = (cosα cosβ + sin α sin β)

we can rewrite:

V̇1 = cos(qθ − θ0)v(1 + d1)z1. (17)

it follows that:

V̇1 = − cos(α)v(1 + d1)z1,

(Fig. 1 shows a schematic unicycle, the black shape, and a
visual description of the listed angles). The proposed control
is

3 Whether in the definition the usual arctan( y
x ) is presented, in the

implementation is convenient to use the four-quadrant arctanget,
atan2(y, x), function to avoid the robot to turn away from the objective.
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Fig. 1 Definition of the angles for the Stabilization control law

v =
{
k1z1 if|α| ≤ kπ

0 otherwise
,

with k1 positive and 0 < k ≤ 0.5. Then we can ensure the
semi-definiteness of V̇1:

{
V̇1 ≤ − cos(α)(1 − dmin)k1z21 if |α| ≤ kπ

V̇1 = 0 otherwise
.

Then

V̇1 ≤ −2c1V1 f or |α| ≤ kπ,

where c1 = k1 cos(kπ)(1 − dmin). The control v operates
only on the linear velocity of the robot, to steer it we act on
the α dynamics that can be expressed like:

α̇ = ω(1 + d2) + sin(α)z−1
1 (1 + d1)v.

Using the Lyapunov function V2 = 0.5α2 and analyzing the
equation V̇2 = ωα(1+d2)+α sin(α)v(1+d1)z

−1
1 , we notice

that the term depending on v is equal to zeromost of the time,
and it differs from zero for |α| ≤ kπ (α is small enough):

V̇2 =
{

ωα(1 + d2) + k1α sin(α)(1 + d1) if |α| ≤ kπ

ωα(1 + d2) otherwise
.

Thus the control applied to steer the robot is

ω = −k2ζ(α)sign(α), k2 ≥ (1 + dmax )k1 + 2−3/4η1

1 − dmin
,

ζ(α) = max{|α|0.5, |α|}, η1 > 0, (18)
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then

V̇2 ≤

⎧⎪⎨
⎪⎩

−k2|α|ζ(α)(1 − dmin)

+k1α2(1 + dmax ) if |α| ≤ kπ

−k2|α|ζ(α)(1 − dmin) otherwise.

Since |α|ζ(α) ≥ α2 we obtain:

V̇2 ≤ −η1 max
{
V2, V

3/4
2

}
,

the k2 gain allows us to compensate the disturbances. There-
fore, solving the differential equation for V2(t) and obtaining
α(t) from the V2 definition, one can find out the following
upper estimate:

|α(t)| ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|α0|e−0.5η1(t−t0) if t ∈ [t0, t1],√
2[min{1, 2−1/4√|α0|}

−2−2η1(t − t1)]2 if t ∈ (t1, t2],
0 if t > t2,

(19)

t1 = t0 + max
{
0, η−1

1 ln(0.5α2
0)

}
,

t2 = t1 + 2−2η−1
1 min

{
1, 2−1/4

√|α0|
}

,

where t0 ≥ 0 is the instant when this control has been acti-
vated and α0 = α(t0) ∈ [−π, π) is the initial condition.
Therefore, there exists 0 ≤ T1(α0) < ∞ for allα0 ∈ [−π, π)

such that |α(t)| < kπ for all t ≥ t0 + T1(α0). Indeed, the
dynamics of α with v = 0 helps to compute

T1(α0) ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
max

{
0, 2

η1
ln

( |α0|
kπ

)}
if kπ ≥ 1,

t1 + 4η−1
1 [min{1, 2−1/4√|α0|}

−2−1/4
√
kπ ] otherwise.

Since |α0| ≤ π we finally obtain

T1(π) = η−1
1

{
−2 ln(k) if kπ ≥ 1,

ln(0.5π2) + 4(1 − 2−1/4
√
kπ) otherwise.

Thus it follows that

z1(t) ≤ z1(t0)min{1, e−c1(t−T1(π)−t0)} ∀t ≥ t0. (20)

Based on the expressions for v and ω, the control u1 can be
summarized as follows:

u1 =

⎧⎪⎨
⎪⎩

v =
{
k1z1 if |α| ≤ kπ

0 otherwise
,

ω = −k2ζ(α)sign(α).

(21)

The following result has been proven.

Lemma 1 In the system (10) with control (21) the estimates
(20) and (19) are satisfied (a uniform exponential stabiliza-
tion for z1 and a uniform finite-time stabilization for α).

3.1.2 Obstacle avoidance

To design a controller for collision avoidance we define
each obstacle as a point in the plane and a safe distance
to be maintained. Each obstacle is an element of the set
O = {(xoi , yoi , ρi,min)}i=1,...,N , with N number of possi-
ble obstacles, Y = 1/min1≤i≤N {ρi,min}. Each obstacle is
entirely contained in the circle of radius ρi,min which is a
distance designed considering the radius of the obstacle itself
and a distance equal to the radius of the circle in which the
robot can be inscribed.

The switch (collision avoidance algorithm activation)
occurs when the robot reaches a distance ρi > ρi,min , which
adds an additional safety level to the collision avoidance
maneuver. We want to ensure the avoidance thus augment-
ing the distance from ρi to a predefined Ri > ρi using a
control u2, which has to be designed. In terms of the output
z2 we want to decrease it from Δi = ρ−1

i to δi = R−1
i ,

moreover it is required that the output z1 will not increase
during/after the activation of the control u2. Assume that

max1≤i≤N 1/
√
x2oi + y2oi < min1≤i≤N δi , i.e. the origin is

well separated from an obstacle. It is also assumed that
Υi ∩ Υ j = ∅ for any i �= j ∈ {1, . . . , N }, where Υi =
{(qx , qy) ∈ R

2 : (qx − xoi )
2 + (qy − yoi )

2 ≤ R2
i } =

{(qx , qy) ∈ R
2 : z2(qx , qy) ≥ δi }, i.e. any two obstacles

are separated and the collision avoidance problem can be
addressed for an isolated obstacle.

In order to design the control u2 we need to plan a strategy
to move from Δi to δi . The goal of the collision avoidance
control will be to reach a new point B = (xB, yB) such
that z1(xB, yB) ≤ z1(qx (tca), qy(tca)) and z2(xB, yB) ≤ δi ,
where tca is the instant of time in which the control u2 is
switched on, i.e. z2(qx (tca), qy(tca)) = Δi . An algorithm
for the point B selection is explained below.

A preliminary point B− is defined as an intersection point
of the circle centered in (xoi , yoi ) of radius Ri and the tangent
line to the circle centered at (xoi , yoi ) of radius Δi (the red
one in Fig. 2). Although this approach is very efficient, it
does not provide the second requirement of the control, i.e.
ż1(t) ≤ 0, in the case when the robot, the obstacle center
and the origin are on the same straight line. In this case a
preliminary B− pointwill be in the intersectionof twocircles:
the first centered in (xoi , yoi ) of radius Ri (the green one in
Fig. 2) and the second circle centered at the origin of radius
|z1(tca)| (the black one in Fig. 2).

In both cases to determine the final coordinates of B, the
distance ρi,min is used (as a limit not to cross), represented in
Fig. 2 with the blue circle, which provides, on the circle with
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the center (xoi , yoi ) and radius Ri , the point Blim . The point
Blim is an intersection of a straight line initiated at the robot
position and tangent to the circle centered in (xoi , yoi ) with
radius ρi,min . Finally the point B ′ is selected on the circle
of radius Ri between the points Blim and B− taking a safe
distance from themproportional to dmax (in order to avoid the
risk of being steered backward due to a disturbance). Finally,
the point B = (xB, yB) is selected on the line passing the
current robot position and the point B ′ with the condition
that z2(xB, yB) < δ (outside the set Υi , green circle Fig.
2). With such a selection of the point B it is possible to
achieve the avoidance and to keep, in addition, the condition
ż1(t) ≤ 0. Once the point B is defined, the control u2 must
drive the robot to this point. Thus the collision avoidance
problem can be solved using a similar approach as the one
in the previous subsection, replacing the origin by the point
B and taking into account the additional constraint dealing
with non-increasing of z1. Define the distance from the robot
to the point B as

DB(qx , qy) =
√

(qx − xB)2 + (qy − yB)2;

in such a formulation the imposed restriction z2(xB, yB) < δ

becomes crucial and the point B will not be reached dur-
ing the collision avoidance manoeuvre. It is important, since
in the desired point the robot loses stabilizability. Define
ϑ = inf(x,y)∈Υi DB(qx , qy) the distance from the point B
to the set Υi . Let us define the angle of desired orientation

of the robot towards the point B as θg = tan−1
(
qy − yB
qx − xB

)
,

then the deviance from the desired angle for the collision
avoidance control can be defined as γ = θg − qθ , then
ḊB = − cos(γ )v(1 + d1). The expression for v is proposed

as follows:

v =
{
k3DB if cos(α) ≥ 0 and |γ | ≤ επ

0 otherwise
,

where k3 > 0 and 0 < ε < 0.5. Since this control has to be
applied into the setΥi only, then v ≥ k3ϑ . Due to the applica-
tion and the velocities reached by the WMR setting instantly
v = 0 does not represent a problem because, although it
call off the considered disturbances, the deceleration from
any velocity to the zero could be considered instantaneous
with no loss of generality.4 For the designed control v, a Lya-
punov function W1(DB) = 0.5D2

B has the derivative (after
some manipulations):

Ẇ1 ≤
{

−2c2W1 if cos(α) ≥ 0 and |γ | ≤ επ

0 otherwise
,

where c2 = k3 cos(επ)(1 − dmin). The angle γ has the fol-
lowing dynamics

γ̇ = −ω(1 + d2) + sin γ

yB
v(1 + d1). (22)

Using the Lyapunov function W2 = 0.5γ 2 we obtain:

Ẇ2 = −ωγ (1 + d2) + γ
sin γ

yB
v(1 + d1).

Being ζ(γ ) = max{|γ |0.5, |γ |}, the proposed expression for
the control ω has the form:

ω = kd γ̇ + sin γ

DB
v + kcaζ(γ )sign(γ ), kd > 0,

kca ≥ k3

√
π(dmax − dmin)[1 + kd(1 + dmax )]

(1 − dmin)[1 + kd(1 − dmin)] (23)

+ 2−3/4η2
1 + kd(1 + dmax )

1 − dmin
, η2 > 0.

A straightforward calculation shows that

Ẇ2 ≤ −η2 max
{
W2,W

3/4
2

}
,

4 The proposed model is not intended to represent also inertia phenom-
ena that are those one should consider in case of de abrupt deceleration
from high velocity to zero.
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thus, as for (19), an estimation for γ (t) can be provided:

|γ (t)| ≤

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|γ0|e−0.5η2(t−tca) if t ∈ [tca, t3],√
2[min{1, 2−1/4√|γ0|}

−2−2η2(t − t3)]2 if t ∈ (t3, t4],
0 if t > t4,

(24)

t3 = tca + max
{
0, η−1

2 ln(0.5γ 2
0 )

}
,

t4 = t3 + 2−2η−1
2 min

{
1, 2−1/4

√|γ0|
}

,

where tca ≥ 0 is an instant of activation of the control u2
and γ0 = γ (tca). Thus the proposed control steers the robot
in a finite time to the desired orientation, indeed there exists
0 < T2 < ∞ such that γ (tca+T2) < επ for all γ ∈ [−π, π):

T2 = η−1
1

{
−2 ln(ε) if επ ≥ 1,

ln(0.5π2) + 4(1 − 2−1/4√επ) otherwise.

Following the geometric construction of the point B the
inequality cos(α)|γ=0 > 0 is verified, then there is a time
instant tca ≤ t̄ ≤ T2 such that the conditions cos(α(t)) ≥ 0
and |γ (t)| ≤ επ (involved in the control v activation) are
satisfied for t ≥ t̄ , starting from the instant t̄ the robot starts to
move without an interruption since v ≥ k3ϑ . Therefore, with
the decreasing properties of γ , the distance DB is decreasing
and admits an estimate:

DB(t) ≤ DB(tca)e
−c2(t−T2−tca), ∀t ≥ tca .

Since the point B is located outside the set Υi , then there
is a finite time Tca > tca such that z2(Tca) = δ, hence the
collision avoiding is accomplished. It is worth to stress that
it is possible to have a local increment of the regulated out-
put z2 due to the geometric construction of the point B. On
the other hand, after a certain amount of time the output z2
decreases with the controller v. In addition, as it has been
shown above, it is not possible to steer the robot toward the
obstacle, and the robot itself will not enter the circle of radius
ρi,min . The output y1 does not increase during the collision
avoiding maneuver since the constraint cos(α) ≥ 0 has been
introduced in the control v (and v is positive).

The controller u2 for the two control inputs v andω pushes
the robot in a finite time toward a point far from the obsta-
cle, while keeping the distance y1. The control u2 can be
summarized as follows:

u2 =

⎧⎪⎨
⎪⎩

{
k3DB if cos(α) ≥ 0 and |γ | ≤ επ

0 otherwise
,

ω = kd γ̇ + sin γ
DB

v + kcaζ(γ )sign(γ ).

(25)

The following properties have been substantiated.

Lemma 2 The system (10) with control (25) has the proper-
ties for tca ≥ 0:

1. Uniform finite-time stability with respect to the variable
γ (t) (see the estimate (24)).

2. There exists Tca > tca such that δi ≤ z2(t) < ρ−1
i,min for

all t ∈ [tca, Tca] and z2(Tca) = δi .
3. V̇1(t) ≤ 0 for all t ∈ [tca, Tca].

3.2 Supervision

For commutation between the controls (21) and (25) the fol-
lowing supervisor is proposed:

U (t) = ui(t)[qX (t), qy(t), qθ (t)], i : R+ → {1, 2} (26)

t0 = 0, i(t0) =
{
1 if (qx (t0), qy(t0) ∈ X2,

2 otherwise,

i(t) = i(t j ) ∀t ∈ [t j t j+1),

i(t j+1) =
{
1 if q(t j+1) ∈ X1

2 if q(t j+1) /∈ X2
, (27)

t j =

⎧⎪⎨
⎪⎩
arg inf
t≥t j

{q(t) /∈ X2} if i(t j ) = 1

arg inf
t≥t j

{q(t) ∈ X1} if i(t j ) = 2
.

where X1 : {(qx , qy) ∈ R
2 : R

2 \ ∪N
j=1Υ j } and X2 :{

(qx , qy) ∈ R
2 : R2 \ ∪N

j=1
 j

}
, 
 j = {(qx , qy) ∈ R

2 :
(qx − xo j )

2 + (qy − yo j )
2 ≤ ρ2

i }. Thus the control u1 is
applied if z2 < δ j and the control u2 has to be activated if
z2 = Δ j for some j ∈ {1, . . . , N }. The following corollary
represents the main result applied to a unicycle-like WMR.

Corollary 1 Consider the system (10) with the supervisor
(27) and control (26), then:

z1(t) ≤ z1(0) ∀t ≥ 0,

lim
t→∞ z1(t) = 0,

z2(t) ≤ max{σ(Δ), z2(0)} ∀t ≥ 0,

where Δ = max1≤i≤N Δi and σ(s) = s/(ΔY ).

4 Experimental results

The presented strategy has been implemented on a Turtle-
bot2 (http://www.turtlebot.com/) mobile robot. The WMR
was equipped with a Hokuyo® (http://www.hokuyo-aut.jp)
UTM-30LX LIDAR device. The necessary libraries to com-
municate with the WMR were found on Robotic Operating
System (ROS), “Groovy” release (www.ros.org). An easy
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Algorithm 1 Supervisor
Flag = Supervisor(z2,Flag) {

if z2 ≥ Δ && Flag == 1
B = getbp(state, z2);#Sect. 3.1.2
Flag = 2;

elseif z2 ≤ δ

Flag = 1;
end

}

Algorithm 2 Main Code
Flag = 1;
(x, y) = getpos(laser_scan);
z2 = getz_2(laser_scan);
while||(x, y)|| ≤ ε1

#Not arrived at the origin
Flag = Supervisor(z2, Flag);
if Flag ==2

(v, ω) = U2(state,B);#eq.(25)
else

(v, ω) = U1(state); #eq.(21)
end

state_update(v, ω);
(x, y) = getpos(laser_scan);
z2 = getz_2(laser_scan);
end

LIDAR based obstacle detection algorithm has been imple-
mented to get obstacle(s)’ positions (xoi , yoi ) and radius
ri used to define also the values of ρi,min = ri + 0.3,
ρi = ρi,min + 0.3 and Ri = ρi + 0.35. The values of ε and k
are equal to 1/30, the control gains are k1 = η = 0.5 for the
stabilization controller and k3 = 1.5, kca = 0.1 , kd = 0.05
for the collision avoidance one while dmax = −dmin = 0.5.
Several scenarios have been tested for the presented Finite
Time Obstacle Avoidance (FTOA) technique, in addition the
performances have been compared with the well know DWA
(Fox et al. 1997) which is included in the ROS.

The implementation of the algorithm can be divided in two
main parts. Firstly, Algorithm 1 translates in pseudo-code
the supervisor (27) which regulates the switching between
the two controls. The if statement determines the activation
of the collision avoidance control and it can be noticed that
such controller is kept active until the condition in the elseif
statement is verified, that is when theWMRexits the circle of
radius Ri . The function getbp(state,z2) follows the instruc-
tions presented in Sect. 3.1.2 to determine the B point, while
the variable Flag assures that the controller is not switched
when the WMR is in the zone between Δi and δi . Secondly,
Algorithm 2 represents the complete proposed algorithm
where firstly the laser scans are used to localize the robot
in a map (getpos(laser_scan)) then to evaluate the presence
of an eventual obstacle (getz_2(laser_scan)). As can be seen
by analyzing the two algorithms the FTOA method is also

very simple to implement requiring very few steps and, as a
result, very low computational power.

4.1 Experimental behaviour

Figures 3 and 4 show the different trajectories followed by
the WMR using two different methods on different soil’s
condition. The decision to run tests on two different soils
has been taken for two main reasons: firstly, to justify the
choice of the perturbed model (10), then to show the robust-
ness of the controller designed in Sect. 3 with respect to this
change. Without adapting the PID gains which translates the
velocities commands in current inputs, the soil properties
represent a real perturbation for the system, because for the
same velocity input the WMR reacts differently following
different trajectories. It can be seen how the proposedmethod
handles these perturbations in a better way than traditional
strategies producing repeatable trajectories. In Fig. 3, for a
coarse soil (moquette), it can be noticed that all the trajecto-
ries generated by the FTOA are close to each other and that
they change (even if not much) for the DWA. Repeating the
experiment on a smooth soil (linoleum), Fig. 4, the changes in
the trajectories are more clear, that it is given by the reduced
friction between the wheels and the soil that caused grip
issues for the WMR. Again, the FTOA method gives better
results (repeatability, time spent, distance traveled) than the
DWA.

The comparison between FTOA and DWA for the scenar-
ios showed in Figs. 3 and 4, with equal maximal linear and
angular velocities, based on 10 trials, showed that the FTOA
can achieve the avoiding in a faster (wrt time) and shorter
(wrt distance) way; detailed results are presented in Tables 1
and 2.

In addition, Fig. 5 shows how the outputs behave in a
typical stabilization execution from a point to the origin; the
vertical black lines represent the switching instants. The data
comes froman execution for the scenario shown inFig. 3. The
z2 output (12) decreases between two successive switches
and it is worth to remark that z1 output (11) never increases,
not even during the collision avoidance maneuver; that is
exactly how the controllers (21) and (25) overseen by the
supervisor (27) should work.

4.2 Discussion

Trying not to increase the distance from the target point
(in this work the origin with any loss of generality) over
the complete maneuver causes the robot having trajectories
less smooth than other methods but, as it has been proven,
this behavior does not worsen the overall performances. The
smoothness of the trajectories can be adjusted augmenting
the parameters k for (21) and ε for (25) that will cause a
decay in the performances wrt time spent and distance trav-
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Fig. 3 Left Real scenario with
coarse soil (moquette). Right
Zoom on trajectories
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Fig. 4 Left Real scenario with
smooth soil (linoleum). Right
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Table 1 Comparison between FTOA method and DWA on coarse soil

DWA FTOA

Min Max Average Min Max Average

Time (s) 22.43 26.30 24.41 14.2 19.2 16.47

Distance (m) 4.23 4.39 4.32 3.83 3.92 3.86

eled as it is obvious. Moreover, under the assumption to deal
with the single obstacle, the proposed method has no issues
related to small non-convex obstacles because of the way the
collision avoidance is realized and the obstacle described,
nevertheless, being a reactive (local) method, there is a high
probability that it fails if the WMR is trapped in a U-shaped

Table 2 Comparison between FTOAmethod and DWA on smooth soil

DWA FTOA

Min Max Average Min Max Average

Time (s) 25.36 42.95 32.00 16.2 19.1 18.4

Distance (m) 5.42 6.10 5.79 4.36 4.86 4.59

trap, like others local approaches. Other inconvenient could
appear if the obstacle has a very long shape (awall), that could
cause an unwanted oscillatory behaviour. All the issues listed
above could be solved integrating the algorithm in a global
planner which gives suitable points as targets to stabilize pro-
gressively.
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5 Conclusion and future work

The paper presented a switching based solution to stabilize
a unicycle-like WMR, locally avoiding obstacles and reject-
ing disturbances due to neglected dynamics. A supervisor
orchestrates two different controls to regulate two respective
outputs. It has been shown how the cooperation of the two
controls leads to a practically finite-time robot deployment,
while the collision avoidance is always achieved in a finite
time. In addition, the results of this work have been proven
and tested on a real platform to show the effectiveness of the
method also comparing it with a well-known method as the
DWA. The presented solution treats the case of static obsta-
cles but several experiments have been run with slowmoving
obstacles with preliminary results; it is in the intention of the
authors to extend the results for moving obstacles. Future
work will also involve the integration of the proposed strat-
egy in a global planner as specified in Sect. 4.2 to overcome
the limitations of the method and to relax the hypothesis of
circular shaped obstacles. Moreover the introduction of per-
turbations to adapt the model for higher velocities will be
considered.
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