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Abstract The goal of search is to maximize the probability
of target detection while covering most of the environment
in minimum time. Existing approaches only consider one of
these objectives at a time and most optimal search problems
are NP-hard. In this research, a novel approach for search
problems is proposed that considers three objectives: (1)
coverage using the fewest sensors; (2) probabilistic search
with the maximal probability of detection rate (PDR); and
(3) minimum-time trajectory planning. Since two of three
objective functions are submodular, the search problem is
reformulated to take advantage of this property. The pro-
posed sparse cognitive-based adaptive optimization and PDR
algorithms are within (1 − 1/e) of the optimum with high
probability. Experiments show that the proposed approach is
able to search for targets faster than the existing approaches.
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1 Introduction

Optimal search is one of the oldest topics in operation
research. Today, search is receiving new attention due in part
to applications in robotic search. In robotic search, a robot(s)
has to autonomously search for a target(s) in an environment.
It involves the interaction between the robot(s), target(s), and
environment (Chung et al. 2011). How the problem of opti-
mal search is solved depends on assumptions about these
factors. There are three major approaches: searching in a
graph-like environment, searching in a polygonal environ-
ment, and searching in a probabilistic environment (Bayesian
search).

The graph-based model is based on the assumptions that
the sensing and motions of robots are discrete, making it
possible tomodel the problemusing a graph (seeFig. 1a). The
goal of this problem is to find optimal actions for catching the
“enemy” (Nowakowski andWinkler 1983). The advantage of
this model is that graph theory can be used. The disadvantage
is that the motion and sensing models can easily be overly
simplistic.

The polygonal model considers continuous motion and
sensing (Aggarwal 1984). The assumptions of the polygonal
model are that the environment can be described through
polygons, the range of sensors is infinite and the field of
view is 360◦ (See Fig. 1b). The goal is either to cover the
whole environment using the fewest sensors or maximize the
coverage using a fixed number of sensors. The advantage of
the polygonalmodel is that it is possible to achieve theoretical
bounds and approximate solutions based on the concept of set
cover.However, it is generally impossible to obtain polygonal
maps and perfect sensors in the real world.

Bayesian search focuses on how to estimate the target’s
motion and position based on probability theory (Stone
1975).The assumptions ofBayesian search are that the search
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area can be divided into finite cells/graphs and that each
cell represents individual probability of detection (PD) (See
Fig. 1c). The goal is to determine the optimal path to find
the lost or moving target(s) according to the probability dis-
tribution function (PDF) (Richardson and Stone 1971; Stone
et al. 2014). The three steps of Bayesian search for a target
are as follows: The first is to compute prior PDF according
to motion information (e.g. flight dynamics and drift data).
The second is to compute posterior PDF according to sensor
information (e.g. pinger and side-looking sonar). The third
is to move to the highest probability cell, scan this area and
update the posterior PDF as the prior PDF. The three steps are
repeateduntil the target is found.Twooptimizationobjectives
are as follows: to maximize the PD or minimize the expected
time to detection (ETTD). The advantages ofBayesian search
are that the imperfect sensing/detection and target’s motion
can be modeled as a probability distribution and the proba-
bility of each cell is updated according to real-time sensing
data. However, most Bayesian search applications are for
outdoor environments. In such cases, the cell is larger than
the sensors scanned area, so the coverage problem can be
ignored. Interestingly, even though the three approaches rely
on assumptions and simplifications, all three problems are
still NP-hard.

To apply Bayesian search to indoor environments, a
relaxed approach is to assume that the map is divided into
several rooms and when the robot is in one of the rooms, its
sensors cover the whole room (see Fig. 1a). Then, the robot
computes the optimal search path based on Bayesian and
graph theories (Lau et al. 2008, 2006). However, this type of
discretization often precludes considering real sensing cov-
erage and robot motion constraints (see Fig. 1d).

The goal of this research is to enable a robot to search
for a target in confined environments considering sensing
coverage, sensing uncertainty, and robot motion constraints.
The original Bayesian search has been proposed for outdoor
environments, so the major assumption is that the sensing
area only covers the cell the robot occupies and the robot
only moves to neighbor cells (see Fig. 1c). However, such an
approach does not consider three critical factors for indoor
environments. The first is coverage. The sensors cover multi-
ple cells and the sensing range could be occluded by obstacles
such that coverage becomes a complex set cover problem.
The second is sensing overlap. The sensing areas at differ-
ent positions could overlap. As Fig. 1d shows, the sensing
areas of red and green positions are overlapping. The third
is motion cost. If there are obstacles, the best decision is not
always to move into the cell with the highest probability. As
Fig. 1d shows, there is an obstacle between the robot and
the purple position. Even if the purple position has the high-
est probability, its motion cost is also highest. These factors
make planning in indoor environments more difficult than in
most outdoor environments.

Fig. 1 Illustration of four search problem approaches. a The color
circles and areas represent the robot positions and corresponding sens-
ing areas respectively. b The blue circle and yellow areas represent the
robot position and the covered area respectively. c The blue ellipse,
cells, and decimal numbers represent the scanned cell, search space,
corresponding probability respectively. d The blue circle, other circles,
black rectangle and arrows represent the robot position, subgoal posi-
tions, obstacles and paths (Color figure online)

To overcome these issues, the proposed approach con-
sists of dividing the search problem into three subproblems:
a coverage problem with the fewest sensors; probabilistic
searchwithmaximal probability of detection rate (PDR); and
minimum-time trajectory planning. Although the three sub-
problems are NP-hard, each of them can be solved efficiently
using proper approximation algorithms.

The main contributions of this paper are as follows:
First, the proposed approach can search for the target con-
sidering coverage, probability, and motion cost. Second,
PDR can handle the overlapping sensing areas and con-
sider motion cost. Third, the sparse cognitive-based adaptive
optimization (SCAO) algorithm solves maximum cover-
age and minimum number of k-sensors simultaneously via
sparse regression techniques. Fourth, due to the submodu-
larity of the objective function, the PDR algorithm gives the
(1−1/e) lower bound guarantee with high probability while
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SCAO gives the (1 − 1/e) lower bound guarantee, which is
near-optimal (Nemhauser et al. 1978). Unless P = N P ,
no polynomial time algorithm is strictly better than this
approach (Feige 1998). To the best of our knowledge, the
PDR and its objective function submodularity have not been
investigated, and the SCAO is the first algorithm to apply
sparse regression to the coverage problem.

The rest of the paper is organized as follows. Section 2
describes the related work. Section 3 gives the overview of
the proposed approach. Section 4 details the benchmark algo-
rithms and proposed algorithms for the three subproblems.
In Sect. 5, experiments demonstrate the performance, opti-
mality and sensitivity analysis of the proposed algorithms.
Section 6 discusses the limitation and potential for exten-
sions of the proposed algorithms. Finally, Sect. 7 provides
conclusions.

2 Related work

This section describes related work associated to the three
subproblems and search algorithms for confined environ-
ments.

2.1 Coverage problem

For surveillance applications, a typical goal is to monitor
an entire room using the fewest sensors, or cover the most
space using a fixed number of sensors. Both problems are
NP-hard. This problem is also called the “art gallery prob-
lem” (Aggarwal 1984). There are two major approaches to
compute approximate solutions. First, the environment is
modeled as a polygon, the range of the sensors and field
of view are assumed to be infinite. Approximate algorithms
solve the problem based on the set-covering concept. Sec-
ond, real-time sensor data of robots is collected for learning.
Based on the learned coverage function, the robots move to
the locations such that the coverage is maximal. Hence, an
approximate solution can be found.

A polygonal environment is divided into several subsets.
Choosing the least covered set provides a simple way to
find a solution. Such greedy algorithms generate solutions
with O(log N )-approximation, where N is the number of
sets. ε-net finder provides an O(log log OPT )-approximate
algorithm for guarding a simple polygon with guards on
the perimeter (King and Kirkpatrick 2011), where OPT is
the minimal number of guards. However, those theoretical
bounds are based on oversimplified sensor and/or environ-
mental models.

Cognitive-based adaptive optimization (CAO) is proposed
for the optimization problems where the objective function
is unknown but measurements are available (Kosmatopou-
los 2009; Renzaglia et al. 2011). It is applied to maximize

the coverage using a fixed number of robots equipped with
sensors in 3D environments (Renzaglia et al. 2012). Given
no prior information about a specific objective function and
environments, the CAO framework shows the result, which
are different from previous work. First, the robots learn the
objective function from real-time sensing data. Second, even
if the environment is non-convex, the CAO algorithm still
works. More details on the CAO algorithm are provided in
Sect. 4.1.

2.2 Probabilistic search

Bayesian search is divided into two components. The first,
perception, is to compute the probability distribution of the
target. Recursive Bayesian estimation enables robot(s) to
estimate the target using real-time motion and measurement
data (Bourgault et al. 2003). The second, decision-making, is
to compute the optimal actions toward the target. However,
finding the optimal decisions in a probabilistic environment
however is NP-hard.

To further consider larger horizons, the problemwas refor-
mulated as partially observable Markov decision processes
(POMDPs) (Eagle 1984; Kadane and Simon 1977), which
is NP-hard. Hence, maximizing the cumulative PD is pro-
posed. Two assumptions had to be considered in the PD
model. First, the propagation model assumes that the sen-
sors are without false detections and without detection of the
target at each sampling. Second, that the sensing coverage at
each position is non-overlapping and independent of another.
Based on these assumptions, the PD is easily propagated for
larger horizons through Bayes filter. Even if the propaga-
tion model is simplified, maximizing the cumulative PD is
an NP-complete problem (Trummel and Weisinger 1986).

Maximizing cumulative PD within finite horizons pro-
vides a way to find suboptimal actions. There are two major
methods to find suboptimal paths. First, the maximization
of the PD problem is formulated as a mixed-integer linear
programming (MILP). The robots are able to find subopti-
mal search paths (Lo et al. 2012). Second, branch and bound
(BNB) is used to alleviate the computational issues. The prin-
ciple of BNB is to generate the possible branches and prune
the branches if the cost values exceed some pre-specified
costs. This concept enables a robot(s) to search for a moving
target in indoor environments based on the PD model (Lau
et al. 2008, 2006). Therefore, suboptimal solutions of search
paths can be obtained by choosing a suitable bound or hori-
zon with an affordable computation.

2.3 Minimum-time trajectory planning

Minimum-time trajectory planning problem is NP-hard,
whichmeans that if the robot tries to arrive at the goal as soon
as possible, computational complexity grows exponentially

123



208 Auton Robot (2017) 41:205–229

with the order of the searcher’s dynamics and the size of the
map. Hence, trade-off between reducing the computational
load and increasing the performance is the key challenge
to solving this problem. There are two major approaches
to compute approximate paths for a robot(s). The Rapidly-
Exploring Random Tree (RRT) is one of the approaches in
robotic planning (LaValle and Kuffner 1999). It works by
randomly generating nodes from the free space once con-
nections obstacles-free edges between two nodes, they are
connected. The robot’s approximate path from start to goal
is found by graph search.

Another approach is receding horizon (RH) optimization
with a cost-to-go (CTG) function (Bellingham et al. 2002)
in the aerospace field. The CTG function is an approxima-
tion of global cost to the robot in the global environment.
The receding horizon is able to give accurate solutions of
constrained optimization within finite horizons. If the goal is
not approachablewithin a finite horizon, the robot will search
an approachable active waypoint (AWP) from the CTG func-
tion (Mettler et al. 2010). The AWPminimizes the composed
cost (CTGC) considering the cost to reach AWP (cost-to-
come, CTC) and the cost from the AWP to the global goal
(CTG). So, the original optimization problem is relaxed to
many small problems. In other words, to reduce the computa-
tional load, the robot only considers optimal solutions within
thefinite horizons.More detail on guidance techniques can be
found in Goerzen et al. (2010) and Bellingham et al. (2002).
Hence, both RRT and RH are able to find suboptimal path.

2.4 Search in confined environments

Since indoor environments are cluttered, searching for a tar-
get efficiently is a challenge. Under certain assumptions,
there are several algorithms that are able to search for the
target in indoor environments. In Hollinger et al. (2010), if
the map is preprocessed as a graphical model, the proposed
algorithm is able to capture the target within guaranteed time.
In Gerkey et al. (2006), if the map is preprocessed as a polyg-
onal map, the proposed algorithm is able to search the target
using limited field of view sensors. In Lau et al. (2008, 2006),
if the map is preprocessed as a graphical model, the pro-
posed algorithm is able to search for the target with a tighter
bound than previous probabilistic search. However, those
algorithms do not consider sensing coverage, sensing uncer-
tainty, and motion constraints simultaneously. The overview
of the proposed algorithms are in next section.

3 Approach overview

In the past 10 years, the robotics community has been
paying more attention to the concept of informative path
planing (IPP) (Singh et al. 2007) and submodular func-

tions (Nemhauser et al. 1978; Krause et al. 2008; Singh
et al. 2009). The goal of IPP is to find an optimal path which
maximizes the amount of sensing information (Binney and
Sukhatme 2002). It includes three relevant questions. First,
where to place the sensors/robots so that most information
can be collected? Second, how to construct a path satisfying
certain objective functions with limited bounds? Third, what
theoretical guarantee can be given the performance of the
approximated solutions?

The first problem is related to “adaptive sampling and
feature selection” (Binney and Sukhatme 2002). Some novel
techniques ofmachine learning are adopted, such asGaussian
Processes (GP). The second problem is related to “path plan-
ning and probabilistic search” (Binney and Sukhatme 2002).
The third problem is related to submodularity. If the objective
function is submodular, greedy approaches give (1−1/e)OPT
guarantee (Nemhauser et al. 1978).Moreover, no polynomial
time algorithms are strictly better than greedy approaches
unless P = N P (Feige 1998). For example, robots are able
to find paths that enable a robot to collect maximal infor-
mation using IPP (Singh et al. 2007). A robot is able to
find paths which maximize variance reduction of Gaussian
processes (Binney and Sukhatme 2002). A robot is also able
to find paths which get maximal information or minimal dis-
tortion fromwireless stations (Hollinger andSukhatme 2013;
Hollinger et al. 2013). The successful examples of IPP prob-
lems and submodularity inspire a reformulation of search
problems.

The probabilistic search is reformulated as follows: In a
known grid map (m), the initial position of the robot (X R0 ) is
known. The robot acquires the real-timemotion data (uk) and
measurement data (zk) from sensors, where k is time index.
The goal is to find the optimal velocity (v1:k) and angular
velocity (ω1:k) of the robot such that the actions satisfy the
following objectives:

Objective 1 Coverage with the fewest subgoals: Given the
sensor specifications, the robot finds the minimal number of
subgoals to cover the most space in the environment (see
Fig. 2a).

Objective 2 Probabilistic search: According to the given
subgoal positions, the robot finds the optimal path over the
graph to maximize probability of detection rate (PDR) (see
Fig. 2b).

Objective 3Minimum-time trajectory planning: Given the
current robot and subgoal positions, the robot finds the opti-
mal velocity commands tominimize travel timeundermotion
constraints (see Fig. 2c).

The majority of existing approaches for search only deal
with O1 or O2 (Lau et al. 2008, 2006; Gerkey et al. 2006;
Hollinger et al. 2010). Since the three objectives are NP-
hard, each subproblem has to be solved using an approximate
algorithm.
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Fig. 2 Illustration of the three subproblems. a The color circles, dash
lines and red crossmarks represent the subgoal positions, corresponding
covered area and discarded subgoals respectively. b The decimal num-
bers and black lines represent the probability in covered area and path
between nodes respectively. c The dash lines represent the trajectory
from one subgoal to the other (Color figure online)

3.1 Coverage with the fewest subgoals

Coverage with the fewest subgoals can be seen as coverage
with the fewest sensors/robots, which are moving in the envi-
ronment tomaximize the total coverage. Given the number of
robots (M), the robots’ positions (X R1:M ), the sensors’ range
(zR), the field of view (zθ ), real-time sensing data (zi ) and a
grid map (m), the goal is to find the number (Mef f ) and posi-
tion (Xef f ) of the fewest robots to cover the environment,
where i = 1, . . . , M . If Mef f is known, then Xef f is solved
by the CAO algorithm. However, computing Mef f is another
NP-hard problem. Hence, the proposed sparse CAO (SCAO)
is to find Mef f and Xef f simultaneously. The basic concept
of SCAO is to drop enough robots (X R1:M ) in the map. Some
of the robots cover very small areas. As Fig. 2a shows, if
those robots are discarded, Mef f and Xef f are found. The
formulation of the objective function is the following:

Xef f = arg max
X R1:M ∈Ξ

FC (X R1:M ) (1)

where Ξ is the space of possible allocations for a robot and
FC is the coverage function.

3.2 Probabilistic search

Given the measurement data (zk), the probability distribu-
tion of measurement model P(zk |Xt

k,m), the motion model
probability distribution P(Xt

k |Xt
k−1) and the cells of the

map (m = {m1, . . . ,mN }), the goal is to find the the tar-
get distribution conditioned on sensing information and map
P(Xt

k |z1:k, u1:k,m) and the optimal search path P∗
path (see

Fig. 2b). The first step is to compute the probability in the
covered area (Pdi ) with Bayes filter (see “Bayes filter” sec-
tion in Appendix). where i = 1, . . . , Mef f . The second step
is to maximize cumulative PDR using BNB to determine the
Ppath over the graphs as in the following:

P∗
path = arg max

Ppath
FPDR(Ppath)

s.t. FPDR(Ppath) ≥ B (2)

where FPDR is the PDR, Ppath is the path sequence and B
is the assigned bound.

3.3 Minimum-time trajectory planning

The subgoal positions (Xl
g, l = 1, . . . , Mef f ) and visiting

order of subgoals (P∗
path) are given by SCAO and PDR

respectively. The current position of the robot (X R,k), the
maximal velocity (vmax ) and angular velocity (ωmax ) are
given. The goal is to find the velocity commands (v, ω) of
a mobile robot at each time step such that the robot visits
the subgoal sequentially within minimum-time (see Fig. 2c).
Minimum-time trajectory planning is modeled using mixed-
integer nonlinear programming (MINLP). The formulation
is based on receding horizon control (RH) (Bellingham et al.
2002).

V ∗ = arg min
V∈�

Fm(b, t) =
∑

i=1

bi ti (3)

FM =
Mef f∑

l=1

Fm,l (4)

where V is the velocity vector, � is the space of the robot’s
motion and velocity constraints, and b is a binary decision
vector, ti is the time at which the goal is reached and Fm is
the function of t and b.

3.4 The proposed search approach

The complete flowchart of the proposed probabilistic search
is shown in Fig. 3. In the offline stage, the SCAO algorithm
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Fig. 3 The flowchart for the offline and online processes. SCAO The
green points, blue area, and white area represent the subgoal positions,
covered area, and uncovered area respectively. CTG map The yellow
circle and red lines represent the robot position and optimal direction
at each cell respectively. The cost in each cell is represented as grey
scale. The brighter and darker color represent lower cost and higher
respectively. The subgoal is at the lower left corner so the lower left
corner is brighter and the upper right corner is darker. Bayes filter

The green area and black area represent higher and lower probability
in the logarithmic form. The red line is the field of view (FOV) of the
robot. PDR BNB The circles and number represent the subgoal nodes
and index. RH CTG The red point, green point, red line, and yellow
circle represent the subgoal, AWP, directions of CTGC cells, and robot
position respectively. The grey area represents the CTGC cost within
fixed distance (Color figure online)

determines the subgoals to cover the environment. The cost-
to-go (CTG) maps store the cost from any position to each
subgoal. After the offline state, the robot knows where the
subgoals are and what the cost is from any position to each
subgoal.

In the online stage, the Bayes filter computes the target
distribution according to real-time sensing data and detection
(see “Bayes filter” section in Appendix). According to the
target distribution, the PDRBNBalgorithmplans the optimal
path (P∗

path). Finally, the RH CTG algorithm computes the
robot velocity commands(V ∗ = [vk:k+H , wk:k+H ]) to guide
the robot to the subgoals. In summary, the robot senses the
environment usingBayes filter, computes the optimal visiting
order of subgoals using PDR BNB and moves toward the
subgoal using RH CTG. Once the target probability density
of a certainty area is higher than the threshold, the robot
terminates the search.

4 Proposed algorithms

Since some benchmark approaches (e.g. CAO, PD and CTG)
are highly related to proposed algorithm, they are reviewed

in Sects. 4.1.1, 4.2.1, and 4.3.1. The proposed algorithms
are described in Sects. 4.1.2, 4.2.2 and 4.3.2. The optimal-
ity of SCAO, PD and PDR is proved in Sect. 4.4. Finally,
Sect. 4.5 summarizes the relationship between the proof and
corresponding algorithm.

4.1 Coverage problem

CAO is proposed to solve the coverage problem via learn-
ing (Renzaglia et al. 2012, 2011). However, the number
of robots needs to be predefined. To solve maximal cover-
age problem with the fewest subgoals, spare cognitive-based
adaptive optimization (SCAO) is proposed in Sect. 4.1.2.

4.1.1 Cognitive-based adaptive optimization (CAO)

The CAO algorithm is divided into three stages: sensing,
learning, and decision-making. Before the first stage, the ini-
tial robots positions (X R0 ), the range of sensors (zR), and the
field of view (zθ ) are given.

In the sensing stage, the robots acquire the sensing data
(zk). Then, the coverage rate of robots (yk) in the map is
computed (see “Computing coverage” section in Appendix).
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In the learning stage, the robots learn the coverage func-
tion using the robots position data and coverage data. The
coverage function is formulated as follows:

Ĉ(X R,W ) = w1 · 1 + w2φ2(X
R) + · · · + wLφL(X R)

=
L∑

i=1

φi (X
R)wi (5)

where Ĉ is the estimated coverage,W is theweighting vector,
X R is the robot positions, φ(·) is an approximator, and w is
the weighting. The robots need to keep at least L data points
in memory for learning. The coverage function is written as a
matrix form in Eq. 6. It is reformulated as a linear regression
problem (Eq. 7).

⎡

⎢⎢⎢⎣

ck−P

ck−P+1
...

ck

⎤

⎥⎥⎥⎦ =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

∑L
i=1 φi (X R

k−P )wi + εk
∑L

i=1 φi (X R
k−P+1)wi + εk+1

...

∑L
i=1 φi (X R

k )wi + εk+N

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(6)

C(P,1) = X(P,L)W(L ,1) + ε, ε ∼ N (0,Σ) (7)

where P is the number of data points for learning (P ≥ L),
C is a batch of coverage data, X is a batch of approximator
data, ε is the Gaussian noise, and Σ is the covariance matrix
of noise. The goal is to find the least square error between
true coverage and estimated coverage function (Eq. 8). The
computational complexity of the least square algorithm is
O(P3).

Ŵ = argmin
W

{
||C − XW ||22

}
(8)

In the decision-making stage, the robots generate N sam-
ples of positions (Eq. 9). According to the learned weighting
(Eq. 8), the robots choose the sample which generates max-
imal coverage for their next actions (Eq. 10).

xi, jk = x (i)
k + αkζ

i, j
k , i ∈ {1, . . . , M}, j ∈ {1, . . . , N } (9)

xoptk = arg max
xi, jk ∈Ξ

{X ′Ŵ } (10)

where xi, jk is the jth sampling position of i-th robot at time k.

x (i)
k is the i-th robot’s original position at time k. ζ i, jk is a zero-
mean, unit-variance random vector with dimensions equal to
the dimensions of xi andαk is a positive real sequence, which
decays depending on the number of iterations.Ξ is the possi-
ble space for robot allocations, X ′ is the X matrix of samples
and xoptk is the optimal placement of samples. The robots keep
repeating three stages until the terminal condition. The final
robots positions are assign as subgoals positions. According

to the empirical experiments, the robotswill cover asmuch of
the space as possible based on the learned coverage function
after hundreds of iterations. Themajor computation occurs at
the learning stage so the computational complexity of CAO
is O(P3) if Eq. 8 is solved by the least square method.

A key issue in linear regression is how to choose suit-
able approximators. Since coverage function is related to
each dimension datum (e.g. x, y, θ ), the approximator should
include whole dimensional data. Polynomial approximators,
radial basis functions, and kernel-based approximators are
suitable for the coverage application. In Renzaglia et al.
(2012), the authors proposed that random 3rd-order poly-
nomial approximators are sufficient for 2D and 3D coverage
problems. The approach to choosing polynomial approxima-
tors is the following:

(1) Choose L = L2 + L3 + 1;(L2 = L3)

(2) The first term of the approximator is constant;
(3) Select randomly L2 terms ofφ to be any 2nd-order terms

of the form xia · x j
b with a, b ∈ {1, . . . , dim(xi )}, i, j ∈

{1, . . . , M} randomly-selected postive integers;
(4) Select randomly L3 terms of φ to be any 3rd-order terms

of the form xia · x j
b · xkc with a, b, c ∈ {1, . . . , dim(xi )}

and i, j, k ∈ {1, . . . , M} randomly-selectedpostive inte-
gers.

The disadvantage of polynomial approximators is that the
number of approximators is increasing dependent on the
number of robots. According to Renzaglia et al. (2012), if
N ≥ 2 · M · dim(xi ) and L = 2 · M · dim(xi ) + 1, the CAO
algorithm is able to find the maximal coverage. However,
since the polynomial terms are randomly generated, the cho-
sen terms may not be very correlated to coverage function.
Hence, this approach could lead to overfitting. Moreover, the
number of needs subgoals are unknown for search applica-
tions.

4.1.2 Sparse cognitive-based adaptive optimization (SCAO)

Although the CAO algorithm is able to find the solution of
maximal coverage, assigning the minimal number of robots
is NP-hard. To solve this problem, the concept of sparse
regression is adopted (Tibshirani 1996). Due to increasing
“Big Data” applications, scientists need to analyze millions
or billions of data points via machine learning techniques. If
the data has the sparse property, it can be solved efficiently.
L1-norm (LASSO) is proposed to solve such problems (Tib-
shirani 1996) (Eq. 11). After sparse regression, the lower
weighting values are discarded.

ŴL1 = argmin
W

{
||Y − XW ||22 + λ1||W ||1

}
(11)
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Fig. 4 Illustration of two different sparseweighting vectors. The x axis
and y axis represent theweighting index and themagnitude ofweighting
vector respectively. The orange, green, and purple lines represent the
terms including x, y, and z variables respectively (Color figure online)

To apply sparse regression to this coverage problem, let
us assume that enough robots are dropped and that the cov-
erage areas of some robots are small. If these robots are
discarded, Mef f can be found through sparse regression.
Although LASSOgenerates sparseweighting vectors, it does
not directly generate a smaller number of the robots. Fig-
ure 4 shows that the weighting vector length is 10. x, y, z
are the positions of robot1, robot2, robot3. Each weighting
value is given with respect to an individual polynomial term.
For example, w4 is associated with xy. There are two exam-
ples of sparse regression. The sparsity of the two examples
is 30 and 60% respectively. The weighting vector of the first
example is sparser than the second one. However, if check-
ing the related polynomial terms, three robots are needed in
the first example but only two robots are needed in the sec-
ond example because of the interacting terms of x, y, z. This
example shows that a sparser weighting vector does not guar-
antee fewer robots. The sparse regression therefore should be
more structured.

Such problems, where some of variables are highly cor-
related, are called group LASSO (Yuan and Lin 2006). To
solve this problem, an elastic net has been proposed for a
more structured sparse regression (Zou and Hastie 2005).
The concept of an elastic net is the tradeoff between L1-norm
and L2-norm (Eq. 12). L1-norm generates a sparseweighting
vector while L2-norm generates a group weighting vector.
Different values of λ1 and λ2 will generate different sparse
regressions. However, it is difficult to control the sparsity of
groups. To considermore flexible structure, a pairwise elastic
net (PEN) is proposed (Lorbert et al. 2010) (Eq. 13). The P
matrix is the penalty matrix, which satisfies the condition of
positive-semidefinite (PSD). If P = I , the solution of PEN
is equal to L2-norm. If P = 11T , the solution of PEN is
equal to L1-norm. Moreover, the P matrix is able to handle
the overlapping group LASSO. In such cases, some groups
are overlapping (see Fig. 4). In Lorbert and Ramadge (2013),
the P matrix is designed based on Laplacian matrix. PEN is
efficiently solved by coordinate descent. The computational
complexity of coordinate descent is O(mP2), where m is the
number of iterations.

ŴEN = argmin
W

{
||Y − XW ||22 + λ1||W ||1 + λ2||W ||22

}

(12)

ŴPEN = argmin
W

{
||Y − XW ||22 + λPEN |W |T P|W |

}
(13)

To solve themaximal coverage problemwith fewer robots,
PEN and CAO are adopted. The proposed algorithm is called
SparseCognitive-basedAdaptiveOptimization (SCAO).The
major difference between CAO and SCAO is the learning
stage. In CAO, the learning stage is formulated as a least
square problem. In SCAO, the learning stage is formulated
as an overlapping group LASSO problem. The SCAO algo-
rithm is given in Algorithm 1. The advantages of the SCAO
algorithm are as follows:

– Fewer robots required The SCAO algorithm requires
fewer robots to cover the environment than the CAO
approach.

– No overfitting The SCAO algorithm avoids overfitting
because it automatically chooses meaningful polynomial
terms. Hence, the predicted coverage is more accurate.

– Sparsity Due to the sparsity of the weighting vector, the
memorized data points for regression are fewer than for
CAO. For example, if L is 61 and the number of non-
zero terms is 30, the robot only needs 30 data points
for learning. However, for the CAO algorithm, the robot
needs at least 61 data points for learning.

Input: XM , zR , zθ , z1:Mk and map;
Output: Xef f ;
Initialization: Generate random polynomial terms of
approximators φ1:L (·);
while iteration < Ith do

% Sensing stage:
Compute the coverage yk of Xk from zk
% Learning stage:
Save the sensing and coverage data as a batch

Ŵ = argmin
W

{||Y − XW ||22 + λPEN |W |T P|W |}

% Decision-making stage:

xi, jk = x (i)
k + αkζ

i, j
k

xoptk = arg max
xi, jk ∈Ξ

{X ′Ŵ }

end
Algorithm 1: The SCAO algorithm.

4.2 Probabilistic search

Probabilistic search is divided into two components, per-
ception and decision-making. Using Bayes filter solves
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Fig. 5 Grid and graphical models. The white circles and blue circles
represent the search space and the cell the robot is located at respectively.
The black lines and arrows represent the bidirectional and directional
path constraints respectively. For example, the robot in a can move to
node 2 or node 5. The robot in b can only move to node 4 (Color figure
online)

perception (see “Bayes filter” section in Appendix). Max-
imizing cumulative PD solves decision-making. However,
such an approach has some constraints and needs additional
tuning. To improve it, maximizing cumulative PDR is pro-
posed in Sect. 4.2.2.

4.2.1 Maximal cumulative PD using branch and bound

To compute the optimal search path with uncertainty is
NP-hard. Hence, a simplified propagation model is pro-
posed (Washburn 1998). The assumptions used in the prop-
agation model are as follows. First, there is no detection of
the target along the path. Second, the robot only moves to the
nearest cells or nodes (see Fig. 5). Third, the robot only senses
in the nodewhere it is located and each sensing coverage does
not overlap with the others. Based on the these assumptions,
the goal is to maximize the cumulative probability of detec-
tion (PD) within T time steps, which is an NP-Complete
problem (Trummel andWeisinger 1986). To find an approxi-
mation solution, BNB approach is adopted (Washburn 1998).

Ppath = argmax
π

FP (π) =
T∑

t=1

P (π(t), t) · g (π(t), t)

s.t.

π(t + 1) ∈ Ψ (π(t))

FP (π(t)) ≥ B(t), t ∈ 0, . . . , T − 1 (14)

where π is the search policy, g is the glimpse function,
0 ≤ g ≤ 1, Ψ is the path constraints from a node to
another node, and B is the threshold of BNB. For exam-
ple, π = {s1, s2, s1} means the robot visits subgoal 1, 2, and
1 sequentially. P(s1) = 0.6, P(s2) = 0.4 and g = 0.8.
FP = 0.6 × 0.8 + 0.4 × 0.8 + 0.12 × 0.8 = 0.896.

Input: P1:M , g(·, t), T ;
Output: optimal search path Ppath ;
while not arrived at T-th step do

expand branches of the search path π(t ′ + 1)
compute each cumulative PDR(π(t ′ + 1))
if PDR(π(t ′)) ≤ B(t ′) then

prune this path;
else

πt ′ = argmaxπ PDR(π);
end

end
Ppath = π(T )

Algorithm 2: The algorithm for optimal search path.

4.2.2 Maximal cumulative PDR using branch and bound

The assumptions of maximal cumulative PD are not realistic
for searching in indoor environments. First, the sensing cov-
erage at different positions could beoverlapping (seeFig. 1d).
Second, the robot is able to freely move to any nodes (see
Fig. 1d). Third, the PD approach does not consider the robot
motion constraints. Although the non-uniform travel times
are considered in Lau et al. (2008) and Lau et al. (2006)
(see Fig. 5b), the user needs to predefine the travel times and
those travel times do not consider robot motion constraints.
Although the approach inWaharte et al. (2010) can deal with
overlapping and partial observations, this approach cannot
give a theoretical guarantee of search performance.

For searching in minimum time, the PDR is introduced.
Once SCAO generates subgoals positions, the robot knows
where it can visit. OnceCTGmaps of subgoals are computed,
the robot knows the travel times from any position to the
subgoals. Hence, it is able to plan an optimal path considering
time-rate of PD. The formulation of the maximal cumulative
PDR problem is as follows:

Ppath = argmax
π

FPDR(π) =
T∑

t=1

P
(
π(t), t

)

τ
(
π(t)

) · g(π(t), t
)

s.t.

FPDR
(
π(t)

) ≥ B(t) (15)

where τ is the travel time from a node to another node. The
algorithm is given in Algorithm 2.

To select a suitable B is a key issue. When B is close
to 0, BNB approach behaves as an exhaustive search. When
B is close to 1, BNB approach prunes too many possible
solutions. The proposed algorithm is shown in Algorithm 3.
The computational complexity isO(M2) and the generated B
gives (1−1/e)-approximation in Algorithm 2.When β = 1,
the BNB approach behaves as a greedy approach. The details
of the proof are derived in the Sect. 4.4.

The advantages of the PDR algorithm are as follows:
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Input: P1:M , g(·, t), β, T ;
Output: B;
while not arrived at T-th step do

Bgreedy,t = maxt PDR(t);
end
B = β · Bgreedy , where β ≤ 1

Algorithm 3: The algorithm for finding B.

– Sensing overlap The PD approach assumes that the sens-
ing areas at each node are not overlappingwith each other.
The PDR can handle the sensing overlapping cases.

– No path constraints The PD has path constraints. The
robot only moves to neighbor cells or predefined graph-
ical nodes. The PDR does not have any path constraint.
The robot can pick up any node as its next subgoal.

– Consideration of motion cost The PD approach does not
consider themotion cost from one node to the other node.
Since the CTG map gives the cost from any position to
any subgoal, the cost can be used for the PDR approach.

– (1−1/e)-approximation Based on the submodularity, the
threshold of BNB is computed easily using Algorithm 3.
It gives (1 − 1/e)-approximation with high probability.

4.3 Minimum-time trajectory planning

Once the PDR algorithm gives the current subgoal, the robot
plans a minimum-time trajectory as follows. First, as Fig. 6
shows, the subgoal is too far for the robot to reach within
H horizons. Hence, the robot finds the AWP through the
CTGC map, which is the minimum cost cell within distance
D. Second, the robot computes the velocity commands to
reach AWP within error (εp, εθ ) using MINLP. Third, the
robot repeats first and second steps until reaching the subgoal.
The following sections describe how to compute the CTG
map and receding horizon control.

Fig. 6 Illustration of minimum-time trajectory planning. a The blue,
orange, green circles, blue curve and blue dash circle represent the
robot, AWP, subgoal positions, optimal path and distance within D
respectively. b The blue, black curves, black point and red circle repre-
sent optimal, true path, the robot position at h horizon and error bound
respectively (Color figure online)

Fig. 7 Motion primitives of different heading angles. The red circles
and blue solid circles represent potential actions and the robot end posi-
tion respectively (Color figure online)

4.3.1 Cost-to-go (CTG) and cost-to-come (CTC) functions

The CTG and CTC functions are computed based on simple
motion primitives (see Fig. 7). The heading resolution of the
robot is 45◦. The 0◦ motion primitive is similar to 90◦, 180◦,
and 270◦. The 45◦ motion primitive is similar to 135◦, 225◦,
and 315◦. The CTG function consists of the cost from any
cell to the subgoal. It is efficiently computed by theDijkstra’s
algorithm. The CTC function consists of the cost from the
current robot pose to the reachable cells within distance D.
The AWP is computed by minimizing the composite cost of
CTG and CTC. The algorithm is given in Algorithm 4. More
details can be found in Mettler et al. (2010).

4.3.2 Receding horizon control for a mobile robot

Since the motion model of miniature UAVs is linear, reced-
ing horizon optimization is formulated as a MILP in Mettler
et al. (2010). However, the motion model of a differential
wheeled robot is nonlinear (Eq. 22). Hence, the receding
horizon trajectory optimization for a mobile robot is formu-
lated as a mixed integer nonlinear programming (MINLP).
The position and heading of the active waypoint (XAW P =
[xAW P , yAW P , θAW P ]) and the current robot position (Xk)
are given. The goal is to find the velocity (vi ) and angular
velocity (wi ) that results in themobile robot’sminimum-time
trajectory within a finite horizon (H ), where i = 1, . . . , H .

min
H∑

i=1

{Mc(H + 1 − i)(1 − bi )} (16)

s.t.
(
xi − xAW P

)2 + (
yi − yAW P

)2 ≤ Mc
(
1 − bi

) + εp

(17)
∣∣θi − θAW P

∣∣ ≤ Mc
(
1 − bi

) + εθ (18)
H∑

i=1

bi = 1, (19)

|v| ≤ vmax , |w| ≤ wmax (20)
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|�v| ≤ amax , |�w| ≤ αmax (21)

where Mc is a large number, H is the number of samples
in the horizon, bi is a binary decision variable, [xi , yi , θi ]
are the position and heading of the robot at i-th horizon,
εp is the error between the desired and current position,
εθ is the error between the desired and current heading,
and vmax , wmax , amax and αmax are the maximum of veloc-
ity, angular velocity, acceleration and angular acceleration
respectively.

Reaching theAWP inminimum time is enforced by penal-
izing the cost at the beginning of the planning horizon (i =
1) more than at the end of the horizon (i = H ). Once the
robot reaches the AWP, the corresponding binary variable bi
becomes one. Equations (17) and (18) are the constraints of
position error and heading error respectively. Equations (19),
(20) and (21) are the binary, velocity and acceleration con-
straints respectively. The unknown variables are [vi , wi ] but
the constraints of (17) and (18) are functions of [xi , yi , θi ].
Hence, a motion model to convert [vi , wi ] to [xi , yi , θi ] is
needed. The state space model of a mobile robot is the fol-
lowing:

xk+1 = xk + vkcos(θk)dt

yk+1 = yk + vksin(θk)dt

θk+1 = θk + wkdt (22)

where [xk, yk, θk] are the position and heading of the robot
at time k, [vk, wk] are the velocity and angular velocity com-
mands at time k and dt is the sampling time. The position
of the robot can be computed through the state space model
(22).

Input: map, subgoals, velocity constraints;
Output: velocity commands of the robot at each time step;
Initialization: compute CTG maps of all subgoals;
while not arrived at the final subgoal do

if subgoal is within sensing range then
Receding-Horizon(robot-position,subgoal) ;
read next CTG map;

else
compute active way point(XAW P ) from CTG and CTC
map within distance D;
Receding-Horizon(Xk ,XAW P ) ;

end
end

Algorithm 4: The algorithm for minimum-time trajec-
tory planning.

4.4 Optimality of SCAO, PD and PDR

Although maximum coverage, probabilistic search, and
minimum-time trajectory planning problems are NP-hard,

near-optimal solutions can be computed efficiently if the
objective functions are submodular. The proof steps are
as follows: First, the Lemma 1 introduces submodularity.
Lemma 2 proves whether three objective functions are sub-
modular or not. Second, Theorems 1 and 2 introduce that
the greedy approach generates (1 − 1/e)-approximation
for submodular functions. Theorem 3 proves (1 − 1/e)-
approximation guarantee of SCAO. Third, Theorems 5 and
6 prove (1− 1/e)-approximation guarantee of PD and PDR.

Lemma 1 (Submodularity) Given a finite set S={1,2,. . .,n},
a submodular function is a set function: F : 2S → R+ which
satisfies the diminishing return property. For every SA, SB ⊆
S with SA ⊆ SB and every s ⊆ S, F(SA ∪ s) − F(SA) ≥
F(SB ∪ s) − F(SB) holds.

Lemma 2 (Submodularity of three objective functions)

(a) Coverage function is submodular.
(b) Probabilistic search is submodular if there are no false

detections and no detections along the search path.
(c) Minimum-time trajectory planning is not submodular.

Proof Assume FC , FPS, FM are the objective functions of
coverage, probabilistic search and minimum-time trajectory
planning. S is the ground set of subgoals. SA, SB are the two
sets of subgoals and SA ⊆ SB ⊆ S. s is an additional subgoal.

�


(a) Coverage function

Since coverage is one of the submodular functions, FC (SA ∪
s) − FC (SA) ≥ FC (SB ∪ s) − FC (SB) holds. The details of
this proof are found in Krause et al. (2008).

(b) Probabilistic search

Since probabilistic search involves detection uncertainty, the
target’s PDF is updated by the outcome of detections. φ =
{1,−1} denotes whether the target is at the detected area or
not and ZD = {1,−1} denotes whether the robot detected
the target or not. For example, P(φ = 1|ZD = −1) means
the conditional probability that the robot does not detect the
target while the target is at the detected area. Hence, the
outcome of detections is ZD = 1 or ZD = −1. The goal is
to find the optimal policyπopt,k for picking k subgoals so that
the cumulative PD is maximal (see Fig. 8a). Since adding a
visited subgoal could result in a detection or no detection of
a target, the updated probability consists of two cases:

f
(
π(t), t

) =
{

P
(
π(t), t

) · g, if no detection
P

(
π(t), t

) · g′, if there is a detection
,
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Fig. 8 Illustration of the two problems. a Blue circles, triangles,Green
star and the black circle represent the subgoal positions, corresponding
detection area, target position and the robot position respectively. b
The blue solid circle, circles, arrows and numbers represent the robot
position, subgoals, paths, travel times respectively (Color figure online)

where g, g′ are glimpse functions with a detection and no
detection respectively. The objective function is in the fol-
lowing:

πopt,k = arg max
π,|π |≤k

FPS(π) = arg max
π,|π |≤k

∑T

t=1
f (π(t), t),

where T is the number of the selected set, 0 ≤ g ≤ 1 and g′ <

0. More details about the range of g and g′ can be found in
“Probability of detection (PD) model” section in Appendix.
The probability could be increasing or decreasing depending
on the detection.Hence, FPS(SA∪s)−FPS(SA) ≥ FPS(SB∪
s) − FPS(SB) doesn’t hold.

If there is no detection (ZD = −1) of a target along the
path, the problem is simplified as PD model (see “Probabil-
ity of detection (PD) model” section in Appendix), where
f (π(t), t) = P(π(t), t) · g and FP = ∑T

t=1 f (π(t), t).
Under such assumptions, the probability of scanning the area
is always decreasing. The diminishing returns of SA and SB
are as follows:

FP
(
SA ∪ s

) − FP (SA)

=
|A|∑

t=1

P
(
π(t), t

) · g + P (π(|A| + 1), |A| + 1) · g

−
|A|∑

t=1

P
(
π(t), t

) · g

FP
(
SB ∪ s

) − FP (SB)

=
|B|∑

t=1

P
(
π(t), t

) · g + P
(
π(|B| + 1), |B| + 1

) · g

−
|B|∑

t=1

P
(
π(t), t

) · g

∵ SA ⊆ SB ∴ |A| ≤ |B|. To compare the magnitude of
P(π(|A| + 1), |A| + 1) and P(π(|B| + 1), |B| + 1), there
are two cases: First, if the scanned area in set B and set
s do not overlap, then P(π(|A| + 1), |A| + 1) is equal to
P(π(|B| + 1), |B| + 1) (e.g. SA = {S1}, SB = {S1, S2}, and
s = {S3} shown in Fig. 8a). Second, if the observed areas
in set B and S overlap, the probability of overlapping area
is discounted (e.g. SA = {S1}, SB = {S1, S4} and s = {S3}
shown in Fig. 8a). So, P(π(|A|+ 1), |A|+ 1) > P(π(|B|+
1), |B|+1). Based on the two cases, P(π(|A|+1), |A|+1) ≥
P(π(|B|+1), |B|+1). Therefore, FP (SA ∪ s)− FP (SA) ≥
FP (SB ∪ s) − FP (SB) holds.

(c)Minimum-time trajectory planning

If the robot adds a subgoal s in trajectory planning problem,
the total travel times will not decrease. As Fig. 8b shows,
A = {s1}, B = {s1, s2} s = {s3}.

FM
(
SA ∪ s

) − FM (SA) = (3 + 3) − 3 = 3

FM
(
SB ∪ s

) − FM (SB) = (3 + 2 + 4) − (3 + 2) = 4

FM
(
SA ∪ s

) − FM (SA) < FM
(
SB ∪ s

) − FM (SB)

Therefore, FM (SA ∪ s)− FM (SA) ≥ FM (SB ∪ s)− FM (SB)

doesn’t hold.

Theorem 1 ((1−1/e)-approximation (Nemhauser et al. 1978))
Let F be a monotone submodular set function over a
finite set S with F(∅) = 0. Let AG be the set of the
first k elements chosen by the greedy algorithm and let
OPT=maxA⊂S,|A|=k F(A). The lower bound of the greedy
algorithm is F(AG) ≥ (

1 − ( k−1
k )k

)
OPT ≥ (1 −

1/e)OPT .

Theorem 2 (Near optimal (Feige 1998)) The result of Theo-
rem 1 is tight and there is no polynomial time algorithm can
do strictly better than greedy algorithm if P �= N P.

Theorem 3 (Submodularity of SCAO) Given a finite set
S={1,2,. . .,n} and Ss,i ⊆ S is sampling set at i-th itera-
tion, let OPTi = maxA⊂Ss,i ,|A|=k FC (A). FC (AG) ≥ (1 −
1/e)OPTi holds.

Proof Assume FC and F̂C are the objective and approx-
imation functions of the coverage problem. After certain
iterations, F̂C ≈ FC . The approximated function behaves
as a submodular function. According to Theorem 2, if the
robot picks up the sampling set greedily at i th iteration, the
solution has (1−1/e)OPTi lower bound.1 Theorem3 proves
the optimality of Algorithm 1.

1 The coverage function of SCAO is an approximation function instead
of a true function. Hence, the near-optimal solution of SCAO is based
on the F̂C and sampling set.
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The major difference between greedy approach for the K -
max coverage and SCAO is how to chooses a set sequentially.
Greedy approach chooses a set from the whole set S sequen-
tially. SCAO picks up the set from a small sampling set Ss,i
and keep changing the sampling set such that the coverage is
maximal. The way to change the sampling set is according
to online learned approximation function F̂C . The difference
betweenCAOand SCAO is that sparse regressionwill reduce
the predicted error such that the F̂C is closer to FC . �

Theorem 4 (Optimality ofmaximizing cumulativePDusing
BNB) FP is the objective function for cumulative probability
of detection. Given suitable bound B, the following equation
holds: FP (πBN B) ≥ FP (πg) ≥ (1 − 1/e)FP (πopt,k).

Proof Lemma 2 proves FP is submodular. The next step
is to prove FP (πBN B) is greater than or equal to FP (πg).
According to Theorem 4, FP is submodular, so the greedy
policy gives (1 − 1/e)-approximation. Assume the greedy
approach chooses set πg = {s1, s2, . . . sk}. The cumulative
bound can be computed and the greedy bound is Bgreedy =
{b1, b2, . . . bk}. Assign B∗ = Bgreedy as the bound of cumu-
lative PD problem. The BNB algorithm behaves as a greedy
algorithm. FP (πg) ≥ (1−1/e)FP (πopt ) holds. To get better
performance, users can assign a bound B, where bi < b∗

i .
Then FP (πBN B) ≥ FP (πg) holds. This conclusion doesn’t
violate Theorem 2 since BNB is not a polynomial time
approach. �


Theorem4gives an interesting result. PDmodelwithBNB
(Eq. 14) is adopted for most of the probabilistic search appli-
cations. However, to decide the parameters of the bound
is a trade-off between optimality and computation. Lower
bound values generate more branches while higher bound
values prune more branches. Furthermore, no research indi-
cates the performance guarantee of a bound. Theorem 4
shows that if the path constraints (Ψ ) are removed, the
greedy approach generates near-optimal solution for the PD
model. Choosing any bounds lower than the greedy approach
will have an equal or better performance than the greedy
approach.

To illustrate the difference between the original PDmodel
and Theorem 4, as Fig. 5a shows, there are 4 directions for
each cell. If the robot is at cell 1 and tries to find 10 steps such
that PD is maximal using BNB, the worse case computation
could be 410. If the robot adopts Theorem 4 and the path con-
straints are skipped, the computation is 10 × 16. Moreover,
this approach gives near-optimal guarantee. In other words,
breaking the path constraints will generate more branches,
but the greedy approach will give near-optimal solution with
linear time complexity due to the submodularity.

Motion cost is also an important factor for search. Theo-
rem 4 assumes that choosing any subgoal has uniform cost.
However, it is oversimplified. For example, s4 is nearer than

s3 for the robot in Fig. 8a. Choosing s4 as the next subgoal has
lower motion cost. The following Theorems 5 and 6 prove
that the PDR algorithm generates (1 − 1/e)-approximation
with high probability.

Theorem 5 (Submodularity with Non-uniform Item Costs
(Khuller et al. 1999)) Given a finite set S = {1, 2, ..., n},
the item cost of element s ∈ S is τ(s) ∈ R+ and a
submodular function F : 2S → R+. The objective func-
tion is max

Sg⊆S
f (Sg)s.t. τ (Sg) ≤ τth , where τ(Sg) denotes

the motion cost to visit each subgoal of Sg . The inequal-

ity f (Sg) ≤ (1 − e
− τ (Sg )

τth )OPT holds. Based on this
inequality, the greedy approach gives (1−1/

√
e)OPT guar-

antee. The greedy approach with parital enumeration gives
(1 − 1/e)OPT guarantee.

If all itemcosts are uniform (e.g., τ(s) = 1 and B = k), the
lower bound of f (Sg) is (1−1/e)OPT , which is the case for
Lemma 1. Theorem 5 showswhen the τ(Sg)/τth is close to 1,
the lower bound of f (Sg) is close to (1−1/e)OPT [Khuller
et al. (1999)]. Since the τ(s) depends on the given set SA or
SB , a probability bound is necessary. For example, as Fig. 5a
shows, assume SA = {1}, SB = {1, 2} and s = {3}. τ(s|A)

denotes the motion cost adding subgoal s from the subgoal
set SA. Ti, j denotes the motion cost from i-th subgoal to j-th
subgoal. In this example, τ(s|A) is the motion cost when the
robot at subgoal 1 moves to subgoal 3. τ(s|A) and τ(s|B)

are T1,3 and T2,3 respectively. Hence, τ(s|A) �= τ(s|B). To
prove the submodularity with motion costs, a probabilistic
bound is introduced as follows:

Lemma 3 (Chebyshev’s inequality) Let X : � → R be any
random variable, and let ε > 0 be any positive real number.
Then, P(|X − E(X)| ≥ ε) ≤ Var(X)

ε2
.

Theorem 6 (Optimality of Maximizing Cumulative PDR
with Motion Costs using BNB) FPDR is the objective func-
tion for cumulative probability of detection rate. Given a
bound τth , the following equation holds. FPDR(πBN B) ≥
(1 − 1/e)FPDR(πopt,k) with P[|r − E(r)| ≥ ε] ≤ Var(r)

ε2

where r = τ(Sg)
τth

.

Proof Since FPDR(s) ≤ 1 and τ(s) > 1, the τ(s) dominates
the greedy selections. The greedy approach chooses the lower
item cost with high probability so the τ(Sg)/τth is very close
to 1. In other words, the variance of τ(Sg)/τth is very small.
Applying Lemma 3, the probability that FPDR(Sg) ≤ (1 −
1/e)OPT is bounded by P[|r − E(r)| ≥ ε] ≤ Var(r)

ε2
. For

example, if E(r) = 0.95, Var(r) = 0.052 and ε = 0.2, the
probability that the near-optimal guarantee does not hold is
lower than 6.2%.According to Theorem4 and 5,maximizing
cumulative PDR using BNB (Algorithm 2) gives (1 − 1/e)-
approximation with high probability.
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4.5 Summary of the proofs

First, Theorem 3 proves that SCAO (Algorithm 1) generates
near-optimal solutions based on the sampling. Second, The-
orem 4 proves that if the path constraints are removed, the
greedy solutions of PD model (Eq. 14) give near-optimal
guarantee. Finally, Theorem 6 proves that PDR approach
(Algorithm 2) gives near-optimal guarantee with high prob-
ability.

5 Experiments

To verify the proposed algorithms, the coverage performance
and search time are evaluated through a series of coverage
and search experiments. In Sect. 5.2, the coverage experi-
ments focus on coverage performance of the greedy, CAO
and SCAO algorithms. The results of greedy and SCAO
approach are adopted as the subgoals of the following search
experiments. Section 5.3 compares the search time using six
combinations of algorithms including greedy, nearest neigh-
bor (NN), PD, and PDR. In Sect. 5.4, the optimality and time
complexity of SCAO and PDR are investigated. Finally, in
Sect. 5.5, a sensitivity analysis is presented to illustrate the
trade-off between coverage and motion cost.

5.1 Experimental setup

The experiments are conducted at the Interactive Guidance
and Control Lab (IGCL). The dimensions of the search
task space are 5 × 5m2. The mobile robot is a Pioneer
P3DX equipped with a Microsoft Kinect. The robot gets
the RGBD image and odometer data from the Kinect and
P3DX encoders respectively. The detector is trained using
Adaboost and Haar-like features to detect the target (a soc-
cer ball) (Viola and Jones 2001). The conditional probability
table of detection for a Bayes filter is based on Adaboost
training data. The grid map of IGCL is built using Fast-
SLAM (Montemerlo et al. 2013). The update rate of the sen-
sors and velocity commands are at 4Hz and 1Hz respectively.

The setup of receding horizon control is as follows:
The resolution of CTG map and heading resolution are
10× 10cm2 and 45◦ respectively. Once the robot knows the
current subgoal, it will load the CTG map of this subgoal.
The robot computes the 3D CTGC map within D distance
and chooses the minimal cost as AWP. The robot computes
the optimal velocity commands within H horizons using
MINLP. The MINLP problem is formulated in AMPL and is
solved by a BNB algorithm provided by the BONMIN soft-
ware (Bonami et al. 2008). Once the robot reaches the current
subgoal, the robot loads the CTG map of next subgoal and
moves toward it.

The setup of the coverage experiments is as follows: For
the greedy approach, themap is discretized using 10×10 cm2

cells with a heading resolution of 45◦. The number of avail-
able cells is around 6000. The greedy algorithm chooses the
maximal coverage sequentially. For the (S)CAO approaches,
the robots position is continuous. At the initial stage, there
are 8 robots, with initial positions at [0◦, 0◦, 90◦]. After 500
iterations, the final robots positions are assigned as the sub-
goals 2 of (S)CAO.

The setup of the search experiments is as follows: The
robot searches for the target using different approaches. The
termination condition is when the total probability of the
H-area exceeds 90% and then the robot decides the target
is in the H-area. The H-area is defined as the 20 × 20 cm2

area around the highest probability cell. If the target is in
the H-area, it is a positive decision. If the target is not in
the H-area or the search time is over 240 s, it is a negative
decision. E[T T D+] denotes the expected time till positive
decisions (Chung and Burdick 2012).

The human machine interface (HMI) of the search sys-
tem is as follows: Figure 9d and e show the RGB and depth
images used for object detection andmeasuring the target 3D
position respectively. Once the target is detected, the HMI
indicates its position. Figure 9c shows that if there is a detec-
tion, the probability of that area will increase. Otherwise,
the probability of the scanned area will decrease. Figure 9b
shows that there are six subgoals and corresponding probabil-
ity. The optimal path is 3–1–4. Figure 9a shows that the robot
moves toward the subgoal 3 using receding horizon control.

The selections of experimental parameters (see Table 1)
are as follows:

SCAO: If the number of subgoals (M) is equal to 8, the CAO
has high probability to cover around 90%. Since the robot
works in 2D space, the dimension (dim(x)) is 3. The number
of polynomial approximators (L) and samples (N ) for the
least square method are 2×M×3+1 = 49 and 2×M×3 =
48 respectively. The penalty parameters λ1, λ2 and λPEN

are tuned according to the trade-off between accuracy and
sparsity/grouping. For example, if λ1 is higher, the weights
are sparser.

PDR: β decides the number of expanded branches. β = 1
means the greedy approach is adopted. Glimpse function
value (g) is decided by P(φ = 1|zD = −1), which is avail-
able after Adaboost training. The depths of branches (T ) is

2 The relationship between the coverage of subgoals and maximal cov-
erage for searching is the following. The coverage of subgoals is based
on discrete subgoal positions. However, the robot will move continu-
ously to K subgoals. Hence, the computed coverage is the lower bound
of the real coverage.
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Fig. 9 Snapshot of the human machine interface. a The RH CTGwin-
dow shows receding horizon control and CTGCmap. The red point and
green point represent the subgoal position and AWP point respectively.
The red lines and yellow circle represent the optimal direction of CTGC
map and the robot position respectively. The grey scale represents the
CTGC cost within 50 cm of the robot position. b The PDR BNB win-
dow shows the target distribution for each subgoal and optimal path.
The green bars, blue circles, and yellow circle represent the probability
of individual subgoal, subgoal positions, and the robot position respec-
tively. c The Bayes filter window shows the target distribution in the

grid map. The bright green and black represent the higher and lower
probability distribution respectively. The red rectangle, yellow rectan-
gle, red line, and yellow circle represent the H-area, detected area, field
of view, and robot position respectively. d The RGB window shows the
real-time image. Pink circle represents the detection of the target. e The
depth window shows the real-time depth image. The 3D (x–y–z axis)
data is projected to the 2D (x–y axis) data. Once the target is detected,
the 3D (x–y–z axis) target position is projected to the 2D (x–y axis)
position. The 2D map and detection data is used to update the target
distribution using the Bayes respectively (Color figure online)

3, which is computational efficiency for the PD(R) approach.
zR and zθ are the parameters of Kinect sensors.

MINLP: The horizons of MINLP (H) are decided by the
run time and uprate of the system. When H = 8, the run
time of MINLP is around 120ms. The distance D for com-
puting CTGC is 50 cm, which can be reached with H = 8.
The velocity and acceleration parameters (Vmax , ωmax , amax

and αmax ) are determined according to requirements. Higher
speeds lead to image blur, which decreases the detection
rate of Adaboost. Hence, those parameters are set based on
the trade-off between the robot speed and detection rate of
Adaboost.

5.2 Coverage experiments

The goal of the experiment is to compare the performance of
the greedy approach, CAOwith least square (LS), CAOwith
L2-norm, CAO with L1-norm, and CAO with PEN (SCAO).
Figures 10 and 11 show the results obtained after 500 itera-
tions.

Table 1 Parameters used in the experiments

M N L λPEN λ1 λ2

8 48 49 0.65 0.001 0.001

β g T zR zθ

1 0.8 3 4 (m) 57◦

H D Vmax ωmax amax αmax

8 50 cm 20 (cm/s) 22 (◦/s) 5 (cm/s2) 11 (◦/s2)

Figure 10d shows that the number of robots with LS and
L2 is always 8. In contrast, the number of subgoals with L1
and PEN is around 4–8. Due to the structured group, PEN
requires fewer robots than L1. In addition, Fig. 11a–e show
that the maximal coverage for all approaches is over 85%.
In terms of the algorithms, Fig. 11a–c show that the maximal
coverage of LS, L2, L1 is around 90% and the number of
robots is 8.While Fig. 11d–e show that themaximal coverage
rate of PEN is 85.6%, the number of subgoals is only 6; the
2nd and 8th robots are discarded. Note also that the greedy
approach only needs 6 subgoals to cover over 90%.

There are three advantages of the SCAO algorithm. First,
the weighting vector is sparse. Sparsity is the number of
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(a) (b)

(c) (d)

Fig. 10 Results of greedy, LS, L2, L1, PEN algorithms over the iterations (Color figure online)

non-zero weights divided by the number of total weights.
Figure 10c shows that the sparsity obtained with LS and L2
is 1 because neither approach makes the weighting sparse. In
contrast, L1 and PEN discard around 60% of the weights.

Second, fewer subgoals are required. This result is illus-
trated in Fig. 11. SCAO only requires 6 subgoals while
CAO needs 8 subgoals. Although L1 approach also gener-
ates sparse weights, the sparse constraints are not structured.
Hence, even if the weights of L1 approach are sparse, L1
approach cannot generate fewer subgoals.

Third, the regression employing regularization prevents
overfitting. The predicted error is defined as ck − ĉk . It pro-
vides an index to judgewhether the learned coverage function
is accurate. Table 2 shows that the predicted error of LS
approach is bigger than that of the other approaches. Because
the polynomial terms are randomly generated, some terms
are not very correlated; therefore, the LS approach leads to
overfitting. In contrast, the other approaches employ regu-
larization; therefore, the uncorrelated terms are discarded or

reduced. As a result, the L2, L1 and PEN predicted errors are
less than that of LS approach.

The Greedy and SCAO generate fewer subgoals and
achieve maximal coverage (see Fig. 10b). Therefore, the fol-
lowing section adopts the subgoal generated by these two
approaches to evaluate the search time.

5.3 Search experiments

The goal of the search experiment is to evaluate the per-
formance in terms of coverage, probabilistic search, and
trajectory planning. The algorithms are shown in Table 3. To
compare the E[T T D+] for these six approaches, the target is
placed in the unoccupied cells of themap. For each approach,
the robot searches for the target 50 times (Table 4). The 6 sub-
goals are determined by the Greedy or SCAO algorithms as
shown in Fig. 11d and e. The E[T T D+] attained by the
six approaches are summarized in Table 5. The experimental
results are as follows.
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Fig. 11 Maximal coverage of LS, L2, L1, PEN and Greedy algorithms. The black, white, and blue areas are obstacles, uncovered, and covered
areas respectively. The green circles and red cross are the robots and the discarded robots respectively (Color figure online)

First, the approaches considering motion cost are faster
than the others. Although the greedy approach has higher
coverage than SCAO, the greedy subgoals are farther apart
than the SCAO subgoals. Hence, the former have higher
travel times than the latter. Furthermore, the Greedy + NN
has higher search time than SCAO+NNbecause the former’s
motion cost is higher. Greedy + PD is slower than Greedy
+ NN because the robot moves to the subgoal with higher
probability instead of the closest subgoal. For example, the
1st and 2nd chosen subgoals are subgoal 1 and 4, which have
high travel times (see Fig. 12). The SCAO + NN and SCAO
+ PD exhibit similar phenomena.

Second, the PDR approach considers both the PD and
motion cost; hence the robot can sweep the environment in
the shortest time, which reduces the search time. Further-
more, Greedy + PDR is faster than Greedy + NN because the
robot moves to the subgoal with the highest PDR. SCAO +
PDR and SCAO + PD exhibit similar behavior. The SCAO +
PDR is faster than Greedy + PDR because SCAO subgoals
have lower motion costs (see Fig. 13).

In conclusion, the E[T T D+] results demonstrate that the
PDR approach is faster than the PD and NN approaches.
For example, Greedy and PD are state of the art for cover-
age and probabilistic search respectively. In experiments, the

Table 2 Predicted coverage error

LS L2 L1 PEN

Error 1.136 0.024 0.025 0.040

E[T T D+] of SCAO + PDR is 1.7 times faster than that of
Greedy + PD.

5.4 Optimality and time complexity analysis

To evaluate the optimality and time complexity of SCAO and
greedy approaches, the solutions of the two approaches are
compared. As Fig. 14a shows, the SCAO solution is always
better than (1− 1/e)OPT i . Although the greedy solution is
better than SCAO, the computation of the greedy approach
is higher than SCAO.

The SCAO computations include sensing, learning, and
decisionmakingwhile the primary computation of the greedy
algorithm is sensing. The primary computation of the SCAO
algorithm is learning, which can be solved by coordinate
descent. Hence, the computational complexity is O(mN 2),
where m and N are the number of iterations and approx-
imators respectively. The greedy algorithm computes the
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Table 3 Overview of the algorithm tested in the experiments

Greedy The subgoal positions are computed using the greedy algorithm

SCAO The subgoal positions are computed using SCAO

NN The robot chooses next subgoal based on nearest Euclidean distance

PD The robot plans the optimal path based on maximizing cumulative PD. The path constraints are three
nodes with the lowest motion cost and the number of time steps (T ) is 3

PDR The robot plans the optimal path based on maximizing cumulative PDR. There is no path constraint and T
is 3

Greedy/SCAO+NN Considering coverage only

Greedy/SCAO+PD Considering coverage and probability

Greedy/SCAO+PDR Considering coverage, probability and motion cost

Table 4 Map parameters

CTG map size 60 × 60 × 8

Grid map size 300 × 300

CTG map resolution 10 × 10 cm2 × 45◦

Grid map resolution 2 × 2 cm2

coverage according to the selected position and map data.
The computational complexity of the greedy algorithm for
k-max coverage is O(k|G|), where |G| is the number of
available grid points. The major difference in computation
between greedy and SCAO algorithms is as follows. The
greedy algorithm has to sense the environment when placing
each subgoal position. SCAO only senses the environment
one time per iteration. For example, with |G| of 6000 and k
of 6, the greedy algorithm needs to sense the environment
36000 times. In contrast, SCAO runs 500 iterations. As a
result, it only needs to sense the environment 500 times. In
the experiments, the greedy approach takes 4 hours while
SCAO takes 5 minutes to compute the subgoal positions. As
a result, the SCAO’s computational time is 50 times faster
than the greedy approach’s.

To evaluate the optimality and time complexity of PDR
andOPT, their PDR are compared. The data is collected from
the 50 SCAO + PDR experiments. The OPT computes all
possible solutions while PDR computes the greedy solutions.
As Fig. 14b shows, the 99% solution of PDR is better than
(1−1/e)OPT . In other words, it shows the high probability
guarantee of Theorem 7. PDR average approximation rate is
85%.

The complexity of finding PDR solutions is as follows:
The OPT approach needs to compute each branch and finds
the branch with maximal PDR. If β = 1, the PDR BNB
approach is equal to the greedy approach. The time complex-
ity of OPT and PDR are O(|S|T ) and O(T |S|) respectively,
where |S| is the number of subgoals and T is the planning
steps. In the search experiments, with |S| of 6 and T of

Table 5 E[T T D] obtained from the six methods

E[T T D+] (s) Std (s) Successful rate (%)

Greedy+NN 35.8 32.4 82

Greedy+PD 42.4 33.0 82

Greedy+PDR 33.0 19.4 86

SCAO+NN 34.9 22.8 90

SCAO+PD 36.5 18.7 92

SCAO+PDR 24.7 14.3 94

3, optimal solutions require computing 216 solutions while
PDR only requires computing 18 solutions. Even if PDR’s
computational complexity is lower, its performance is near-
optimal with high probability. The Table 6 summarizes the
complexity and optimality of four approaches.

5.5 Sensitivity analysis

Since the objective functions of coverage and minimum-
time trajectory planning problems are coupled, the sensitivity
analysis of coverage and motion cost is shown using two
experiments. First, SCAO generates 1 to 7 subgoals, 10 times
for each. Once the subgoal positions are given, their coverage
(C) and motion cost (T ) are computed using measurements
and CTG map respectively. The time gap (Tg) is defined as
Tg = Tmax−T

Tmax
, where Tmax is the maximal motion cost of

all SCAO subgoals. Figure 15a shows that when the number
of subgoals increases, the coverage increases while the time
gap decreases. In other words, the larger number of subgoals
generates higher coverage and higher motion cost.

Second, SCAOgenerates 5 subgoals, 20 times for each and
then 6 subgoals, 20 more times each. Once the subgoal posi-
tions are given, their coverage (C) and motion cost (T ) are
computed using measurements and CTG map respectively.
C and Tg data based on subgoals are used for fitting lines.
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Fig. 12 Search using PD. a–d RGB image. e–h CTGC HMI. i–l
PD_BNBHMI. The graph represents the links and nodes for 6 subgoals.
The green bar and numbers represent the probability of each subarea.
m–P BF HMI. t = 1.5: The PD_BNB generates Ppath = {1, 5, 4} and

the robot moves toward subgoal 1. t = 40: The PD_BNB generates
Ppath = {4, 5, 3} and the robot moves toward subgoal 4. t = 61.75:
The robot detects the ball before arriving at subgoal 4. t = 63.5: The
probability of H-area is over 90% (Color figure online)

The fitting lines of 5 subgoals and 6 subgoals are shown in
Fig. 15b.

The profit (Z) is defined as Z = C +�Tg . If� increases,
the weight of the motion cost is higher. The goal is to find
maximal Z under different � values using 5 subgoals or 6
subgoals. As Fig. 15 shows, the optimal values are as follows:

⎧
⎨

⎩

If � > 0.3, optimal point is at A3

If 0.17 ≤ � ≤ 0.3, optimal point is at A2

If � < 0.17, optimal point is at A1

If � > 0.3, the user prefers lower motion cost and should
choose 5 subgoals. The optimal value is at A3. C and T in
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Fig. 13 Search using PDR. t = 1.5: The PDR_BNB generates Ppath =
{6, 3, 1} and the robotmoves toward subgoal 6. t = 10.5: The PDR_BNB
generates Ppath = {3, 1, 4} and the robot moves toward subgoal 3. t =

20.75: The robot detects the ball before arriving at subgoal 3. t = 22.5:
The probability of H-area is over 90% (Color figure online)

this case are 74% and 21.5 s respectively. If � < 0.17, the
user prefers higher coverage and should choose 6 subgoals.
The optimal value is at A1. C and T in this case are 86%
and 38.5 s respectively. If 0.17 ≤ � ≤ 0.34, the balanced
coverage and motion cost are preferred. C and T in this case
are 83% and 33.5 s respectively. The user could choose 5 or
6 subgoals to achieve such performance.

5.6 Summary of experiments

The coverage, search, and optimality experiments demon-
strate three facts. First, the SCAO can find the subgoals such
that coverage is maximized with fewer sensors. Second, the
PDRcanfind the search path such that the PDRalong the path
is maximal. Third, the optimality of SCAO is near-optimal
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(a)

(b)

Fig. 14 SCAO and PDR optimality (Color figure online)

and the optimality of PDR is near-optimalwith high probabil-
ity. Finally, the sensitivity analysis shows a way for choosing
the desired trade-off between coverage and motion cost.

6 Discussion and future work

In this research, the proposed approach is to enable a mobile
robot to search for a static target considering three problems.
Searching for a moving target and multiple targets are dis-
cussed next.

First, the proposed formulation can be extended to multi-
ple targets by accounting formultiple likelihoodmaps and by
computing the near-optimal PDR according to the combina-
tion of all likelihoodmaps. For example, searching considers
two targets, a soccer ball and a basketball. The robot needs to
train one Adaboost classifier for each target. After training,
the robot gets two conditional probability functions about
each target P(φs |zDs ) and P(φb|zDb ), where φs , φb, zDs and
zDb denote the soccer ball state, basketball state, detection of
soccer ball and detection of basketball respectively.

At the perception stage, the robot creates two likelihood
maps first. Then, the robot computes two likelihood maps
according to the detections of two targets using a Bayes filter.
The space and time complexity are as follows. The likelihood
maps in this paper are 300 × 300 cells and each cell is com-
puted as floats (4 bytes). The storage space of a likelihood
map is around 0.3 MB. The computation of each target is
around 1 ms. Hence, it is feasible to compute multiple tar-
gets’ PDF using a Bayes filter.

At the decision-making stage, the robot combines two
likelihood maps into a new likelihood map. The new like-
lihood map displays the combined likelihood maps for the
two targets. PDR finds a search path to collect the PDR. The
computation of PDR for multiple targets is the same as that
for a single target. Once one of the targets is located (H-area
is over 90%), the corresponding likelihood map is removed.
At this point, search task becomes the single object searching
case. The robot keeps searching for another target.

Second, to search for a moving target, perception and
decision-making need to bemodified. In the perception stage,
the difference between a moving and static target is the
motionmodel of Bayes filter (Eq. 23). If the target is moving,
Eq. 23 is updated based on the known target motion model
P(Xt

k |Xt
k−1). An efficient way to implement the motion

model is using Gaussian filter (or called Gaussian blur in
image processing).

In the decision-making stage, the difference between a
moving and static target is that the target’s PDF is time-
varying. To pursue the target, the robot has to change its
subgoals according to the target’s PDF. The dynamic cover-
age algorithmcan be implemented by learning a time-varying
coverage function (Du et al. 2014).

Another limitation of the proposed approach is that the
coverage problem and CTG map are currently computed
offline. Therefore, an important future direction is to learn
coverage and the CTG functions via reinforcement learn-

Table 6 Comparisons of time
complexity and optimality

SCAO Greedy PDR OPT

Complexity O(mN 2) O(k|G|) O(T |S|) O(|S|T )

Optimality (1 − 1/e)OPT i (1 − 1/e)OPT (1 − 1/e)OPT OPT
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(a)

(b)

Fig. 15 Sensitivity analysis. a The blue and red segments represent
coverage and time gap at different the number of subgoals respectively.
b The blue and red segments represent the fitting lines of 5 subgoals
and 6 subgoals respectively. The larger Tg indicates faster motion. The
red line (M = 6) has higher coverage and slower motion. The blue
line (M = 5) has lower coverage and faster motion. In this experiment,
Tmax is 38.5 s. Tg = 0.1 and Tg = 0.3 are equal to 34.65 and 30.8 s
respectively (Color figure online)

ing. Second, to search for a moving target with near-optimal
guarantee is still a challenge. Learning a time-varying cov-
erage function is a possible direction. Finally, how humans
search for targets is still a mystery. The authors are currently
performing experiments investigating the gaze of humans in
remote control search tasks. The formal search framework
can be used to investigate human search strategies, and con-
versely the results obtained from human experiments could
help improve the proposed algorithms.

7 Conclusions

Robotic search combines coverage, probabilistic search and
minimum-time trajectory planning problems, which are NP-
hard. The proposed approach solves these problems using:
(1) SCAO to determine the minimal number of subgoals to
perform the sensor coverage task; (2) PDR to determine the
path such that the cumulative probability of detection rate
is maximal; and (3) MINLP to determine the velocity com-
mands to guide the robot from the current position to each of
subgoals in minimal time.

The contributions of this research are as follows: First,
the proposed approach enables a mobile robot to search
for a target considering sensing coverage, sensing uncer-
tainty, and motion cost. Second, the SCAO algorithm solves
the maximal coverage problem using fewer sensors, avoids
overfitting, and reduces computation. Third, PDR solves the
maximal cumulative PDR with linear time. The advantages
of PDR are the consideration of sensing overlap and motion
cost. Finally, SCAO gives near-optimal solutions while PDR
gives near-optimal solutions with high probability. The the-
oretical proofs and experiments demonstrate that the SCAO
performance exceeds the CAO performance; the PDR per-
formance exceeds the PD performance; the SCAO+PDR
performance exceeds the performance of any combinations
of existing approaches (e.g. NN, Greedy, CAO and PD).
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Appendix

Bayes filter

If the probability distribution of the target’s motion
P(Xt

k |Xt
k−1) and the probability distribution of the robot’s

sensor P(zk |Xt
k) are known, the probability distribution of

the target is computed recursively through Eqs. 23 and 24.
The distribution of the target is fused based on the motion
and sensor models.

P
(
Xt
k |z1:k−1

) =
∑

Xt
k−1

P
(
Xt
k |Xt

k−1

)
P

(
Xt
k−1|z1:k−1

)
(23)

P
(
Xt
k |z1:k

) = ηP
(
zk |Xt

k

)
P

(
Xt
k |z1:k−1

)
(24)
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Table 7 Conditional probability table

P
(
ZD = 1|φ = 1

)
q

P
(
ZD = −1|φ = 1

)
1−q

P
(
ZD = 1|φ = −1

)
0

P
(
ZD = −1|φ = −1

)
1

where Xt
k is the target’s position at time k, z1:k is the mea-

surement of the sensors at time 1 to k, and η is the normalized
factor.

Probability of detection (PD) model

To plan the optimal path, PD model is proposed under the
assumption of no false detections (see Table 7). Assume the
probability of sensor covered area is P(φ = 1) = p. The PD
is defined as FPD = P(φ = 1) − P(φ = 1|ZD). Since ZD

is 1 or −1, there are two cases of FPD .

No detection case

P
(
φ = 1|ZD = −1

)

= P
(
ZD = −1|φ = 1

)
P(φ = 1)

P
(
ZD = −1|φ = 1

)
P(φ = 1) + P

(
ZD = −1|φ = −1

)
P(φ = −1)

= 1 − q

(1 − q)p + (1 − p)
p = 1 − q

1 − pq
p = αp

( ∵ 0 ≤ p ≤ 1,∴ 0 ≤ α ≤ 1
)

FPD = P(φ = 1) − P
(
φ = 1|ZD = −1

)

= p − αp = p(1 − α) = pg,

where 0 ≤ g ≤ 1

Detection case

P
(
φ = 1|ZD = 1

)

= P
(
ZD = 1|φ = 1

)
P(φ = 1)

P
(
ZD = 1|φ = 1

)
P(φ = 1) + P

(
ZD = 1|φ = −1

)
P(φ = −1)

= q

qp
p = βp, where 1 ≤ β

FPD = P(φ = 1) − P
(
φ = 1|ZD = 1

)

= p − βp = p(1 − β) = pg′, whereg′ ≤ 0

Hence, the PD is updated dependent on the detections. For
most applications (Lau et al. 2008, 2006), the detection case
(ZD = 1) is skipped for planning more horizons.

FPD =
{
p · g, if no detection (ZD = −1)
p · g′, if there is a detection (ZD = 1)

Computing coverage

Definition 1 (Coverage) As Fig. 16 shows, the robot is at
XR and gets the sensing measurements z = {ri , θi }, where
i = 1, . . . , Nz . Assume there are Ng unoccupied cells in

Fig. 16 Illustration of coverage concept. The blue circle and blue area
represent the current robot position and corresponding covered area
respectively (Color figure online)

a grid map (m). The robot’s sensor covers Nc cells. The
coverage (C) is defined as Nc/Ng .

According to XR and z, the covered area is computed.
There are 25 cells and 8 cells are covered by the robot. Hence,
the coverage is 32%.
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