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Abstract Rapidly-exploring Random Tree star (RRT*) is
a recently proposed extension of Rapidly-exploring Random
Tree (RRT) algorithm that provides a collision-free, asymp-
totically optimal path regardless of obstacles geometry in
a given environment. However, one of the limitation in the
RRT* algorithm is slow convergence to optimal path solu-
tion. As a result it consumes highmemory as well as time due
to the large number of iterations utilised in achieving optimal
path solution. To overcome these limitations, we propose the
potential function based-RRT* that incorporates the artificial
potential field algorithm in RRT*. The proposed algorithm
allows a considerable decrease in the number of iterations
and thus leads to more efficient memory utilization and an
accelerated convergence rate. In order to illustrate the useful-
ness of the proposed algorithm in terms of space execution
and convergence rate, this paper presents rigorous simula-
tion based comparisons between the proposed techniques and
RRT* under different environmental conditions. Moreover,
both algorithms are also tested and compared under non-
holonomic differential constraints.
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1 Introduction

Motion planning involves collision free navigation of a robot
from an initial start region to a goal region in given envi-
ronments. Applications of this field are not only restricted
to robotics (Latombe 1999), but finds application in vari-
ous other fields such as computer animation (Kuffner and
Latombe2000),medical (Taylor andStoianovici 2003),mod-
ern industry (LaValle 2006) and in our daily life (Matsumoto
et al. 2012).Due to its comprehensive application,manyalgo-
rithms have been developed in the field of motion planning.
Two major classes of motion planning algorithms exist; one
is complete algorithms, which successfully return a solution
in finite time, if one exists, and reports failure if a feasible
solution does not exist. The other class of algorithms does
not assure full completeness but does assure probabilistic or
resolution completeness. Many complete motion planning
algorithms exist (Schwartz and Sharir 1983; Lozano-Perez
and Wesley 1979) but are often computationally inefficient
(Canny 1988) for common practical applications (Kara-
man and Frazzoli 2011). Algorithms providing resolution
completeness include the example of Artificial Potential
Fields (APF) (Khatib 1986) and cell decomposition methods
(Brooks and Lozano-Perez 1985). These algorithms, how-
ever, are only effective in problem solving if the resolution
parameter of the grid is finely tuned. Moreover APF perform
pure exploitation. Exploitationmakes the planner greedy as it
assumes that the provided information is sufficient for com-
puting a path solution. Although pure exploitation allows
APF to quickly compute the solution but it also causes APF
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to suffer from the problemof localminima (Koren andBoren-
stein 1991). The other resolution complete algorithm i.e., cell
decomposition methods involves extremely large numbers
of cells which makes it computationally heavy. Therefore,
these limitationsmake thesemethods unsuited for themotion
planning of robots placed in complex environments. To over-
come the problem of inefficiency, computationally efficient
sampling based algorithms (Lamiraux and Laumond 1996)
were introduced. Sampling based algorithms perform pure
exploration of configuration space so as to improve the plan-
ners’ understanding of the given space. The most effective
of these were Probabilistic Road Maps (PRM) (Kavraki
et al. 1996) and Rapidly-exploring Random Tree (RRT)
(LaValle 1998), ensuring probabilistic completeness. This
means that as the number of iterations approaches infinity,
the probability of finding path , if one exists, approaches
one. PRM’s and its variants are multiple-query methods.
However, most online motion planning problems can be
solved as single-query problems instead (Karaman and Fraz-
zoli 2011). Furthermore, PRM’s need prior computing of the
roadmap which is not feasible when the environment it is
operating in is unknown. Also, computing a road map dur-
ing run time is computationally expensive. Rapidly Growing
Random Tree algorithms were mainly developed for motion
planning problems with differential constraints and for sin-
gle query problems (LaValle 1998). Recently, an extension
of RRT algorithm called Rapidly-exploring Random Tree
star (RRT*) (Karaman and Frazzoli 2011) was proposed
which computes an initial path same as RRT but contin-
ues to perform further iterations, increasing the number of
samples in the configuration space to optimize this initial
path, thereby ensuring asymptotic optimality (Karaman and
Frazzoli 2010). This feature is not provided by the RRTs
(Karaman and Frazzoli 2011). However some major con-
straints that still exist in RRT*, due to pure exploration,
are its slow rate of convergence in determining an optimal
path solution and its highmemory requirements. Largemem-
ory utilization occurs due to the large number of iterations
required to find the optimal path. Although computing an
optimal path solution is itself a challenging problem, but fast
convergence to optimal solution is also important for most
online motion planning problems (Goerzen et al. 2010). This
paper introduces the idea of potentially guided, direction-
alized sampling by incorporating APF (Khatib 1986) into
RRT*, thus resulting into guided exploration of given envi-
ronment. This speeds up convergence towards a solution as
directionalized samples reduces the number of iterations, and
consequently execution time, required to achieve an opti-
mal path. APF algorithms are known for their simplicity and
strong mathematical analysis but their applications are lim-
ited to a state space of up to five dimensions due to its inability
to work in local minima environments (Koren and Boren-
stein 1991). APF primarily uses the effect of unreal forces

that act on the robot, generated by both the goal and obstacle
regions. This idea of fictitious forces was given by Khatib
(1986). A similar concept of directionalizing random sam-
ples throughAPFwas initially introduced as potential guided
directionalized-RRT* (PGD-RRT*) (Qureshi et al. 2013a, b).
Although PGD-RRT* finds an initial path very quickly as
compared to RRT* but it fails to converge to optimal path
solution. Our proposed potential functions based RRT* (P-
RRT*) is a variant of the previously proposed PGD-RRT*
and extension of APGD-RRT* (Qureshi et al. 2013a, b). It
efficiently inculcates APF into RRT* to keep the balance
between exploitation and exploration i.e., guided exploration
of given space. This inculcation helps P-RRT* to direct
random samples in the direction of decreasing potential to
provide a quick, optimal solution. Moreover, this also results
in lesser dispersion of samples in the configuration space
and provides a more memory efficient solution operating at
a much faster rate compared to RRT*. This idea of guid-
ing samples for improving and theoretically characterizing
the convergence rate of asymptotically optimal sampling-
based algorithms is novel. As per the authors knowledge, no
such technique exists of guiding random samples by APF for
fast optimal motion planning. This new algorithm has been
evaluated under different scenarios including the local min-
ima environment. It has been observed that in almost all the
cases, our P-RRT* is more efficient than RRT*. The remain-
der of the paper is organized as follows. Section 2 addresses
the problem definition, Sect. 3 explain the RRT* and APF
algorithms while Sect. 4 describes P-RRT* path planning
algorithm in detail. Section 5 gives a brief outline of the
implementation of P-RRT* and RRT* under non-holonomic
differential constraints. Section 6 presents analysis of the of
the proposed algorithm in terms of probabilistic complete-
ness, asymptotic optimality, convergence to optimal solution
and computational complexity. Section 7 provides experi-
mental evidence in support of theoretical results presented
in the previous section; whereas Sect. 8 concludes the paper,
also suggesting some future areas of research in this partic-
ular domain.

2 Problem definition

This section presents threemotion planning problemswewill
be addressing in this paper, along with the notations we will
be using to describe them.

Given a set Q, a sequence denoted as {qi }i∈N in this set
is a mapping from N to Q i.e., i ∈ N is mapped to qi ∈ Q.
Moreover, for the algorithms described in this paper, each
set Q is equipped with remove and add procedures such that
Q.add(q) := Q ∪ {q} while Q.remove(q) := Q\{q}. Let
the constant λ ∈ R+ be a small step size. Let X ⊂ R

d repre-
sent the given state space, where d denotes the dimension of
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state space i.e., d ∈ N : d ≥ 2. The obstacle and obstacle-
free state space is defined as Xobs ⊂ X and Xfree = X\Xobs

respectively. The initial state is denoted as xinit ∈ Xfree while
goal region is denoted as Xgoal ⊂ Xfree. The procedure
μ(·)1 provides the Lebesgue measure of any given state
space. Given x1, x2 ∈ X , the Euclidean distance between
these two states is defined as d(x1, x2) ∈ R. The spherical
region centered at any state x ∈ X of radius r ∈ R|r > 0
is represented by Bx,r := {y ∈ X : d(y, x) ≤ r}. Let
U : Rd → R denotes the artificial potential function. The
variable τ : [0, 1] → X is a path having non-negative and
non-zero scalar length. This path τ is considered feasible
if it connects xinit and x ∈ Xgoal, i.e. τ(0) = xinit and
τ(1) ∈ Xgoal, and lies in the obstacle-free space Xfree. Prob-
lem 1 formalizes the feasibility problem of path planning.

Problem 1 (Feasible Path Planning) Given a triplet
{X, Xfree, Xobs}, an initial state xinit and agoal region Xgoal ⊂
Xfree, find a path τ : [0, 1] → Xfree such that τ(0) = xinit
and τ(1) ∈ Xgoal.

Let
∑

feasible denote the set of all feasible trajectories in
the obstacle-free configuration space Xfree. The cost func-
tion c(·) finds the path length in terms of Euclidean distance
function. Problem 2 formalizes the optimal path planning
problem; finding a feasible path with minimum cost c∗.

Problem 2 (Optimal Path Planning) Assuming that a solu-
tion to Problem 1 exists and provided with the set of all
feasible trajectories

∑
feasible, find a path τ ∗ ∈ ∑

feasible such
that c(τ ∗) = {minτ∈∑

feasible
c(τ )}.

Let t ∈ R denote the time taken by the algorithm to find
a set of all feasible paths

∑
feasible(solution to Problem 1)

and computing the optimal path τ ∗ ∈ ∑
feasible. The fast

path planning problem formalized in problem statement 3
indicates that this optimal path solution must be determined
in least possible time.

Problem 3 (Fast Path Planning) Find the solution to prob-
lems 1 and 2, if one exists, in least possible time t ∈ R.

3 Related work

This section briefly explains optimal RRT* and APF algo-
rithm, which form the basis of our proposed Potential
Function Based-RRT* (P-RRT*) algorithm. P-RRT* uses
APF to guide the random samples picked by RRT* towards
the goal for further optimization.

1 The procedureμ(·) provides the Lebesgue measure of any given state
space e.g.μ(X) denotes the Lebesgue measure of the whole state space
X . Lebesgue measure is also called d-dimensional volume of the given
space.

3.1 RRT*

This section formally presents the RRT* algorithm (Kara-
man and Frazzoli 2011) that is an extension of the standard
RRTs algorithm. Algorithm 1 is slightly modified implemen-
tation of RRT*. In this modification, improvements were
made to original algorithm in order to enhance computa-
tional efficiency of RRT* by reducing the number of calls to
its collision checking procedure (Perez et al. 2011). Follow-
ing is a brief description of the main processes involved in
its execution:

Algorithm 1: RRT*(xinit)
V ← {xinit}; E ← ∅; T ← (V, E);1
for n ← 0 to N do2

xrand ← RandomSample(n);3
Xnear ← NearbyNodes(T, xrand, n);4
if Xnear = ∅ then5

Xnear ← NearestNode(xrand, T = (V, E));6

L ← GetTuple(xrand, Xnear);7
xparent ← SelectBestParent(L);8
if xparent �= ∅ then9

T = (V, E) ← InsertNode(xrand, xparent, T = (V, E));10
E ← RewireNodes(xrand, L , E);11

return T = (V, E);12

Sampling The procedure RandomSample(n) randomly sam-
ples the given obstacle-free region Xfree to get independent,
uniformly distributed configurations.

Nearby Nodes Considering a configuration x ∈ X and a
random tree T = (V, E) where V ⊂ X and the num-
ber of vertices in V is defined as n := |V |, the procedure
NearbyNodes(T, x, n) provides a set of nodes Xnear ⊂ V
lying within a ball of radius r centered at x i.e.,

Nearby(T, x, n) :=
⎧
⎨

⎩
v ∈ V : d(v, x) ≤ r := γ

(
logn

n

)1/d
⎫
⎬

⎭

where γ is an independent constant such that γ > γ ∗ :=
(2(1+ 1/d))1/d

(
μ(Xfree)

ζB

)1/d

and d represents the dimen-

sion of the configuration space.

Nearest Node Given the configuration x ∈ X , the tree T =
(V, E) where V ⊂ X , the NearestNode(x, T ) procedure
returns the node v ∈ V that is nearest to the configuration x
in terms of Euclidean distance. This procedure can also be
summarize as:

NearestNode(x, T ) = argminv∈V d(v, x)

Lists and Sorting Given the set X ′ ⊂ X and a random state
x ∈ X , the procedure GetTuple(x, X ′) returns the sorted list

123



1082 Auton Robot (2016) 40:1079–1093

L . Algorithm 2 provides the pseudocode of this procedure.
Each element of this list comprises of cost c ∈ R : c > 0,
state x ′ ∈ X ′ and the path τ . The list L is equipped with add
and sort functions, the former works similar to the one for
sets while the latter sorts the list L in ascending order of cost.

Algorithm 2: GetTuple(xrand, Xnear)

L ← ∅;1
for x ′ ∈ Xnear do2

τ ← ExtendTo(x ′, xrand);3
c ← c(x ′) + c(τ );4
L ← (x ′, c, τ );5

L .sort();6
return L;7

Extending Given the two states x1, x2 ∈ X , the function
ExtendTo(x1, x2) returns a path τ : [0, 1] → X such that
τ(0) = x1 and τ(1) = x2. The extension procedure provides
the straight path, i.e., τ(s) = (1 − s)x1 + sx2; ∀s ∈ [0, 1].
Collision checking Given two configurations x1, x2 ∈ X , a
path τ : [0, 1] such that τ(0) = x1 and τ(1) = x2, the
procedure CollisonFree(τ ) returns true if the path τ belongs
to obstacle-free space Xfree otherwise it reports failure.

Algorithm 1 explains the RRT* algorithm. Once initial-
ized, the RRT* algorithm begins its iterative processing by
picking randomsamples, xrand, from the obstacle-free config-
uration space Xfree (Line 3). The algorithm then determines
the set of near vertices Xnear, described as the vertices of the
random tree that lie within the ball region centered at xrand.
If no such vertices exist and the set Xnear computed by the
NearbyNodes procedure is empty, the set Xnear is then filled
by the NearestNode function (Line 4–6). Once populated,
the set Xnear is sorted, forming a tuple arranged in ascend-
ing order of cost (Line 7). The sorted list L is used by the
SelectBestParent function ( Line 8), which returns the best
parent vertex xparent ∈ Xnear throughwhich the point xinit and
xrand can be connected in obstacle free configuration space.
Algorithm 3 outlines the implementation SelectBestParent
procedure which iterates through each element in the sorted
list L and terminates by returning the vertex through which
xrand can be connected to the tree in obstacle-free space.Once
the algorithm finds such a state, i.e, the best parent vertex
xparent gets filled, xparent is added to the tree by making xrand
its child and then rewiring the random tree (Line 9–11).Algo-
rithm 4 gives the pseudocode of this rewiring process. RRT*
examines each vertex x ′ in list L . If the cost of a path lying
in obstacle free space and connecting the initial point xinit to
x ′ through the random sample xrand is less than the existing
cost of reaching x ′ (Algorithm 4Line 1–3), then xrand ismade
into the parent of x ′ (Algorithm 4 Line 4–5). Otherwise, no
change is made to the tree and RRT* moves on to examine

another vertex. This process is performed iteratively for each
vertex x ′ in the sorted list L .

Algorithm 3: SelectBestParent(L)
for (x ′, c, τ ) ∈ L do1

if CollisionFree(τ ) then2
return x ′;3

return ∅;4

Algorithm 4: RewireNodes(xrand, L , E)
for (x ′, c, τ ) ∈ L do1

if
(
c(xrand) + c(τ )

)
< c(x ′) then2

if CollisionFree(τ ) then3
x ′
parent ← GetParent(E, x ′);4

E .remove(x ′
parent, x

′);5

E .add(xrand, x ′);6

return E ;7

3.2 Artificial potential fields

APF by Khatib (1986) utilizes gradient descent planning
that tries to minimize artificial potential energy. The main
robot, denoted as x ∈ X , and the goal region Xgoal is
assigned an attractive potential Uatt while obstacle regions
are assigned repulsive potentials Urep. This causes the robot
x to be attracted towards the goal and repelled by the obsta-
cles. These attractive and repulsive potentials cause the robot
to experience a force

−→
F equal to the negated gradient of

potentials i.e.,
−→
F = − � U . Under the influence of both

attractive and repulsive forces, the robot moves down the
slop and reaches the goal region safely i.e., without any col-
lisions. The constants Ka and Kr indicate the scaling factors
that are used to scale the magnitude of attractive and repul-
sive potential, respectively. These factors are dependent upon
the configuration space. Attractive potential experienced by
the robot is formulated in Eq. 1. It varies quadratically when
the distance function d(x, xg) > d∗

g . The parameter d∗
g is

the radius of the circular boundary centered at the goal state
xg ∈ Xgoal, defining the quadratic range. This quadratic func-
tion allows the robot to quickly move towards the goal region
due to high attractive forces created between the robot at
position x and the goal state xg ∈ Xgoal. However, once
the robot enters the circular region centered around xg, the
attractive potential starts to vary conically. This allows the
robot to move slowly when it comes close to the goal due to
reduced attractive potential, thereby preventing it from over-
shooting the goal region. The attractive force is formulated
in Eq. 2.
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Uatt =
{
Kad2(x, xg) d(x, xg) > d∗

g
Ka(d∗

gd(x, xg) − (d∗
g )2) d(x, xg) ≤ d∗

g
(1)

−→
F att =

⎧
⎨

⎩

−2Kad(x, xg) d(x, xg) > d∗
g

−2d∗
g Ka

x − xg
d(x, xg)

d(x, xg) ≤ d∗
g

(2)

Repulsive potential generated by the obstacles Xobs ⊂ X
is formulated in Eq. 4. Equation 3 is used to calculate the
distance dmin of the robot x from the closest vertex in the
obstacle space Xobs. Repulsive potential is considered zero
if the distance dmin is greater than a constant value d∗

obs. Such
a situation indicates that the robot is at a large distance from
the nearest obstacle region. Therefore, to allow the robot
to move quickly towards the goal, the repulsive potential is
made zero as indicated in Eq. 4.

dmin = min
x ′∈Xobs

d(x, x ′) (3)

Urep =
⎧
⎨

⎩

1

2
Kr

(
1

dmin
− 1

d∗
obs

)2

dmin ≤ d∗
obs

0 dmin > d∗
obs

(4)

The repulsive force generateddue to Xobs is presented inEq. 6
and is equal to the negated gradient of repulsive potential
indicated inEq. 4. The negated gradient of Eq. 3 is formulated
as Eq. 5, where x ′ is the nearest obstacle state in the obstacle
space i.e., x ′ ∈ Xobs from the robot’s current position x ∈ X .

∂dmin

∂x
= (x − x ′)

d(x, x ′)
(5)

−→
F rep =

⎧
⎪⎨

⎪⎩

Kr

(
1

d∗
obs

− 1

dmin

)
1

d2min

∂dmin

∂x
dmin ≤ d∗

obs

0 dmin > d∗
obs

(6)

The net overall potential U is the sum of both attractive and
repulsive potentials, while the global force

−→
F can be for-

malized as
−→
F = − �U . Algorithm 5 indicates the gradient

descent procedure used in APF where λ is a small incremen-
tal distance. The algorithms keeps on iterating until the robot
reaches the configuration having zero potential energy (Line
2). However, a configuration where the potential energy is
zero can indicate two things; either the robot has reached the
goal region or it is stuck in the local minima configuration.

4 P-RRT*

In this section,we present an extension ofRRT* called Poten-
tial Function Based-RRT* (P-RRT*), which incorporates the
APF (Lee and Park 2006) algorithm into RRT*. Further
explanations are given in the discussion below.

Algorithm 5: GradientDescent(xinit)
1: x ← xinit ;
2: while �U �= 0 do
3:

−→
F ← PotentialGradient(x);

4: x ← x + λ(

−→
F

|−→F |
);

5: end while

Algorithm 6: P-RRT*(xinit)
V ← {xinit}; E ← ∅; T ← (V, E);1
for n ← 0 to N do2

xrand ← RandomSample(n);3
xprand ← RGD(xrand);4
Xnear ← NearbyNodes(T, xprand, n);5
if Xnear = ∅ then6

Xnear ← NearestNode(xprand, T = (V, E));7

L ← GetTuple(xprand, Xnear);8
xparent ← SelectBestParent(L);9
if xparent �= ∅ then10

T = (V, E) ← InsertNode(xprand, xparent, T = (V, E));11
E ← RewireNodes(xprand, L , E);12

return T = (V, E);13

Let a potentially guided, random sample be defined as
xprand ∈ Xfree. The random state xrand ∈ Xfree is incre-
mentally directed downhill in the direction of decreasing
attractive potential field gradient by a small discrete step
denoted as λ ∈ R+. Attractive potential gradient decreases
as the random sample approaches closer to the goal region.
Algorithm 6 outlines the implementation of P-RRT* algo-
rithm, in this there is only one additional procedure i.e.,
RGD(x) which is executed just after the sampling proce-
dure. The random sample xrand is augmented with attractive
potential field to get an improved sample xprand, and from
now on the algorithm treats xprand as its random sample as
shown in the Algorithm 6. P-RRT*, uses Randomized Gradi-
ent Descent Planning for computing xprand ∈ Xfree. Gradient
Descent planning explained in the previous section com-
putes the next state as a function of the previous state and
works iteratively until |�U | → 0, as shown in Algorithm 5.
However, inRandomizedGradientDescent (RGD) Planning,
next state is independent of the previous state and for each
iteration, a random sample xrand ∈ Xfree is seeded into the
RGD(xrand). This random sample is then moved incremen-
tally in the direction of decreasing potential by step size λ

to generate xprand ∈ Xfree. It should be noted here that the
constant λ is a small incremental step size as stated in Sect. 2.

Since, all the procedure used by P-RRT* are same except
RGD(x), therefore only RGD(x) procedure is explained
here. Following are the set of procedures on which the
RGD(xrand) function relies.
Attractive potential gradient (APG) The proposed algorithm
only utilizes quadratic variation in the attractive potential
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Fig. 1 Attractive potential field experienced by random sample. Ver-
tical axis corresponds to magnitude of potential and horizontal axis
corresponds to position

fields, instead of shifting between conical and quadratic vari-
ation as done in the original APF algorithm. InAPF, the robot
itself is considered under the influence of potential fields.
Therefore, conical attractive potential is used to avoid the
robot overshooting the goal region. Since in our proposed
algorithm, it is the random samples that are under the influ-
ence of potential fields, overshooting is not an issue in our
case. Hence, the need for conical variation of potential is
eliminated. This quadratic attractive field, shown in Fig. 1, is
described by Eqs. 7 and 8. In Fig. 1, the horizontal axis is the
position of the random sample xrand, where the goal region
Xgoal is at its origin (0, 0). Thevertical axis corresponds to the
quantity of attractive potential field present. This well shaped
curve indicates that farther the random sample xrand ∈ Xfree

from the origin or goal, greater will be the attractive field.

Uatt = d2(xrand, xgoal) : xgoal ∈ Xgoal (7)
−→
F att = −2d(xrand, xgoal) : xgoal ∈ Xgoal (8)

Nearest obstacle configuration:This procedure computes the
nearest obstacle configuration from the random sample xrand.
This procedure utilizes Eq. 3, however in this case, the vari-
able x (i.e., robot configuration) in Eq. 3 is replaced by the
variable xrand (i.e., the random sample). It should be noted
that proposed procedure only computes dmin from the point
in the obstacle space that is nearest to the random sample.
This signifies that just like RRT*, P-RRT* does not require
information about obstacle geometry.

Algorithm 7 outlines the working of the RGD(xrand) pro-
cedure. This function first computes the quadratic attractive
potential gradient acting on the independent and identically
distributed (iid) sample xrand (Line 3) and then it computes
the distance dmin of the random sample from the nearest
obstacle configuration (Line 4). Under the influence of the
attractive field (Line 8), this random sample is directed in
small incremental steps λ ∈ R+ towards the goal. If at any
point, dmin ≤ d∗

obs, the procedure terminates immediately,
returning the new directed sample xprand, otherwise, the pro-

cedure continues to direct the random sample for a limited
number of iterations k ∈ N and then self terminates. The con-
stant d∗

obs represents the distance from the obstacle space and
it is kept very small so that the directed random sample xrand
is allowed tomove very close to the obstacle region Xobs. The
significance of keeping d∗

obs small will be discussed later in
the analysis section. Moreover, the value of k is chosen so
as to maintain the balance between exploitation and explo-
ration. Large value of k will result in more exploitation of the
configuration space than exploration. Similarly, a very small
value will result in more exploration than exploitation.

Algorithm 7: RGD(xrand)

xprand ← xrand;1
for n ← 0 to k do2 −→

F att ← APG(Xgoal, xprand);3
dmin ← NearestObstacle(Xobs, xprand);4
if dmin ≤ d∗

obs then5
return xprand;6

else7

xprand ← xprand + λ

( −→
F att

|−→F att|

)

;
8

return xprand;9

5 Implementation using non-holonomic wheeled
mobile robot (WMR) Poineer 3-DX

In this section, a brief outline of the implementation of
P-RRT* and RRT* using non-holonomic differential drive
Poineer 3-DX robot is presented. Since discussion on kine-
matic and dynamic model (Kinodynamic model) of Poineer
3-DX does not come under the scope of this paper, therefore
detailed description can be seen in (LaValle 2006). Fur-
thermore the solutions to Problems 1–3 are now computed
under following non-holonomic constraint of differential
drive robot, where θ ∈ R, denotes the robot orientation.

sinθ.dx − cosθ.dy = 0

A random configuration xrand is sampled from the obstacle
free space and it is directed towards the goal region (in case
of P-RRT* only). The set of near nodes Xnear is computed
(see Algorithms 1 and 6). Then each node in the Xnear set is
considered to be the current robot state and a set of allowed
control inputs is applied to the robots’ Kinodynamic model
in order to estimate its future possible state while extending
towards the random sample. Results of this estimation are
then used for collision checking. The nearest node x ′ ∈ Xnear

which ensures collision-free extension is selected as the best
parent for random sample. Moreover, it should also be noted
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that this procedure of extension is always repeated when-
ever a tree attempts to connect any two states. For estimation
purposes forth order Runge-Kutta method is used and for
collision detection tight fitting axis-aligned bounding boxes
are employed (Lin et al. 1996).

6 Analysis

6.1 Probabilistic completeness

Most sampling-based algorithms ensure probabilistic com-
pleteness. Let VAL

n denote the vertices of the tree generated
by an algorithm AL after n iterations. Definition 1 formal-
izes the notion of probabilistic completeness, an algorithm is
probabilistically complete if the probability of finding a fea-
sible path (solution to Problem 1), if one exists, approaches
one as the number of iterations approaches infinity.

Definition 1 (Probabilistic Completeness) Given the path
planning problem {Xfree, xinit,Xgoal}, an algorithm AL
ensures probabilistic completeness if and only if limn→∞
P(VAL

n ∩ Xgoal �= ∅) = 1; and the algorithm AL also con-
nects xinit to xgoal ∈ Xgoal.

RRT ensures probabilistic completeness and it has also
been proved that its variant, i.e. RRT* (Karaman and Frazzoli
2011), also inherits this property from the original RRT as
formulated in Theorem 1.

Theorem 1 (Karaman and Frazzoli 2011) Given the path
planning problem {Xfree, xinit,Xgoal}, the probability of find-
ing the solution to Problem 1, if one exists, approaches one
as the number of iterations approach infinity, i.e.,

lim
n→∞P({VRRT∗

n ∩ Xgoal �= ∅}) = 1

Similar to RRT*, we claim that Theorem 1 holds for P-
RRT* as well, which is stated formally in Theorem 2 as
follow.

Theorem 2 Given a path planning problem, if a feasible
path solution exists, then

lim
n→∞P({VP−RRT∗

n ∩ Xgoal �= ∅}) = 1

Sketch of proof The proof of above theorem is based on
three arguments: 1) By convention we have defined VRRT∗

0 =
VP−RRT∗
0 = xinit (See Algorithms 1 and 6). Therefore, just

like RRT* the random tree generated by P-RRT* necessar-
ily includes xinit as one of its states; 2) Just like RRT*, the
tree generated by P-RRT* is also a connected tree i.e., when-
ever a random sample is chosen, it is connected to its nearest
neighbor state within the tree; and 3) P-RRT* directs the

random samples towards the goal region Xgoal, therefore,
the probability that the tree generated by P-RRT* will find
a goal region approaches to one as the number of iterations
approach infinity. Based on the above three arguments, it can
be stated that given the path planningproblem, the probability
that P-RRT* will find a feasible path solution, if one exist,
approaches to one as the iterations approaches to infinity.
Hence, just like RRT*, the P-RRT* algorithm also ensures
probabilistic completeness.

Rest of this section is devoted to emphasize one of the
important feature of P-RRT* due to goal directed sampling.
Let an attraction sequence A = {A0, A1, . . . , Ak} of length
k ∈ R+, be a finite sequence of sets such that (i) A0 = {xinit},
(ii) Ak ∈ Xgoal , and (iii) for each attractor An , there exists
a set called basin of attraction Bn ⊆ X such that d(x, y) <

d(x, z) for any x ∈ An−1 , y ∈ An and z ∈ X\Bn . Given the
attraction sequence of finite length k, let p be defined as:

min

(
μ(A)

μ(Xfree)

)

; ∀n ∈ (0, k]

For RRT* algorithm, it has been proven that, if there exists
a feasible path, then the probability that RRT* fails to find a
solution exponentially decays to zero as the number of itera-
tions approach infinity. This is formally stated in Theorem 2.

Theorem 3 (Karaman and Frazzoli 2011) Given a path
planning problem {Xfree, xinit,Xgoal}, if there exits an attrac-
tion sequenceA of length k, then P

({VRRT∗
n ∩Xgoal = ∅}) ≤

e
−1
2 (np−2k).

An attraction sequence corresponds to the sequence to
which the system eventually evolves. In this case it is the
feasible path solution which P-RRT* is aiming to determine.
Since P-RRT* directs the random samples toward the goal
region, therefore, it can be stated that if there exist a feasible
path then the probability that P-RRT* fails to find a solution
decays exponentially to zero more quickly as compared to
RRT*, as the number of iterations approach infinity. Theo-
rem 4 formally states the above statement.

Theorem 4 Given a path planning problem, if a feasible
path solution and an attraction sequence of length k exists,

then limn→∞ P
({VP−RRT∗

n ∩ Xgoal = ∅}) ≤ e
−1
2 α(np−2k),

where α ∈ R+.
Hence the positive consequence of goal directed sampling

by P-RRT* is formalized as follow in Theorem 5. Theorem 5
states that if there exist a feasible path, the probability that
P-RRT* fails to find a solution decays exponentially faster
as compared to RRT*, as the number of iterations approach
infinity.

Theorem 5 Given a path planning problem, if there exists
an attraction sequence of length k exists, then limn→∞ P({VP−RRT∗

n ∩ Xgoal = ∅}) < P
({VRRT∗

n ∩ Xgoal = ∅}).
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6.2 Asymptotic optimality

The proposed algorithmP-RRT* inherits the asymptotic opti-
mality property from the original RRT*. An algorithm is
asymptotically optimal if it computes a minimum cost con-
tinuous path solution τ ∗ : [0, 1] such that τ ∗(0) = xinit
and τ ∗(1) ∈ Xgoal, all the while avoiding any collisions in
a cluttered environment. This section analyses the P-RRT*
algorithm for its ability to solveProblem2by ensuring almost
sure-convergence to optimal path solution, similar to RRT*
based on the assumptions stated below.

Assumption 1 (Additivity of the cost procedure) For any set
of paths in an collision-free space Xfree i.e. τ1, τ2 ∈ ∑

feasible,
the cost function c(·) must satisfy: c(τ1) ≤ c(τ1|τ2) :
c(τ1|τ2) = c(τ1) + c(τ2).

Assumption 2 (Continuity of the cost procedure) The proce-
dure c(·) is a uniformly continuous function such that there
exists a Lipschitz constant ε for any two paths τ1 : [0, s1]
and τ2 : [0, s2], of similar path lengths i.e., |c(τ1)− c(τ2)| ≤
ε supψ :[0,1]‖c(τ1(ψs1)) − c(τ2(ψs2))‖.
Assumption 3 (δ-spacing of the obstacle) For any state x ∈
Xfree, there exists a ball region that lies entirely in collision-
free space Xfree (i.e., Bx ′,δ ⊂ Xfree) of radius δ ∈ R>0

centered around another point x ′ ∈ Xfree, such that x ∈
Bx ′,δ .

Assumption 1 simply states that the longer path has a
higher cost than the shorter one. Assumption 2 ensures that
two paths of approximately same length that are very close to
one another have a similar cost. Finally, Assumption 3 asserts
that there exists some collision-free space around trajecto-
ries so that the algorithm can converge them to an optimal
path solution. Based on the aforementioned assumptions, the
following theorem formalizes the asymptotic optimality of
RRT* algorithm.

Theorem 6 (Asymptotic optimality of RRT* (Karaman and
Frazzoli 2011)) Let Assumptions 1, 2 and 3 hold; then the
RRT* algorithm is asymptotic optimal whenever d ≥ 2 and
γ > γ ∗ := 2d(1 + 1/d)μ(Xfree).

Recall that the P-RRT* only introduces intelligent sam-
pling heuristic into RRT* thus directionalizing the random
samples. The rest of the procedures are same as the RRT*.
Therefore Theorem 6 holds for P-RRT* just as it holds for
RRT* and its proof is similar to the proof of Lemma 71
for RRT* (Karaman and Frazzoli 2011), based on the Borel-
Cantelli Lemma.Moreover the value of γ is always chosen to
be larger than γ ∗ (see definition of procedure NearbyNodes)
which ensures that at large number of iterations, the ball of
radius δ centered at x ′ ∈ Xfree will include atleast one node
from the tree T = (V, E). This implies that there is a high

probability that the rewiring procedure explained earlier will
rewire some paths to minimize their cost functions. Hence
given two paths τ1, τ2 ∈ ∑

feasible such that both are the
closest to each other in term of path variation ‖τ1 − τ2‖,
the probability of minimizing path variation to zero is one,
when the number of iterations approach infinity. Hence The-
orem 7 formally states the asymptotic optimality property of
P-RRT*.

Theorem 7 (Asymptotic optimality ofP-RRT*)LetAssump-
tions 1, 2 and 3 hold; then the P-RRT* algorithm is
asymptotic optimal whenever d ≥ 2 and γ > γ ∗ :=
2d(1 + 1/d)μ(Xfree).

6.3 Fast convergence to optimal path solution

P-RRT* inherits asymptotic optimality property from the
original RRT* algorithm as discussed in the previous section.
This section analyses the P-RRT* algorithm for its ability
to solve Problem 3 by ensuring almost fast convergence to
optimal path solution. To understand the notion of fast con-
vergence, a fewnew terms are introducedwhich are as follow.
Let δ ∈ R+, then any random configuration x ∈ Xfree can
be defined as a δ-interior state X intδ if the ball region of
radius δ centered at x lies entirely in an obstacle-free space.
Moreover any random configuration can be defined as a δ-
exterior state if the ball region of radius δ centered at x lies
partially in an obstacle-free space. Let X intδ and Xextδ be
subsets of the obstacle-free space Xfree. X intδ comprises of
all δ-interior states i.e. X intδ := {x ∈ Xfree : Bx,δ ⊆ Xfree},
while Xextδ = Xfree\X intδ . Therefore, Xextδ states are those
states that lie close to obstacle region but not inside it. Based
upon the aforementioned assumptions, following definitions
describe path solutions with strong δ-clearance and weak
δ-clearance, while Definition 4 describes the optimal path.

Definition 2 (Path with strong δ-clearance) A feasible path
solution τ : [0, 1] is said to have strong δ-clearance if τ(s) ∈
X intδ ; ∀s ∈ [0, 1].
Definition 3 (Path with weak δ-clearance) A collision-free
path τ1 : [0, 1] is said to have weak δ-clearance if there exits
a collision-free path τ2 having strong δ-clearance such that
(i) both paths have same ends i.e. τ1(0) = τ2(0) and τ1(1) =
τ2(1); (ii) path τ1 can be deformed to τ2 by a homotopy
function h : [0, 1] where h(0) = τ1, h(1) = τ2 and h(s) �→
Xfree,∀s ∈ [0, 1] (iii) for a range y ∈ (0, 1], there exists
δy ∈ (0, δ] such that the homotopy function h(y) has δy-
clearance.

Definition 4 (Optimal path solution) A collision-free path
is said to be optimal τ ∗ if it has weak δ-clearance

The proposed P-RRT* algorithm is build upon the definition
of optimal path solution. Since optimal path solution exists in
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region with weak δ-clearance, following Lemma states that
the proposed sampling heuristic (see Algorithm 7) tries to
direct the random samples towards the regions where proba-
bility of having optimal path solution is high.While Lemma2
states that P-RRT* directs the random sample towards the
goal region. Based upon these two Lemmas a Theorem 8 has
been stated which act as an evidence that P-RRT* ensures
rapid convergence to optimal solution.

Lemma 1 Given a problem {Xfree, xinit,Xgoal}, the poten-
tial guided sampling heuristicRGD(x) attempts to direct the
random sample x ∈ Xfree so that P(x ∈ Xextδ ) > 0, for some
value of δ > 0.

Sketch of proof In a cluttered configuration space X , the
potential guided sampling heuristic directs the random sam-
ple xrand ∈ Xfree down the slope under the influence of the
attractive force. This continues until the sample reaches very
close to the obstacles space Xobs or the loop limit is reached
(see implementation ofAlgorithm7). Therefore the proposed
heuristic always tries to achieve a weak δ-clearance for the
directed samples. Hence it can be concluded that there exists
a good probability that a sample xrand belongs to the region
with weak δ-clearance i.e. Xextδ . It should also be noted
that a large value of d∗

obs will not allow the random sam-
ple to reach the region with weak δ-clearance, therefore,
solution to Problem 2 cannot be determined. Moreover weak
δ-clearance does not require the nodes to be atleast δ dis-
tance away from obstacles. In fact a robustly optimal path
with many nodes lying on the boundary of obstacles can still
have weak δ-clearance. Therefore a very small value of dobs
is needed to solve Problem 2.

Following Lemma 2 states that the proposed algorithm
also guides the random samples towards the goal region.

Lemma 2 Given the path planning problem {Xfree, xinit,
Xgoal}, the proposed potential guided sampling heuristic
RGD(x) directs the random sample down the potential
gradient slope i.e. towards the goal region Xgoal in the
obstacle-free space Xfree.

Sketch of proof An argument for Lemma 2 can be given by
considering Voronoi regions of the directed nodes as shown
in Fig. 2. Figure 2a depicts the position of starting and goal
regionswhile Fig. 2b, c represent theVoronoi diagrams of the
directed vertices in the same environment. Unlike RRT* or
RRT, the sampling by P-RRT* results in incremental reduc-
tion in the size of the Voronoi regions in the direction towards
the goal. Therefore it can be said that the proposed heuristic
has a Voronoi bias that effectively guides the random sam-
ples towards the goal region. Figure 2d–f, depicts theVoronoi
biasing of RRT*. Moreover, due to this uniform biasing of
RRT*, it is able to compute path after 2500 samples, how-
ever, due to goal directed Voronoi bias the proposed P-RRT*

(a) P-RRT* (b) 30 Samples (c) 60 Samples

(d) RRT* (e) 60 Samples (f) 2500 Samples

Fig. 2 The P-RRT* and RRT* contains a Voronoi bias which causes
goal directed and uniform exploration, respectively

is able to compute the optimal solution after picking just 60
samples from the configuration space.

Based on Lemmas 1 and 2 stated above, the distinguish-
ing features of P-RRT* can be highlighted. Without further
argument it can be said, as formalized in the following theo-
rem, that our proposed heuristic guides the random samples
toward the goal region in such a manner so that the guided
samples xprand also have weak δ-clearance in cluttered envi-
ronments.

Theorem 8 (Potential guided sampling heuristic RGD(x))
Let Lemmas 1 and 2 hold; then the RGD(x) heuristic guides
the randomsamples towards the goal region in such amanner
so that P(xprand ∈ Xextδ ) > 0.

Hence, based on Definition 4 of optimal path solution and
Theorem 8, it can be concluded that the proposed algorithm
P-RRT* computes the optimal path very quickly.

6.4 Computational complexity

This section aims to compare the computational complexi-
ties of P-RRT* and RRT*. Let SRRT∗

n and SP−RRT∗
n denote

the number of steps executed per iteration n by RRT* and
P-RRT* respectively. In the proposed algorithm, the only
additional procedure is RGD(xinit), while the rest of the pro-
cedures are exactly the same as used by RRT*. Therefore
only the RGD(xinit) procedure is analyzed for its computa-
tional load.

It is to be noted that the procedures in function RGD can
be executed in a constant number of steps and are indepen-
dent of the number of nodes present in the tree. Furthermore,
the algorithm has to compute the nearest obstacle config-
uration from any random state x ∈ Xfree (Eq. 3). Finding
the nearest neighbor is a well known problem and various
algorithms have been implemented in this domain. How-
ever, the lower bound of complexity of the algorithm by
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Table 1 Experimental results for computing optimal/near-optimal path

Environment Algorithm nmin nmax navg tmin tmax tavg c∗ Fail

2D-Local Minima (Fig. 3) P-RRT* 9261 10,253 9582 1.73 1.92 1.85 51.0 0

RRT* 851,206 856,121 853,781 55.3 55.9 55.5 51.0 0

2D-Cluttered (Fig. 4) P-RRT* 2874 3411 3042 0.52 0.66 0.56 38.7 0

RRT* – – – – – – – 50

2D-Maze (A) (Fig. 5) P-RRT* 1,50,686 1,52,782 1,51,178 29.2 28.9 29.1 163.1 0

RRT* 4,005,814 4,008,126 4,007,931 259 260 260 163.2 7

2D-Maze (B) (Fig. 5) P-RRT* 254,714 256,921 254,982 49.2 49.7 49.5 93.0 9

RRT* – – – – – – – 50

3D-Narrow Passages (Fig. 7) P-RRT* 46,419 48,726 47,981 8.92 9.48 9.2 69.7 0

RRT* 163,319 168,748 165,261 10.9 11.6 11.2 69.9 0

3D-Multiple Barriers (Fig. 6) P-RRT* 84,528 91,827 87,496 16.3 17.6 16.8 80.6 2

RRT* 1,941,263 1,978,796 1,961,825 127 129 127 80.9 11

3D-Maze (Fig. 8) P-RRT* 41,380 43,861 42,931 8.03 8.27 8.32 225.2 0

RRT* 843,428 849,692 846,452 54.9 55.6 55.2 226.1 4

Poineer 3-DX robot (Fig. 13) P-RRT* 10,126 11,371 10,431 1.91 2.13 1.93 61.2 0

RRT* 951,672 959,165 954,827 62.3 63.4 62.9 61.3 0

Arya et al. (1998) indicates that nearest neighbor searching
requires atleast logarithmic time log(n). Implementing the
computationally optimal algorithm in (Arya et al. 1998) for
computing nearest obstacle configuration under fixed dimen-
sion, implies that it has to run in �(logn) time. Since, the
algorithm is computationally optimal in fixed dimensions,
following Lemma states that the computational complexity
of executing Eq. 3 is nothing more than �(logn) time.

Lemma 3 Since the expected limit of number of steps exe-
cuted by RRT* at each iteration is atleast of the order of
log(Nn) time, implementing the computationally optimal
algorithm given in (Arya et al. 1998) under fixed dimensions
for computing nearest obstacle configuration, implies that
there exists a constant φRRT∗ ∈ R+ i.e.,

lim
n→∞E

[
SRRT∗
n

log(Nn)

]

≥ φRRT∗ .

Hence, if Lemma 3 holds, then it can be concluded that RRT*
and P-RRT* has same asymptotic computational complexity
as formalized in the following theorem.

Theorem 9 Assuming that Lemma 3 holds, there exists a

constant φ ∈ R+ such that limn→∞ E

[
SP−RRT∗
n

SRRT∗
n

]

≤ φ.

7 Experimental results

This section presents simulations performed on a 2.4GHz
Intel corei5 processor with 4GB RAM. Performance results

of our P-RRT* algorithm are compared with RRT*. For
proper comparison, experimental parameters and configu-
ration space size were kept same for both algorithms. Since
sampling based algorithms exhibit large variations in results,
the algorithms were run upto 50 times for each type of
environment. Maximum, minimum and average number of
iterations n as well as time t (in seconds) utilized by each
algorithm to reach optimal path solution is presented in the
Table 1. To restrain the computational timewithin reasonable
limits, maximum limit for the number of tree nodes was kept
at 5 million. The column fail in the tables denotes the number
of runs for which the corresponding algorithm failed to find
an optimal path solution within node limits. The variable c∗
represents the cost of optimal path returned by the algorithm
in terms of Euclidean distance function. Moreover, for P-
RRT* algorithm λ = d∗

obs = 0.1, while k = 90. However, it
was noticed from the experiments that suitable range for k is
80-100.

Although, APF Algorithm suffered from local minima
problem, but, since the proposed P-RRT* algorithm only
considers the attractive potential gradient, therefore, the P-
RRT* algorithm does not inherit this limitation. Figure 3
demonstrates the working of both algorithms in a local min-
ima environment. Figure 3a–h show convergence progress
of P-RRT* and RRT* respectively. It can be seen from these
figures that P-RRT* is converging more quickly as compared
to RRT* and unlike RRT*, the tree maintained by P-RRT*
is directionalized towards the goal region.

Figure 4 show the working of P-RRT* and RRT* in a 2D
cluttered environment. Figure 4a, b demonstrates the initial
path and final path solution of P-RRT*. Moreover, it can be
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(a) n=106, t=0.026s, c=75.1 (b) n=200, t=0.043s, c=60.5 (c) n=400, t=0.079s, c=55.2 (d) n=9.5k, t=1.85s, c=51.0

(e) n=2k, t=0.13s, c=57.4 (f) n=3.5k, t=0.14s, c=56.0 (g) n=16k, t=0.77s, c=53.7 (h) n=853k,t=55.5s,c=51.0

Fig. 3 Performance of P-RRT* (a–d) and RRT* (e–h) in Local Minima Environment

(a) n=200, t=0.045s, c=43.09 (b) n=3k, t=0.56s, c=38.68 (c) n=16k, t=0.57s, c=39.62 (d) n=5million,t=238s,c=39.43

Fig. 4 Performance of P-RRT* (a, b) and RRT* (c, d) in 2D Cluttered Environment

(a) P-RRT*(2D-Maze-A) (b) RRT*(2D-Maze-A) (c) P-RRT*(2D-Maze-B) (d) RRT*(2D-Maze-B)

Fig. 5 Performance of RRT* and P-RRT* in Complex Environment

seen that P-RRT* takes lesser time and iterations (n = 200,
t = 0.045 s) as compared to RRT* (n = 16063, t = 0.57 s) for
finding the initial path. Similarly, P-RRT* takes a reasonable
number of iterations and time (n = 3000, t = 0.65 s) to find
the optimal trajectory whereas RRT* is not able to find an
optimal solution even after 5 million iterations. Moreover, in

Fig. 4d, half of the region is fully covered by pink red color
coating, which is due to the large number of edges resulting
from large number of samples that were generated in five
million iterations. Figure 5 represents two different complex
mazes in 2D environment. In Fig. 5a, b, the start and goal
regions, while very close together, require a path solution that
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(a) P-RRT* (b) RRT*

(c) P-RRT* (d) RRT*

Fig. 6 Performance of RRT* and P-RRT* in 3D environment with multiple barriers

(a) P-RRT* (b) RRT* (c) P-RRT*

Fig. 7 Performance of RRT* and P-RRT* in 3D environment with multiple narrow passages

traverses the length of a maze and stretches away from the
goal. Once again, P-RRT* takes fewer iterations and there-
fore less time to find optimal path solution as compared to
RRT*, as summarized in the Table 1. Yet another complex
maze environment is presented in Fig. 5c, d, P-RRT* finds
initial and final optimal path much faster than RRT*. More-
over, path returned by RRT* even after 5 million iterations
is not an optimal path solution. Figures 6, 7 and 8 depict
different scenarios in three dimensional space. Their results
are summarized in the Table 1. It can be seen that a similar
trend is followed by the algorithms in all environments i.e.,
P-RRT* rapidly converges to optimal as compared to RRT*.

Figure 9a compares the convergence rate of P-RRT* and
RRT* in fifty different environments comprising of both 2D
as well as 3D environments. Let initial feasible path denoted
τinit ∈ ∑

feasible is computed in tinit time while optimal path
solution denoted as τ ∗ ∈ ∑

feasible is computed in topt time.

Then the convergence rate is defined as
c(τinit) − c(τ ∗)

topt − tinit
.

Since the process of convergence to optimal path solution
begins after finding initial feasible path solution, conver-
gence rate is calculated after initial path computation. It can
be seen in the Fig. 9a that the convergence rate of P-RRT*
remains significantly higher than RRT*, which authenticates
fast converging capability of P-RRT*. Figure 9b showsmem-
ory consumed in bytes by these two algorithms to achieve
optimal/near optimal path in twenty different environments.
Since, P-RRT* uses lesser iterations as compared to RRT*,
it therefore consumes lesser memory for any given environ-
ment.

Fixed cost is defined in terms of the average Euclidean
distance of the most optimized path found by P-RRT* after
several runs in a certain 3D environment. RRT* is tested to
achieve this fixed cost in the same particular environment,
and the result is shown in Fig. 10. It can be seen from this
figure that RRT* takes more time for converging the feasible
path with strong δ-clearance to the feasible path with weak
δ-clearance as compared to P-RRT*. Since RRT* consumes
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(a) P-RRT* (b) RRT*

(c) P-RRT* (d) RRT*

Fig. 8 Performance of RRT* and P-RRT* in 3D complex maze

Fig. 9 Performance of RRT* and P-RRT*

Fig. 10 Cost vs running time of P-RRT* and RRT*

Fig. 11 Running time ratio of P-RRT* over RRT*

more time for converging the path solution therefore it has
slower convergence rate as compared to P-RRT*.

Figure 11 shows the running time ratio of P-RRT* over
RRT* after each iteration is executed. It can be seen that
as the number of iterations increases, the running time ratio

123



1092 Auton Robot (2016) 40:1079–1093

Fig. 12 Visual representation
of the role of k on
exploitation/exploration of
configuration space

(a) n=102182, k=30 (b) n=3k, k=90 (c) n=2063, k=400

(a) P-RRT*: n=10431, t=1.93s

(b) RRT*: n=954827, t=62.9s

Fig. 13 Optimal/near-optimal path computed by P-RRT* andRRT* in
localminima environment under non-holonomic differential constraints

reaches a constant value. As a matter of fact, in this specific
environment, the average amount of time taken by our pro-
posed P-RRT* algorithm to determine a viable path to the
goal was seen to be barely 1.6 times that of RRT*.

Figure 12 demonstrates the effect of k parameter, of
P-RRT*, on exploration and exploitation of configuration

space. It can be seen that the lower value of k (Fig. 12a) biases
the P-RRT* toward exploration while higher value (Fig. 12c)
leads tomore exploitation. It should be noted that the balance
between exploitation and exploration is important to allow
the algorithm to work in all types of environments.

Figure 13 shows the working of P-RRT* and RRT*, under
non-holonomic differential constrains, in a 2-D local minima
environment. Figure 13a, b show the final path solutions of
P-RRT* and RRT* respectively. Last row of Table 1 sum-
marizes the results of both the algorithm in this environment
with differential constraints and it can be seen that P-RRT*
takes lesser time and iterations (n = 10431, t = 1.93 s) as
compared to RRT* (n = 954827, t = 62.9 s) for finding the
optimal path. Finally, Fig. 14 shows the implementation of P-
RRT* on Poineer 3-DX robot using Player/Stage open source
platform.

8 Conclusions and future work

Recently, probabilistically complete sampling based motion
planning algorithms have gained esteem due to their abil-
ity in finding a path irrespective of obstacles’ geometry.
RRT* assures asymptotic optimality but is not a memory
efficient algorithm and has a slow rate of convergence. Poten-
tial Function Based-RRT* (P-RRT*) addresses this problem
and provides a solution by incorporating APF algorithm
into RRT*. It is proven both experimentally and analytically
that our proposed P-RRT* algorithm (i) has same asymp-
totic computational complexity as that of RRT*; (ii) inherits
asymptotic optimality from RRT*; (iii) does not suffer from
local minima problem; (iv) provides faster convergence to

(a) (b) (c) (d)

Fig. 14 Demonstration of P-RRT* on non-holonomic Poineer 3-Dx robot using Player/Stage open source platform
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optimal path solution as compared to RRT*; (v) utilizes
lesser memory by sufficiently reducing number of iterations
required and time consumed to compute a more optimized
solution as compared to RRT*.

In our future proceedings, we hope to employ P-RRT* for
online motion planning, since the proposed algorithm allows
faster convergence and determines the optimal path solution
very quickly, therefore, it can be a very efficient solution to
real time motion planning problems.
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