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Abstract In this paper, we present a framework for gen-
erating smooth and stable trajectories for wheeled mobile
robots moving on uneven terrains. Instead of relying on static
stability measures, the paper incorporates velocity and accel-
eration based constraints like no-slip and permanent wheel
ground contact conditions in the planning framework. The
paper solves this complicated problem in a computationally
efficient manner with full 3D dynamics of the robot. The
two major aspects of the proposed work are: Firstly, closed
form functional relationships are derived which describes
the 6 dof evolution of the robot’s state on an arbitrary
2.5D uneven terrain. This enables us to have a fast eval-
uation of robot’s dynamics along any candidate trajectory.
Secondly, a novel concept of non-linear time scaling is intro-
duced through which simple algebraic relations defining the
bounds on velocities and accelerations are obtained. More-
over, non-linear time scaling also provides a new approach
for manipulating velocities and accelerations along given
geometric paths. It is thus exploited to obtain stable veloc-
ity and acceleration profiles. Extensive simulation results
are presented to demonstrate the efficacy of the proposed
methodology.
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1 Introduction

Trajectory generation for mobile robots on uneven terrain
is a challenging problem because the notion of the robot
stability governed by the robot-terrain interaction has to
be included in the planning framework. Throughout this
paper, a mobile robot will be understood to be stable if
its velocity and acceleration profile satisfies the no-slip and
permanent wheel ground contact conditions. As shown in
our previous work, Singh et al. (2011), Singh and Krishna
(2013), that checking for satisfaction of these constraints
provide a more correct picture of robot stability than some
other measures like Tip-Over which primarily only depends
on the variation of robot’s pitch and roll angle. How-
ever, generating a trajectory between a given start and
goal state which explicitly satisfies the no-slip and contact
constraints is associated with some fundamental complexi-
ties.

Firstly, the variation of robot’s position and posture as
it evolves on the uneven terrain needs to be ascertained.
For a passive suspension robot, only the yaw plane para-
meters can be controlled. The evolution of the rest of the
states like pitch and roll angle depends on the yaw plane
parameters and the underlying terrain. Thus, to model the
robot dynamics in 3D it is imperative to obtain mathemat-
ically these functional relationships. Secondly, as shown in
later sections the no-slip and the permanent wheel ground
contact constraints can be written in terms of traction
and normal wheel ground contact forces satisfying certain
inequality constraints. But the inverse dynamic relations
which relates traction and normal forces to the robot’s veloc-
ity and acceleration profile, it’s posture and the underlying
terrain geometry are not known in closed form functional
form.
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1.1 Related work on uneven terrain trajectory
generation

The problem of uneven terrain trajectory generation has been
addressed by many researchers at various level in the past
couple of decades. One of the earlier works in this field was
proposed by Shiller andGwo (1991)wherein no-slip and per-
manent wheel ground contact were used as constraints while
generating smooth trajectories for car-like robots. Along the
same lines Cherif (1999) proposed a two level trajectory gen-
eration framework which accounted for robot geometry and
3D posture. In it, at the first level smooth paths are generated
considering flat terrain and thereafter feasiblemotion profiles
are computed for the paths considering the effects of uneven
terrain.

A popular methodology for uneven terrain motion plan-
ning has been to generate trajectories passing through such
regions of the terrain which satisfy the stable threshold limit
of roll, pitch angle and robot-ground clearance. One such
work was proposed by Kubota et al. (2001) wherein stable
paths were computed, though without imposing any kind of
kinematic constraints on the paths. Moreover, calculation of
motion profiles corresponding to the stable paths was not
presented. Similar limitations also exist in a recent work pro-
posed by Miro et al. (2010). An improved methodology was
proposed by Bonnafous et al. (2001), wherein the planner
directly worked at the control input level (velocity or accel-
eration) andproduced trajectories satisfying the limit on pitch
and roll angle.

A comprehensive work on uneven terrain trajectory gen-
eration was presented by Howard and Kelly (2007). Using
a parametric optimal control framework, curvature continu-
ous trajectories were generated connecting arbitrary initial
and final states. A major novelty of the work lies in the fact
that it includes the effect of uneven terrain while comput-
ing motion profiles for the trajectories. Moreover, effects
of terrain dependent phenomena like wheel-slip were also
included in the trajectory generation framework.

A trajectory generation using point mass robot model was
proposed by Iagnemma et al. (2008) wherein a navigation
framework using potential field was also incorporated. A
trajectory generation framework considering planar robot
model on planar sloped terrains was presented by Waheed
and Fotouhi (2009). A constant time scaling concept simi-
lar to Hollerbach (1984) was used to generate stable motion
profiles for the robot.

1.2 Contributions

The proposed work presents an in-depth analysis of the fac-
tors affecting the dynamic stability of awheeledmobile robot
on a 2.5D uneven terrain. As stated earlier, a major challenge
in uneven terrain motion planning is to ascertain the 6 dof

evolution of the robot’s state. We present a novel approach
where we derive robot’s 6 dof evolution on terrain by cou-
pling the geometric holonomic constraints of the robot and
the surface equation. As described in our earlier work Singh
et al. (2011), the resulting set of coupled non-linear equations
can be solved numerically. In the current work, we comple-
ment the numerical solution byproviding approximate closed
form solutions to the set of non-linear equations describing
the robot’s 6 dof state. As explained later, a trade-off can
be reached between opting for approximate closed form and
exact numerical solution. This greatly reduces the computa-
tional complexity and enables us to have fast evaluation of
robot’s dynamics along any candidate trajectory. The robot’s
state given by the approximate relations are shown to agree
well with that obtained through exact solution of non-linear
equations for variety of terrains considered in our simula-
tions.

As evident, the proposed work shares conceptual similar-
ity with Shiller and Gwo (1991), Cherif (1999), Iagnemma
et al. (2008) and Waheed and Fotouhi (2009) in the fact it
also considers permanent wheel-ground contact and no-slip
as the stability constraints. However, the proposed work goes
beyond these cited works by incorporating a complete 3D
model of robot dynamics. This is in contrast to the point
mass model of Shiller and Gwo (1991), Iagnemma et al.
(2008), and planar motion equations used in Cherif (1999)
and Waheed and Fotouhi (2009). Although Mann et al. 2008
proposed a dynamic stability metric considering quasi-3D
robot model, it was never used within a planning frame-
work. A motion planning framework based on the stability
analysis proposed by Mann et al. would require ascertain-
ing the stability of each candidate trajectory separately in the
roll, pitch and yaw plane. This would require computing the
robot dynamics and stable velocity and acceleration profiles
thrice. Since the proposed framework works with the full 3D
dynamics , the stability computations only needs to be per-
formed once for any given candidate trajectory. Moreover, as
shown later the stability computations reduces to computing
the intersection of single variable quadratic inequalities.

The proposed work also introduces a new concept called
non-linear time scaling for manipulating velocity and accel-
eration along given geometric paths. Conventionally, fitting
velocity and acceleration profiles to a geometric path requires
parametrizing the path in terms of arc length and then com-
puting the arc length velocities and accelerations (Shiller and
Gwo 1991; Mann et al. 2008). For higher order curves like
spline, the cartesian coordinate variables (x, y, z) and the arc
length are related through a non-analytical integral (Wang
et al. 2002). Since, the terrain equation and the robot’s 6
dof evolutionmodel are expressed as a function of Cartesian
coordinate variables, evaluating the robot’s state and dynam-
ics at various arc lengthswould involve repeated computation
of the numerical integral of arc length parametrization and

123



Auton Robot (2016) 40:1419–1440 1421

2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

3

3.5

time (seconds)

m
/s

Constant TIme Scaling of Hollerbach

original

scaled

(a)

2 4 6 8 10 12 14 16
0.5

1

1.5

2

2.5

3

3.5

Time (seconds)

m
/s

Non−Linear Time Scaling

original

scaled

(b)

Fig. 1 Problemwith constant scaling. It should be noted how the initial
and scaled velocities does not start at the same point in a. This results in
a discontinuity at the velocity level when constant scaling is employed.
This is the main reason why constant scaling transformation cannot be

used in a reactive sense i.e it is not possible to employ constant scal-
ing transformation while executing a trajectory. Non-linear time scaling
solves this problem as shown in b

would add to the computational cost of the motion planning
framework. These fundamental limitations form the major
motivation behind introducing non-linear time scaling for
uneven terrain motion planning. As shown later, non-linear
time scaling provides simple algebraic relations for fitting
velocity and acceleration profiles to a given geometric path
and is exploited elegantly in the proposed framework to
obtain stable trajectories.

1.3 Assumptions, formal problem statement and
technical approach

The proposed framework works with the assumption that the
terrain knowledge in the form of terrain equation is known.
Someworks related to fitting terrain equations to Digital Ele-
vation Models can be found in Bajaj et al. (1995), Amenti
et al. (1998) and Prokos et al. (2010).

With this assumptions in place, the problem addressed
in the current work is of generating trajectories X(t)∈ �6

satisfying the following constraints

Ni = f1i (X(t), Ẋ(t), Ẍ(t)) > 0 (1)

|(Ti )| − ρNi = f2i (X(t), Ẋ(t), Ẍ(t)) ≤ 0 (2)

Here Ni and Ti are the normal wheel-ground contact and
wheel-ground traction forces respectively at the i th wheel.

The technical approach followed here is to first find a
parametric function X(u) as a function of some arbitrary
variable u connecting the initial and goal states. Thereafter
the transformation from the variable u to time variable, t is
brought such that

du

dt
= u̇ = g(.) (3)

The time dependent trajectory obtained below as a result
of the scaling transformation should satisfy (1) and (2).

Ẋ(t) = X
′
(u)

du

dt
,

Ẍ(t) =
(
du

dt

)2

X
′′
(u) + X

′
(u)

d2u

dt2
(4)

The terms u̇ or g(.) will be referred to as the scaling func-
tion. The simplest form of scaling function can be expressed
as

g(.) = u̇ = c (5)

Here c is a scalar constant. This kindof scaling transforma-
tion was proposed by Hollerbach (1984). However, there is
a critical problem with such transformations which severely
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limits its use. To understand this further, suppose that some
function f (.) shown in Fig. 1a describes the velocity of a
robot and we employ the above scaling transformation to
modify it. It can be seen that the scaled and unscaled velocity
profile does not start at the samemagnitudewhichmeans that
the constant scaling will bring a discontinuity in the velocity
space at the initial point. Another interpretation of this is that
it is only possible to use constant scaling transformation at a
planning level and not in a reactive manner while executing
a trajectory. For example, midway while executing a trajec-
tory, if it is required to change for any reason the velocity
and acceleration profile while keeping the path unchanged,
constant scaling of Hollerbach (1984) cannot be used. Obvi-
ously, the problem of velocity discontinuity does not arise
when the initial unscaled velocity profile starts from zero
which is exactly what is being used by Hollerbach (1984)
and Waheed and Fotouhi (2009). However, on an uneven
terrain a trajectory generation framework which requires the
robot to first de-accelerate to zero velocity is not appropriate.

To overcome these problems the following scaling func-
tion is proposed. It can be seen from Fig. 1b that non-linear
time scaling does not result in any velocity discontinuity as
the scaled velocity start at the same point as the original.

u̇ = pe−qu (6)

Moreover, as shown later this kind of scaling transforma-
tion proves to be very versatile for computing velocity and
acceleration profile.Although the termnon-linear scaling has
been used with piece-wise constant scaling in Waheed and
Fotouhi (2009), it still suffers from the same drawback as the
constant scaling in the sense that two different trajectories has
to pass through the region of zero velocity at the connected
point.

With the above described process a very efficient tra-
jectory generation process has been proposed for non-
holonomic robots. The framework builds upon our previous
work, Singh et al. (2012) by providing simple algebraic
inequalities governing the existence of stable motion profile
for a given candidate path. Further, an optimization frame-
work has been incorporated to maximize the velocity and
acceleration within the stability limit along a candidate path.

1.4 System overview and layout of the paper

Figure 2 gives an overview of the framework proposed in the
current work. First, a path in the yaw plane for the position
x, y and the yaw angleα is generated connecting the start and
the goal states. This yaw plane path is generated in the form
of parametric functions in terms of an arbitrary variable u.
Hence along with the path we also obtain x

′
, x

′′
and similar

derivatives along the planned path. The yaw plane parame-
ters in terms of x, y, α and their derivatives are then used to

Fig. 2 System overview

estimate the full 6 dof states of the robot considering terrain
conditions and robot geometry.Once the complete 6 dof state
evolution along a path is obtained, it is used along with robot
dynamics and dynamic stability constraints to compute the
scaling transformation from the path variable u to the time
variable t and consequently obtain the stable velocity and
acceleration profile. If no scaling transformation leading to
stable velocities and accelerations exist for a given path, tra-
jectory replanning is evoked which re-plans and produces a
new path from start/current state to the goal.

The parametric path generationmodule shown in theFig. 2
is explained in Sect. 2. The derivation of robot 6 dof states
and dynamics is provided in Sect. 3. Section 4 combines the
derivations of Sects. 2 and 3 to derive a set of inequalities,
the solution of which gives a scale factor. The scale fac-
tor information is then used in Sect. 5 which lays down the
procedure for constructing the scaling function. The scaling
function brings the transformation u → t and generates the
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stable velocity and acceleration profile. Section 7 presents
simulation results elucidating the proposed framework.

2 Parametric path generation

For a passive suspension robot, only the yaw plane compo-
nents of the whole state space i.e position x, y, yaw α and
their derivatives can be controlled (for the ease of notation,
we do not show the dependency of state variables on time).
All the other states of the robot are a function of yaw plane
components and in later sections we derive these exact func-
tional relationships. In this section the yaw plane paths are
derived as parametric functions for a given a start and goal
position, in similar lines with Nagy and Kelly (2001), Inanc
et al. 2005, Guo et al. (2007). The paths are represented as a
function of an arbitrary variable u. There are various choices
for the form of parametric functions like polynomial (Guo
et al. (2007), Fourier series like functions (Singh et al. 2012;
Gallina and Gasperatto 2000) and splines (Shiller and Gwo
1991).Due to their numerical stabilitywe useBernstein poly-
nomial based representation in the current work.

We start by parametrizing the path derivatives as

x
′
(u) =

n∑
i=0

Bn
i (u)ai (7)

ζ(u) = tan α =
n∑

i=0

Bn
i (u)bi ⇒ α

′
(u) = ζ

′
(u)

1 + ζ(u)2
(8)

where

Bn
i =

(
n

i

) (
1− u − u0

u f − u0

)n−i ( u − u0
u f − u0

)i

,∀u ∈ [u0, u f ]

The non-holonomic constraint of the robot leads to the
following relation

y
′
cosα − x

′
sin α = 0

⇒ y
′ = x

′
tan α = x

′
ζ (9)

Integrating (7) and (9)weget the parametrised yawplane path
(x(u), y(u), α(u)) The parameters ai , bi can be obtained by
solving the following set of equations

⎧⎪⎪⎨
⎪⎪⎩

x(u0) = x0, y(u0) = y0, ζ(u0) = ζ0
dx
du (u0) = vx ,

dα
du (u0) = α̇

x(u f ) = x f , y(u f ) = y f , ζ(u f ) = ζ f

x(uc) = xc, y(uc) = yc

(10)

Here x0, y0, x f , y f are the initial and goal position. ζ0, ζ f

corresponds to the initial and final heading constraints. The
magnitude of the path derivatives i.e x

′
(u), α

′
(u) at the initial
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Fig. 3 Sample Output from the path generation framework showing
how paths with various shapes can be generated by varying the inter-
mediate points xc, yc

condition are kept equal to the vx , α̇, the current x component
linear velocity and rate of change of yaw angle of the robot.
xc, yc represents an intermediate point on the path which is
varied to control the shape of the path.

Figure 3 shows a sample output of the path generation
framework. The various paths between the same start and the
goal states are generated by varying the intermediate point
xc, yc.

The yaw plane path obtained is mapped through some
suitable functions to obtain a complete 6 dof path for all the
states of the robot. The next section describes the derivation
of these functions using the geometrical constraints of the
robot and the terrain geometry.

3 Derivation of robot’s 6 dof states and dynamics

3.1 Robot’s 6 dof evolution

For mapping the yaw plane path to the full 6 dof path, we
assume that the terrain equation can be known in the follow-
ing form

a = f (b, c) (11)

Where ‘a’ represents the terrain height at the x and y coor-
dinate (b, c). With the help of terrain equation this section
derives analytical functions relating x, y, α to robot’s z coor-
dinate, roll β and pitch γ . Along with it, x, y, α are also
related to the twelvewheel ground contact points xci , yci , zci .
These relations comes from the holonomic constraints defin-
ing the geometry of the robot (refer Fig. 4a)
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Fig. 4 a A four wheeled robot
with the vectors describing the
holonomic constraint defining
the geometry of the robot
shown. b Top-view of the robot

−→
Pog + −→

Pgci = −→
Poci (12)

where

−→
Pgci = −→r f
−→r f = R

[
δh 2.5−i

|(2.5−i)|w −(li )
]
,∀i = 1, 2, 3, 4

Δ = 1, i = 1, 4

= −1, i = 2, 3

R is the rotation matrix describing the orientation of the
{G} with respect to body fixed frame {L}. We assume the
fixed angle representation for R. The frame {G} has the same
orientation as the inertial frame {0} but moves along with
the robot and is attached at the same point as frame {L}.
(2.5 − i) and δ has been incorporated to ensure proper sign
of w and h corresponding to each vertex of the chassis. li are
the equivalent leg lengths which includes the radius of the
wheels. h and w are half width and breadth of the chassis.

We linearize (12) with respect to β and γ for each wheel
as:

xci = x− 2.5−i

|(2.5−i)|w sin α−liγ sin α

+δh cosα−liβ cosα (13)

yci = y + 2.5 − i

|(2.5 − i)|w cosα − liβ sin α

+δh sin α + liγ cosα (14)

zci = z + 2.5 − i

|(2.5 − i)|wγ − li − δhβ (15)

The variables xci , yci , zci satisfy (11) and to explicitly
solve forβ and γ as a function of x , y,α it is required that (11)
could be represented as a combination of piecewise linear
hyperplanes. In case when the fitted terrain equation to the

DEM is non-linearwe can linearize the terrain equation about
the vehicle’s geometric center. This linearisation is justified
since any terrain can be locally represented by a linear plane
having a particular orientation in 3D space. Linearizing (11)
about the current chassis center coordinate gives

zci = k3 + k1(xci − x) + k2(yci − y) (16)

where k3 = f (x, y), k1 = ∂( f )
∂b , b = x, c = y, k2 =

∂( f )
∂c , b = x, c = y.
Substituting xci , yci , zci values from (13), (14), and (15),

four equations represented by (16) can be written in the
matrix form as

⎡
⎢⎢⎣
1 w + η1 h + ν1
1 w + η2 −h + ν2
1 −w + η3 −h + ν3
1 −w + η4 h + ν4

⎤
⎥⎥⎦

⎡
⎣ z

γ

β

⎤
⎦ =

⎡
⎢⎢⎣
H1

H2

H3

H4

⎤
⎥⎥⎦ (17)

The terms ηi , νi , Hi are defined in the Appendix 1 and
are a function of the robots suspension travel length. The
coefficient matrix in (17) can be pseudo-inverted to solve
for z, β, γ . However, if the suspension travel length is small
which essentially means that η1 = η2 = η3 = η4 = η, and
ν1 = ν2 = ν3 = ν4 = ν , with small matrix manipulation
(17) can be reduced to

⎡
⎣0 2w 0
0 0 −2h
1 −w + η h + ν

⎤
⎦

⎡
⎣ z

γ

β

⎤
⎦ =

⎡
⎣H2 − H3

H3 − H4

H4

⎤
⎦ (18)

Inverting coefficient matrix in (18) gives z, γ, β as analytical
functions of x, y, α.
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3.2 Approximate closed form versus exact numerical
solution for posture determination

Determination of robot’s 3D posture and contact points is
very important since it forms the basis for evaluating the
stability constraints and the range of feasible speeds and
accelerations discussed later in the paper. What is notewor-
thy and unique is how we relate the robot’s 3D posture
and wheel ground contact points through the geometric
holonomic constraints (Eq. 12) and surface equation. The
derivation presented in the above section provides approx-
imate closed form solutions to the resulting set of coupled
non-linear equations. A more accurate and computationally
involved methodology was used in our earlier work (Singh
et al. 2011) where an exact solution to the non-linear equa-
tions were obtained through numerical means. For any given
path, one could resort to the use of either approximate closed
form or the more involved exact numerical solutions depend-
ing on the unevenness of the underlying terrain. This trade-off
would prove beneficial from the computational standpoint.
For example, consider Figs. 5a and 6a which shows robot’s
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Fig. 5 a Robot evolution on uneven terrain. b Posture Variation along
the path. The figure shows that the posture obtained through approx-
imate analytical functions agree well with that obtained from solving
(12) exactly in the non-linear form (Color figure online)
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Fig. 6 a Robot’s evolution on uneven terrain. b The presented terrain
is more uneven as compared to that shown in Fig. 5a. Although this
increase in unevenness leads to deterioration in the accuracy of the
approximate closed form, it still close to the exact numerical solution
along most segments of the path (Color figure online)

evolution along a path on two different terrains. The terrain
equations are respectivelymodelled as (z = 1.05 cos(0.4x)+
1.05 sin(0.3y)) and (z = 1.4 cos(0.4x) + 1.4 sin(0.4y)).
Thus, the terrain shown in Fig. 6a is more uneven as it has
higher amplitude and frequency of undulations. A compar-
ison between the approximate closed form and the exact
numerical solution on both the terrains is shown in Figs. 5b
and 6b. It can be seen that there is a good agreement between
the approximate closed form and the exact numerical solu-
tion for most segments of both the path. However, with the
increase in unevenness, there is a gradual deterioration in
the accuracy of the approximate solution. In general, we
have observed in simulations that the agreement between
the approximate and the exact model deteriorates with the
increase in the frequency and amplitude of the terrain undu-
lations. It should be noted that use of either approximate
closed form or exact numerical solution does not in any way
affect the structure of the framework presented in this paper.
For example, in Sect. 4 only numerical values of the robot’s
posture and it’s derivatives are required for evaluation of the
stability constraints, which can be computed either through
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approximate closed formmodels or by solving the geometric
holonomic constraints and surface equations exactly through
numerical means.

However, to exploit the computational advantage pro-
vided by the approximate closed form evolution model, it
is imperative to know a priori the regions where there is
good agreement between the approximate closed form and
exact numerical solution. One approach to accomplish this
would be to perform a one time off-line sampling of the given
uneven terrain to divide it into two regions: onewhere numer-
ical solution is required and one where approximate solution
would suffice. Then depending on the queried start and goal
state and on howmuch of a given path falls intowhich region,
we could find a trade-off between opting for exact numeri-
cal and approximate closed form solution. A more rigorous
analysis of the relation between the unevenness of terrain and
accuracy of the approximate closed form solution is part of
our future work.

3.3 Robot dynamics

The full 3D dynamics of the robot at any given state can
be ascertained by exploiting the derivations described in the
previous section. In particular, it can be noted that (13–15)
allow us to have wheel ground contact points also as a func-
tion of x , y and α. Wheel ground contact points location are
important because they decide contact surface unit normals
n̂i = [nxi , nyi , nzi ]T which in turn decides the traction force
unit vectors. Following the derivation mentioned in Appen-
dix 3 the equations of motion of the vehicle can be presented
in the following form

A ∗ C = D (19)

whereC = [
Ti Ni

]T
2n×1 D =

[
m−→a I

−→̇
Ω + −→

Ω × I
−→
Ω

]T
6×1

Ti ,Ni ,
−→a ,

−→̇
Ω ,

−→
Ω are the traction, normal forces, linear and

angular acceleration and angular velocity respectively. n is
the number of wheels of the vehicle, m is the mass of the
vehicle and I3×3 is the inertia matrix.

The elements of A6×2n matrix depends on vehicle pos-
ture, geometry and terrain dependent parameters like surface
contact normals and traction unit vectors. It is to be noted
that because of the derivation presented from (13–18) matrix
A can also be known in closed form as a function of x, y, α.
Ideally, if matrix A could be inverted symbolically, we could
have analytical functional description of the variation of

Ti , Ni with respect to −→a ,
−→̇
Ω and in theory we could have a

gradient descent based algorithm to generate a one shot sta-
ble trajectory. However, robots operating on uneven terrain
generally have 4-8 wheels whichmakes A under-constrained
and have to be pseudo-inverted. Some algorithms like Jones

et al. (1996) computes symbolic pseudo inverse for small
matrices having one or two independent variables. But, sym-
bolically pseudo-inverting matrix A, whose dimension will
increase with the number of wheels can turn into a complex
problem. It should be noted that this problem is not unique
to the framework proposed in this paper but is fundamen-
tal with modeling robot dynamics in 3D and relating traction
and normal forces to velocity and acceleration in closed form.
Hindered by this critical problem, a two step process of tra-
jectory generation stated earlier in Sect. 1 is followed which
utilizes the fact that it is relatively easy to compute the pseudo
inverse numerically at any point on the terrain and by doing
so we get the following equations.

Ti = ai1(max ) + ai2(may) + ai3(mg + maz) + ai4(IxxΩ̇x

+IzzΩyΩz − IyyΩyΩz) + ai5(IyyΩ̇y + IxxΩxΩz

−IzzΩxΩz) + ai6(IzzΩ̇z + IyyΩxΩy − IxxΩxΩy)

(20)

Ni = a j1(max )+a j2(may) + a j3(mg + maz) + a j4(IxxΩ̇x

+IzzΩyΩz − IyyΩyΩz) + a j5(IyyΩ̇y

+IxxΩxΩz − IzzΩxΩz) + a j6(IzzΩ̇z + IyyΩxΩy

−IxxΩxΩy) (21)

∀ i = {1, 2, 3, 4}, ∀ j = {5, 6, 7, 8}. g is acceleration
due to gravity. The coefficients ai1,ai3,a j2..ain ,a jn ,are the
elements of the pseudo inverse of matrix A. A feasible com-
bination of linear and angular acceleration is determined by
the elements of the pseudo-inverse matrix and is defined as
one which satisfies the following constraints.

Ni > 0 (22)

|(Ti )| < ρNi ⇒ Ti > −ρNi , Ti < ρNi (23)

The term ρ represents the coefficient of friction in (23). It
can be inferred from (20) and (21) that configuration x, y, α
and terrain conditions which lead to a j3 > 0 are promising
candidate for satisfying (22) and (23) since these coefficients
decides the contribution of the weight. The contribution of
the weight will always help in satisfaction of (22) as long as
a j3 > 0. These coefficients can be rapidly evaluated for some
look ahead distance along various directions and this infor-
mation is fed to the path generation framework described in
the Sect. 2 to control the shape of the path between start and
a goal location.

4 Existence/non-existence of stable motion profile

In this section we describe a framework to quickly ascer-
tain whether a stable motion profile could at all exist for a
given candidate path. The previous two sections in combi-
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nation provide a framework for computing x(u), y(u), α(u),
z(u), β(u), γ (u) and their derivatives. As shown in (4), to
obtain the time dependent trajectory, a scaling transforma-
tion has to be performed for which the scaling function u̇
needs to be computed. The scaling function should be such
that it results in velocities and accelerations that satisfy (22)
and (23). Thus, we first determine the range of values that
the scaling function u̇ is allowed to take. To this end let su
denote the scale factor by which the path derivatives needs
to be scaled to satisfy (22) and (23). Thus, we can write

ẋ(t) = x
′
(u)su, ẍ(t) = x

′′
(u)s2u (24)

ẏ(t) = y
′
(u)su, ÿ(t) = y

′′
(u)s2u (25)

α̇(t) = α
′
(u)su, α̈(t) = α

′′
(u)s2u (26)

Through (24), (25) and (26) and following the definition
given in Appendix 2, we can infer

−→̇
Ω (t) = −→

Ω
′
(u)s2u , z̈(t) = z

′′
(u)s2u (27)

Keeping in mind the fact that the scaling transformation
does not change the path of the function, at every point along
the obtained path X(u), (24), (25), (26) and (27) are substi-
tuted in (22) and (23) to get equations in the following form.

s2uCNi > DNi (28)

s2uCTai < DTai , s
2
uCTbi < DTbi (29)

Here i represents the i t h wheel and i = 1, 2, 3, 4 and
j = 5, 6, 7, 8. Also j = 5 when i = 1, j = 6 when i = 2
and so on. The coefficients are given below as

CNi = a j1(mx
′′
(u)) + a j2(my

′′
(u)) + a j3(mz

′′
(u))

+a j4(IxxΩ
′
x (u) + IzzΩy(u)Ωz(u) − IyyΩy(u)Ωz(u))

+a j5(IyyΩ
′
y(u) + IxxΩx (u)Ωz(u) − IzzΩx (u)Ωz(u))

+a j6(IzzΩ
′
z(u) + IyyΩx (u)Ωy(u) − IxxΩx (u)Ωy(u))

DNi = −a j3mg

CTai = −(ρa j1 + ai1)mx
′′
(u) − (ρa j2 + ai2)(my

′′
(u)

−(ρa j3 + ai3)(mz
′′
(u)) − (ρa j4 + ai4)(IxxΩ

′
x (u)

+IzzΩy(u)Ωz(u) − IyyΩy(u)Ωz(u))

−(ρa j5 + ai5)(IyyΩ
′
y(u)

+IxxΩx (u)Ωz(u) − IzzΩx (u)Ωz(u))(ρa j6

+ai6)(IzzΩ
′
z(u)

+IyyΩx (u)Ωy(u) − IxxΩx (u)Ωy(u))

DTai = ai3mg + ρa j3mg

CTbi = (−ρa j1 + ai1)mx
′′
(u)

+(−ρa j2 + ai2)(my
′′
(u) + (−ρa j3 + ai3)(mz

′′
(u))

+(−ρa j4 + ai4)(IxxΩ
′
x (u) + IzzΩy(u)Ωz(u)

−IyyΩy(u)Ωz(u))

+(−ρa j5 + ai5)(IyyΩ
′
y(u) + IxxΩx (u)Ωz(u)

−IzzΩx (u)Ωz(u))

+(−ρa j6 + ai6)(IzzΩ
′
z(u) + IyyΩx (u)Ωy(u)

−IxxΩx (u)Ωy(u))

DTbi = ρa j3mg − ai3mg

Equations (28) and (29) along with su > 0 written for
each wheel on any particular point on the path represents
quadratic inequalities, the solution of which is required to
construct the scaling function. The quadratic inequalities can
be easily decomposed into two linear inequalities.

If no solution exists to the system of inequalities, it can be
concluded that no stable motion profile exists for the given
parametric curve representing the path. It can be seen that the
solution to the systemof inequalities depends upon the coeffi-
cients of the pseudo inverse of thematrix A i.e ai1, a j1 which
in turn depends on vehicle geometry, terrain conditions and
vehicle posture. To have an insight on how the solution space
of su is computed, consider (28), it’s coefficients CNi , DNi

and the following four cases:

• Case 1
If for a particular wheel CNi > 0, DNi > 0, then κ =
CNi
DNi

> 0 and we have

s2u > κ (30)

• Case 2
If for a particular wheel CNi < 0, DNi > 0, then κ =
CNi
DNi

< 0 and we have

s2u < κ (31)

It can be seen that no real value satisfies (31) and hence
no solution for su exists if for any particular wheel, this
case arises

• Case 3
If for a particular wheel CNi > 0, DNi < 0, then κ =
CNi
DNi

< 0 and we have

s2u > κ (32)

It can be seen that any non-zero real value will satisfy
(32)

• Case 4
If for a particular wheel CNi < 0, DNi < 0, then κ =
CNi
DNi

> 0 and we have

s2u < κ (33)
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For any of the wheel either of the four cases could occur.
The solution space of su will be an intersection of the indi-
vidual solution spaces of each wheel. The solution space of
su will be further shortened when the no-slip constraints are
enforced. By factoring the quadratic inequalities into two lin-
ear inequalities, a linear programming based approach can be
followed for computing the maximum and minimum value
of the solution space of su . Alternatively, it is also possi-
ble to adopt a search based method to compute the range
of su . A pre-defined set of values for su can be generated
and checked whether they lead to satisfaction of (28) and
(29)

Besides providing the solution space for su , the inequal-
ities (30–33) serves a deeper purpose. It provides analytical
formulae for checking whether a given path is stable or not.
For, example if for any point on the given path, for any of
the wheel, the constraint is in the form (31), then no sta-
ble velocity or acceleration profiles exists and that particular
wheel will lift off the groundwhile traversing the path.More-
over, the procedure for checking can be very fast since the
coefficients CNi and DNi are known in semi-closed form in
terms of path parameters, vehicle posture and terrain geom-
etry.

5 Construction of scaling functions

In this section we describe a fast and simple framework to
obtain a feasible scaling function. A feasible scaling function
is one which assumes values from the solution space of su
so that the resulting velocity and acceleration profile satisfy
(22) and (23). Let the maximum and minimum value of the
solution space of su , at each point be denoted as smax (u) and
smin(u). Then using (4), we can say that the scaling function
should satisfy the following inequalities.

smin(u) ≤ du

dt
≤ smax (u) (34)

|x ′′(u)|s2min(u)≤|x ′′(u)(u̇)2+x
′
(u)ü|≤|x ′′(u)|s2max (u)

(35)

|y′′(u)|s2min(u)≤|y′′(u)(u̇)2+y
′
(u)ü|≤|y′′(u)|s2max (u)

(36)

|α′′(u)|s2min(u)≤|α′′(u)(ü)2+α
′
(u)u̇|≤|α′′(u)|s2max (u)

(37)

sign(x ′′(u)(u̇)2+x
′
(u)ü)=sign(x ′′(u)),∀u∈[u0, u f ]

(38)

sign(y′′(u)(u̇)2 + y
′
(u)ü)=sign(y′′(u)),∀u∈[u0, u f ]

(39)

sign(α′′(u)(u̇)2+α
′
(u)ü)=sign(α′′(u)),∀u∈[u0, u f ]

(40)

The physical interpretation of (34–40) is that we have to
create a scaling function which remains bounded by smin and
smax curve while satisfying the acceleration level inequali-
ties.

The scaling function u̇ is obtained as a combination of
various exponential functions of the form given in (6). To
understand this further consider Fig. 7where the path variable
interval [u0, u f ] is divided into n+1 subintervals by the gird
points u1, u2, u3....un . In each subinterval, i.e between any
two grid points, a different exponential function determined
by parameters p1, q1, p2, q2...pn, qn, pn+1, qn+1 is defined.
The scaling function u̇ is a function of these parameters,
which can be obtained by solving the inequalities (34–37) at
the grid points. Before we describe the solution procedure,
we simplify (34–37) and express them as explicit functions
of pi and qi .

5.1 Simplification of inequalities (34–40)

The simplification of inequalities (34–40) depends on obtain-
ing a general form of u̇ at an arbitrary grid point in terms of
parameters pi and qi . To this end,we start with the first subin-
terval [u0, u1]. Let the initial boundary value of u̇ be s1. To
satisfy the initial boundary condition, we must have

u̇(u0) = p1e
−q1u0 = s1 ⇒ p1 = s1e

q1u0 (41)

Using (41) u̇ in the interval [u0, u1] can be represented in
the following form

u̇(u) = s1e
q1(u0−u),∀u ∈ [u0, u1) (42)

Similarly from Fig. 7 , it can be seen that in the interval
[u1, u2], u̇ is defined as p2e−q2u . To ensure continuity with
the scaling function of the preceding interval we must have

u̇(u1) = p2e
−q2u1 ⇒ s1e

q1(u0−u1) = p2e
−q2u1

⇒ p2 = s1e
q1(u0−u1)+q2u1 (43)

Using (43), u̇ in the interval [u1, u2] can be defined as

u̇(u) = s1e
q1(u0−u1)+q2(u1−u),∀u ∈ [u1, u2) (44)

Following the same procedure as above u̇ at the nth subin-
terval i.e between grid points un−1 and un can be represented
as

u̇(u) = s1e
q1(u0−u1)+q2(u1−u2)...qn(un−1−u),∀u ∈ [un−1, un)

(45)
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Fig. 7 Discretization of path
variable interval into various
sub-intervals by the grid points
u1, u2, u3...un . An exponential
function is fitted in each
subinterval. The scaling
function u̇ is obtained as a
continuous combination of the
exponential functions

u̇ at any arbitrary grid point can be represented using (45)
as

u̇(un) = s1e
q1(u0−u1)+...qn(un−1−un) (46)

Following the derivations above, it is straightforward to
note that ü at the nth subinterval can be written as

ü(u) = −qne
2q1(u0−u1)+....2qn+1(un−u),∀u ∈ [un−1, un)

= −qnu̇
2(u) (47)

Hence ü at any arbitrary grid point can be written as

ü(un) = −qnu̇
2(un) (48)

Now evaluating inequality (34) at the grid points and
taking the logarithmic transformation results in following
2(n + 1) linear inequalities

Cvi =
{

log(u̇i ) − log(smax (ui )) ≤ 0
− log(u̇i )+log(smin(ui ))≤0,∀i =1, 2, 3....n, f

(49)

Similarly (35–40) can be simplified as following

Caxi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 log(u̇(ui )) + log(|x ′′
(ui ) − qi x

′
(ui )|)

− log(|x ′′
max (ui )|s2max (u)) ≤ 0

−2 log(u̇(ui )) − log(|x ′′
(ui ) − qi x

′
(ui )|)

+ log(|x ′′
max (ui )|s2min(u)) ≤ 0

,∀i = 1, 2, 3...n, f

(50)

Cayi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 log(u̇(ui )) + log(|y ′′
(ui ) − qi y

′
(ui )|)−

log(|y ′′
max (ui )|s2max (u)) ≤ 0

−2 log(u̇(ui )) − log(|y ′′
(ui ) − qi y

′
(ui )|)

+ log(|y ′′
max (ui )|s2min(u)) ≤ 0

,∀i = 1, 2, 3...n, f

(51)

Caαi =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

2 log(u̇(ui )) + log(|α′′
(ui ) − qiα

′
(ui )|)

− log(|α′′
max (ui )|s2max (u)) ≤ 0

−2 log(u̇(ui )) − log(|α′′
(ui ) − qiα

′
(ui )|)

+ log(|α′′
max (ui )|s2min(u)) ≤ 0

,∀i = 1, 2, 3...n, f

(52)

Csix =
⎧⎨
⎩

−x
′′
(u) + qi x

′
(u) < 0, x

′′
(u) > 0

x
′′
(u) − qi x

′
(u) < 0, x

′′
(u) < 0

,∀i = 1, 2, 3...n, f
(53)

Csiy =
⎧⎨
⎩

−y
′′
(u) + qi y

′
(u) < 0, y

′′
(u) > 0

y
′′
(u) − qi y

′
(u) < 0, y

′′
(u) < 0

,∀i = 1, 2, 3...n, f
(54)

Csiα =
⎧⎨
⎩

−α
′′
(u) + qiα

′
(u) < 0, α

′′
(u) > 0

α
′′
(u) − qiα

′
(u) < 0, α

′′
(u) < 0

,∀i = 1, 2, 3...n, f
(55)

5.2 Solving (49–55)

To solve the inequalities (49–55) for the parameters qi (pi
has already been eliminated), we fit them as constraints in
the following non-linear optimization problem.

min J =
i=n∑
i=1

[log(u̇(ui )) − log(smax (ui ))]2

s.t,Cvi ≤ 0,Caxi ≤ 0,Cayi ≤ 0,Caαi ≤ 0,

Csix ≤ 0,Csiy ≤ 0,Csiα ≤ 0 (56)
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The optimization problem (56) has a fairly simple struc-
ture. The constraintsCvi are linear in terms of parameters qi ,
since logarithmof an exponential function is linear. Similarly,
the constraints Csix , Csiy and Csiα are linear in terms of the
parameters qi . The first term in the acceleration constraints
(50–52) are linear. The second term in the acceleration
constraints can be reformulated as a purely concave non-
linearity, thus giving the constraints a difference of convex
form (Singh 2015, Ch.5). The objective function is quadratic
in terms of parameters qi and seeks to bring the scaling func-
tion as close as possible to the smax profile. This translates to
higher velocities along the path which in turn optimizes time.

5.2.1 Initial guess for solving non-linear optimization (56)

A good initial guess of parameters qi for solving (56) can
be obtained by solving the following simpler optimization
problem.

min J =
i=n∑
i=1

[log(u̇(ui )) − log(smax (ui ))]2

s.t,Cvi ≤ 0 (57)

The optimization (57) is a convex quadratic programme
and hence can be solved efficiently. Figure 8a, b shows the
sample output obtained from solving optimization (56) for
two different smax and smin profile.

6 Trajectory replanning

If for a particular path, no su exists at some points, or the scal-
ing function satisfying (35–37) could not be created , then
trajectory replanning is invoked to modify those portions of
the trajectory. Let ur correspond to the point from where the
replanning needs to be done. From that point onwards the
path generation problem represented by (10) is solved in the
domain ur ≤ u ≤ u f ensuring the continuity in the velocity
and position space. Here the possible robot stability along
various directions as measured by the variation of the coef-
ficient a j3 described in Sect. 3 is used as a guiding factor
to control the shape of the trajectory. We generate multiple
paths passing through the regions having appropriate a j3.The
final feasible trajectory will be a concatenation of many con-
tinuously connected stable trajectories.

7 Simulation results

7.1 Example 1

The framework described above has been used here to gen-
erated trajectories on 3D uneven terrain. A small vehicle
model with m = 10kg, ρ = 0.7 and with dimension
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 profile and the corresponding scaling function

(b)

Fig. 8 a, b Scaling functions obtained through the non-linear opti-
mization for the corresponding smax and smin profiles (Color figure
online)

1× 1× 1m3 was used in the simulation. The terrain is mod-
elled as z = 3.5(0.3cos(0.3x) + 0.3sin(0.3y)).

An initial path χ1(u) is produced by the planner as shown
in Fig. 9a. The scale factor calculation described in Sect. 4
is performed over it. As shown in Fig. 9c, at various points
along χ1(u), scale factor does not exist and hence a stable
motion profile could not be computed for it. The planner then
searches for directions having a j3 > 0 and perturbs χ1(u)

along it. The second path, χ2(u) produced by the planner is
more stable than χ1(u) as inferred from Fig. 9c which shows
reduction in the number of points where scale factor does not
exist. The stability of the third pathχ3(u) produced by further
perturbation slightly reduces as compared to preceding path
χ2(u). Hence, the perturbation direction is adjusted resulting
in paths χ4(u) and χ5(u). As can be seen from Fig. 9c that
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Fig. 9 a Paths planned between a given start and goal location. Vari-
ous paths are planned and evaluated by the planner before arriving at
the final completely stable path. b Yaw plane view of the paths. c Scale
factor variation along the planned paths. It can be seen that the stability

of the paths subsequently increases with each perturbation. The number
of points along the path at which the scale factor does not exist gives a
measure of stability/instability of the path (Color figure online)

these two paths are completely stable as scale factor exists at
each point along these paths. It can be seen from Fig. 9a that
with each perturbation, the paths become more aligned with

gradient or slope of the terrain. Thus, gradual increase in the
stability of the paths agree with the common intuition that it
is easier to move along the slope rather than to cut across it.
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Fig. 10 a, b Posture variation
along the stable paths χ4(u) and
χ5(u). It can be again seen that
the posture obtained through
approximate closed form
functions agree well with that
obtained through solving (12)
exactly in non-linear form. c, d
Vehicle 3D evolution along the
stable paths χ4(u) and χ5(u)

(Color figure online)
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The results of 6 dof state determination of the robot along
the stable paths χ4(u) and χ5(u) are shown in Fig. 10a, b.
It can again be seen that the posture of the robot obtained

through approximate analytical expressions agree well with
that obtained from solving non linear holonomic constraints
exactly (Eq. 12) through numerical means.
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Fig. 11 a, b Scaling function
obtained through non-linear
optimization (56) for the paths
χ4(u) and χ5(u). As stated
earlier, the quality of the scaling
function is judged by how close
it is to the smax curve. Closer the
scaling function is to the smax
curve, higher the resulting
velocity along the given stable
path. c, d Path derivatives and
the corresponding velocity
components obtained through
scaling for the paths χ4(u) and
χ5(u) respectively. e, f Total
velocity profile and total
velocity limit curves along path
χ4(u) and χ5(u) respectively.
Points where scaling function’s
magnitude is on the smax curve
corresponds to points where the
total velocity profile is on the
velocity limit curve (Color
figure online)
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Fig. 12 a–d Satisfaction of no-slip and permanent contact constraints along the paths χ4(u) and χ5(u)

The scaling function constructed for the scale factor pro-
file obtained for paths χ4(u) and χ5(u) are shown in Fig. 11a,
b. The quality of scaling function obtained for path χ4(u) is
better than that obtained for the path χ5(u) as the former
is more closer to the smax profile. As stated earlier, closer
the scaling function is to the smax profile, higher the mag-
nitude of the velocity profile along the path. The velocity
profile obtained through scaling transformations are shown
in Fig. 11c, d. Figure 11e, f shows the total velocity profile
and the total velocity limit curve. The total velocity limit

is defined as 58. As can be observed, the points where total
velocity profile is on the limit curve corresponds to the points
where scaling function is on the smax curve. Figure 12a–d
shows the satisfaction of the no-slip and permanent wheel
ground contact constrains along the obtained stable paths.
It can be seen that the normal contact forces are always
greater than zero, signifying permanentwheel ground contact
at each point along the path. Further, the residual |Ti | − ρNi

is always negative, signifying the satisfaction of no-slip con-
straints.
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Fig. 13 aEffect of terrain complexity on trajectory generation.A slight
increase in the frequency of the undulation of the terrain results in very
different paths as compared to that obtained in example 1. The stable
regions changes and hence accordingly the direction of perturbation

also changes as compared to example 1 (Fig. 9). b Yaw plane view of
the paths. c Scale factor variation along the various paths evaluated by
the planner (Color figure online)

Vmax =
√
ẋ2max (t)+ ẏmax (t)2=smax

√
ẋ(u)2+ ẏ(u)2 (58)

7.2 Example 2: effect of terrain complexity on
trajectory generation

This example shows how even slight changes in the terrain
complexity significantly affects the geometry of the sta-
ble path and its corresponding motion profile. To this end,
the planner was used between same start and goal state as
example 1, but the terrain equation was now changed to
z = 3.5(0.3cos(0.4x) + 0.3sin(0.3y)).

As can be seen, compared to previous example, the fre-
quency of undulation has been slightly increased. However,
as a result the stable regions as measured by the variation
of coefficient a j3 significantly changes and hence the pertur-
bation of the paths takes a very different form as compared
to example 1. The sequence of perturbed paths generated by
the planner is shown in Fig. 13a. As Similar to the previous
example, the perturbation acts in a manner that each sub-
sequent path is more stable than it’s preceding counterpart.
This can be confirmed through Fig. 13c, which shows that the
variation of the scale factor su along each computed path. The
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number of points along the path for which the scale factor su
does not exist reduces with each perturbation.

7.3 Example: trajectory re-planning

In situations where the planner produces paths which are sta-
ble for a considerable distance, then instead of searching for
one shot-stable path, the planner resorts to re-planning and a
new path is generated keeping the stable portions of the pre-
vious path intact. Consider Fig. 14 which shows a path χ(u)

(in blue) having some unstable portions (shown in black). So
keeping the stable portions intact a new stable path χr (u) is
generated to the goal. In Fig. 14 only the final re-planned path
is shown. Actually the planner like the previous example pro-
duces various intermediate re-planned paths passing through
regions having a j3 > 0. X − Y projection of the paths are
shown in Fig. 15a. The scale factor variation along the initial
path χ(u), the re-planned path χr (u) and the concatenated
path χ(u) + χr (u) is shown in Fig. 15b.

7.4 Comparison of trajectories with point mass
dynamics and the proposed full 3D dynamics

Figure 16a shows the comparison between the paths obtained
with a point mass dynamics and the proposed full dynamics.
Even while obtaining the path with point mass dynamics, it
was ensured that a valid stable posture of the vehicle exists
along the path. To understand the significance of the proposed
3D model, we evolve the full vehicle model along the path
obtainedwith pointmass dynamics and compare the resulting
scale factor obtained. This is shown in Fig. 16b. It can be
seen that from the point of view of point mass dynamics,
the path is stable but if the full 3D dynamics is considered
certain points along the path does not satisfy the no-slip and

Fig. 14 A initial path χ(u) which is unstable beyond some point is
re-planned while keeping the stable portions of the path intact

permanent contact condition and hence no scale factor exists
on those points. This stark difference arises out of a subtle yet
critical difference between the proposed work and Shiller’s
dynamic planning (2000) using point mass. Shiller’s work
(2000) considers the resultant traction and normal forces due
to all wheels at the center of mass of the vehicle and then
apply the no-slip and permanent contact constraint on the
resultant forces. But even when the resultant forces satisfy
constraints (22) and (23), each individual component arising
out of each wheel ground interaction may or may not satisfy
them. For example, the resultant normal force may be greater
than zero even when any one or more wheel ground contact
force is less than or equal to zero.

8 Discussions and future work

As evident from the presented theory and simulation results,
motion planning on general uneven terrain is associated
with some unique fundamental complexities. Due to non-
availability of closed form expressions of the inverse dynam-
ics of a mobile robot on an uneven terrain, it is generally not
possible to obtain an one shot stable trajectory connecting
the start and the goal state. It is only possible to ascertain the
dynamic stability along a candidate path and if stable obtain a
stable velocity and acceleration profile for it. Thus, the plan-
ner needs to explore various candidate paths before arriving
at the final stable trajectory. The proposed work however
does provide heuristics which can guide the deformation of
the path towards stable regions. As shown in Sect. 2 various
non-holonomic candidate paths can be obtained by just solv-
ing a set of linear equations,which is computationally simple.
The process of ascertaining the stability of a candidate path,
as described in Sect. 4 just involves solving a set of linear
inequalities or simply searching to obtain a single parameter
called the scale factor. This is the pivotal and fundamental
contribution of this work. That a complex multi dimensional
problem in the space of linear and angular velocities has been
reduced to solving a set of linear inequalities for a single para-
meter has not appeared elsewhere. The process of obtaining
a stable time optimal velocity and acceleration for a given
scale factor profile requires solving a non-linear optimization
problem and on an average takes around 100 ms. Moreover,
although non-linear and non-convex, this optimization can
be reformulated in a difference of convex form and thus can
be solved efficiently. Further the optimization for computing
velocities and accelerations needs to be computed only once
after the path is ascertained to be stable and a scale factor is
obtained at each point along the path. The overall iteration
that the planner takes to obtain a stable trajectory depends
entirely on the complexity of the underlying terrain. For some
difficult terrains multiple trajectory re-planning as shown in
example 7.3 might be necessary.
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Fig. 15 a Figure shows the yaw plane view of the initial path χ(u). The infeasible portions are shown in black. Infeasible/Unstable portions of
the path are re-planned and are shown in green. b Scale factor variation along the initial path, re-planned portions and the combined path
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Fig. 16 a Figure shows the path comparison based on point mass and
full 3D dynamics. b Figure shows the scale factor variation when the
full vehicle model is evolved along the path computed using the point
mass dynamics. It can be seen that if the full 3D dynamics of the vehicle
is considered, at various points along the point mass dynamics based

path, scale factor could not be obtained indicating that the no-slip and
permanent wheel-ground contact constraints are not satisfied. It can be
inferred that point mass dynamics does not capture the true stability
picture of the vehicle
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As evident, the planner does not include lateral forces
while calculating the stability of the robot and the trajectories
are obtained with the assumption of no side-slip. This limi-
tation primarily arises out of the fact that side-slip is purely
reactive phenomenon and to the best of author’s knowledge,
there does not exist anymathematicalmodelwhich relates the
applied control input to the side slip that the robot exhibit on
a general uneven terrain. This kind of assumption is present
with various trajectory generation frameworks like Shiller
and Gwo (1991) and Bonnafous et al. (2001). But given the
simplicity of the process described in Sect. 4, it is possi-
ble to modify the scale factor and hence the velocity and
acceleration profile on-line based on the estimated side slip
of the vehicle. It is to be noted the magnitude of the lateral
force resulting from the side slip will be known and hence
it’s incorporation does not change the nature of inequalities
obtained in the 4.

There are various future directions for the proposed work.
The proposed methodology can be extended to four-wheeled
active suspension robots. The6dof evolution frameworkpro-
posed in the current work can be directly extended to active
suspension robots. The roll, pitch and height of the robot’s
center are obtained as a function of robot’s leg length which
will be an additional control input in the case of an active
suspension robot. It will be interesting to note the effect of
robot’s articulation on the nature of the obtained trajectories.
The second future line of work dwells with implementing
the proposed framework on an experimental platform. To
improve the robustness of the uneven terrain navigation, a
framework which incorporates the uncertainty in the terrain
knowledge is currently being developed. Assuming complete
and exact information of the robot’s geometry, state and con-
trol, the stable velocity and acceleration profile as derived
in this paper will be influenced only by the knowledge of
the terrain equation. Representing the uncertainty in the ter-
rain equation through a distribution, a probabilistic model is
being integrated in the current work, so that a measure of risk
along with stability can be obtained for any candidate path.

Appendix 1

ηi = k1li sin α − k2li cosα (59)

νi = k1li cosα + k2li sin α (60)

H1 = k1x − k1w sin α − k1h cosα

+k2y − k2h sin α + k2w cosα + k3 + l1 (61)

H2 = k1x + w(k2 cosα − k1 sin α)

+h(k1 cosα + k2 sin α) + k3 + l2 + k2y (62)

H3 = k1x + w(k1 sin α − k2 cosα)

+h(k1 cosα + k2 sin α) + k3 + l3 + k2y (63)

H4 = k1x + w(k1 sin α − k2 sin α)

+h(−k1 cosα − k2 sin α) + k3 + l4 + k2y (64)

Appendix 2

Inverting the coefficientmatrix in (18), andusing the relations
in (59–64) we get

γ = k2 cosα − k1 sin α (65)

β = −k1 cosα − k2 sin α (66)

Differentiating (65) twice we get

d2γ

dt2
= d2k2

dy2
(
dy

dt
)2 cosα+ dk2

dy

d2y

dt2
cosα− dk2

dy

dy

dt
sin α

dα

dt

+dk2
dy

dy

dt
sin α

dα

dt

+k2 cosα(
dα

dt
)2 − k2 sin α

d2α

dt2
− d2k1

dx2
(
dx

dt
)2 sin α

−dk1
dx

d2x

dt2
sin α

−dk1
dx

dx

dt
cosα

dα

dt
− dk1

dx
cosα

dx

dt

dα

dt
+ k1 sin α(

dα

dt
)2

−k1 cosα
d2α

dt2
(67)

By putting ẋ(t) = x
′
(u)su, ẍ(t) = x

′′
(u)s2u , ẏ(t) =

y
′
(u)su, ÿ(t) = y

′′
(u)s2u , α̇(t) = α

′
(u)su, α̈(t) = α

′′
(u)s2u ,

as mentioned in Sect. 4 it can be shown that

γ̈ (t) = γ̈ (u)s2u (68)

Similarly

β̈(t) = β̈(u)s2u (69)

Using (68) and (69) it is straightforward to observe that−→̇
Ω (t) = −→

Ω
′
(u)s2u . The derivation of z̈(t) in terms of z̈(u)

proceeds along similar lines and is left to the reader.

Appendix 3

For deriving the equations ofmotion of the vehicle, thewheel
ground contact normal and traction force unit vector needs
to be calculated. Wheel ground contact normal can be calcu-
lated based on the wheel ground contact point information
derived in Sect. 3 as:
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[
nxi nyi nzi

]T =

⎡
⎢⎢⎢⎢⎢⎣

fx
2
√

f 2x + f 2y + f 2z
fy

2
√

f 2x + f 2y + f 2z

− 1
2
√

f 2x + f 2y + f 2z

⎤
⎥⎥⎥⎥⎥⎦

(70)

fx = ∂(a− f (b,c))
∂b , b = xci , c = yci , a = zci fy =

∂(a− f (b,c))
∂c , b = xci , c = yci , a = zci Once the unit nor-

mal vectors are calculated the traction force unit vector can
be derived with the help of wheel axis unit vector which in
our case has been taken as

μ̂i = R
[
0 1 0

]T
(71)

t̂i = μ̂i × n̂i
|(μ̂i × n̂i )| (72)

With the above information the equations of motion can
be written as

4∑
i=1

Ni n̂i +
4∑

i=1

Ti t̂i = [
Fx Fy Fz

]T
(73)

4∑
i=1

ri × Ni n̂i +
4∑

i=1

ri × Ti t̂i = [
Mx My Mz

]T
(74)

ri = −→
P gci (75)

Fx = max (76)

Fy = may (77)

Fz = maz + mg (78)

Mx = IxxΩ̇x + IzzΩyΩz − IyyΩyΩz (79)

My = IyyΩ̇y + IxxΩxΩz − IzzΩxΩz (80)

Mz = IzzΩ̇z + IyyΩxΩy − IxxΩxΩy (81)

Ixx , Iyy , Izz are the moment of inertia of the chassis and here
a diagonal Inertia matrix has been taken.

Equations (73) and (74) can be written in the matrix form
A ∗ C = D as mentioned in Sect. 3
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