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Abstract We propose an integrated learning and plan-
ning framework that leverages knowledge from a human
user along with prior information about the environment to
generate trajectories for scientific data collection in marine
environments. The proposed framework combines principles
from probabilistic planning with nonparametric uncertainty
modeling to refine trajectories for execution by autonomous
vehicles. These trajectories are informed by a utility func-
tion learned from the human operator’s implicit preferences
using a modified coactive learning algorithm. The resulting
techniques allow for user-specified trajectories to be mod-
ified for reduced risk of collision and increased reliability.
We test our approach in two marine monitoring domains and
show that the proposed framework mimics human-planned
trajectories while also reducing the risk of operation. This
work provides insight into the tools necessary for combining
human input with vehicle navigation to provide persistent
autonomy.

Keywords Marine robotics · Adaptive planning ·
Informative path planning · Coactive learning

1 Introduction

Weenvision the future of scientific data collection as a collab-
orative endeavor between human scientists and autonomous
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robotic systems. High-impact examples include autonomous
underwater vehicles assisting oceanographers to track bio-
logical phenomena (Smith et al. 2010), aerial vehicles
providing imagery of changing ecosystems (Bryson et al.
2010), and ground vehicles monitoring volcanic activity
(Nooner and Chadwick 2009). In these example domains, a
key challenge lies in combining the expert knowledge of the
scientistwith the optimization capabilities of the autonomous
system. The scientist brings specialized knowledge and expe-
rience to the table, while the autonomous system is capable of
processing and evaluating large quantities of data. Leverag-
ing these complementary strengths requires the development
of collaborative systems capable of guiding long-term scien-
tific data collection.

When robotic vehicles collaborate with humans, true
autonomy relies on the robot having a clear understanding of
the goals it uses and the tradeoffs it faces when making deci-
sions. When a robot is assisting a human, the robot’s goals
must oftenmimic those of the human. This is particularly true
in planning trajectories for underwater robots performing sci-
entific monitoring. The robot must autonomously navigate
the environmentwhilemaintaining the samegoals as a human
scientist. While propeller- and buoyancy-driven autonomous
underwater vehicles (AUVs) are able to operate in aquatic
environments for long time scales, true persistent autonomy
requires them to be able to plan and replan their trajectories
to fulfill the mission needs of the scientist without human
intervention.

When planning trajectories for marine robotic missions, a
scientist implicitly balances several environmental variables
such as the risk of collision, the uncertainty in ocean cur-
rents, and the locations of points of interest. While existing
planning algorithms can account for all of these variables, it
is difficult to learn the correct tradeoffs among them (Silver
et al. 2010). In this work, we create a framework that allows
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an AUV to learn a human path planner’s weighting of the
variables involved in choosing a trajectory. The AUV then
uses that weighting to plan paths mimicking those planned
by the human. In this way, we can create an autonomous
system that generalizes to different problems while still cap-
turing the scientist’s expert knowledge and experience.

The main novelty of this paper lies in its unified planning
and learning framework that generates reliable and safe tra-
jectories for autonomous marine vehicles based on human
input. To our knowledge, this is the first work to combine
Bayesian learning, probabilistic path planning, and user-
generated trajectories in a unified approach. We present a
novel algorithm that accounts for the variability in the qual-
ity of input provided by the human. In addition to simulations
in ocean monitoring domains, we perform field trials on an
EcoMapper AUV operating in an inland lake to demonstrate
that our framework is robust and efficient enough for a human
expert to easily use in real time.

These results demonstrate the advantage of combining
uncertaintymodels with human preference learning for long-
term marine monitoring missions. Our methods allow the
robot to autonomously plan safe trajectories that meet a
humanoperator’s personal goalswithout further human inter-
vention. With these techniques, a robot and scientist are able
to function as a team through a shared autonomy framework.
Using shared autonomy reduces the burden on the human
operators, allowing complex, long-termmonitoringmissions
without the need for continuous human involvement. We
believe that solving this challenge is key in making long-
term autonomy achievable.

The remainder of this paper is organized as follows. We
first discuss related work in motion planning, learning, and
human–robot interaction (Sect. 2). We then describe the pro-
posed human–robot planning architecture (Sect. 3) and detail
our trajectory refinement (Sect. 3.1) and coactive learning
(Sect. 3.2) algorithms. In the next section, we present a num-
ber of data-driven simulations to show the benefit of the
proposed approach (Sect. 4). Next, we present the results
of field trials done on an AUV using our algorithm (Sect. 5).
Finally, we draw conclusions and discuss avenues for future
work (Sect. 6).

2 Related work

This paper draws on a large body of prior literature in robotic
motion planning, learning, and human–robot interaction. We
will now discuss related work in these three subareas and
highlight the need for a unified architecture.

Motion and path planning are fundamental problems
in robotics and have been studied extensively in the past
two decades (Latombe 1991; LaValle 2006). Increasing the
robot’s degrees of freedom or the dimensionality of the

environment typically causes an exponential increase in
the computation required to solve the planning problem
optimally. Thus, motion and path planning problems are
generally computationally hard (NP-hard or PSPACE-hard)
(Reif 1979). Modern planning methods have focused on the
generation of approximate plans with limited computation
[e.g., RRT* algorithms (Karaman and Frazzoli 2011)]. Our
work extends these ideas to domains where human–robot
collaboration is beneficial for the generation of high-quality
plans.

A key component of our work is the generation of con-
fidence measures for the reliability of the robot’s trajectory.
Prior work has examined the development of such measures
for various environmental processes using straightforward
statistical machine learning tools (Willmott et al. 1985) as
well as more sophisticated Bayesian models (Lermusiaux
2006). To provide confidence measures on the prediction of
uncertainty in scientific data collection domains, we propose
utilizing Gaussian Process (GP) regression (Rasmussen and
Williams 2006) augmented with an alternative measure of
uncertainty based on the interpolation variance (Yamamoto
2000). Such approaches have been used successfully to
improve the accuracy of such tasks as underwater navigation
(Hollinger et al. 2013, 2012) and aerial vehicle surveillance
(Kim et al. 2013). However, these prior approaches have not
integrated human input into the learning and planning frame-
works.

Much of the previous work on solving the problem of
enabling robots to learn from human demonstration has
focused on finding ways for the robot to effectively mimic
the human. Researchers have studied a variety of prob-
lems such as planning driving trajectories (Ratliff 2009) and
autonomous helicopter flight (Abbeel et al. 2010). However,
most learning from demonstration problems assume that the
expert is providing optimal feedback, which is often impos-
sible to achieve. For example, when solving informative path
planning problems (Hollinger and Sukhatme 2014; Krause
and Guestrin 2011), humans cannot easily find the optimal
path, but they can quickly choose which paths they prefer.
In our work, we account for this limitation on human perfor-
mance by allowing the human to merely present a preference
for a solution. The optimal solution is never needed.

Several forms of coactive learning algorithms with the-
oretical bounds have been studied. These include regret
bounds on the perceptron coactive learning algorithm (Shiv-
aswamy and Joachims 2012) and cost bounds on the
cost-sensitive perceptron and passive–aggressive algorithms
(Goetschalckx et al. 2014). However, these bounds still
assume optimal or locally optimal feedback and have not
been tested directly with human experts.

Much of the work done on coactive learning algorithms
has studied problems where both the expert and the learner
are computer programswhich solve and improve the solution
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using different methods (Goetschalckx et al. 2014; Shiv-
aswamy and Joachims 2012). A few studies of using the
coactive learning algorithm online with humans have been
made, most notably in learning trajectories for robotic arms
(Jain et al. 2013). They show that the robot can successfully
learn from the human’s iterative, suboptimal improvements
and that the coactive algorithm performs better than other
learning algorithms. Our algorithm builds upon these ideas
by providing increased resistance to human error and shorter
learning times.

Our work also builds on prior studies in imitation learn-
ing that construct cost maps from human-operator example
paths (Ratliff 2009; Silver et al. 2010). These prior studies
utilize maximum margin planning techniques to learn cost
maps from user input. Prior work has focused on surveillance
problems where the goal is to generate a safe path through
a hazardous environment. Our proposed framework expands
on these ideas by incorporating the human scientist into the
planning loop.

This work also relates to work in adaptive sampling algo-
rithms. These algorithms attempt to choose path goals that
maximize information gain,minimize prediction uncertainty,
or minimize risk (Thompson et al. 2010; Low et al. 2009
while minimizing the cost of performing the tour. Meth-
ods for doing this adaptively include the maximum entropy
and maximum mutual information measures, used for plan-
ning in environments modeled as Gaussian Processes (Cao
et al. 2013). Hoang et al. (2014) propose a non-myopic
active learning framework using Gaussian Processes that
jointly optimizes the exploration–exploitation tradeoff. In
these algorithms, there is an implicit tradeoff between the
various goals. Our work allows the robot to easily learn
those tradeoffs from human users, particularly with respect
to the importance of each environmental feature. These adap-
tive algorithms then closely match the performance expected
by the human operator while operating autonomously in the
field.

There has been a recent push in environmental monitoring
towards the development of Decision Support Systems that
allow the human operator to seamlessly track the progress of
autonomous vehicles and to issue commands on the fly (Das
et al. 2011; Li et al. 2006; Sattar and Dudek 2011). Such sys-
tems are capable of monitoring the progress of autonomous
vehicles operating in the ocean and in other unstructured
environments by providing data to scientists in real time. Our
work complements these systems by generating suggestions
for alternative paths in addition to useful passive data.

Preliminary versions of our algorithms were presented
in our prior workshop and conference papers (Somers and
Hollinger 2014, 2015; Hollinger and Sukhatme 2014). This
paper combines coactive learning with trajectory optimiza-
tion in a unified framework and provides additional simula-
tions and field experiments.

3 Human–robot architecture

Theworkflow of the proposed architecture is as follows: (1) a
human operator specifies a series of waypoints for a vehicle
to gather scientific data, (2) the waypoints are refined by
the system to suggest alternative trajectories that have lower
risk of collision, and (3) the human operator chooses the
desired path. Figure 1 gives a visualization of the proposed
architecture.

The trajectory refinements that the system suggests are
based on an estimate of the operator’s importance weight-
ing of the environmental features that are used to determine
the operator’s planned trajectory. This importance weight-
ing allows the system to suggest trajectories that match the
operator’s desired goalsmore closely. Using a coactive learn-
ing algorithm, our system learns these operator preferences
based on a set of improvements to simulated environmen-
tal maps. These learned preferences are then used to inform
the trajectory refinement algorithm of the type of trajectories
desired.

The problems that we will examine under this frame-
work comprise of the following components: a trajectory
of scientist-provided waypoints that indirectly specify the
quality of information gathered, a “risk” map that gives
the expected safety of operating in a particular area, and a
model of the environment that determines how reliably the
autonomous vehicle canmove between points. Figure 2 gives
an example of the necessary maps in an oceanographic mon-
itoring domain where an autonomous underwater vehicle is
surveying a number of ecological hotspots [e.g., harmful
algal blooms (Das et al. 2010)]. The waypoints specified by

Fig. 1 Proposed framework for human–robot collaboration to generate
safe and informative paths for autonomous vehicles to gather scientific
data
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Fig. 2 Three maps that must be combined to perform efficient infor-
mation gathering in an ocean monitoring scenario where an AUV is
tracking a harmful algal bloom. The ocean currents affect the planned
path of the vehicle, the risk map determines the safety of operation, and
the pre-specified waypoints that the scientist provides gives the benefit

of the information gathered. Our proposed system integrates thesemaps
to improve scientific data collection. a The scientist provides waypoints
that specify ecological hotspots. b Collision probability with shipping
lanes and land determines risk of operation. c Strength of ocean currents
provides reliability of operation

the scientist provide areas of high algal bloom density, the
risk map provides the probability of colliding with a ship or
running into land, and the prevailing ocean currents provide
the reliability of operation. We note that all of these maps
are uncertain in the sense that the quantities are not known
exactly at the time of planning. For reliable operation, it is
necessary to predict the values of the information, risk, and
reliability maps, as well as the uncertainty in those values.

3.1 Trajectory refinement algorithms

We first discuss our proposed approach for incorporating
input from a human scientist into an optimization framework.
We will build on ideas originally presented in prior work to
learn cost maps that guide autonomous ground reconnais-
sance vehicles (Ratliff 2009).Unlike priorwork, ourmethods
will incorporate a measure of risk into the planning and
learning framework. We will also incorporate measures of
uncertainty into our predictions.

The formal problem is to plan a path ξ that is a solution
to the following optimization problem:

ξ∗ = argmin
ξ∈Ψ

R(ξ) + αD(ξ, ξ0), (1)

where D(ξ, ξ0) is the deviation from the scientist’s initial tra-
jectory of waypoints ξ0, R(ξ) is an expected risk of executing
ξ , Ψ the space of all possible paths, and α is a weighting
parameter. We assume that we are given an example trajec-
tory of waypoints ξ0 from the human operator and that an
explicit cost function is not provided as part of the trajectory.
The α parameter that matches the operator’s preferences is
determined using the coactive learning procedure described
in Sect. 3.2. After finding approximate solutions to the above
optimization problem, the resulting trajectory is presented to

the operator for final evaluation. The operator then has the
option to adjust the values of α to make the trajectories devi-
ate more or less from the initial plan.

There are several properties of the above problem that
make it difficult to solve optimally. If the risk function is
non-convex, optimizing it will typically be NP-hard for any
rich space of paths (LaValle 2006). In addition to the inher-
ent complexity of the path planning problem, the functions
D and R may be computationally intensive to compute.
Furthermore, the deviation and risk functions may not be
definitively known in advance (e.g., risk is only known with
some certainty), and it may become necessary to estimate
their expected values based on a distribution of possibilities.
Similarly, for a given path, it may not be certain that the vehi-
cle can execute the path exactly, which adds an additional
level of uncertainty to the optimization.

Successfully addressing these challenges and optimizing
the vehicle’s paths requires the development of both uncer-
taintymodeling andplanning solutions.Wewill nowdescribe
how the proposed architecture addresses each of these sub-
problems.

3.1.1 Modeling uncertainty

A key component of our proposed work is to provide a prin-
cipled estimate of uncertainty for predictions of the vehicle’s
actions. These uncertainty estimates will be incorporated
through probabilistic planning to provide the final suggested
paths for the vehicle. We propose using non-parametric
BayesianRegression in the formofGaussianProcesses (GPs)
to providemeasures of uncertainty (Rasmussen andWilliams
2006).Wewill nowdiscuss background inGPs and showhow
we can use similar ideas to develop novel representations of
uncertainty. This formulation closely follows our prior work
in uncertainty modeling for ocean currents (Hollinger et al.
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2013). For this uncertainty modeling approach, we assume
that estimates of the disturbances (such as ocean currents)
are available [e.g., through regional ocean modeling systems
and satellite data (Shchepetkin and McWilliams 2005)].

The disturbances at a given latitude lat , longitude lon,
and time t can be written as a tuple c(lat, lon, t) = (u, v),
where u and v are scalar values representing components of
the disturbance vector along the cardinal axes. At a given
time T , we assume we have access to some historical data
of the disturbances for times t = {T − 1, T − 2, . . .}. Given
these data, we want to provide predictions for future points
of time as well as confidence bounds for these predictions.

A GP models a noisy process zi = f (xi ) + ε, where
zi ∈ R, xi ∈ R

d , and ε is Gaussian noise. Since the standard
GPmodels a one-dimensional value zi , we canmodel the full
2D or 3D space using separate GPs or as a coupled process
(e.g., using the techniques in Alvarez and Lawrence (2011)).

We are given some data of the form

D = [(x1, z1), (x2, z2), . . . , (xn, zn)],

where xi represents a vector of latitude, longitude, and time
values for a data point i , and zi represents a component of
the disturbance vector at that point and time. We refer to the
d × n matrix of xi vectors as X and the vector of zi values as
z.

To fully define a GP, we must choose a kernel function
k(xi , x j ) that relates the points in X to each other. As in
our prior work, we utilize a space/time squared exponential
kernel to model correlations among the data (Hollinger et al.
2013). Having defined the kernel, combining the covariance
values for all points into an n × n matrix K and adding a
Gaussian observation noise hyperparameter σ 2

n yields Kz =
K +σ 2

n I. The following equation predicts the mean function
value (e.g., a disturbance value along the predicted trajectory)
μ(x∗) and variance Vgp(x∗) at a selected point x∗ given the
historical and prediction training data:

μ(x∗) = kT∗ (K + σ 2
n I)−1z, (2)

Vgp(x∗) = k(x∗, x∗) − kT∗ (K + σ 2
n I)−1k∗, (3)

where k∗ is the covariance vector between the selected point
x∗ and the training inputs X. This model gives a mean and
variance for a particular latitude, longitude, and future time
point.

The Gaussian Process variance described above gives an
estimate of the uncertainty of a prediction based on the esti-
mated hyperparameters and the sparsity of the data around
that point. While the GP variance provides some useful
insight into the uncertainty in predictions, it has been shown
in prior work that it fails to correlate with the error in com-
plex disturbances (e.g., ocean currents) (Kim et al. 2013;
Yamamoto and Monteiro 2008). Based on this work, we

instead utilize a method based on the interpolation variance,
providing a more informed uncertainty measure. Once a GP
has been learned, the interpolation variance can be estimated
as

Viv(x∗) = kT∗ (K + σ 2
n I)−1(z − μ)T (z − μ), (4)

where μ is a vector of all μ(xi) values.
This measure of variance provides a richer representation

that accounts for both data sparsity and data variability and
while providing improved prediction for the trajectories of
AUVs (Hollinger et al. 2013).

3.1.2 Probabilistic planning

The learned uncertainty predictions described above can
be incorporated into probabilistic path planners to refine
human-provided trajectories. We propose utilizing Monte
Carlo Sampling methods to estimate the transition function
in a probabilistic model. The planner assumes that the sto-
chasticity in the predictions uses the spatio-temporal variance
estimates from the Gaussian Process (either the GP variance
or the interpolation variance). These variances are used to
generate a distribution of surfacing locations from a set of
prior simulations.

This distribution of surfacing locations is obtained by per-
forming a set ofMonte Carlo simulations of a glider traveling
through the ocean. For each simulation, starting at an initial
state s, we choose a waypoint to move towards, which rep-
resents taking action a. The ocean currents for each point
x∗ are then drawn from the normal distribution centered at
μ(x∗)with varianceViv(x∗) orVgp(x∗). The simulation then
determines the surfacing location s′ based on these ocean cur-
rent values. Aggregating these trials together, let Ms′,s,a be
the number of samples ending at s′, starting at s, and taking
action a. Also letMs,a be the total number of samples starting
at s, taking action a, and ending in any state. We can gen-
erate an estimate of the transition function as T (s′|s, a) =
Ms′,s,a/Ms,a , which describes the probability of moving to
state s′ given the choice of taking action a from state s.

The proposed algorithm uses the transition function
described above to evaluate a number of candidate plans. The
costs of the plans are calculated using a weighting of the risk
obtained from the risk map and the deviation from the oper-
ator’s initial trajectory of waypoints ξ0 as described in Eq. 1.
The algorithm sequentially examines each operator-provided
waypoint, then checks all possible alternative waypoints.
From each initial waypoint s, the cost values C are calcu-
lated for each possible action a that could be taken using the
following rule:

C(s, a) ←
∑

s′
T (s′|s, a)(ΔD(s′, ξ0) + αΔR(s′)), (5)
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where ΔD(s′, ξ0) is the distance deviation between way-
points caused by adding state s′ to the trajectory and ΔR(s′)
is the difference in risk incurred by adding state s′ to the tra-
jectory. In the domains of interest, the actions in the above
equation represent targetwaypoints.Note that the actualway-
point reached will be different from the target waypoint due
to the modeled disturbances. We discretize the possible tar-
get waypoints in the environment and then select the action
with the lowest expected cost value. This process is then
repeated for the remaining waypoints until the entire trajec-
tory has been modified. This modified trajectory is spatially
similar to the input trajectory, but it is optimized based on
the weighting between the expected distance deviation and
risk reduction in the surfacing locations.

Given the appropriate uncertainty measures and the plan-
ning methods described above, we now have a framework
to modify the waypoints that are provided by the user. This
combines the user’s intuition with the computer’s ability to
optimize over large datasets. We would expect the transi-
tion models and risk maps to provide improvements in the
reliability and safety of the resulting plan. The data-driven
simulations in Sect. 4 will confirm this trend. However, in
order for the computer to provide these modified trajectories,
it must know α, the user’s balance between risk and reward.

3.2 Coactive learning algorithm

The trajectory refinement algorithm presented in the pre-
ceding section balances risk and deviation from a provided
trajectory using aweighting parameterα. Thisweighting rep-
resents the human operator’swillingness to trade between the
risks an AUV faces and the value of the information it gath-
ers during a mission. In order to present relevant trajectories
to the operator, our framework must have an estimate of the
operator’s implicit weighting. To provide this, we propose
an algorithm where the human iteratively refines trajectories
given by a computer, which allows us to learn a generalized
weighting of risk and reward.

Measuring deviation requires the operator to supply an
initial trajectory. In this section, we relax this assump-
tion and consider a more general “reward” map to model
the human’s intent. We adapt the coactive learning algo-
rithm (Shivaswamy and Joachims 2012) to learning a human
expert’s preferences when planning paths for underwater sci-
entific data collection. The algorithm attempts to learn the
expert’s judgment of the utility of a set of paths. This learned
utility function, described by α, can then be used to create
a refined trajectory mimicking that which the human would
have planned.

Unlike the trajectory refinement algorithm, which only
considers user preferences based on a single human-provided
path, the coactive learning algorithm utilizes multiple, incre-
mental updates to a set of paths. This allows the algorithm

to learn a much more generally applicable representation of
human preferences based on risk and reward maps. In addi-
tion, it does not require the user to input a new trajectory
whenever the algorithm runs.

We first present the basic perceptron coactive learning
algorithm from prior work. We build upon previous work
by adapting the coactive algorithm to noisy environments
(Raman et al. 2013) and present a novel approach to dealing
with suboptimal updates made by the human expert.

3.2.1 Perceptron coactive learning algorithm

The perceptron coactive learning algorithm attempts to learn
an expert’s utility function, U (〈x, y〉) → R, for judging a
candidate solution y for a given problem x (as in Goetschal-
ckx et al. 2014). We assume that the expert’s utility function
can be approximated as aweighted linear function of features
of the candidate solution: Û (〈x, y〉) = w	φ(〈x, y〉). These
features are simple numerical descriptions of a solution to the
task, either concrete or abstracted (e.g., path length, distance
to obstacles, probability of failure). However, the set of fea-
tures usedmust be rich enough to describe the utility function
the human uses to evaluate the task (Abbeel and Ng 2004).

The ultimate goal of the algorithm is to learn the parame-
tersw thatmatch the expert’smethod for judging the utility of
a solution. This is equivalent to learning the operator’s prefer-
ence weighing, α, from the previous section, as α = w1/w2,
where w1 and w2 are the weights of the path deviation and
risk features, respectively.

On each update of the coactive learning algorithm, the
algorithm creates a candidate solution yt that maximizes
w	
t φ(〈xt , yt 〉), based on its current estimate Û of the expert’s

utility function. This solution is presented to the expert. The
expert has a set of operators, O, that can be applied to the
solution to improve it: Oi ∈ O : 〈x, y〉 → 〈x, y′〉. These
operators are specific to the problem domain. In path plan-
ning, for instance, these operators could involve altering the
trajectory. The cost for the update Ct is equal to the number
of operators the expert applies to improve the solution. The
learning algorithm then adjusts Û based on the difference in
parameters between yt and y′.

Algorithm 1 shows how the weights w are updated. If the
expert has modified the proposed solution, the difference in
parameters δ between the proposed and modified solution is
calculated. This difference is then scaled by the learning rate
and added to the previous estimated weights to find the new
estimated weights.

In this work, as in most previous research into coactive
learning,Ct is simply the number of operators applied. How-
ever, there are several ways tomake the cost more expressive,
particularly for complex domains. For instance, different
operators can have different costs, or the cost could vary
based on the how the operator is used (e.g., proportional to the
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Algorithm 1: CoactiveLearningUpdate (problem xt ,
learning algorithm’s solution yt , improved solution y′,
cost Ct )

if Ct > 0 then
δt := φ(〈xt , y′〉) − φ(〈xt , yt 〉)
w	
t+1 = w	

t + λt ∗ δt

end

distance a point is moved). Ultimately, the cost should reflect
how much effort the human spends in improving a candidate
solution, measuring how close the proposed solution is to the
humans ideal solution. In our work, this effort decreases as
the proposed solutions converge on the target ratios.

Several variations of the coactive learning algorithm have
been proposed. Goetschalckx and Tadepalli (2014) examine
adjusting the learning rate λ. In addition to the above per-
ceptron (PER) algorithm with with a constant learning rate,
they also study a passive-aggressive (PA) algorithm, which
adjusts lambda to ensure the solver’s most recent mistake
is corrected and a cost-sensitive perceptron (CSPER) algo-
rithm where the learning rate is proportional to the number
of operators applied.

Assuming that the expert provides a locally optimal solu-
tion, they prove an upper bound on the effort required by the
expert. With T being the number of update steps, the upper
bound is O(1/

√
T ) for the PER and PA algorithms and a

bound of O(1/T ) for the CSPER algorithm. In Shivaswamy
and Joachims (2012), a lower bound of O(1/

√
T ) on the

algorithm’s regret is shown, assuming the expert provides an
optimal solution.

However, using the algorithm with a human expert breaks
these assumptions. The solutions provided by the human are
unlikely to be locally optimal and could even be uninten-
tionally misleading. Furthermore, only the human’s incor-
rect updates to a near-optimal solution change the learned
weights. This causes the weights to oscillate as update steps
are performed. One way to mitigate this issue is to present
suboptimal candidate solutions half of the time, allowing the
learned weights to be reinforced (Raman et al. 2013). We
incorporate the essence of this solution, as our learning algo-
rithm does not create perfect solutions. We further extend
it to specifically remove the effect of incorrect or erroneous
updates.

3.2.2 Proposed histogram algorithm

The baseline perceptron algorithm is sensitive to suboptimal
updates made by the human expert. The coactive learning
algorithm assumes that all changes made to the candidate
solutions are improvements in the eyes of the human. How-
ever, particularly in complex and noisy domains, it is easy for
the human to make sub-optimal updates that they believe are

improvements. The perceptron algorithmweights all updates
equally, and does not attempt to distinguish good updates
from poor ones. To overcome this limitation, we developed
an alternate algorithm to identify and reduce the effect of
these suboptimal updates.

Our algorithm takes all previous improved weights into
account when determining the new estimated weights. A his-
togram of the new and previously improved weights, wt , for
each feature is created. A normal distribution is fitted to the
histogram. The center of the normal distribution is taken as
the new estimated weight for each respective feature. This
histogram identifies the weighting that is mostly likely to be
correct based on the distribution of previousweights.Weights
that are significantly different than the majority are aver-
aged out, greatly reducing their effect. Thus, this method
excludes outliers and prevents new updates from completely
changing the estimated weights. In this way, the algorithm is
able to continuously converge on the human experts weight-
ings, even when a number of incorrect estimated weights are
included.

For a small number of updates it can be difficult to reli-
ably fit a reasonable distribution to the data. In this case the
median(w	) provides a good estimate of the new weights.

4 Simulations and results

We evaluated the components of our learning and planning
framework in the context of several different data-driven
simulations. We begin by comparing the performance of
our histogram-based coactive learning algorithm in estimat-
ing a human’s planning preferences to the performance of
the baseline coactive learning algorithm. This demonstrates
the algorithm’s success in learning a human’s weighting of
several environmental variables. We then apply our trajec-
tory optimization framework to a simulated Slocum glider
AUV collecting environmental data in the Southern Cali-
fornia Bight. The human’s preference weighting is used to
inform the type of modified trajectories presented to the user
by the framework. Finally, we present the results of field tri-
als using the framework on a propeller-driven EcoMapper
AUV for monitoring lake ecology.

4.1 Comparative learning algorithm simulations

First, we evaluate the ability of our coactive learning algo-
rithm to estimate a human operator’s trajectory planning
preferences. The problem we examine consists of several
components: a planned trajectory of waypoints, a target vec-
tor w	 of feature weights for the learning algorithm to learn,
and maps representing the value of those features in a region.
These featuremaps could represent realworld variables, such
as temperature or pH, or abstract features, such as a “risk”
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Fig. 3 An example path and utility field generated using the coactive
learning algorithm simulations. Only the utility map shown in c is pre-
sented to the expert during trials. The black line represents the robot’s
path through the environment. Here, risk and reward integrated along
the path are the features used in the utility function. The computer pro-
poses a trajectory to the expert, who then improves it. The framework

learns the expert’s underlying weighting between gathering informa-
tion and risk using coactive learning. a Reward map representing the
value of traveling in a particular area. b Risk map showing the risk of
traveling in a region. c Utility map generated from a weighted sum of
the risk and reward maps. Here, the target weights of risk and reward
are −10 and 30, respectively (Color figure online)

feature representing the cost of traveling in a given region
or a “reward” feature that represents the quality and value of
information gained by traveling in a given area (Singh et al.
2007, 2009).

For our simulation, as in the trajectory optimization algo-
rithm, we assume that the expert’s utility function is linearly
composed of two features: the risk the robot incurs and the
information it gains during its tour. The total risk and total
information for a path are found calculating the line integral
of each respective feature map along the path.

To test the algorithm’s ability to learn a human expert’s
weighting, we have a human plan paths over a map created
using a predetermined utility function. The expert is pre-
sented with a path overlaid on a map of the utility at each
location in a region, as shown in Fig. 3c. Maps of risk and
reward are generated as a random sum of Gaussians, shown
in Fig. 3a and b. The utility map is generated by weighting
these risk and reward maps by their respective target weights
and summing them. For all tests, we use target weights of
−10 and 30, for risk and reward respectively. This represents
a stronger preference for gathering information than avoid-
ing risk. The human is shown only the utility map. Since they
are optimizing the path based solely on a map of utility cal-
culated using the predetermined target weights, we can test
how effectively the coactive algorithm learns these weights
without changing the human’s propensity for misjudging the
utility of a given path.

In our tests, the algorithm used a simple greedy
information-gathering path planner to generate candidate
paths. First, it finds the peaks of a utility map made from
the feature maps weighted by the learned weights. Then,
using a locally optimal traveling salesman problem solver
(Applegate et al. 2006), it connects the peaks using a path
that minimizes the inverse of the utility along the path. Thus,
the planner finds a short path while still maximizing the util-
ity of that path.

At each update, the expert improves the path by moving
one of the points of the path. Shown only the utilitymap, they
modify the path, attempting to maximize the line integral of
the utility along the path. Thus, the expert’s utility function in
planning matches the target utility function. After each mod-
ification, the change in information and risk are calculated
from the hidden risk and information maps, and used in the
coactive learning update to update the learning algorithm’s
estimate of the expert’s utility function. A new map and path
are generated for each coactive update.

We conducted 20 trials each for the baseline perceptron
and histogram algorithms. Each trial consisted of performing
16 updates based solely on the provided utility maps. Each
update used a differentmap,with the expertmoving one point
on each map.

As shown in Fig. 4, the histogram algorithm accumu-
lates regretmore slowly than the perceptron coactive learning

Fig. 4 The regret (sum of deviation between target weight and esti-
mated weight) for each algorithm averaged over 20 trials. The standard
error of the mean for the averages is shown. The histogram coactive
learning algorithmaccumulates regretmore slowly (Color figure online)
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Fig. 5 Example plots of how the estimated weight changes over a trial
in simulations of the perceptron and histogram learning algorithms.
Note that the perceptron algorithm initially tracks the target weights
relatively well until a suboptimal update from the human expert throws
it off. Comparatively, the histogram method converges on the target

ratio, discounting an initial suboptimal update. a An example of the
estimated ratio of weights over a trial of the perceptron coactive learn-
ing algorithm. b An example of the estimated ratio of weights over a
trial of the histogram coactive learning algorithm (Color figure online)

algorithm. Additionally, it also smoothly converged towards
a set of estimatedweights, as each update shifts the histogram
only slightly. As seen in Fig. 5, the perceptron algorithm is
still highly susceptible to suboptimal updates made by the
human, even after many iterations. This is because each
update is valued equally and the algorithm cannot com-
pare the current update to previous feedback. However, the
histogram algorithm learns what the optimal weighting is
and is able to ignore or reduce the effects of suboptimal
updates.

In our tests, we noted that, while the operator generally
made good modifications to the path, suboptimal updates
were still common and the resulting ratios of risk and reward
were noisy, as seen in Fig. 5a. While further study is neces-
sary, we hypothesize that this is because humans concentrate
on the features at the vertices of the trajectory, instead of
examining the complete path.

The coactive learning algorithm provides a fast and effec-
tive method for learning an expert’s weighting, α, between
information gathered and risk incurred. There is no need for
the human to tune α through trial and error. This weight-
ing is then used as a parameter in the trajectory refinement
algorithm to provide path suggestions that are relevant to the
expert’s goals.

4.2 Data-driven trajectory refinement simulations

Wenowpresent a validation of the proposed trajectory refine-
ment framework in the underwater monitoring domain in
the Southern California Bight region where an autonomous
underwater vehicle (AUV) is monitoring an oceanographic
phenomenon with the help of a scientist. The simulations

model a Slocum Glider (Pereira et al. 2013), which is a
buoyancy-controlled AUV that moves at a speed of approxi-
mately 0.3 m/s. The scientist provides the glider with a series
of waypoints, and the vehicle dives between the waypoints
while using dead reckoning to determine when to surface.
Due to its slow speed, the glider is highly susceptible to ocean
currents, and it is often difficult to predict where exactly the
glider will surface relative to the specified waypoint. The
glider is in danger of running aground if it comes too close to
land, and in addition, if the glider surfaces within a shipping
lane, it becomes susceptible to collision with passing boat
traffic.

The goal of these simulations is to determine the extent to
which we can improve the safety of operation using the pro-
posed learning and planning methods. In this domain, safety
is measured by the probability of the underwater vehicle suc-
cessfully completing its mission without coming too close to
land or encountering a passing ship. The scientist provides
the initial series of waypoints, and the proposed framework is
then used tomodify thesewaypoints to decrease the probabil-
ity of collisionwhile alsominimizing the necessary deviation
from the initial plan.

The simulations were performed on a single desktop PC
with a 3.2 GHz Intel i7 processor and 9 GB of RAM. The
simulations incorporate data fromocean currents provided by
the JPLRegionalOceanModeling System (ROMS) (Shchep-
etkin and McWilliams 2005). The JPL ROMS system pro-
vides estimates of the ocean currents but not uncertainty in
those estimates. The uncertainty in the ocean currents was
determined using the interpolation variance as discussed in
Sect. 3.1. The uncertainty learning portion of the proposed
method took approximately 5 min to complete, and the plan-
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Fig. 6 Example of improving an initial trajectory of waypoints using
the proposed learning and planning framework for data from April 24,
2013. The refined path avoids the riskier (lighter) areas and also remains
in areas where the uncertainty of the ocean currents is low. The result-
ing path is safer and more reliable without deviating much from the
initial waypoints given by the scientist. a Initial and refined waypoints

overlaid on risk map. Lighter areas have higher risk of collision with
land or passing ships, b Initial and refined waypoints overlaid on ocean
current uncertainty map. Redder areas denote higher areas of normal-
ized uncertainty. c Initial and final trajectory overlaid on ocean current
predictions. Vectors denote direction and magnitude of ocean currents
(Color figure online)

ning portion completed in less than a second using a 40 ×
40 discretized grid of possible waypoint locations. We note
that the uncertainty learning portion only needs to be run
once per day, and many trajectories can then be refined using
those uncertainty estimates.

Risk maps were generated for the simulation using histor-
ical Automatic Identification Systems (AIS) shipping data.
AIS is a tracking system that mandates a large number of ves-
sels in the United States (and other countries) to broadcast
their location information via VHF transceivers (see Pereira
et al. 2013 for more details). We used historical AIS data
collected over a period of 5 months (between January and
May, 2010) in the region 33.25◦ N–34.13◦ N and 117.7◦ and
118.8◦ W. Using these data, we calculated an aggregate risk
value, R(s), at all possible discretized waypoints, s, in the
region, which correlates with the chance of hitting a passing
ship.

Figure 6 shows an example of how an initial trajectorywas
modified to reduce risk in the ocean monitoring domain. In
this example, the human operator chooses to move the AUV
into a risky harbor region to gather data. Using the previ-
ously learned α, the algorithm then modifies this trajectory.
The incorporation of the learnedweighting allows the refined
trajectories to balance the operator’s level of risk aversion
with their desire of gathering data in the harbor. Figure 7
gives a visualization of how changing the weighting value
(α) affects the resulting trajectories.

These modified trajectories collect data in the same
general areas while simultaneously avoiding the high-risk
shipping lanes and the most dangerous areas of the harbor.
We also see that the estimates of the ocean currents are
more certain in the areas traversed by the modified trajec-
tories (i.e., the modified trajectories move away from the red
areas in Fig. 6(b)). Effectively combining these two types
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Fig. 7 Initial trajectory and set of suggested trajectories using differ-
ent weightings between deviation and risk. Higher weighting of risk
leads to safer paths at the cost of deviating from the initially specified
trajectory (Color figure online)

of information would require an expert operator capable of
processing data in real-time. With the proposed system, the
operator can choose the desired trajectorywithout any under-
lying knowledge of the risk and then have the system refine
it for increased safety and reliability.

Finally, we examine the effect changing the magnitude
of the learned α parameter has on the modified trajectory.
We provide quantitative evaluations of the deviation and risk
tradeoff between a high (α = 1000) and low (α = 100) value
of theweighting parameter. In Fig. 8,we see that the proposed
method provides trajectories that range from closely tracking
the initial trajectory with high risk to loosely following the
initial trajectory with lower risk. In some cases we are able to
achieve up to a 51% reduction in risk while deviating from
the path by less than 0.8 km.
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Fig. 8 Deviation and risk for varying weighting parameters for trials
of the trajectory optimizer using data from April 24, 2013. The pro-
posed method allows the scientist to trade between the initially selected

waypoints and safer paths that deviate from them. Each data point is
averaged over 20 user-input trajectories, and error bars are one SEM
(Color figure online)

5 Field trials

Finally, we demonstrate the framework’s capabilities in a
lake monitoring environment. While our simulations show
that the the framework is able to learn and converge on a
target weight and that it can refine trajectories to improve
their safety, the goal in these experiments is to demonstrate
that the framework was robust enough for use in an inte-
grated field environment. They also show that the resulting
feature weights of paths planned by the human and those
by the framework were the same in a real world scenario.
This demonstrates that the coactive learning algorithm is able
effectively learn the human’s planning preferences and that
these preferences can be incorporated into a path planner to
effectively improve upon a human’s planning abilities. By
combining the human’s preferences and goals with a com-
puter’s ability to quickly analyze data and plan trajectories,
safer, more informativemissions can be planned and runwith
less effort expended by the human operator.

We performed a series of trials with our framework using
a YSI EcoMapper autonomous underwater vehicle in a lake
ecology monitoring scenario. These propeller-driven AUVs
are able to maintain speeds of 2 m/s for up to 10 h. As
such, they are often used in ecological monitoring and
oceanographic research missions (Ellison and Cook 2009).
They have a wide range of sensors. These include water
conductivity, temperature, and depth sensors for ecological
monitoring and a Doppler Velocity Log and GPS unit for
vehicle localization. Missions of waypoints for the AUV to
follow are uploaded wirelessly using the standard 802.11
wireless protocol. Our field trials were conducted in an inlet
of Puddingstone Reservoir in San Dimas, California (Lat.
34.08, Lon. −117.81).

We trained our algorithm to plan paths based on the
water temperatures and water depths along the path. These
act as an analog to the risk and information maps used in
the simulations. These also closely match a true ecological
monitoring mission, where an oceanographer might target a
certain combination of environmental features, such as tem-
perature, depth, conductivity, and salinity in order to study a
certain organism or ecological phenomenon. For each trial,
we began by teaching our preferences to an information-
gathering planner using our coactive learning algorithm.
Unlike in the simulations, the human was shown both tem-
perature and depth maps. Their true preference weighting
between the features was learned. As in Sect. 3.2.1, this pref-
erence was represented as a linear utility function comprised
of weighted temperature and depth features.

We then ran a dense lawnmower pattern over the inlet to
establish a map of water temperature and lake depth for the
planning framework to use. Using the learned utility func-
tion, the planner than ran the AUV on a path attempting to
maximize the utility of the sensed information. Due to the
depth of the inlet and to simplify the experiments, the AUV
was used on the surface using 2D trajectories.

One limitation of these experiments is that depth and tem-
perature are not independent features. Deeper locations are
often colder because it takes longer for solar heating to warm
them. As such, it is not always possible to find a path match-
ing a given ratio of depth and temperature. For example, if
maximizing depth is weighted highly with minimizing tem-
perature having a smaller weight, it is likely the planned
pathwill appear to satisfy both features equally.Additionally,
since historical data for the lake were unavailable, the uncer-
tainty estimation portion of the framework was not used.
Even with these limitations, these trials provide a demonstra-
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Fig. 9 An aerial view of the test area at Puddingstone Reservoir (left)
with the corresponding depth map (right). A simple baseline lawn-
mower path is shown over the depth map. The lawnmower path is a
commonly used path for guiding AUVs in ecological monitoring mis-

sions (Mora et al. 2013). The depth map was created by interpolating
between depth points measured on a dense survey of the area (Color
figure online)

Fig. 10 a A trajectory planned by our proposed algorithm maxi-
mizing the depth while minimizing the measured temperature. b A
human-planned trajectory maximizing the depth while minimizing the
measured temperature. c A trajectory planned by our proposed algo-

rithm targeting a depth of 6 m and a temperature of 27 ◦C. d A
human-planned trajectory targeting a depth of 6 m and a temperature
of 27 ◦C (Color figure online)

tion of the value of incorporating preference learning into a
planning framework.

Webeganby running a loose lawnmower pattern, as shown
in Fig. 9. These types of trajectories are often used on eco-
logical monitoring missions as they are easy to set up, so

they formed a relevant baseline for our tests. The resulting
ratio of depth to temperature integrated along the path was
1.157.

We then taught the algorithm to strongly maximize the
depth while minimizing the temperature and ran the mis-
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sion shown in Fig. 10a. The measured ratio of 2.48 closely
matched the learned ratio of 2.47. It also closely matched the
measured ratio from the human-planned mission in Fig. 10b
of 2.45.

We also taught the algorithm to target specific depths and
temperatures. We targeted lake depths close to 6 m and tem-
peratures very close to 27 ◦C, weighting the depth more
strongly. We again ran a computer-planned and a human-
planned mission, shown in Fig. 10c and d. The algorithm
learned a weight ratio of 2.56. The measured utility ratios
were 1.564 for the computer’s path and 1.495 for the human’s
path.While these are not exactly the same, they are still quite
close. Additionally, the achievable ratio was limited by the
correlation of the temperature and depth in the lake.

Finally, we tried to train the algorithm to follow the 6
m depth contour by strongly preferring paths at that depth
while ignoring all other features. The algorithm learned a
weight of 19.34 for the utility of sampling a 6 m depth and
a weight of only 1.97 for the utility gained from sampling a
27.7 ◦C temperature, giving a learned ratio of 9.81. The mea-
sured ratio of depth to temperature was 1.078, similar to the
human-planned ratio of 1.205. Again, the learned ratio was
not achievable due to the correlation of depth and tempera-
ture. Due to the high importance weight placed onmeasuring
points at a 6 m depth, the algorithm chose points with a depth

Fig. 11 A contour-following path generated using our coactive learn-
ing algorithm. The algorithm was trained by consistently preferring
paths around 6 m of depth. It learned a weight of 19.34 for depths
around 6 m while ignoring other depths and temperature features with
weights of less than 2 (Color figure online)

of 6 m, successfully planning a route that closely follows the
6 m depth contour line (Fig. 11).

For each trial, we compared the ratio of the temperature
and depth features sensed along the path for the human- and
framework-planned paths to the learned weights. The results
are summarized in Table 1. While there was a small amount
of variability due to inaccuracies in following the planned
path and changing water temperatures, the ratios matched
well. This shows that the framework is able to autonomously
plan paths that follow the same preferences as a human’s.

These results show the framework’s benefit in marine data
gathering scenarios. The robot is able to quickly learn a
human operator’s goals and preferences, then autonomously
plan trajectories that match these goals and preferences with-
out further human intervention.

6 Conclusion and future directions

The results in this paper have shown that it is possible
to combine waypoints provided by a human operator with
historical data to improve the operation of autonomous vehi-
cles in scientific monitoring scenarios. We have proposed
Bayesian learning techniques that allow for uncertainty in
predictions to be incorporated into the final trajectory, and
we have integrated these uncertainty estimates into a proba-
bilistic planning framework. We also successfully integrated
coactive learning algorithms into the trajectory optimization
framework, allowing it to learn and mimic a human expert’s
priorities. Using probabilistic techniques, our modified coac-
tive learning algorithm gracefully handles imperfect updates
made by the human.

The resulting framework allows for reduced risk of
collision for an autonomous glider performing an oceanmon-
itoring task with input from a human operator. By integrating
feedback from the user into an algorithmic planning frame-
work, we have effectively improved the safety and reliability
of autonomous vehicle operation. The effectiveness of the
framework has been shown in two simulations. In the first,
we found that the algorithm’s estimated weights converge
on a set of target weights in a reasonable amount of time
for use with a human expert. In field trials, we showed

Table 1 Results of the lake
ecology monitoring field trials

Experimental trial Learned
ratio

Actual ratio
(human-planned)

Actual ratio
(framework-planned)

Maximize depth, minimize temp 2.47 2.45 2.48

Target 6 m depth and 27 ◦C 2.56 1.495 1.564

Target 6 m depth contour 9.81 1.205 1.078

For each trial, a human operator taught our framework a preference between temperature and depth and
planned a path based on that preference. The resulting measured depth to temperature ratios for the
human-planned and framework-planned trajectories are shown. In each trial, the ratios measured match
closely
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that the framework is able to use these learned weights to
plan paths matching the performance of those planned by a
human operator. The second data-driven simulation showed
the effectiveness of the framework in making slight modi-
fications to a trajectory to greatly increase the safety of the
planned route.

The framework presented in this paper opens up a number
of avenues for futurework at the intersection of human–robot
interaction and autonomous path planning. Further work
includes testing the algorithm on a range of human experts
to comprehensively evaluate the use of coactive learning for
learning human preferences. Other path parameters should
be added in order to more closely match the human’s inten-
tions and account for possible path parameters. We hope to
be able to learn a human’s preferences in trajectory planning
without complete knowledge of the underlying parameters
used.

An area for future work lies in combining the prefer-
ence learning and risk modeling techniques presented in this
paper with modern adaptive sampling methods. Our learning
and refinement methods allow the human and robot to work
together to meet a common goal through shared autonomy.
Combining this capability with adaptive sampling and plan-
ning methods would allow marine vehicles to continuously
monitor and adapt to their environments in a long-term mis-
sion while pursuing the same goals as a human. Thus, marine
robots would have a level of persistent autonomy, allowing
them to safely complete long, complexmarine data collection
missions.

One promising avenue is the development of lifelong
learning approaches that allow trajectories specified by the
human operator to be stored to improve trajectory generation
for future plans. In addition, it may be beneficial to change
the ordering of the waypoints to improve the safety of the tra-
jectory. The incorporation of re-ordering into our framework
is fairly straightforward; however, it would require additional
metrics to determine the deviation penalty from the scientist’s
original path. Ultimately, we believe that techniques like the
one proposed here will improve the efficiency of scientific
data collection and allow human–robot teams to gather data
safely and persistently in challenging environments.
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