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Abstract A key challenge for haptically reaching in dense
clutter is the frequent contact that can occur between the
robot’s arm and the environment. We have previously used
single-time-step model predictive control (MPC) to enable
a robot to slowly reach into dense clutter using a quasista-
tic mechanical model. Rapid reaching in clutter would be
desirable, but entails additional challenges due to dynamic
phenomena that can lead to higher forces from impacts and
other types of contact. In this paper, we present a multi-time-
step MPC formulation that enables a robot to rapidly reach
a target position in dense clutter, while regulating whole-
body contact forces to be below a given threshold. Our
controller models the dynamics of the arm in contact with
the environment in order to predict how contact forces will
change and how the robot’s end effector will move. It also
models how joint velocities will influence potential impact
forces. At each time step, our controller uses linear models
to generate a convex optimization problem that it can solve
efficiently. Through tens of thousands of trials in simulation,
we show that with our dynamic MPC a simulated robot can,
on average, reach goals 1.4 to 2 times faster than our pre-
vious controller, while attaining comparable success rates
and fewer occurrences of high forces. We also conducted tri-
als using a real 7 degree-of-freedom (DoF) humanoid robot
arm with whole-arm tactile sensing. Our controller enabled
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the robot to rapidly reach target positions in dense artificial
foliage while keeping contact forces low.

Keywords Clutter - Haptic - MPC - Multi-contact

List of symbols

A4, By State-space matrices that are discrete time lin-
ear approximations of the dynamics for a robot
in contact

C@q.q) Coriolis and centrifugal matrix

doray An integral term added to the cost function to
counter errors in gravity compensation

€int Approximate integral of end effector position
error

€, Current error in end effector position

o External contact force vector on robot links

free ured  Neasured normal force for contact i

Jthreshold User-defined allowable contact force threshold

F(q) Coulomb and viscous joint friction

G(q) Configuration dependent gravity joint torques

G(q) Estimate of configuration dependent gravity
joint torques used for gravity compensation

H, Number of time steps in the prediction model
where there is control authority

H, Number of time steps in the prediction model
with the control input set to zero

Jee Geometric Jacobian at the end effector

J¢ Geometric Jacobian at contact i

k Discrete time index

K. Cartesian stiffness matrix for contact i

ki Gain on the error integrator, €;,;

K, Diagonal joint stiffness matrix

K, Diagonal joint damping matrix
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M(q) Configuration dependent joint-space inertia
matrix

m Number of degrees of freedom of given robot
linkage

R, Unit vector normal to the surface of the robot
at the location of contact

N The number of contacts at any given time
instant

q.9 State variables of joint angle and velocity

9eq Commanded equilibrium joint angles that are
sent to the joint impedance controller

G min Minimum allowable joint angle limits

9 nax Maximum allowable joint angle limits

q, Initial joint configuration at current time

to Current time which is always the starting point
for the predictive model

X Cartesian position for contact i

X e Cartesian position of the end effector

o, B, 1, ¢ Scalar weighting terms for the multi-objective
cost function

Afrate.i Maximum desired rate at which the contact
force should be allowed to change at contact
i

Aq,, Change in equilibrium joint angles, this is the
output of MPC

Aqpar,eq ~ Maximum allowable change in commanded
joint angles

Atimpact Time duration of an unexpected impact

AX ges Desired change in position at the end effector

Aty Size of continuous time step used to generate
discrete-time difference equations for predic-
tion and dynamic MPC

Text Joint torques that result from the sum of all
external forces due to contact

Teontrol Commanded joint torque that results from
“simple joint impedance control” and gravity
compensation calculations

Timpact Average torque due to impact forces occurring

during an unexpected collision
X¢h The integral term dg.q, becomes effective
when e is below this threshold value

1 Introduction

The current state of capabilities for robot manipulation in
domains such as in-home assistance, search and rescue, and
natural or military disasters lags behind human capability
and speed. One particular capability at which humans (and
other animals) excel is using haptic feedback to operate effec-
tively in clutter. Robots with this capability could potentially
perform tasks better in constrained and dynamic scenarios
such as reaching into containers or cupboards without line-
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of-sight, performing search and rescue in debris, or working
alongside human co-workers.

In this paper, we specifically consider the problem of a
robot arm (i.e., a serial manipulator) reaching into clutter in
order to move its end effector to a target position. We define
success to be when all contact forces that occur are low and
the end effector attains a position close to the target. Success
does not depend on the orientation of the end effector. In
contrast to our previous research, we focus on enabling the
robot to reach the target position in a short amount of time.
As such, dynamic phenomena, such as inertia and impact
forces, play an important role.

Model predictive control (MPC) offers a promising
approach to handling the multiple objectives and constraints
associated with reaching in clutter. As we have previously
discussed in Jain et al. (2013), while reaching in dense clut-
ter, a robot is likely to make contact between its arm and
the environment at multiple locations. Moreover, the robot is
unlikely to anticipate each contact event before it occurs. In
Jain et al. (2013), we presented a single-time-step model pre-
dictive controller that used a quasistatic mechanical model
of the robot in contact with the environment. This con-
troller, which we refer to as quasistatic MPC, achieved good
empirical performance across a variety of circumstances in
terms of enabling robots to successfully reach target locations
while keeping contact forces low. Quasistatic MPC assumed
that the robot had whole-arm tactile sensing and compliant
joints. Our results also provided evidence that, when reach-
ing in clutter, whole-arm tactile sensing and joint-torque
sensing together enable superior performance compared to
joint-torque sensing alone or joint-torque sensing with a
force—torque sensor on each link for contact force sensing.

However, the quasistatic model used by quasistatic MPC
did not account for dynamic properties, such as link iner-
tia and joint damping. As expected, the robot performed
best when moving at low velocities for which the dynam-
ics become negligible. Many tasks would benefit from
faster robots, but effectively controlling forces from multiple
intermittent and unexpected contacts presents a substantial
challenge. Faster end effector velocities tend to result in both
higher impact forces and higher forces from persistent con-
tact. Even intentionally slow motion with compliant joints
can result in dynamic phenomena, such as when an arm with
a preloaded compliant joint slips off of an object, allowing
the joint to release its stored energy and thereby accelerate
the robot links.

In this paper, we present a controller that enables a robot
manipulator to rapidly move its end effector and simulta-
neously control contact forces in the presence of multiple
contacts along the entire robot arm. We present a multi-
time-step model predictive controller that models dynamic
phenomena relevant to the task of reaching in clutter. This
controller, which we refer to as dynamic MPC, models the
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dynamics of the arm in contact with the environment in order
to predict how contact forces will change and how the robot’s
end effector will move. Among other factors, the model con-
siders link inertia and damping at the robot’s joints. Dynamic
MPC also models how joint velocities will influence potential
impact forces based on a collision model. This enables the
robot to select joint velocities that mitigate potential impact
forces. At each time step, dynamic MPC uses linear mod-
els that locally approximate the nonlinear dynamics in order
to generate a convex optimization problem that it can solve
efficiently.

As with our previous work, we assume the following:

— Contact that results in forces below a user defined thresh-
old is acceptable.

— The robot has some form of compliance at its joints (either
active or passive).

— Tactile sensors cover the entire surface of the robot arm.

We evaluate our controller empirically. Through tens of
thousands of trials in simulation, we show that with dynamic
MPC a simulated robot can, on average, reach goals 1.4 to
2 times faster than the required time for our previous con-
troller, while attaining comparable success rates and fewer
occurrences of high forces. As expected, dynamic MPC per-
formed better in low-density clutter, where it could use the
open space to accelerate. Likewise, it performed better when
the controller allowed the robot to apply higher forces (25
N instead of 5 N) to the world, which increased the chance
that the robot could slip off of one object and hit another.
Interestingly, dynamic MPC also performed better in higher
clutter with only low forces allowed, which is a situation that
should be well-matched to quasistatic MPC.

We also conducted extensive trials with a real 7 degree-of-
freedom (DoF) humanoid robot arm. Throughout our tests,
dynamic MPC enabled the robot to rapidly reach locations in
dense clutter while keeping contact forces low (see Fig. 1).

We have organized the paper as follows: Sect. 2 discusses
related prior research. Section 3 covers the mathematical
formulas and assumptions for formulating our controller.
Section 4 describes our software, hardware and experimen-

Fig. 1 Front view of the robot Darci reaching into a cluttered environ-
ment

tal setup. In Sect. 5, we show evidence for the accuracy of
our simplified dynamic model over a short, but useful, time
horizon. In Sect. 6 we present and discuss results from com-
paring quasistatic MPC and dynamic MPC in our software
simulation testbed. We present results from a global reaching
task with a real robot in Sect. 7. We present results from local
tests that emphasize aspects of contact force control on a real
robot with ground-truth force—torque data in Sect. 8. We use
the term global reaching task to refer to a trial for which the
robot’s end effector reaching a target location is an important
measure of success. We use the term local test to refer to a
trial that involves the robot maneuvering for a short period of
time over a short distance without consideration of whether
or not the robot’s end effector attains a target position. We
conclude with a discussion of applications and an overview
of our results in Sects. 9 and 10.

2 Related work

We first presented our dynamic controller in a conference
paper published at Humanoids 2013 (Killpack and Kemp
2013). The conference paper only conveyed results from two
simulated three-link planar robots. In this journal article, we
present extensive results from dynamic MPC running on a
real 7 DoF humanoid robot arm. In addition, we provide a
more thorough formulation of the controller, details about
how we altered the controller to run on the real robot, and an
empirical evaluation of the fidelity of the controller’s approx-
imate linear models.

Many common approaches to robotic manipulation are
poorly matched to the challenges of reaching in dense clutter.
Methods often rely on collision-free arm motion, line-of-
sight sensing of the volume to be traversed, or detailed
geometric models prior to reaching (Dogar and Srinivasa
2011; Hornung et al. 2012; Kavraki and laValle 2008; Leeper
etal. 2013a, b; Saxenaetal. 2008, 2011; Srinivasa et al. 2009;
Stilman et al. 2007). Most robotic manipulation research has
emphasized avoiding contact except at the end effector (Guo
and Hsia 1993; Katz et al. 2013; Latombe 1990; Stilman
2010) or other single point contact locations (De Luca et al.
2006; De Luca and Ferrajoli 2008), even as the robot attempts
to operate in unstructured environments. Such restrictions
on contact unnecessarily limit a robot’s actions when low-
force contact is benign and allowable for a given task. Our
approach allows multiple contacts along the entire arm sur-
face and uses only haptic feedback to reach through unknown
environments.

Work in Erez and Todorov (2012) shows that contact
along the arm may be permissible when performing a task,
but requires detailed geometric models of the environment,
assumes rigid contact, and does not use sensor feedback dur-
ing the tasks. While results in Mordatch et al. (2012), and
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Mordatchetal. (2012) use an optimal control formulation and
explicit contact modeling to perform multi-contact tasks, but
produce open-loop trajectories and do not use online haptic
feedback.

The majority of robotics research on unwanted or unmod-
eled collisions has focused on reacting to impacts after
collision has occurred (De Luca et al. 2006; De Luca and
Mattone 2004; Haddadin et al. 2008). This includes work that
quantifies forces during impact (Phan et al. 2011) using novel
sensing technology and work that models the instantaneous
stiffness effects during collision (Shin et al. 2011). Exten-
sive research has aimed to quantify the potential for personal
injury from robot-human collisions (Haddadin et al. 2011)
and some work has been done to limit robot joint veloci-
ties accordingly (Haddadin et al. 2012). In our work, we use
an impact-momentum model in our cost function to regulate
joint velocities to mitigate contact forces from unexpected
impacts without limiting all joint velocities uniformly.

In regards to our approach for control, one of the earli-
est application areas for MPC was chemical process control
(Garciaetal. 1989). MPC is also often referred to as receding
horizon control and has been used in work on the control of
aerial vehicles (Abbeel et al. 2010; Bellingham et al. 2002).
MPC has also been used in robot locomotion research (e.g,
Erez et al. 2012; Manchester et al. 2011; Wieber 2006). In
terms of robot manipulation, MPC has recently been used in
applications such as bouncing a ball (Kulchenko and Todorov
2011), generating manipulator trajectories to compensate for
inertial forces on a boat (From et al. 2011), controlling a
6 DoF cable-driven parallel manipulator (Duchaine et al.
2007), and reaching in free space (Ivaldi et al. 2010).

3 Model predictive control formulation

In this section, we first explain the architecture of our low-
level control framework. We then present the mathematical
models our controller uses for predicting the motion and
contact forces for our robot. For the prediction step of the
controller, we use a forward, discrete-time prediction model.
We subsequently show the form of our model predictive
controller. Details about our previous work with quasistatic
MPC, against which we compare performance with dynamic
MPC, can be found in Jain et al. (2013).

The list of symbols at the beginning of the paper summa-
rizes the nomenclature we will use. Lower case variables that
are bold face are vectors, while upper case variables that are
bold face are matrices, and any non-bold face variable is a
scalar.

3.1 Overall controller structure

In our system, MPC runs on top of simple joint impedance
control (see Hogan 1985; Hogan and Buerger 2005). We
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use simple joint impedance control due to its compliance
and stability when in contact. Equation 1 defines the joint
torque control vector, T on:rol, given a joint space stiffness
matrix K ,, damping matrix Kg4, equilibrium angles ¢q,,,
jointangles g, and joint velocities q. G(q) provides a gravity-
compensating torque.

Tcontrol (Kpa K, qeq) = Kp (qeq - q) - Kaq + é (@)
ey

For our work, K , and K 4 are nonsingular diagonal matri-
ces, so the robot can be thought of as moving its arm by
changing the equilibrium angles, ¢,,, of viscoelastic tor-
sional springs located at its joints. We use compliant springs
that are virtual, but they could potentially be implemented
as real physical springs. In the absence of disturbances such
as gravity or other externally applied forces, the robot’s arm
will eventually settle such that its joint angles equal the com-
manded equilibrium angles, ¢ = ¢q,,. Hogan et al refer to a
set of equilibrium angles over time as a virtual trajectory.

While our implementation is mathematically analogous
to proportional derivative control (PD control), the seman-
tics are different. For example, the equilibrium angles, ¢,
are not desired joint angles, and a difference between the
equilibrium angles and the current joint angles, ¢, is not nec-
essarily error. Likewise, K, and K are more aptly thought of
as defining a desirable mechanical impedance for the joints
(e.g., high compliance for our system) rather than as propor-
tional and derivative gains to reduce errors over time.

MPC runs on top of this simple joint impedance controller
commanding the equilibrium angles (¢, ) based on the mea-
sured external forces, joint angles, joint velocities, current
end effector position, and the desired end effector position
(see Fig. 2). The model predictive controller uses a model
that explicitly incorporates a model of the underlying sim-
ple joint impedance controller. In our implementation, the
higher bandwidth simple joint impedance controller defined
in Eq. 1 and shown in Fig. 2 runs at 1 kHz. MPC runs in an
outer control loop at approximately 20-100 Hz (depending
on the robot platform). Between updates of the equilibrium
angles, g, the simple joint impedance controller holds them
constant.

3.2 Robot equations of motion

In order to use MPC, we need models to predict the change
in the robot’s state given control inputs and disturbances.
In the following sections, we derive nonlinear contact and
robot state models for a serial manipulator in contact with its
environment. We then present linear contact and robot state
models that approximate these nonlinear models and which
can be used for dynamic MPC.
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Fig. 2 This is the block Tdes

. . Model
diagram of major components Predictive
for dynamic MPC fthreshotd Control

4

i

We start with the joint space Lagrangian formulation for a
serial torque controlled robot manipulator found in robotics
textbooks such as Craig (2005) and Siciliano et al. (2011):

M(q)q + C(q, Q)q + F(Q) + G(q) = Text + Tcontrol
(2)

The variable ¢ represents the joint accelerations and all
terms in Eq. 2 are in joint space. On the left hand side of the
equation, M (q) is the configuration dependent mass matrix,
C(q, q) represents the Coriolis and centrifugal terms, G(q)
is the configuration dependent gravity term, and F(q) is the
resultant joint torque vector due to both viscous and Coulomb
friction. The terms on the right hand side of Eq. 2 represent
the control torques, Tcontrol, and the external torques 7., due
to external forces applied by the environment. These external
torques can be defined as follows if we assume that all contact
forces are point contacts:

N
T = »_ I @ f 3)

i=1

In Eq. 3, N is the number of total contacts at the current
instant in time. f¢*' is the current contact force at the ith
contact and J, (¢) is the configuration dependent geometric
contact Jacobian at that contact location.

Figure 3, illustrates our dynamic model. The model incor-
porates link inertia, as well as stiffness and damping at the
robot’s joints, and contact as bi-linear springs. The springs
and dampers at the joints model the underlying joint-space
impedance control.

3.2.1 Contact model

Our system models each contact as a linear spring that only
applies force normal to the surface of the robot’s arm. Any
forces tangent to the surface of the arm are ignored. At each
time step, the system creates a new mechanical model with
a linear spring at each location on the arm at which contact
has been detected. In our implementation, the robot detects
contact when a measured contact force exceeds a threshold.

eq Joint Space |7 control Robot
> Imped tq + >
Control Environment
A
q,9 1kH~
. measured
4,4, f; ) Ty
20— 100 Hz
y+

Fig. 3 Graphical representation of the dynamics that are included in
our robot model. The links have mass and rotational inertia. The blue ele-
ments represent the simple joint impedance control and the red springs
represent contact with the world (Color figure online)

The model predicts that the force, f¢*/, applied to the
robot’s arm at contact location i will change by A f¢*' when
the associated location on the arm moves by Ax,, where

Aff)“ = _KC,' Axcl' (4)

K, is a positive semidefinite Cartesian stiffness matrix,
which has the form K, = i ke, fchl . The variable i1, is a unit
vector normal to the robot’s arm at contact 7, and k; is a posi-
tive scalar representing the stiffness associated with motions
parallel to this surface normal. Motion in directions orthogo-
nal to the surface normal have zero stiffness and hence result
in no predicted change in contact force. Notably, this contact
model predicts adhesive forces when the robot moves away
from a contact location. As such, unilateral contact models
present an interesting direction for future work (Erez et al.
2012; Posa and Tedrake 2013; Stewart and Trinkle 2000).

Our model approximates the translation of contact loca-
tion i as

Axe, ~ J i (q0)(q — q0) &)
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where ¢ is the initial joint configuration, g9 = ¢(9), and ¢
is a new joint configuration, ¢ = ¢q(¢) with r > #y3. Hence,

AfET ~ —K e J e (90)(q — qo) (©6)
and
Jet a prmeasured _ g J..(q0) (g — qo) (7

where f11¢4SH" ¢d is the force normal to the robot arm’s surface

measured at contact i for every time step of the controller.
Combining the predicted contact forces, f f” , with Eq. 3,

gives the following prediction for the external torque, T,y;:

Toxt ~ ZNGT L@ (F7 7 — K, T, (g0) (g — q0)) (8)

The controller also regulates the change in the contact
forces using the following signed scalar:

AfPT =LA A~ K J e (90) (g — g0) )
3.2.2 Linear robot model

For our dynamic robot model, we neglect joint friction
(F(¢) = 0). If viscous joint friction were significant, we
could incorporate it into our model of joint damping in the
simple impedance controller.

We combine Eqgs. 1, 2 and 8, and rearrange them to obtain
a state-space representation which gives the following:

qeq
é _ q N T measured
“l=A +B| > J.@f; (10)
q q i=1
q0
where
_|An A
A_[ I o } an
An=-M@) "(Kqs+C(§.q) (12)
N
A =-Mg@)™" (Kp + D> UL @K, T, (qo))) (13)
i=1
Noor
B ZM(q)_l Kp I l;(JLZ(‘I)Kc,Jc,(‘IO)) (14)

0 0 0

The matrix I is an m by m identity matrix, where m
is the number of joints. M(q) is, by definition, a positive
definite matrix and therefore invertible. We derived the sym-
bolic form of the mass matrix, Coriolis, and gravity terms
using a symbolic Python library (see Sousa 2014). Our linear
model approximates M (¢q), C(q, ¢) and all contact Jacobians
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(J ¢, (q)) as constants for the short time horizon of length H
over which dynamic MPC makes predictions, such that:

M(q(t)) =~ M(q(tp)) to<t=<to+H (15)
C(q(1),q(t) ~ C(q(ty),q(t0)) to <t <to+ H (16)
Jeo (@) = Je(q(tg) to<t<to+H (17)

The variable H is a continuous amount of time and can be
defined such that H = (H, + Hy)At,. Aty is the duration
of the continuous time step used for the discretization of
our prediction model. Using the approximations of Egs. 15
through 17, we can discretize our system with the matrix
exponential (see Brogan 1991). This entails performing the
following calculation:

Ay = eAAtd (18)

Aty
B, = (/ e“dx) B (19)

To approximate the matrix exponential, we use a Padé
approximation (see Moler and Van Loan 2003), which
has favorable computational performance and stability with
respect to other methods. We then formulate the following
discrete-time state-space equations:

qoqlkl + Aq, k]

q[k+1] _ q[k] N T gmeasured
[q[k+1]}_Ad[q[k]]+Bd DI
q[0]

(20)

In these discrete-time equations, [k] and [k + 1] represent
the current and next time steps. The equilibrium angles for
the next time step are 9eq [k + 1] with 9eq [k+1] = 9eq [k]+
Aq4lk]. Variables with the time index [0] represents the
value for that variable at time #y. The state-space matrices
Ay and B are constant over the given prediction horizon H .
These equations are a linear and discretized approximation
of the original nonlinear and continuous dynamics.

Section 6 shows that using a horizon of 5 with dynamic
MPC outperformed quasistatic MPC across 4800 simulated
trials in terms of speed, success rates and regulation of max-
imum contact forces. Section 5 shows that our linear model
can predict the future state of a robot with low error.

In Sect. 5, we provide empirical support for the fidelity
of our linear model, and our evaluations of dynamic MPC
demonstrate that this model can be used effectively. The
approximations we made result in a computationally effi-
cient formulation that is straightforward to implement.
Conventional linearization would require the calculation of
numerous derivatives at each time step, which would be com-
plicated by the number of contacts changing over time.
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3.2.3 Impulse—momentum Impact Model

One important motivation for introducing dynamics was to
control the joint velocities explicitly. Although we could
limit all the joint velocities to remain below constant values,
this is unnecessarily stringent. There are many configura-
tions where some links can move faster than others without
incurring high contact forces during unexpected impact. To
capture this property, we used a joint-space impulse model
as shown in Featherstone and Orin (2008) to model the
dynamics of impacts. Impulse—-momentum models have been
used for robotic control before, most often for work on
walking robots (Grizzle et al. 2001). We express our impulse—
momentum model as

M (q) (qu - qi) ~ TimpactAtimpact (21)

where ¢~ represents the joint velocities just before impact,
g™ represents the joint velocities just after impact, and M (q)
is the joint-space mass matrix. T;mpacr is the average torque
vector due to the force occurring during the collision and
Atimpacr 18 the duration of the impact. The left hand side of
Eq. 21 represents the change in momentum due to impact
and the right hand side represents average torques operating
over a short period with no displacement or work occurring.

For an unexpected impact on a single link, we regulate
the resulting joint torque t; ;mpac: for joint j by expressing it
as a product of allowable contact force threshold, fisreshold,
and a moment arm d; ;mpact» giving

dl,impact

d2,impact

Timpact Atimpact = ﬁ‘hreshold At[mpact (22)

dm,impacl

For all of the work in this paper, d; impact = dimpact for
all j, where djpacr is a constant scalar (see Fig. 4).

With regard to the change in momentum, we assume that
in the worst case scenario of a perfectly elastic collision

§"=-q" (23)
and
Q" —q =2 (24)

We assume that a collision could happen at any time given
the current joint velocities. In order to limit the contact forces
from a collision to be below the force threshold, finreshold,
dynamic MPC uses the following constraint:

|2M(q)q| = dimpactfthrexholdAtimpact (25)

i dimpact

Perfectly Elastic Collision Model - ¢* = —¢~
M(q) (q+ - q_) = ZM(q)q = dimpactfthresholdAtimpact

Fig. 4 This is the visualization of the joint-space impulse-momentum
constraint for the first joint of a two link arm

With this model of impulse-momentum between a con-
tact force and joint torque, the worst case scenario for impact
location for joint j is when d;pac; approaches zero. Figure 4
shows a visual representation of how T ;pacr 18 calculated for
the first joint. From Fig. 4, it is clear that as d;ypacr goes to
Zero, finreshold Must go to infinity to give the same average
torque. However, letting d;mpacr g0 to zero is unnecessar-
ily conservative for formulating a joint velocity constraint.
We wish to avoid the frequent occurrence of high impact
forces, but we are not designing the controller for the worst
case scenario. To achieve good empirical performance, we
tuned Atjypacr for a robot while holding djpac; constant.
Since Atimpacr and dimpacr are both constant scalars that only
appear in this equation, this is equivalent to tuning their prod-
uct.

Our impulse-momentum constraint described in Eq. 25
does not take into account joint compliance. In addition,
contact with some link geometries could cause djppac; 0
be small and result in high forces. However, our evaluations
suggest that this collision model is effective in practice. This
model also has the advantage of being linear.

3.3 Limits and saturation in robot model

A benefit of using MPC is that the robot can plan over a short
time horizon, adhering to physical constraints on state and
input variables in addition to other user defined constraints
(such as force thresholds using models in Sect. 3.2.1). In
terms of physically meaningful constraints, we include limits
on physical joint angles and high joint velocities (as presented
in Sect. 3.2.3). We also include a model of actuator saturation.
This takes one of two forms, either (1) limiting the amount
that the desired joint angle can be changed at each time step
(see Eq. 34), or (2) limiting the total torque each joint can
apply (see Sect. 7.2).
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3.4 Dynamic model predictive controller

Using the equations of motion from Eq. 20, along with the
contact models and other constraints, we created a model
predictive controller that accounts for dynamics (dynamic
MPC). A major difference from quasistatic MPC (see Jain
et al. 2013), which used a single time step time horizon,
is that dynamic MPC has a horizon that consists of multiple
time steps. Dynamic MPC uses a horizon of length H,, during
which the controller can apply control effort and a subsequent
horizon of Hy time steps during which the controller applies
no control effort. This is a common approach to improve
stability and robustness and can be found in Rossiter (2003).
The values we used for H,, and H, are presented in relation to
specific tests in subsequent sections. The actual physical time
that the controller predicts into the future depends on the rate
(ALM) at which the controller runs. For example, using a total
time horizon of ten discrete steps, a time step Ary = 0.01 s
would result in the controller predicting up to 0.1 s into the
future, and would imply that the controller expects to run at
100 Hz.

The procedure for MPC is to define an optimization prob-
lem with a cost function and constraints that are functions
of the state variables and that include a model of the sys-
tem dynamics as an equality constraint. After solving the
current convex optimization problem to find a sequence of
commanded changes to the equilibrium angles, Aq,,, [k] for
k=0,1,..., H, + Hy, the controller only uses Aqeq [0]
before solving a new convex optimization problem based on
updated information. Equations 26 through 35 show the com-
plete optimization problem that dynamic MPC creates and
solves at each time step.

minimize
Ay
o | Axdes — Jee (aUH, + Hy + 11— q[0]) ] (26)
H, N

+8 . > max (], Ke, J o (qlk + 11— [0])

k=0 i=1

- (frhmhold - ‘ freasured o] H) ,0) 27

H, N
+< Z z max
k=0 i=1

x (1] K J oy @l + 11 = gUkD] = Afarei 0) (28)

H,
1Y | Ageg k|’ (29)
k=0
subjectto: (Vk=0,1,..., H, + Hy)

Qg k] + Aq,, K]

q[k + 1]] —A [q[k]] N T gpmeasured
— Akl v Bk ST g (o]
[q[k+ 1] = A | g | B 2 TS
q(0]

(30)
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Geglk + 11 = q.4[k] + Aq,, k] (31)
qlk + 11 = 00 (32)
qlk+ 112 g, (33)
[AG 4 [k]l = Aqpax eq (34)
2M (q)q[k + 111 £ dimpact fihreshold Alimpact (35)

Our cost function for dynamic MPC consists of a termi-
nal cost (Eq. 26) which attempts to move the end effector
towards a desired goal position, a cost on non-adhesive
forces above a desired force threshold (Eq. 27), a cost
on changing the contact force faster than a specified rate
(Eq. 28), and a cost on control effort (Eq. 29). Notably,
Eq. 27 does not penalize predicted adhesive forces nor
predicted contact forces with magnitudes below finreshold-
Non-adhesive forces with magnitudes above fij,esno1q incur
a linear penalty.

In our original formulation, we defined constraints on the
allowable contact force. However, due to feasibility issues
with convergence of the optimization, we removed these con-
straints and added terms related to contact forces to the cost
function. The constraints in our current formulation consist
of the discrete dynamic equations (Eqgs. 30 and 31), limits on
joint actuation and angles (see Eqgs. 32, 33, 34) and the joint
velocity constraint described in Sect. 3.2.3, (see Eq. 35). The
actuation limits described in Eq. 34 are for the simulation
testbed. For the full-sized real robot DARCI, this actuator
model takes a different form to limit the torques applied at
the joints. This form is described in Sect. 7. The variable
Axges 18 @ waypoint that is a fixed step size in a straight
line towards the target position unless the distance to the
target position is smaller than the nominal step size. Equa-
tion 35 describes the impulse-momentum constraint from
Sect. 3.2.3. The result of this optimization at each time step
is a series of Aq,,, values from which the controller executes
only the first.

We used an optimization tool named CVXGEN to gener-
ate efficient C code that solves this optimization problem (see
Mattingley and Boyd 2009, 2010, 2012 for details about this
tool for web-based convex optimization code generation).
Our system uses Python code to generate the data required
by this C code. For the average number of contacts experi-
enced during our trials, this Python code executed in around
1-4 ms. The C code solver requires arguments with fixed
dimensions. It solved this optimization problem with mul-
tiple contacts and a multi-step horizon in around 4-10 ms,
depending on the number of degrees of freedom of the robot
being controlled.

3.5 Evaluation of controller

Our strategy in evaluating our controllers is based on empiri-
cal measures of success at reaching a specified goal in clutter
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while keeping the contact forces low. Due to the nature of
clutter, robots will not always succeed at reaching a target
and the contact that occurs can vary widely. To represent this
variability, we randomly generated simulated environments
and representative real physical environments to represent
the complexity of real clutter. We then used success rates,
contact forces, and time-to-complete to evaluate dynamic
MPC and compare it with our prior work. Details of qua-
sistatic MPC, which we use as a base-line comparison in
simulation can be found in Jain et al. (2013) and Killpack
(2013).

Infrastructure and testbeds that we used to test our con-
troller include two different software simulation testbeds,
and a human-scale robot with torso, mobile base, and two 7
degree-of-freedom arms. Section 4 describes these testbeds
in detail.

4 Testbeds and infrastructure
4.1 Software simulation testbeds

We developed two simulation testbeds for controller devel-
opment and testing. We first performed tests using the
MATLAB Robotics Toolbox (Corke 1996) which gives more
control over the numerical integration methods and the con-
tact models that are used (for more details see Killpack
2013; Killpack and Kemp 2013). We also used the Open
Dynamics Engine (ODE Smith et al. 2011), which is an
open source physics SDK. Both simulations included a
simple joint impedance controller running at 1 kHz. They
also both simulated the same three link arm described in
Jain et al. (2013), Killpack (2013), and Killpack and Kemp
(2013). This arm has kinematics, mass and joint limits similar
to a human holding a hand outstretched and manipulat-
ing in a plane parallel to the ground at shoulder height
(see Fig. 5). The three joints had stiffnesses of 30, 20,
and 15 N-m/rad, and damping values of 15, 10, 8 N-m-
s/rad, which correspond to the torso, shoulder, and elbow
joints.

4.1.1 MATLAB simulation using robotics toolbox

We used our MATLAB simulation testbed to prototype model
predictive controllers with the dynamic models presented in
Sect. 3.4. This higher fidelity simulation was valuable for
testing the fidelity of our dynamic model as we found that
although ODE was better at simulating large numbers of con-
tact, it had lower numerical stability and integration accuracy
(see Killpack 2013).

Our MATLAB implementation used an explicit spring-
damper model for simulating contact. Since there is no native
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Fig. 5 Visualization of our simulated robot arm showing the similarity
in terms of kinematics to a human reaching in clutter. For the ODE
software testbed, this shows the three link planar arm reaching to a
goal location (cyan) in a volume consisting of rigid cylinders that are
fixed (red). The base joint of the arm is rigidly fixed to the world. The
orange points on the arm are 1 cm apart and represent the centers of
each tactile sensor. The green arrows are the contact force vectors and
each red arrow is the component of the contact force normal to the
surface of the arm which our sensor can measure (Color figure online)

geometry collision library with MATLAB, we also simulated
discrete tactile sensing elements (taxels), that were spaced
one centimeter apart along the center of each link to which
our implementation assigned any simulated contact force. All
objects were assumed to have a 1.5 cm radius and a spring-
damper contact was simulated when the extent of the arm
(which was assumed to have a 1.5 cm radius) was within
the extent of the object. Objects were simulated as having a
stiffness of 5000 N/m and damping value of 10 N-s/m for the
tests in Sect. 5.

4.1.2 Open source dynamics engine (ODE)

The ODE software testbed allowed us to simulate a large
number of trials and prototype our controllers in highly clut-
tered workspaces. This was particularly beneficial as we
could generate large data sets to test controller performance.

For this platform we simulated tactile sensors covering the
entire surface of the arm with the same default density of 100
taxels per meter as in MATLAB. Other specifics (e.g. taxel
assignment for each contact force, link geometry, obstacle
properties) about our ODE implementation are included in
Killpack and Kemp (2013). Figure 5 shows a visualization
of the simulated robot, force sensing taxels as well as an
example of our simulated environments composed of fixed,
rigid cylindrical obstacles (red circles).
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Fig. 6 Mobile manipulator DARCI produced by Meka Robotics.
DARCI has a tactile sensing sleeve which has an external blue cov-
ering that can be seen on the left arm (Color figure online)

4.2 Real robot platform: DARCI

We used a humanoid mobile manipulator called DARCI, a
Meka M1 Mobile Manipulator (see Fig. 6). DARCI has two
7 degree-of-freedom arms that have series-elastic actuators
(SEAs), are torque controlled and include gravity compen-
sation. Joint stiffness and damping gains for the simple joint
impedance controller are 43, 43,43, 43,2.6, 3.4, 3.4 N-m/rad
and 2.6,4.3, 0.64, 0.64, 0.064, 0.090, 0.090 N-m-s/rad where
they are listed from the most proximal to the most distal joint.
The first three values in each list correspond to the shoulder,
the fourth value to the elbow, and the last three values to the
wrist. We used ROS to send commanded joint angles (¢,,) to
the low-level impedance controller. The computer we used
to run our MPC solver in real time had a 32-bit Ubuntu oper-
ating system with 16 GB of RAM and a 3.40 GHz Intel Core
i7-3770 CPU. The solver only used a single core, running as
a single process.

4.3 Tactile sensing hardware

We describe specifics of our tactile sensor implementation
in Bhattacharjee et al. (2013). The tactile sensor we used on
DARCI is a sleeve pulled over the end effector, wrist, and
forearm, that consists of five layers of fabric. An inner and
outer layer that protect and insulate the sensor’s interior, and
two layers of conductive fabric that go on either side of a
layer of electrically resistive fabric that decreases resistance
as the pressure on the cloth increases. One of the conductive
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layers is split into separate rectangles; where each rectangle
is a taxel. The sleeve has 25 taxels total consisting of a single
taxel at the tip of the end effector and an array of 24 taxels
with 4 taxels around the arm’s circumference and 6 along the
arm’s length. When a taxel detects contact, the system uses
the geometric center of the taxel as the location of contact.
Figure 6 shows the tactile sensor on the left arm of DARCI.

We calibrated the tactile sensor in order to convert the
raw sensor measurements to forces in Newtons. We fit an
exponential curve to a plot of tactile sensor readings versus
ground truth from a force—torque sensor when pushing on a
taxel with various forces. We used the calibration curve from
one taxel on all taxels. Although the values reported by these
sensors vary in complex ways based on other parameters such
as contact area, pressure, and hysteresis, when quasistatic
MPC (see Bhattacharjee et al. 2013) and dynamic MPC (see
Sect. 8) have used these values they have also performed well
with respect to ground-truth forces.

In this paper, our systems detected contact when a tactile
sensor’s measurements exceeded a threshold. This threshold
was 0.5 N for the simulated robot and 0.2 N for the real robot.

5 Dynamic model prediction accuracy

The performance of MPC is limited by the quality of the
model used to make predictions. For dynamic MPC, it uses
a linear approximation of the nonlinear robot dynamics.
This approximation assumes that over the prediction hori-
zon changes to the mass and Coriolis matrices are negligible
and can thus be treated as constants (see Sect. 3.2.2). In this
section we examine the accuracy of our simplified dynamic
model for the simulated three-link planar arm in MATLAB
as described in Sect. 4.1.1.

5.1 Testing accuracy of open loop dynamic model
prediction

We first randomly generated 10 different initial joint config-
urations that were within the physical joint limits of the robot
arm. We then randomly generated 5 different goals that were
within the same workspace dimensions as our ODE simu-
lation tests in Sect. 6 and in Jain et al. (2013). Finally we
also randomly generated 20 fixed objects within that same
workspace. The initial joint configurations (differently col-
ored linkages), the goal positions (green stars) and fixed
objects (red circles) are shown in Fig. 7. For each initial con-
figuration we ran two sets of tests. For the first set we removed
all the objects so the arm reached in free space, while for the
second set we used the objects and the arm made contact.
For both sets of trials, at every time step, we solved the
model predictive control optimization problem. This solution
results in a control sequence over the control horizon (H, ) as
well as a prediction of how that control sequence will change
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Randomized Initial Joint Configurations, Goal Locations (green stars),
and Object Locations (red circles)
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Fig. 7 This graph shows the initial joint configurations for 10 different
starting positions for a three link planar arm. Additionally, the green
stars are the goals that the arm reached to for each starting configuration
and red circles are fixed objects (Color figure online)

the joint velocities and angles over that same horizon. Ateach
time step we simulated the motion of the arm using our linear
model as if we were to apply all of the control steps over the
entire control horizon instead of just the first step. Then, using
the full nonlinear equations, we also simulated and compared
the actual change in joint angles and velocities to the change
predicted by our linear dynamic model. After this simulation
over just the horizon (H,), we would reset the state of the
arm as if we had only taken the first control step and repeat
the process for the next time step. This means that as the arm
progressed towards the goal using MPC (executing only the
first control input), we also simulated with both our linear
and nonlinear models five steps into the future to check the
error in our linear prediction model.

In order to quantify the error of the prediction model, we
group measurements from all three joints and looked at sta-
tistics on the error from the actual and predicted joint angles
across the horizon of 5 control steps (H,, = 4 since the imple-
mentation starts with an index of 0).

5.1.1 Prediction of arm moving in free space

We first looked at the median of the absolute value of pre-
diction errors over each of the five time steps in the horizon
for the arm moving in free space. We plot this in Fig. 8. The

Median Joint Angle Error Prediction
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to Median Change in Joint Angle
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Fig. 8 Top: This plot shows how the median error of the joint angle
prediction changed with each step in the horizon. The error bars are the
25th and 75th percentile error. Bottom: This plot shows a comparison
between the magnitude of the median joint angle error versus the median
change in joint angle at every step in the horizon (Color figure online)

error bars also show the 25th and 75th percentile error val-
ues. As expected, the error increases for predictions farther
in the future. However, this does not convey the relationship
between the magnitude of the prediction error and the mag-
nitude of the actual change in the joint angles. In Fig. 8, we
see the median of the actual change in the joint angles (in
red) as compared to the median of the error (in blue). We can
see that the median error is much smaller than the median
change in the joint angles.

Another way to examine the error is to look at plotting the
change in the actual joint angle versus the predicted change
from one step to the next. If our prediction is perfect, then
plotting the actual change versus the predicted change should
be a line with a slope of one. In Fig. 9 we took the data from
movement in free space for all three joints across all of the
predictions for only the first and fifth steps in the horizon and
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Fig. 9 This is a scatter plot for free space motion showing the actual
change in joint angles versus the predicted change. The red dotted line
is the ideal if our prediction was perfect. Top: The data for the first step
in the horizon. Bottom: The data for the fifth step in the horizon (Color
figure online)

plotted the actual change in joint angles against the predicted
change in joint angles as scatter plots. The red dotted line is
the ideal relationship (one to one). The plot in Fig. 9 is for all
of the data from the first step in the horizon and the plot in
Fig. 9 is for the fifth step in the horizon. We can again see that
the prediction model performs well for free space motion.

5.1.2 Prediction of arm moving in clutter with contact

We ran the same tests for the same initial joint configurations
but this time included fixed objects so that the arm would
make contact while reaching. For this test, in order to evaluate
the prediction model, the simulation again executed the entire
open loop control sequence over the horizon (5 steps). Note
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Median Joint Angle Error Prediction with Contact
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Fig. 10 Top: If we allow the arm to make contact, this plot shows
how the median error of the joint angle prediction changed with each
step in the horizon. The error bars are the 25th and 75th percentile
error. Bottom: This shows a comparison between the magnitude of the
median joint angle error versus the median change in joint angle at
every step in the horizon

that for our normal implementation of the controller, when
contact occurs the contact is included at the next time step
when the optimization is reformulated. However, for this test
of our linear model, when the robot first makes or breaks
contact our model will be inaccurate for however many steps
are left in the open loop control horizon the robot is executing.
We again show the median of predicted errors and the direct
comparison between the median of the prediction error and
the median of the change for the joint angles in Fig. 10.

The error in the prediction is higher relative to the actual
change in joint position than it was for movement in free
space. However, the error is still much smaller than the actual
change.

We show the scatter plot of the actual change in the joint
angle versus the predicted change for movement with contact
in Fig. 11.
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Fig. 11 This is a scatter plot for when the arm is allowed to make
contact, and shows the actual change in joint angles versus the predicted
change. The red dotted line is the ideal if our prediction was perfect.
Top: The data for the first step in the horizon. Bottom: The data for the
fifth step in the horizon (Color figure online)

The error in the prediction is more apparent when moving
in contact than when moving in free space. Although the
error and the variance are larger at the the end of the horizon
(step 5), when dynamic MPC is actually running it updates its
contact information at every time step, which would reduce
errors due to contact being made or broken.

In this section, we have shown that using our dynamic
model, the change in predicted joint angles correlates
strongly with the actual change in the joint angles. We also
have shown that the error in our predictions due to our linear
approximations is small relative to the actual change in the
robot state.

6 Dynamic versus quasistatic MPC for reaching in
simulated clutter

In this section we compare dynamic MPC against quasistatic
MPC from Jain et al. (2013) in ODE using the testbed shown
in Fig. 5.

In order to compare the performance of our controllers,
we ran four sets of 1,200 trials each in ODE for our dynamic
controller and for quasistatic MPC. We generated these four
sets by varying the density of clutter between 20 fixed objects
and 80 fixed objects, and the value of the force threshold
between 5 and 25 N. For quasistatic MPC, we used the same
data for the 5 N threshold that was reported in Jain et al.
(2013). However, for the 25 N threshold, we also generated
new results for quasistatic MPC.

Our initial attempts at tuning the parameters of dynamic
MPC involved setting the gain on the position cost term
first (Eq. 26) and then trying to manually vary the other
parameters to achieve desirable performance. However, our
multi-objective cost function along with other tunable para-
meters such as the waypoint magnitude size made tuning
the controller difficult and sometimes unintuitive. In order to
search the parameter space for our controller, we used sim-
ulated annealing on 15 randomly selected environments in
ODE (5 with 20 fixed objects and 10 with 80 fixed objects)
that were not part of the data set we used for evaluating the
controllers. We ran these trials with two different maximum
desired force thresholds of 5 and 15 N, and accumulated
the cost across all 30 trials. Our cost function for simu-
lated annealing was based on four terms: a cost on the time
to complete a trial; a cost on forces over the threshold; a
cost on the maximum force in a trial; and a cost on fail-
ure to reach the goal. This optimization resulted in a Pareto
front that gave us a better intuition for the trade-off between
control parameters while at the same time improving per-
formance significantly. We tuned the weightings between
the cost terms such that the trade off (especially between
costs on force and time to complete) caused the optimiza-
tion to more equally explore the Pareto front while searching
mostly in the space where success rates remained on the
same order of magnitude. More details on this tuning with a
nine dimensional parameter space are discussed in Killpack
(2013).

For quasistatic MPC, we used the nominal tuning from
Jain et al. (2013) which is one limitation of our comparison
since further tuning might improve performance.

For all of the simulation trials we set the control hori-
zon H, = 4 and prediction horizon Hy, = 1 according
to their description in Sect. 3.4. The parameter djmpac:
as described in Sect. 3.2.3 was set to 0.02 m for all
joints which is the diameter of a single cylinder from
our simulation testbed. The task for all simulations was
specified as reaching to a goal location and we used the
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Table 1 Summary statistics for
comparing success rate, contact

Low clutter (20 objects) High clutter (80 objects)

force control and time to reach Dynamic Quasistatic Dynamic Quasistatic
the goal between dynamic and model model model model
quasistatic MPC at different
densities of clutter and for High force threshold (25 N)
different force thresholds Success rate 74.6 % 72.3% 24.6 % 233%
99 percentile contact force value (N) 28.3 27.6 28.5 27.8
(1/100 chance of this force)
99.9 percentile contact force value (N) 323 36.1 34.1 39.8
(1/1000 chance of this force)
Maximum force in alltrials 38.2 74.6 395 196.4
Avg. time to complete (s) 10.9 22.3 142 21.1
Low force threshold (5 N)
Success rate 80.9 % 77.3 % 30.1 % 28.3 %
99 percentile contact force value (N) 6.5 7.9 71 8.6
(1/100 chance of this force)
99.9 percentile contact force value (N) 2.9 21.2 10.6 22.0
(1/1000 chance of this force)
Maximum force in all trials 21.0 68.2 22.6 122.1
Avg. time to complete (s) 12.8 22.3 14.6 21.1

The larger rows correspond to a change in force threshold while the larger columns are a change in density
of clutter. Boldfaced values show where dynamic MPC performed better

same stopping criterion for success or failure as used in
Jain et al. (2013), and Killpack and Kemp (2013). The
trial was deemed a success if the arm reached the goal
within 2 cm. It was deemed a failure if the max forces
were greater than 100 N or the time took longer than 100
.

We used three main criteria for comparing dynamic MPC,
which uses multiple time steps and a dynamic model, to the
single-step quasistatic MPC. The first was overall success
rate of reaching to a goal position through the simulated
clutter (see Sect. 6.1.1). The second criterion was compar-
ing the ability of the two controllers to keep their contact
forces below or near the specified desired force threshold
(see Sect. 6.1.2). The third criterion was the average time to
complete the task for the intersection of successful trials for
the two controllers (see Sect. 6.1.3). Table 1 summarizes the
results of these comparisons.

6.1 Comparison results from ODE simulation
6.1.1 Success rates

Dynamic MPC achieved equal or higher success rates than
the quasistatic MPC for all force threshold and clutter set-
tings. In addition, we used a standard significance test
for comparing two proportions (McClave et al. 2008) and
showed that for two of the four test settings, dynamic MPC’s
higher success rate was statistically significant with a p-value
less than 0.05.
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6.1.2 Contact force regulation

For the 99th percentile contact force value (meaning that
1/100 forces measured above the noise threshold was this
high or higher), the results were comparable for the two con-
trollers. Figure 12 shows the calculated percentage of contact
forces in the y-axis that were above the force value shown
on the x-axis for both clutter and force threshold settings.
Both controllers are able to successfully affect the measured
contact forces according to the force threshold specifica-
tion. Another way to compare the controllers is to look at
events that occur comparatively infrequently, but can have
catastrophic effects depending on the specific application.
One example of this is extremely high forces. Table 1 shows
the value for forces that occur at least once in 1000 force
measurements (which at 100 Hz sampling rate is occurring
every 10 s that the arm is in contact) as well as the maximum
overall measured force. For these two forms of evaluation,
dynamic MPC does better in all four settings (high/low clut-
ter and high/low force threshold).

6.1.3 Comparing speed of robot end effector

Table 1 also shows that in all cases dynamic MPC completes
the task faster than quasistatic MPC. The speed increase using
dynamic MPC for the task ranges from 1.45 to 2.04 times
faster than quasistatic MPC. This means that while dynamic
MPC is at times moving up to twice as fast as quasistatic
MPC, it s still successfully controlling the force and reaching
the goal as seen in the previous sections.
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Fig. 12 These graphs shows how the percent of overall contact forces
above the force value in the x-axis decrease as that force value increases.
The graphs are organized in columns and rows such that the left column
corresponds to low clutter (20 objects), and the right column to high

6.2 Limitations of software simulation results

For the simulation results in this section, we have reported
results on fixed, stiff objects only. This is in part because
fixed, stiff objects initially proved more problematic for con-
trolling the forces using a dynamic model. However, we
noticed that for the movable objects that we had used in Jain
et al. (2013), dynamic MPC also moved too slowly and con-
servatively. This is likely due to the contact model where
we used a fixed, high stiffness value to represent each con-
tact. Interestingly, in the experiments that we conducted with
the real robot, DARCI, the controller performed in foliage
environments successfully moving leaves and branches (see
Sect. 7). This may indicate that this issue is less important in
real world scenarios.

7 Results for global task of reaching in clutter
using the dynamic model predictive controller
with a real robot

In this section we present results using dynamic MPC on the
real robot DARCI. We show the ability of dynamic MPC to
reach randomly generated goal locations in the clutter. We
also show that according to the tactile sensor measurements,
the arm is able to control its forces.

contact force magnitude (N)

clutter (80 objects). The fop row corresponds to a high allowable contact
force threshold (25 N) while the lower row corresponds to a low force
threshold (5 N)

7.1 Cluttered environment used for testing

The environment that we used for testing reaching in clutter
was the same as in Bhattacharjee et al. (2013). This envi-
ronment consists of plastic leaf-like vegetation and solid
wooden trunks as can be seen in Fig. 14. Certain sections
of the workspace with leaf-like vegetation can be difficult
to push through if the robot respects an allowable contact
force threshold. This is due to the density and stiffness of
the plants. Figure 14 also shows the coordinate frame used,
which is centered between the two robot arms and oriented
as shown.

7.2 Dynamic MPC adaptation for DARCI

Adapting the controller used in simulation in Sect. 6 to run
on DARCI involved a few changes. We used the same con-
troller parameters that we identified for simulation except for
Atimpulse and the waypoint magnitude size. These we tuned
empirically by first setting the waypoint magnitude size with-
out the joint velocity constraint being active. Then, we tuned
Atimpulse until the impact forces, as measured by our tactile
sensing skin, were close to the allowable force threshold.
We also used a different actuation constraint than the one
described in Eq. 34. The new constraint describes a limit on
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the allowable joint torque as follows:

Tmin = Kp (ng [k] + Ang [k] — q[k]) - qu[k] =< Tmax
(36)

Because we used software provided with the robot and
relied on the high-bandwidth, real time, low-level impedance
control to do gravity compensation, gravity was not explicitly
modeled in our dynamic model. The provided gravity com-
pensation had significant errors that we compensated for by
changing one term in the overall cost function from Eq. 26
to be as follows:

o | Axdes — Jee (qUH, + Hy + 11— qI01) — dgran|* (37)

where dgrqy € R3 acts as an integral term with saturation
limits and anti-windup. The method for calculating d g4,
is described in Algorithm 1 where e,[k] € R is the error
between the desired and current end effector position at the
current time step, and x;; is a user-defined scalar distance
from the desired goal position. The variable k; is small and
dgrqv is evaluated once at each time step. Finally the “for”
loop shown in Algorithm 1 checks if the sign is different
between the sum of the error and the current error for each
Cartesian direction. If the sign is different, that term is set to
zero to avoid overshoot due to the integral term.

Algorithm 1 Calculation of Integral Term

1: function CALCINTEGRALTERM
2: eo[k] = Xdes — xee[k]

3. if |leok]]l < x:x then

4 eint[k] = kieo[k] + ein[[k - 1]
5: else

6: eint[k] =0

7. if | e, [k]|| > x;, then
8 eint[K] = ety xon

9: fori =1,2,3do

10: if e;, [k][i] * e,[k][i] < O then
11: eint[k][i] =0

12: dgrav[k] == eint[k]

13: return d g, [k]

For this controller, we set the control horizon H, = 2
and prediction horizon Hy = 3 which gives three time steps
for control (since H, begins at zero) and then predicts the
output for another four steps (since the controller predicts
the state up to Hy, + 1). The convex optimization problem
was generated by CVXGEN (Mattingley and Boyd 2012).
Although the optimization could solve an MPC problem at
a rate between 50 and 100 Hz, we ran the controller at 25
Hz with 40 ms time steps. We did this because jitter in the
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control loop due to using a non-realtime operating system
with Python and ROS required that the controller run at a
lower rate to get consistent timing in the control loop. Note
that as long as the dynamic model used in MPC does not
go unstable during our experiments because of the size of
the time step, our discretization incorporates the time step
into the model implicitly. For testing on DARCI, we also
moved the constraint that describes our impulse—momentum
model (see Eq. 35) into the cost function because noise on
our joint velocity signal was causing the optimization to be
infeasible when any joint was operating near its constrained
joint velocity value.

7.3 Controller evaluation for reaching in clutter

To generate goal locations for reaching in the simulated
foliage with DARCI, we first estimated the workspace of
the arm in the foliage. We extended the arm as far as possible
forward in the x-y plane (according to Fig. 14) while mov-
ing through the workspace from left to right and recording
the end effector positions. This traced out an approximate
semi-circle that covered most of the foliage. We then ran-
domly sampled from a uniform distribution over x and y
using this approximate semi-circle in the x-y plane while also
randomly sampling from a uniform distribution in z between
5 and 30 cm above the ground plane of our testbed in the
z-direction to determine goal locations. For testing, the robot
reached into the clutter and recorded data for 105 reaches.
Figure 13 shows DARCI reaching into the foliage. Extension
1 is a video that shows multiple successful and unsuccessful
reaches. For each trial, the arm attempted to reach the goal
for 20 s before classifying the attempt as success or failure.
Success was determined as when the end effector was within
4 cm (or approximately 1.5 inches) from the desired goal.

7.4 Results in terms of success rates, contact forces and
speed

The success rate for reaching goals was 85.7% (90 out of
105 trials). Over 95 % of the successful trials where the arm
reached the goal within 4 cm, happened in under 7 s which
was well before the maximum allowable time of 20 s. Fig-
ure 14 shows the distribution of the goals and the end-effector
starting location.

The average time to complete for all of the successful trials
was 3.0 s (noting that the end effector traveled an average
distance of 35 cm across these same trials looking at the total
end effector path traveled). The average velocity at the end
effector for successful trials was 22.2 cm/s and for all trials
was 12.5 cm/s. In these trials we found that the end effector
moved on average 7.5 times faster for successful trials than
velocities reported for quasistatic MPC on the robot Cody
(Jain et al. 2013).
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Fig. 13 Sequence of images from one trial out of 105 trials where
DARCI reached into simulated foliage while controlling estimated con-
tact forces using dynamic MPC

The average force as sensed by our tactile sensor for all
contact forces above the 0.2 N noise threshold was 1.6 N,
while the average force for all forces above the threshold
(finresh = 5 N) was 8.1 N. In terms of high forces, the aver-
age maximum contact force per trial across all trials was 0.9
N (since many trials had very low maximum forces) and for
contact forces above the 5 N threshold the average maximum
force was 8.8 N. A histogram for all contact forces is shown
inFig. 15. There is a sharp drop in the number of forces above
the specified 5 N threshold in this histogram. However, there
are still a number of forces up to the absolute maximum force
sensed which was 13.9 N. In general, we would expect that
our max forces when moving faster would be slightly higher.
However, with the impulse—momentum constraint we have a
way of explicitly trading between maximum forces and joint
velocities.
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Fig. 14 Top: Distribution of goals (green) for the 105 reaching trials
as well as the starting end effector position for all trials (blue). Bottom:
Image showing DARCI with its arm partially extended. The farthest
goals from the starting position in the figure on the left were when the
arm was almost fully extended (Color figure online)

x 104 Histogram of Sensed Forces for All Trials
5 : :
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Fig. 15 Histogram of measured contact forces across all trials using

calibrated tactile sensing skin (Color figure online)

Table 2 summarizes the results and contains the values that
are relevant to our task of reaching in clutter with dynamic
MPC.
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Table 2 Results for dynamic MPC reaching in foliage

Dynamic MPC

Success rate 85.7 % (90/105)

Exceeded safety threshold (15N) 0 times
Avg. max. of all contact forces 09N
Avg. max. of contact forces over fipresh 8.8 N
Avg. of all contact forces 1.6 N
Avg. of contact forces over fipresh 8.1N
Avg. time to complete all trials 55s
Avg. time to complete successful trials 3.0s

8 Results with local tests for reaching in clutter

Section 7 showed that our system enabled a robot to do fast
reaching in clutter while keeping forces low. The trials from
previous sections entailed examining a global task of reach-
ing a Cartesian goal location. For this section, we performed
tests to analyze the effect of varying the allowable contact
force while measuring ground-truth data from force—torque
sensors. On the real robot, we performed short trials repre-
sentative of situations that resulted in high forces or failure
in simulation.

Figure 16 shows a typical setup for the robot and the force—
torque sensors for these trials. The aluminum rod has a dense
foam covering and is attached to the force torque sensor and
table using laser cut acrylic. We recorded the data from the
force—torque sensors at 100 Hz. For the results we report next,
the terms “left” and “right” are in reference to the robot’s
frame of reference where left is in the positive y direction
according to the coordinate frame in Fig. 14.

8.1 Evaluating single contact force control with tactile
sensor

In these tests we started the arm on either the left or the
right side of a single force—torque sensor post (see Fig. 16).
For each trial, the robot reached to a pre-defined goal on the
opposite side of the post and made initial contact somewhere
along the forearm, wrist or end effector. After making ini-
tial contact, the arm continued to try reaching the goal using
dynamic MPC. The arm was often successful at reaching
from right to left, but from left to right would usually get
stuck in a local minimum. We refer to a local minimum as
a configuration in which our controller would require a dif-
ferent initial condition to be successful or would require a
high-level planner to generate Cartesian way points around
the obstacle. Figure 17 shows how this trial was executed.
Extension 2 is a video of one trial where DARCI reaches
from left to right and then right to left.
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Fig. 16 Force—torque setup that we used for gathering ground truth
contact force data

For these trials we varied the force threshold ( finreshola)
between 5, 10 and 15 N. We ran 10 reaches for each direc-
tion (left to right and right to left) resulting in a total of 20
trials at each setting. The purpose of these tests was to verify
that varying the force threshold ( fi5,esnoiqa) had the expected
effect on the real robot.

Figure 18 shows the summary statistics for each set of
20 trials as we held At;ypuise fixed at 4 s while varying
Jthreshold- We calculated the resultant force from the force—
torque measurement and used its magnitude as ground truth
for a contact force. The statistics that we plotted include the
maximum contact force, and the 99th and 50th percentile
contact force for each value of fijresnord. The correlation
coefficient between the force threshold value and the 99th
percentile forces is 0.99975.

As expected, increasing finreshoid for the controller is
positively correlated with the maximum and 99th percentile
forces that we measured while reaching in contact even if our
tactile sensor calibration had some error in terms of ground-
truth forces.

8.2 Performance of dynamic MPC for multi-contact
scenarios

The local tests and results shown in Sect. 8.1 are for con-
tact with a single object. However, multi-contact scenarios
often occur in clutter. Phenomena that can occur during
multi-contact and cause high forces include wedging and
jamming (see Mason 2001). These situations are similar to
what happens to our robot arm, for example when simultane-
ous contact on both sides of the arm cause the arm to quickly
decelerate with high contact forces, at which point jamming
can occur.

From a wide range of multi-contact scenarios we found
in simulation trials from our previous work (see Jain et al.
2013), we developed a set of multi-contact trials. We exam-
ined the histograms of contact locations on the three link
simulated arm shown in Fig. 5 and identified contact configu-
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Fig. 17 Sequence of images shows the arm reaching from /left to right on top, and right to left on bottom while making contact with the post. a

Reaching from left to right. b Reaching from right to left
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Fig. 18 Maximum, 99th, and 50th percentile forces as finreshold
increased. Each data point represents 20 trials worth of data measuring
the ground truth forces with a force—torque sensor at 100 Hz

rations that occurred frequently or resulted in high force. We
then manually confirmed that the multi-contact trials were
representative of common configurations by randomly sam-
pling and visualizing the actual contact configurations from
the simulation trials represented in the contact histograms.

These tests are thus subjectively defined, but based on objec-
tive data for thousands of tests in simulation.

For each set of trials, we present a figure showing a typical
arm trajectory we observed and force data. The resulting
force data from the force—torque sensors was the focus of
these tests rather than success in reaching the goal.

For all of these multi-contact trials we used finreshold =
SN and Atimpuise = 4s. We ran 20 trials for each multi-
contact task. The termination criterion for each trial was
successfully reaching the goal or a timeout of 15 s. Note
that in these trials it was common for two taxels on our
skin sensor to make contact with the force—torque sensor
simultaneously (especially at the wrist joint). When this hap-
pened, the force—torque sensor value could be up to double
the allowed force threshold and our controller would still be
successfully controlling skin sensor forces since it was mea-
suring and controlling with respect to two separate contacts.

8.2.1 Multi-contact Test 1

Figure 19 shows the progression of multi-contact test 1 over
time. In this test, the robot arm starts in contact the tip of the
end effector on the left side and in the middle of the forearm
on the right hand side. In the second image in the sequence
of Fig. 19, the arm first pushes against both rods as it tries
to move to the goal. In subsequent motions the arm uses out
of plane motion to move around the post and still get to the

Fig. 19 Multi-contact Test 1: DARCI reaching to the left while starting in contact at the end effector
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Fig. 20 Multi-contact Test 1: Force results for reaching to the left

goal. This is one of the trials that we expected to have large
forces due to what we saw in the simulation. However, the 3D
motion and extra degrees of freedom made it straight forward
for our controller to reach the goal and control the forces at
the same time. See Extension 3 for video of this trial.

The contact force results for this trial are in Fig. 20. These
results have forces that agree with our expectation of force
control where almost all of the forces are below 10 N and the
majority are below 5 N.

8.2.2 Multi-contact Test 2

Figure 21 shows the progression of multi-contact trial 2. For
this test, the arm started in contact with two posts and reached
to the right between them. The space between the two posts
is much smaller in this trial when compared to the first trial.
In this test, the arm could not reach the goal. See Extension
3 for video of this trial.

For the force results of this trial we had higher forces than
for the first test. It should be noted that this configuration
was more difficult than the first trial as the posts were placed
closer together and we expected to have high forces due to
jamming in this situation. Most forces were still limited to
be below 15 N. This also matches what our test in Sect. 8.1
showed where the 99th percentile contact force for a single
contact was about 15 N and corresponded to a 5 N allowable
force threshold on the tactile sensor (see Fig. 22).

Force Value From FT Sensor (N)

Fig. 22 Multi-contact Test 2: Force results for reaching to the right
while starting in contact at the middle of the forearm

8.2.3 Multi-contact Test 3

For multi-contact test 3, the arm started in contact near the
wrist and was given a goal such that it kept contact with the
first force—torque sensor while trying to wedge between two
other force—torque sensors to reach the goal shown in Fig. 23.
The goal was not reachable due to the small gap between the
two distal force—torque sensors. see Extension 3 for video of
this trial.

The contact forces for this trial are in Fig. 24. The majority
of the forces are again below 15 N with a maximum force
around 25 N.

8.2.4 Multi-contact results discussion

Table 3 contains summary statistics of the forces for all of the
multi-contact trials. These statistics include the mean of the
maximum forces as well as the 99th percentile of all contact
forces and the mean of all contact forces for each test.

In prior work (see Bhattacharjee et al. 2013), this type of
Meka robot arm applied upwards of 40 N on a force—torque
sensor while moving slowly and using the compliance of
the simple impedance controller. In our case, it is clear that
dynamic MPC is limiting contact forces to be within the
same ranges we saw with quasistatic MPC in Bhattacharjee
et al. (2013). In many of the trials on DARCI, there was

Fig. 21 Multi-contact Test 2: DARCI in contact with two posts in the middle of its forearm and reaching to the right
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Fig. 23 Multi-contact Test 3: DARCI reaching to a goal between two posts with the gap between them smaller than the diameter of the arm given

the angle from which the arm is constrained to approach
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Fig. 24 Multi-contact Test 3: Force results for reaching straight ahead
while wedging between two posts and making contact with a third post

no way to reach the goal, yet dynamic MPC regulated the
forces to be generally low despite the fact that as it is noted
in Bhattacharjee et al. (2013) “... the relationship between
contact forces and taxel output is complex.”

8.3 Discussion of all local results

The results in this section show that the contact force trends
we saw with measurements from only the tactile sensors
while reaching in foliage (see Sect. 7) hold even when we
use force—torque sensors to obtain ground truth.

9 Applications

An open question is the extent to which our controller can be
used for other tasks, robots, and environments. We expect that

controllers designed for fast reaching with whole-arm con-
tact may eventually serve as general purpose controllers for
interaction with people in situations such as in-home assis-
tance or search and rescue.

An anecdotal example of the kind of complex tasks that
we envision is shown in the video of Extension 4. Because
of the speed of dynamic MPC we can teleoperate DARCI
with a Phantom Omni haptic input device to reach into an
unmodeled and non-rigid canvas bag with unknown objects
inside. The Cartesian position of the haptic input device is
measured, scaled and fed to dynamic MPC as a goal position
at each time step. The robot is then able to move towards this
goal location while locally controlling the contact forces so
as to not damage itself or the contents of the bag. The bag is
also fixtured at one point to the table with a clamp.

10 Conclusion

We have shown that across a large number of simulated trials,
using dynamic MPC while incorporating a linear approxi-
mation of the nonlinear dynamics of a robot arm in contact
gives significant performance improvements in comparison
to quasistatic MPC. In particular, we have shown that for two
different settings of clutter and two different force thresh-
olds, dynamic MPC had better success rates, faster speeds
and comparable force control. We were also able to run
dynamic MPC on the real robot DARCI using the manufac-
turer’s nominal dynamic parameters (i.e. no complex system
identification was necessary). In addition, we have shown
that running this controller in Python at around 25 Hz can
result in good performance. We would expect that further
engineering efforts would allow one to increase the control
rate and further improve our force control. A variant of our
dynamic MPC has even recently been used successfully in

Table 3 These are numerical

. Test 99th percentile Mean of all Mean of max Max of max
values that summarize the data
. force (N) forces forces forces
presented in the force
histograms for the multi-contact 1 8.6 25 8.1 10.0
test cases in this section ) ’ ’ ’
15.9 7.5 13.8 25.3
3 18.3 5.1 13.3 28.1
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conjunction with haptic mapping, geometric planning, learn-
ing and tactile perception (Bhattacharjee et al. 2014).

Our results show the possibility of reaching at faster
rates into cluttered environments while controlling veloci-
ties, forces, and mitigating the effects of unexpected impact.
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Appendix: Index to multimedia extensions

Extension Type Description

1 Video DARCI reaching in simulated foliage
as described in Sect. 7.3
2 Video Single contact local tests
as described in Sect. 8.1
3 Video Multi-contact local tests
as described in Sect. 8.2
4 Video Example of using dynamic MPC for
teleoperating DARCI to reach into a
non-rigid canvas bag as described in Sect. 10
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