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Abstract Coordinated multirobot exploration involves
autonomous discovering and mapping of the features of
initially unknown environments by using multiple robots.
Autonomously exploring mobile robots are usually driven,
both in selecting locations to visit and in assigning them to
robots, by knowledge of the already explored portions of the
environment, often represented in a metric map. In the litera-
ture, someworks addressed the use of semantic knowledge in
exploration, which, embedded in a semantic map, associates
spatial concepts (like ‘rooms’ and ‘corridors’) with metric
entities, showing its effectiveness in improving the total area
explored by robots. In this paper, we build on these results
and propose a system that exploits semantic information to
push robots to explore relevant areas of initially unknown
environments, according to a priori information provided by
human users. Discovery of relevant areas is significant in
some search and rescue settings, in which human rescuers
can instruct robots to search for victims in specific areas,
for example in cubicles if a disaster happened in an office
building during working hours. We propose to speed up the
exploration of specific areas by using semantic information
both to select locations to visit and to determine the number
of robots to allocate to those locations. In this way, for exam-
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ple, more robots could be assigned to a candidate location
in a corridor, so the attached rooms can be explored faster.
We tested our semantic-based multirobot exploration system
within a reliable robot simulator and we evaluated its per-
formance in realistic search and rescue indoor settings with
respect to state-of-the-art approaches.

Keywords Coordinated multirobot exploration · Semantic
map · Search and rescue

1 Introduction

Coordinated multirobot exploration (Burgard et al. 2005)
autonomously discovers features of initially unknown envi-
ronments by using mobile robots equipped with sensors.
Exploration is fundamental in tasks likemap building (Thrun
2002) and search and rescue (Tadokoro 2010). Decisions
about where to go next and about which robot goes where
are crucial in coordinatedmultirobot exploration and are usu-
allymade according to information extracted from the known
portion of the environment, represented in a metric map that
robots incrementally build. A metric map represents the spa-
tial features of the environment, like the position of obstacles.
In the last years, several methods have been proposed to build
semantic maps of environments (like Wolf and Sukhatme
2008; Mozos et al. 2005), which label some spatial elements
with high-level human concepts. For example, areas of amet-
ric map can be labeled as ‘corridor’ or ‘room’, thus providing
knowledge about the structure of the environment. Despite
the great effort in constructing semantic maps, the study of
their use for exploration is still rather limited.

In this paper, we contribute to this study by presenting a
coordinated multirobot exploration system that operates in
search and rescue settings and that exploits semantic labels
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to explore relevant areas of environments. A relevant area
is defined as a portion of the environment that is considered
of interest according to what human users communicate to
the system. Our system is composed of multiple robots (MR)
equipped with laser range scanners that operate according to
the following steps: they (a) perceive the surrounding envi-
ronment, (b) integrate the perceived data within a metric and
a semantic map representing the environment known so far,
(c) decide where to go next and who goes where, and (d) go
to the assigned target locations and start again from (a). In
this work, we focus on the decision making step (c).

Some works (e.g., Calisi et al. 2009; Stachniss et al. 2008)
have already addressed the problem of exploiting semantic
knowledge to improve exploration, finding out that the use of
semantic information can reduce the time required to cover
a given amount of area and can increase the total amount of
area mapped by robots in a given time interval. In this paper,
we extend these results by showing that semantic knowl-
edge can also be used to significantly improve the exploration
of relevant areas of indoor environments. We assume that a
priori and reliable information about the areas of the environ-
ment that are considered relevant is available, for example,
providedbyhumans.This assumption is of interest in realistic
scenarios. In a search and rescue setting, the a priori informa-
tion could be the possible location of victims or the preferred
areas to search first, given by human rescuers. For example,
if a disaster happens during office hours, victims are most
likely located in the offices, and, thus, robots should focus
on searching small-size rooms. If it happens during lunch
time, robots should head to large-size rooms, like a canteen.
In the following of this paper, we consider two kinds of a
priori information about victim location: victims in small
rooms and victims in big rooms. However, our approach can
be applied to more general settings with arbitrary a priori
information coming fromhumanusers.Wepropose to exploit
semantic information to select interesting locations to visit
and, differently from the literature, to assign more robots to
a single location. For example, in an indoor environment, if
a location lies in an area labeled as ‘corridor’, then that area
could be privileged by sending there several robots, so that
rooms, typically attached to corridors, can be explored faster.

Our systemoriginally addresses the followingproblem:To
what extent is it possible and convenient to exploit seman-
tic information to efficiently explore areas (of an initially
unknown environment) that are considered relevant? To the
best of our knowledge, none of theworks present in the litera-
ture has addressed such research question. The main original
contributionof this paper is thus a system that exploits seman-
tic information to improve exploration of relevant areas.
Specifically, we propose a method for evaluating candidate
locations, which is a variant of that presented by Basilico
and Amigoni (2011), and a method for allocating robots to
candidate locations. The contributions of this paper signif-

icantly extend the preliminary results of Cipolleschi et al.
(2013) and include a more complete experimental analy-
sis of the behavior and benefits of the proposed multirobot
system, also involving additional experiments using state-
of-the-art approaches for comparison and the deployment of
more robots.

This paper is structured as follows. The next section sur-
veys the methods that have been proposed to perform the
decision making step (c) in the context of coordinated multi-
robot exploration. Section 3 presents the proposedmultirobot
exploration system. Section 4 shows extensive experimental
simulated activities with the aim to display the effective-
ness of the proposed approach. Finally, Sect. 5 concludes the
paper.

2 Related work

Robotic exploration is the task in which mobile robots,
equipped with on-board sensors, are employed in the iter-
ative online process presented in the previous section with
the goal to discover (initially unknown) features in envi-
ronments. The mainstream approach to robotic exploration
(Yamauchi 1998) identifies some candidate locations on the
frontiers between known (already explored) and unknown
portions of the environment, evaluates them, and assigns
them to robots, iteratively. In this paper, we are interested in
problems of searching targets in an initially unknown envi-
ronment, by using multiple mobile robots, with a semantic
map and some a priori reliable information about the loca-
tion of the targets (e.g., victims most likely located in offices
of a building), which is provided by humans. In addressing
these issues, and in order to clearly present our contribution,
we tear apart the aspects of evaluating the candidate locations
(exploration strategy) and of allocating robots to candidate
locations (coordinationmethod). In the following,wepresent
a representative sample of the several exploration strategies
and coordination methods (focusing on those using seman-
tic information for speeding up autonomous exploration of
initially unknown environments) presented in literature.

2.1 Exploration strategies

In the literature, exploration strategies usually employ a
utility function that combines different criteria, which char-
acterize each candidate location, to assess the goodness of
different candidate locations. Most of the criteria considered
by exploration strategies are only relative to metric infor-
mation, namely information that can be derived from metric
maps that robots build. For example, the robotic exploration
system ofGonzáles-Baños and Latombe (2002) combines, in
an exponential function, the distance between a robot r and a
candidate location p and the expected amount of information
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that r can acquire at p (measured as the maximum amount
of unknown area visible from p). A system using the same
two criteria, but combining them in a linear function, is that
of Burgard et al. (2005). The system proposed by Basilico
and Amigoni (2011) adds a criterion that measures the prob-
ability that r , once in p, can communicate with a fixed base
station (like Visser and Slamet 2008), and combines all the
criteria using a theoretically-grounded approach.

Only few exploration systems use semantic information
to evaluate candidate locations and assign them to the robots.
An early attempt in this direction is that of Kuipers and
Byun (1981), in which candidate locations with a large dis-
tinctiveness (e.g., located at the intersections of corridors)
are privileged. Specifically, the authors, without explicitly
considering semantic information, use a geometric measure,
which derives from finding points that are equally-distant to
close obstacles, and apply a hill-climbing control strategy to
find the robot’s exploration path, so that distinctiveness is
maximized. They show the goodness of the exploration path
found through a qualitative analysis of the solution obtained
during simulations.

Thework in Stachniss et al. (2008) exploits the knowledge
on the structure of an indoor environment (represented as a
hidden Markov model) to drive robots to select, first, candi-
date locations that are in corridors. For each robot r and each
candidate location p, the difference between the initial utility
of p (which is equal for all frontiers and is initialized at 1, not
considering any features of p) and the distance between the
current position of r and p is calculated. The initial utility
of candidate locations that are in corridors is multiplied by
γ (set to 5 in the experimental activity). Then the method
greedily allocates the candidate locations to the robots by
selecting the pair r and p that maximizes the above differ-
ence. Experimental results (performed in simulation) show
that the approach is effective in decreasing the time required
to explore some environments with respect to an approach
that does not update the initial utility of corridors.

Another work that uses semantic information to improve
exploration is presented by Calisi et al. (2009). In this case,
contextual information related to the mission (e.g., the rela-
tive importance of a goal with respect to another goal), to the
environment (e.g., the presence of rooms and corridors and
the difficulty for traversing a given area and for detecting vic-
tims in that area), and to the agents (e.g., the presence of loop
closures for improving localization of robots) is represented
by a prolog rule-based system and exploited to enhance the
performance of a robotic system operating in a search and
rescue scenario. The experiments (performed in simulation)
use a single robot and show that the proposed approach can
significantly increase the area mapped by the robot within
15min.

Another system that exploits the structure of the envi-
ronment for determining the best candidate locations and

assigning them to the robots is presented by Wurm et al.
(2008). The known portion of the map of the environment is
segmented and a single robot is assigned to (one of the fron-
tiers of) each segment. The utility function used to assign a
robot r to a frontier p considers the distance from the cur-
rent position of r to p. Experimental results in simulation
show that the approach can significantly reduce the overall
exploration time for realistic environments with respect to a
closest-frontier approach that assigns to each robot the clos-
est candidate location. Also, the authors validated themethod
with two real robots in an environment, qualitatively analyz-
ing the paths they follow.

All these works that embed semantic information in the
exploration strategy show that the total area explored in
a given time interval can be improved by using semantic
information, but do not exploit semantic information to push
robots to explore areas that are relevant, according to a pri-
ori information available from, for example, human rescuers.
Moreover, all these approaches use a utility function that con-
siders basically just the cost to reach a candidate location.
Amigoni (2008) experimentally showed that, in some com-
mon settings, exploration strategies that balance utility and
cost tend to have better performance than those that use only
cost.

Since in this paper we are assuming that some a priori
information is available about relevant areas, the aboveworks
are not directly comparablewith our approach, in terms of the
relevant areas explored. However, in our experimental sim-
ulated activities, we will compare the proposed exploration
strategy with that proposed by Basilico and Amigoni (2011),
which has been experimentally proven to perform well in
search and rescue scenarios, but do not consider any seman-
tic information. In this paper, we aim at showing that, when
a priori knowledge on victims’ locations is available (i.e.,
preferred areas to visit are specified), the use of semantic
information could improve also the performance of explo-
ration of relevant areas of the environment, besides the total
explored area, as shown by the works presented above (like
Stachniss et al. 2008 or Calisi et al. 2009).

2.2 Coordination methods

Coordination between multiple exploring robots, namely
assigning robots to candidate locations, is achieved in dif-
ferent ways in the literature.

A series of works (Burgard et al. 2000, 2005; Stachniss
et al. 2008 and, partially, Fox et al. 2006) propose an interest-
ing approach in which the coordination method is embedded
within the exploration strategy. In particular, the utility value
of a candidate location is reduced according to the number of
robots that can view it, in order to discourage the assignment
of more robots to the same candidate location. Experimental
results show that this coordinated behavior has better per-
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formance than uncoordinated behavior (in which different
robots can select the same location to reach) and slightly
worse performance than a method that finds the optimal allo-
cation over all possible permutations of candidate locations
to robots, where the optimality criterion depends on the dif-
ference between utility and cost of visiting the candidate
locations.

Several other works (e.g., Simmons et al. 2000; Zlot et al.
2002) are based on market mechanisms. Specifically, coor-
dination of mobile robots is performed by a central executive
that, beyond collecting local maps and combining them into
a single global map, manages an auction-like mechanism by
asking bids to the robots and assigning tasks (i.e., locations to
reach) according to the received bids. Bids contain informa-
tion about expected utility for pairs robot-location; utility are
calculated by the exploration strategy adopted. Experimental
results show that the auction-based coordination methods (as
expected) outperform the uncoordinated methods. An exten-
sion of such works is the approach of Hawley and Butler
(2013), who propose an auction-based coordination method
not only for task assignment, but also for coalition formation,
when there are more robots than candidate locations.

All of the presented approaches for coordination attempt
to spread the robots around the environment. The (often)
implicit assumption is that the exploration problem is con-
sidered to involve, according to the classification of Gerkey
and Mataric (2004), single-task robots (ST) and single-robot
tasks (SR), where the task is to reach a candidate location.
ST means that each robot executes one task at a time and SR
means that each task requires one robot. Thus, all the above
works act basically as ST–SR.

In this paper, we attempt to overcome the ST–SR assump-
tion by allocatingmore robots to the same candidate locations
according to amulti-robot tasks (MR)paradigm.Specifically,
we aim at showing that semantic information enables the pos-
sibility to determine the ideal number of robots to send to a
specific area so that exploration can proceed faster and more
effectively.

3 A semantic-based multirobot exploration system

In this section, we present our proposed exploration system
that exploits semantic information. Specifically, after a brief
system overview, we go into the details of the exploration
strategy and the coordination method we designed for our
semantic-based multirobot exploration system.

3.1 System overview

The robotic platform used is a Pioneer P3AT equipped with a
sonar ring and two laser range scanners, mounted at the same
height and back-to-back for covering a 360◦ area around the
robot with radius R = 20 m and angular resolution at 1◦.

Each robot builds a two-dimensional occupancy grid map
of the explored environment. Each cell is either known, if the
robot perceived the corresponding area, or unknown. Known
cells can be free or occupied (by obstacles). The map of the
environment is maintained by a base station, whose position
is fixed in the environment, and to which robots send their
maps every 2.5 s. We assume that communication is error-
free and unlimited in range and bandwidth (effects of more
realistic communicationmodels on exploration are discussed
in Tuna et al. 2012). Our exploration system is largely inde-
pendent of the mapping system employed to incrementally
build the grid map. In our experiments, we use a simple scan
matching method, inspired to that of Lu and Milios (1997),
in which a new acquired scan is aligned with the current map
(using odometry as initial guess) and the occupancy grid is
updated correspondingly. Since we are not interested in ana-
lyzing the quality of the resulting map, we assume that the
mappingmodule is error-free. Given the gridmap, clusters of
(adjacent) free cells that are on the frontier between known
and unknown parts of the map are extracted. For each clus-
ter, the free cell belonging to that cluster and closest to its
centroid is considered as a candidate location to reach. Paths
are planned using A* on the grid map. Sonars are used for
obstacle detection during navigation.

We assume that the system has a semantic map that labels
each free cell of the grid map with its room type (i.e., labels
‘corridor’, ‘small room’, ‘medium room’, ‘big room’) and
with the number of doorways present in the room in which
the cell is located. This semantic map can be built exploiting
any available method (e.g., Mozos et al. 2005). However, in
this paper we assume the semantic map as available, because
we are only interested in its use. In practice, we manually
annotate with semantic labels the portions of the simulated
environments used for the experimental activities. Note that
the proposed approach can be, in principle, applied to any
number of semantic labels, different from the four we con-
sider.

3.2 MCDM-based exploration strategy

Our multi-criteria decision making (MCDM) exploration
strategy uses several criteria to evaluate the goodness of a
candidate location. More formally, the exploration strategy
is used to estimate the utility u(p, r) of every candidate loca-
tion p for all robots r . It combines the following criteria:

– A(p) is the expected amount of free area beyond the fron-
tier of p computed as the length (in cells) of the frontier.
The larger its value, the more information is expected to
be acquired from p.

– d(p, r) is the Euclidean distance between p and cur-
rent position of r . Using Euclidean distance instead of
actual distance calculated by path planner drastically
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reduces the computational effort in calculating this cri-
terion without affecting too much the estimated utility
u(p, r), as some preliminary experiments we performed
have shown.

– b(p, r) is an estimate of the energy spent by r for reaching
p, calculated considering a very simple model, in which
the power consumption is related to the time required for
reaching p, computed according to the path that r should
follow and according to linear and angular velocities of
the robots. The larger its value, the smaller the amount
of residual energy in the battery (0 = full, 1 = empty).

All these criteria can be calculated from the robots’ status
and from the metric grid map.

In addition to the above criteria, other criteria employing
information from semantic map are considered:

– S(p) is the relevance of p (from 0, not relevant, to 1,
relevant), calculated according to the semantic label of
p and the a priori knowledge on victims’ locations. For
example, if it is known that victims are most likely in
big rooms, and p is labeled as ‘big room’, S(p) = 1,
while if p is labeled as ‘small room’, and under the same
hypothesis about the location of victims, S(p) = 0. If
p is labeled as ‘corridor’, regardless the hypothesis on
victims’ locations, S(p) = 0.15, as corridors are usu-
ally important to reach relevant rooms. The values for
S(p) have been manually set to obtain good performance
after experiments with different combinations of values.
In our preliminary tests, different value combinations
(e.g., range [0.10, 0.50] for S(p)with p in corridors), that
maintain relevance of corridors and of rooms according
to the hypothesis on victims’ location, have been exper-
imentally demonstrated to have similar performance.

– ND(p) is the number of doors in the room where p
is located. This criterion evaluates the connectivity of
a room with other rooms. The idea is that a highly-
connected room should be visited to ease finding relevant
rooms.

We assume that semantic labeling used to calculate the cri-
teria S(p) and ND(p) is perfect. This assumption will be
relaxed later to experimentally verify the robustness of the
approach. Note that, in order to apply our approach to other
semantic labels and other kinds of a priori information, cri-
terion S() should be changed.

All the criteria N = {A, d, b, S,ND} are combined using
the MCDM approach introduced by Basilico and Amigoni
(2011), to which we refer for a complete description; here we
just summarize the main features. We selected the MCDM
approach because it is theoretically grounded and allows to
easily integrate several criteria in a utility function. Consider
a set of candidate locations P (i.e., the cells closest to the

centroids of their frontiers at some time during exploration),
a set of robots R, and a set of criteria N . Call u j (p, r) the
utility value for candidate location p ∈ P and robot r ∈ R
according to criterion j ∈ N . The larger u j (p, r), the better
the pair p and r according to j . To apply MCDM, utilities
need to be normalized to a common scale I = [0, 1].We use a
linear relative normalization for each u j . With a slight abuse
of notation, we call u( j), with ( j) ∈ N , the j-th criterion
according to an increasing ordering with respect to utilities:
for candidate location p and robot r , u(1)(p, r) ≤ . . . ≤
u(n)(p, r) ≤ 1, where n = |N | (we assume u(0)(p, r) = 0).
The MCDM strategy integrates the criteria in N with the
following function:

u(p, r) =
n∑

j=1

(
u( j)(p, r) − u( j−1)(p, r)

)
μ(A( j)), (1)

where μ : 2N → [0, 1] (2N is the power set of set
N ) are weights, and the set A( j) is defined as A( j) =
{i ∈ N |u( j)(p, r) ≤ ui (p, r) ≤ u(n)(p, r)}. Specifically,
μ({∅}) = 0, μ(N ) = 1, and, if N ′ ⊂ N ′′ ⊂ N , then
μ(N ′) ≤ μ(N ′′). That is, μ is a normalized fuzzy measure
on the set of criteria N that will be used to associate a weight
to each group of criteria. The weights specified by the defini-
tion of μ describe the relationships between criteria. Criteria
belonging to a group G ⊆ N are said to be redundant if
μ(G) <

∑
i∈G μ(i), synergic if μ(G) >

∑
i∈G μ(i), and

independent otherwise. Namely, Eq. (1) provides a sort of
“distorted” weighted average that accounts for synergies and
redundancies between criteria.

In MCDM, beyond selecting the set of criteria N , we
need to define weights μ for each subset of criteria. For our
semantically-informed exploration strategy (S-MCDM), we
use the criteria N = {A, d, b, S,ND} defined above and the
weights reported in Table 1 (top). The weights of the sub-
sets of criteria not reported in the table are calculated by
summing the weights of the individual criteria. Note that
in selecting these weights, we have chosen values reason-
ably (e.g., criteria d() and A() have the same importance,
so their weights are equal). Moreover, criteria d() and b()
are redundant (both prefer candidate locations close to the
robot and a candidate location satisfies both criteria well or
both not well) and so μ({d, b}) < μ({d}) + μ({b}). Crite-
ria A() and d() are instead synergic (one prefers candidate
locations on long frontiers while the other one prefers candi-
date locations close to the robot and a candidate location can
satisfy one criterion well and the other one not well) and so
μ({A, d}) > μ({A}) + μ({d}). Values of weights have been
set to obtain good performance, according to criteria impor-
tance and relations (Basilico and Amigoni 2011). Slightly
varying the selected weights values (±10%), we experi-
mentally obtained similar performance. Principled methods
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Table 1 Weights of MCDM-based exploration strategies

Criteria μ() Criteria μ() Criteria μ()

S-MCDM

A 0.09 d, b 0.09 A, b 0.15

d 0.09 d, S 0.8 d, b, S 0.8

b 0.02 b, S 0.6 A, S 0.65

S 0.5 A, d, b 0.3 A, d, b, S 0.8

ND 0.3 A, d, S 0.8

A, d 0.3 A, b, S 0.65

D-MCDM

A 0.4

d 0.4

b 0.2

A, d 0.95

A, b 0.7

d, b 0.4

for selecting weights are discussed in Basilico and Amigoni
(2011).

For comparing the performance of S-MCDM, we chose a
state-of-the-art exploration strategy. Specifically, we define
another MCDM-based exploration strategy (called in the
following Default MCDM, or D-MCDM), whose criteria
set is N = {A, d, b}, similarly to Basilico and Amigoni
(2011), and with weights reported in Table 1 (bottom). As
discussed in Sect. 2 and to the best of our knowledge, no
exploration strategy that focuses on relevant areas is avail-
able. Furthermore, thework ofCalisi et al. (2009) is not easily
configurable in our setting, as prolog rules should be set.
Nevertheless, the D-MCDM exploration strategy has been
shown by Basilico and Amigoni (2011) to be very effective
in exploring environments (in particular, it outperformed the
exploration strategies proposed by Visser and Slamet (2008)
and Amigoni and Caglioti (2010).

3.3 ST–MR coordination method

Coordination methods are used to assign candidate locations
to robots. The mechanism we use is market-based (Zlot et al.
2002). The base station regularly sets up auctions in which
candidate locations (generated on current frontiers as dis-
cussed before) are auctioned to the robots, which bid on
them. This process allocates candidate locations p to robots
r attempting to maximize the sum of utilities u(p, r). In
our system, the coordination method can allocate MR to
the same candidate locations. For example, allocating two
robots to the same candidate location in a big room could
speed up the exploration of the room, overcoming potential
negative effects due to the initially overlapping views of the
two robots.

We employ a fuzzy-based function i(p) that computes the
ideal number of robots (1, 2, or 3, in our experiments) that
should be assigned to a candidate location p, according to the
semantic label given to p and to someother features. In partic-
ular, if p is located in a room (‘small room’, ‘medium room’,
or ‘big room’), the features considered are the room area, the
free area percentage of the total area in the room (visibility),
the number of doors, and the already perceived area of the
room. Note that an estimate of the already perceived area of
a room can be computed by having a knowledge base that
associates the semantic labels of rooms to the corresponding
average area (see, e.g., the work of Luperto et al. (2013)).
Figure 1 illustrates the membership functions for the input
features and for the output for p in a room that we have used
for experiments we show in the next section. When slightly
varying the selected fuzzy values (±10%), we experimen-
tally obtained similar performance. Given p, if the room in
which p is located is large, the number of its doors is large, its
visibility is large, and the amount of already perceived area is
small, then more robots are allocated to p. Another example
of the rules for determining the ideal number of robots i(p)
to be allocated to p (in a room) is reported in Algorithm 1.

if RoomSize is SMALL and #Doors is HIGH and Visibility is LOW and1
AlreadyPercArea is MEDIUM then #Robots isMEDIUM;
if RoomSize is BIG and #Doors is LOW and Visibility is LOW and2
AlreadyPercArea is HIGH then #Robots is LOW ;
if RoomSize is BIG and #Doors is MEDIUM and Visibility isMEDIUM and3
AlreadyPercArea is LOW then #Robots is HIGH;

Algorithm 1: Sample of rules for calculating the ideal
number of robots that can be allocated to p (in a room)

Similarly, if p is located in a corridor (label ‘corridor’), the
features considered are the size of the corridor, the number of
doors, the number of intersecting corridors, and the already
perceived area of the corridor. The membership functions
and the rules are similar to those for the room case, as shown
in Fig. 2 and in Algorithm 2. Note that, in order to use our
approach with different semantic labels, membership func-
tions and rules for calculating i(p) should be changed.

if CorridorSize is SMALL and #Doors is HIGH and #IntersectingCorridors is1
MEDIUM and AlreadyPercArea isMEDIUM then #Robots is LOW ;
if CorridorSize is SMALL and #Doors is MEDIUM and2
#IntersectingCorridors is LOW and AlreadyPercArea is LOW then #Robots is
MEDIUM;
if CorridorSize is MEDIUM and #Doors is MEDIUM and3
#IntersectingCorridors is MEDIUM and AlreadyPercArea is LOW then
#Robots is HIGH;
if CorridorSize is BIG and #Doors is HIGH and #IntersectingCorridors is4
MEDIUM and AlreadyPercArea is LOW then #Robots is VERY_HIGH;

Algorithm 2: Sample of rules for calculating the ideal
number of robots that can be allocated to p (in a corridor)

Each robot r evaluates all candidate locations p, as auc-
tioned by the base station every 5 s or when requested by
a robot that has reached its assigned location, according to
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Fig. 1 Membership functions for the input features (a–d) and for the output (e), when p is in a room (Color figure online)

Fig. 2 Membership functions for the input features (a–d) and for the output (e), when p is in a corridor (Color figure online)
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Fig. 3 Discount factor versus the number of robots already allocated
to p, when i(p) = 3 (Color figure online)

the exploration strategy, and submits bids u(p, r) accord-
ingly. We propose two coordination methods executed by
the base station to allocate candidate locations to robots.
The first coordination method (MRv1) works as reported in
Algorithm 3. Basically,MRv1 greedily allocates the best pair
(p∗, r∗), avoiding to allocate p∗ to more than i(p∗) robots.

collect bids u(p, r), which are calculated using (1);1
while ∃ robot r not allocated and candidate location p do2

find the pair (p∗, r∗): (p∗, r∗) = argmaxp,r u(p, r);3
allocate p∗ to r∗;4
if i(p∗) is equal to the number of robots already assigned to p∗ then5

eliminate p∗;6
end
eliminate robot r∗;7

end

Algorithm 3: MRv1

The second coordination method, calledMRv2, is similar
toMRv1, but, after each allocation of a robot to a p∗ (step 4),
it discounts the utility of p∗ for other robots, according to
the number of robots already allocated to p∗ (similarly to
Stachniss et al. 2008). Figure 3 shows the discount factor we
employ that decreases linearly until the number of allocated
robots is less than or equal to i(p∗), and then decays expo-
nentially. The rationale is that assigning to p∗ less robots
than i(p∗) could be a necessity (e.g., there are not enough
robots) and that assigning to p∗ more robots than i(p∗) is
not useful to speed up exploration.

The two proposed ST–MR coordination methods are
experimentally compared to a standard coordination method
(ST–SR) (Zlot et al. 2002), which allocates just one robot
to a candidate location in a greedy fashion. Namely, it runs
MRv1 with i(p) = 1 for every p.

4 Experimental activity

This section, first, shows the experimental setup in which
we tested our proposed semantic-based exploration system.

Then, we show some preliminary experiments to support
the choice of the state-of-the-art exploration strategy against
which our system is compared, and we present extensive
experimental results that validate the system. Further, we
present additional experiments for showing the robustness of
our proposed system, for example by relaxing the assumption
on the perfect semantic knowledge and by adopting a differ-
ent termination criterion. Finally, we discuss the obtained
results.

4.1 Experimental setup

In order to perform replicable tests under controlled con-
ditions, we use a robot simulator. We selected USARSim
(Carpin et al. 2007), because it is a realistic and reliable 3D
robot simulator. The multirobot system controller software
we developed and the experimental data are publicly avail-
able at http://sourceforge.net/projects/polimirobocup.

We report simulated experiments conducted in two indoor
environments, called office and mall (Fig. 4), where robots
start from fixed starting locations without any initial knowl-
edge about the structure of the environment. The cells of the
test environments are manually labeled as ‘corridor’, ‘small
room’, ‘medium room’, or ‘big room’ according to the size
of the rooms they belong to. Label distributions are reported
in Tables 2 and 3. The office environment is part of the
vasche_library_floor1 taken by Radish repository (Howard
and Roy 2003), and is characterized mainly by the presence
of small and medium rooms (as we can see from Table 2,
the number of small and medium rooms is almost the 86%
of the total number of rooms in the environment). The mall
environment is a floor of a (real) mall, and is characterized by
the presence of very big rooms. Table 3 shows that the num-
ber of big rooms is almost the 12% of the total number of
rooms in the environment, but they occupy 41% of the total
area of the environment. Some obstacles (shown as short line
segments in Fig. 4) have been added to the rooms to make the
exploration taskmore difficult.Weconsider structured indoor
environments because many semantic maps have been built
for indoor environments and search and rescue scenarios are
often indoor (like those of the Virtual Robot Competition of
the RoboCup Rescue Simulation League).

We consider teams of 4, 6, and 8 robots and two a pri-
ori hypotheses (assumed to be correct) on victims’ location,
namely victims in big rooms and victims in small rooms. We
define a configuration as an environment (office or mall),
a number of robots (4, 6, or 8), an exploration strategy
(the state-of-the-art exploration strategy D-MCDM or our
proposed semantic-based exploration strategy S-MCDM, as
described in Sect. 3.2), a coordination method (the state-of-
the-art coordinationmethod SRor our proposed coordination
methodsMRv1 orMRv2, shown in Sect. 3.3), and an hypoth-
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Fig. 4 Test environments. Green stars represent initial positions for the robots in the configurations with four robots, red crosses refer to the
addition of two robots (6 robots), and blue points to the addition of further two robots (8 robots) (Color figure online)

Table 2 Number of cells, percentage of the area of the environment,
and number of rooms of each semantic label (room type) for the office
environment

Type Number
of cells

% of the
environment area

Number
of rooms

Corridors 2493 30 –

Small rooms 756 9 21

Medium rooms 2835 34 42

Big rooms 2304 27 10

Table 3 Number of cells, percentage of the area of the environment,
and number of rooms of each semantic label (room type) for the mall
environment

Type Number
of cells

% of the
environment area

Number
of rooms

Corridors 1449 18 –

Small rooms 1332 16 37

Medium rooms 2088 25 31

Big rooms 3393 41 9

esis on the victims’ location (in big or small rooms). For each
configuration, we execute 10 runs of 20min each.

In a search and rescue setting, the goal is to explore an ini-
tially unknown environment for finding the largest number of
human victimswithin a short time. Assuming a priori knowl-
edge about the relevant area in which victims are supposed
to be, and assuming that victims are uniformly distributed in
such relevant areas, the problem of maximizing the number
of victims found in a given time interval is equivalent to the
problem of maximizing the amount of relevant area covered
by robots’ sensors in the same interval. Thus, we assess our
system performance by measuring the amount of relevant
area (area of small or of big rooms, according to the victims’
location hypothesis) explored, every 1min of exploration.
We typically report data at the end of runs (after 20min),

but, for some configurations, we report graphs of data over
20min. This measure is particularly relevant in the context of
search and rescue, as time is limited, and we want to explore
as quickly as possible the relevant parts of an environment.
We report also some results about the total explored area so
that it is possible to compare our proposedmethod with other
approaches that do not consider relevant area.

4.2 Preliminary experiments

We start with some preliminary experiments that support our
choice of D-MCDM as representative state-of-the-art explo-
ration strategy. In particular, we compare the state-of-the-art
exploration strategy D-MCDM with other two exploration
strategies, namely, a random one (Random, which selects the
next candidate location at random) and one that only mini-
mizes the distance (Distance), as in Wurm et al. (2008). In
all cases, the coordination method is the most used in the
state of the art, namely SR. We found, according to Basilico
and Amigoni (2011), who found the same outcome for other
environments, that D-MCDM performs better than the other
two exploration strategies. For example, Fig. 5 shows that, in
the case of office environment, six robots, SR coordination

0 10 20
0

2000

4000

6000

time step

D−MCDM SR
Random SR
Distance SR

Fig. 5 Total explored area (m2) over 20min, in office environment, by
six robots, with Random, Distance, and D-MCDM exploration strate-
gies and SR coordination method (Color figure online)
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Table 4 Results (average and
standard deviation) of explored
relevant area (m2) for the office
environment, after 20min of
exploration. B indicates victims
most likely are in big rooms, S
in small rooms

Office Coord. Exploration

D-MCDM (B) S-MCDM (B) D-MCDM (S) S-MCDM (S)

#Robots = 4 SR 747.3 (112.5) 1473.9 (202.7) 80.4 (22.4) 276.2 (83.9)

MRv1 953.8 (111.4) 1729.9 (81.9) 103.1 (22.7) 224.6 (73.1)

MRv2 921.6 (130.3) 1773.8 (65.4) 112.9 (24.4) 272.1 (52.1)

#Robots = 6 SR 1024.6 (220.7) 1603.2 (59.1) 127.6 (38.5) 235.7 (43.1)

MRv1 1123.6 (143.6) 1851.3 (7.8) 148.6 (21.2) 400.5 (100.4)

MRv2 1164.9 (94.2) 1856.7 (36.3) 162.5 (22.2) 429.0 (83.8)

#Robots = 8 SR 1222.6 (133.0) 1653.5 (129.2) 170.3 (43.0) 312.0 (28.1)

MRv1 1379.8 (122.8) 1877.6 (62.6) 186.2 (31.7) 496.3 (101.8)

MRv2 1284.9 (144.5) 1854.3 (80.3) 185.6 (42.7) 454.3 (125.2)

method, D-MCDM outperforms Random and performs rel-
atively better than Distance, in terms of total explored area
(measured in m2). This provides a justification of the choice
of using D-MCDM as baseline exploration strategy for com-
paring our proposed exploration strategy.

4.3 Results for the office and the mall environments

Table 4 reports experimental results for the office environ-
ment. The values reported in each entry are the average and
the standard deviation (in parentheses) over the 10 runs of
the corresponding configuration.

With all the three coordination methods, our proposed
semantic-based exploration strategy S-MCDMperforms bet-
ter than the state-of-the-art exploration strategy D-MCDM,
and differences are statistically significant, according to an
ANOVA analysis with a threshold for significance p value<

0.05 (Pestman 1998). For example, the difference between
the relevant area mapped at 20min with S-MCDM and D-
MCDM, in the case of victims in big rooms, with SR and six
robots, is statistically significant (p value= 2.42 × 10−7).
Figure 6 illustrates the evolution of the explored relevant area
over 20min in the setting just discussed. We can observe that
at the beginning the trend is almost the same for both explo-
ration strategies. This could be explained by the fact that
the six robots start from positions that are close to some big
rooms and so also D-MCDM chooses candidate locations in
big rooms. After 10min, S-MCDM outperforms D-MCDM,
indicating that, when there are more candidate locations in
different rooms that could be selected by the robots, the ben-
efits of using a semantic-based exploration are more evident.
Note that, similar trends are also valid for the hypothesis
of victims in small rooms and, also in this case, the dif-
ference between the relevant area mapped at 20min with
the two exploration strategies is statistically significant (p
value= 1.34 × 10−5).

For both exploration strategies, the coordination methods
MRv1 andMRv2 that exploit semantic information appear to

0 10 20
0

500

1000

1500

2000

time step

6 D−MCDM SR
6 S−MCDM SR

Fig. 6 Explored relevant area (m2) over 20min, in office environment,
by six robots, with SR coordination method, in the case of victims in
big rooms (Color figure online)

0 10 20
0

500

1000

1500

2000

time step

6 S−MCDM SR
6 S−MCDM MRv1
6 S−MCDM MRv2

Fig. 7 Explored relevant area (m2) over 20min, in office environment,
by six robots, with S-MCDM, in the case of victims in big rooms (Color
figure online)

perform relatively better than the state-of-the-art coordina-
tion method SR, and differences are statistically significant
(for instance, for MRv2 vs. SR p value= 9.24 × 10−10

with S-MCDM, considering the hypothesis of victims in
big rooms and 6 robots). Figure 7 shows the explored rel-
evant area considering the latter setting over 20min. We can
observe that MRv1 and MRv2 have similar trends and that
they perform better than SR. This can be explained by the fact
that, although there can be some initial drawbacks in sending
more robots to the same candidate location, due to sensing
overlaps, in the long term, there seems to be a benefit.
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Table 5 Results (average and
standard deviation) of total
explored area (m2) for the office
environment, after 20min of
exploration

Office Coord. Exploration

D-MCDM (B) S-MCDM (B) D-MCDM (S) S-MCDM (S)

#Robots = 4 SR 2372.7 (240.1) 3424.4 (316.1) 2372.7 (240.1) 3956.6 (556.5)

MRv1 2753.4 (199.9) 3305.3 (268.9) 2753.4 (199.9) 3667.1 (597.4)

MRv2 2855.0 (285.2) 3616.0 (219.4) 2885.0 (285.2) 3683.0 (441.0)

#Robots = 6 SR 3060.3 (408.1) 3958.0 (187.9) 3060.3 (408.1) 3895.1 (528.1)

MRv1 3361.4 (339.3) 4333.1 (187.0) 3361.4 (339.3) 5094.0 (194.8)

MRv2 3536.0 (158.2) 4408.0 (282.2) 3536.0 (158.2) 5200.4 (278.9)

#Robots = 8 SR 3612.8 (324.0) 4350.6 (313.5) 3612.8 (324.0) 4677.6 (526.5)

MRv1 3996.5 (267.9) 4856.2 (524.0) 3966.5 (267.9) 5424.5 (264.6)

MRv2 3853.8 (358.2) 4786.8 (486.7) 3853.8 (358.2) 5251.2 (528.2)

B indicates victims most likely are in big rooms, S in small rooms

Only considering four robots, in the case of victims in
small rooms, SR seems to have better results than MRv1
and MRv2, even if not statistically significant (e.g., in this
setting, with S-MCDM, for SR vs. MRv2, p value= 0.80).
This similar performance of SR and MRv1/MRv2 can be
explained noting that, when the number of robots is small, the
exploration becomes unbalanced if more robots are assigned
to the same candidate location.

Another consideration from Table 4 is that, as expected,
increasing the number of robots, the amount of explored rel-
evant area increases (apart from one degenerate case with
SR and S-MCDM considering victims in small rooms and
increasing robots from 4 to 6), even if the increase is not
statistically significant. Note that the standard deviation of
the results in Table 4 is high in the case of victims in small
rooms. This could be due to the fact that, since robots should
focus on small rooms, the space in which robots can move
is small and, so, errors in the movements of the robots have
greater influence in these experiments. Indeed, we observed
in the experiments that, for example, robots can spend some
time to enter in a small room.

Table 5 shows the total amount of explored area (as oppo-
site to the amount of relevant area considered so far) for
the office environment. The total amount of explored area
increases from D-MCDM to S-MCDM in the case of vic-
tims in big rooms. For example, with 6 robots and SR, the
total amount of explored area changes from 3115.6 (367.0)
m2 to 3958.0 (187.9) m2, with a statistically significant dif-
ference (p value= 5.91 × 10−6). Figure 8 shows the trend
over 20min of such setting. This performance increase could
be due to the fact that robots are encouraged to explore big
rooms, from where it is possible to easily explore large por-
tions of the environment.

In the case of victims in small rooms the total amount of
explored area is more or less the same for D-MCDM and
S-MCDM. The total amount of explored area is similar for
all coordination methods. Note that the distance traveled by
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Fig. 8 Explored total area (m2) over 20min, in office environment, by
six robots, with SR coordination method, in the case of victims in big
rooms (Color figure online)
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Fig. 9 Sum of the traveled distances (m) over 20min, in office envi-
ronment, by eight robots, considering S-MCDM, in the case of victims
in big rooms (Color figure online)

the robots does not change much over all the experiments
(see, for example, Fig. 9). This fact shows that the difference
in the amount of (relevant or total) explored area does not
depend on the fact that the robots may be stuck, but almost
exclusively on the exploration strategy and the coordination
methods adopted.

The difference in the performance of the exploration
strategies can be further analyzed by looking at how they
evaluate candidate locations in different rooms. As explained
in Sect. 3.2, this evaluation for our proposed exploration
strategy S-MCDM changes according to the semantic labels
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Fig. 10 Evaluation of the candidate locations (on a relative scale, aver-
age over all the candidate locations evaluated by the robots over 20min)
that are located in small, medium, big rooms and corridors, in office
environment, with six robots, considering SR and the hypothesis of
victims in big rooms (Color figure online)

of the cells and to the hypothesis on the victims locations
(criterion S()), while the state-of-the-art exploration strategy
D-MCDM evaluates candidate locations in different rooms
more uniformly. Figure 10 illustrates this behavior in the
case of six robots, SR coordination method, and victims
most likely located in big rooms. This different evaluation of
the candidate locations determines the number of assigned
candidate locations in different rooms for D-MCDM and S-
MCDM. Including semantic information in the exploration
strategy effectively allows the robots to focus on candidate
locations in the relevant areas, neglecting those in the irrel-
evant ones. Figure 11a shows that, in the case of 6 robots,
SR coordination method, and victims most likely located in
big rooms, the number of candidate locations in big rooms
assigned to the robots using S-MCDM is greater than the
one in the case of D-MCDM. Figure 11b illustrates that, in
the same last setting, almost no candidate locations in small
rooms are assigned to the robots in the case of S-MCDM.

Tables 6 and 7 show experimental results for themall envi-
ronment and report the explored relevant area and explored
total area, respectively. All the above observations hold also
in this environment. The only difference is relative to the
case of the state-of-the-art exploration strategy D-MCDM
and victims in big rooms, for which the relevant and total
explored areas obtained by our proposed coordination meth-
ods MRv1 and MRv2 worsen with respect to those obtained
by the coordination method from the literature SR, and only
with 8 robots the difference between SR and MRv2 is sta-
tistically significant (p value= 0.01). This could imply that
the joint use of a coordination method that uses semantic
information and an exploration strategy that does not can be
inefficient.

4.4 Robustness

Weexperimentally verified that our results are still valid vary-
ing starting locations and the number of the robots (10 or
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Fig. 11 The number of assigned candidate locations in big rooms (a)
and in small rooms (b) over 20min, in office environment, to six robots,
considering SR and the hypothesis of victims in big rooms (Color figure
online)

12). For example, Fig. 12 shows that increasing the num-
ber of robots, the explored relevant area increases. As shown
in the figure, the trends for the different combinations of
exploration strategy/coordination method are rather similar
to those we already discussed.

We now relax the assumption of perfect semantic infor-
mation, as our system strongly relies on it. Specifically, we
consider two imperfect semantic mapping modules, which
make errors in assigning labels to rooms (and to cells within
rooms):

– randomly according to an error rate (0.1 or 0.2 of the
number of classifications), as in Stachniss et al. (2008);

– depending on the percentage of the area actually discov-
ered. If a candidate location p is located in a room, whose
fraction of already explored area is less than a pre-defined
threshold (0.2 or 0.4), the semanticmappingmodule clas-
sifies p randomly (with uniform probability) over the
available semantic labels. Otherwise, the semantic map-
ping module correctly classifies p.

We tested the systemwith randomly assigned semantic labels
in the office environment and with victims located in big
rooms. Figure 13 shows the amount of relevant area explored
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Table 6 Results (average and
standard deviation) of explored
relevant area (m2) for the mall
environment, after 20min of
exploration

Mall Coord. Exploration

D-MCDM (B) S-MCDM (B) D-MCDM (S) S-MCDM (S)

#Robots = 4 SR 265.4 (212.9) 1868.0 (160.1) 567.0 (66.6) 737.3 (61.9)

MRv1 517.3 (164.6) 1785.2 (232.5) 615.9 (24.2) 836.4 (94.4)

MRv2 380.3 (67.7) 1780.7 (233.8) 633.4 (37.7) 809.3 (104.2)

#Robots = 6 SR 634.4 (209.3) 1978.6 (200.0) 638.1 (74.4) 888.0 (72.6)

MRv1 574.2 (73.8) 2151.7 (228.8) 702.3 (52.5) 1018.3 (93.3)

MRv2 545.2 (129.4) 2105.3 (241.4) 701.7 (18.8) 983.9 (76.7)

#Robots = 8 SR 768.6 (190.1) 2050.0 (189.3) 708.8 (56.4) 953.3 (97.4)

MRv1 606.5 (207.5) 2304.5 (161.6) 755.9 (44.0) 1149.5 (95.9)

MRv2 540.7 (139.5) 2336.9 (214.5) 751.8 (56.8) 1046.5 (80.4)

B indicates victims most likely are in big rooms, S in small rooms

Table 7 Results (average and
standard deviation) of total
explored area (m2) for the mall
environment, after 20min of
exploration

Mall Coord. Exploration

D-MCDM (B) S-MCDM (B) D-MCDM (S) S-MCDM (S)

#Robots = 4 SR 2480.5 (463.5) 5229.9 (114.4) 2480.5 (463.5) 2605.9 (251.1)

MRv1 2668.0 (156.7) 4501.1 (541.3) 2668.0 (156.7) 2802.9 (427.3)

MRv2 2542.8 (54.3) 4765.6 (546.2) 2542.8 (54.3) 2797.7 (530.4)

#Robots = 6 SR 3164.2 (478.1) 5222.3 (508.8) 3164.2 (478.1) 3355.1 (451.2)

MRv1 2990.1 (262.1) 5449.9 (349.4) 2990.1 (262.1) 3706.4 (436.7)

MRv2 2941.1 (198.6) 5214.6 (581.0) 2941.1 (198.6) 3536.6 (363.2)

#Robots = 8 SR 3756.9 (425.0) 5625.6 (243.2) 3756.9 (425.0) 3956.6 (465.4)

MRv1 3446.9 (406.9) 5846.5 (235.7) 3446.9 (406.9) 4255.4 (406.0)

MRv2 3326.0 (324.7) 5765.0 (269.8) 3326.0 (324.7) 3903.4 (379.6)

B indicates victims most likely are in big rooms, S in small rooms

over 20min by six robots, with the random semanticmapping
module. The explored relevant area diminishes compared to
the case of a perfect semanticmappingmodule. However, the
combination of our proposed exploration strategy S-MCDM
and coordination method MRv1 allows to have a better per-
formance compared to the state-of-the-art combination of
exploration strategy D-MCDM and coordination method SR
(at the end of 20min, this difference between S-MCDM +
MRv1 and D-MCDM + SR is statistically significant with
p value= 1.02 × 10−4). Comparing trends of the results
obtained by using MRv1, we can observe that the perfor-
mance degrades, when the error rate increases. This can be
explained by the fact that our proposed coordination method
assigns more robots to a candidate location in a big room
or a corridor, but, with an imperfect oracle, the risk is to
assign more robots to areas that could be explored by only
one robot. Note that in Fig. 13a, after about 15min, the per-
formance when error rate is 0.2 becomes slightly better than
thatwhen error rate is 0.1 and this could be due to the random-
ness in the errors, although the difference is not statistically
significant (e.g., looking at the performance at the end of the
exploration: p value= 0.2718).

Figure 14a shows the amount of relevant area explored
over 20min, with the more realistic semantic mapping mod-
ule that assigns a random label to a room if it is known less
than a threshold. The performance does not degrade very
much with respect to the performance obtained by our sys-
tem with perfect semantic information, and S-MCDM still
performs better thanD-MCDM. For example, at 20min, with
S-MCDMand realistic semanticmappingwith threshold 0.4,
the explored relevant area is 1321.8 (310.2) m2, while with
D-MCDM and perfect semantic information, the explored
relevant area is 1024.6 (220.7) m2 (p value= 0.02). The
same trend is observed considering coordination methods
(see Fig. 14b). The combination of S-MCDM and MRv1
with threshold 0.4 is still better than the state-of-the-art
combination of D-MCDM and SR with perfect semantic
information (1629.9 (120.8) vs. 1024.6 (220.7)m2, p value=
5.0 × 10−7).

Finally,we tested the performance of our systemby setting
as termination criterion a given percentage of relevant area
to be mapped (instead of the 20min timeout), as in Wurm
et al. (2008). In this case, the system performance could be
evaluated according to the time spent for accomplishing the
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Fig. 12 The explored relevant area (m2) over 10min, in office envi-
ronment, by 10 (a) and 12 (b) robots, with the hypothesis of victims in
big rooms (Color figure online)
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(a) Exploration strategies.
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(b) Coordination methods.

Fig. 13 Explored relevant area (m2) over 20min, in office environ-
ment, by six robotswith random semanticmapping (Color figure online)

mission. This experiment was carried out on a portion of the
mall environment, with eight robots with the goal ofmapping
90% of the relevant area (victims located in big rooms). Fig-
ure 15 shows that our proposed semantic-based exploration
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(a) Exploration strategies.
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(b) Coordination methods.

Fig. 14 Explored relevant area (m2) over 20min, in office environ-
ment, by six robotswith realistic semanticmapping (Color figure online)
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Fig. 15 Explored relevant area (m2), in mall environment, by eight
robots with a different termination criterion (90% of the relevant area)
(Color figure online)

system with S-MCDM andMRv1 terminates earlier (around
20min) than the state-of-the-art combination of D-MCDM
and SR (around 29min).

4.5 Discussion

In summary, results show that our semantically-informed
exploration strategy largely outperforms a state-of-the-art
exploration strategy in discovering areas of interest in the
office and the mall environments. This can be explained
by the fact that the exploration strategies that do not con-
sider semantic information evaluate candidate locations only
according to their metric features, independently of their
interest for the possible presence of victims. Another relevant
result is that both MRv1 and MRv2 coordination methods,
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which use semantic information to determine the number of
robots to send to a candidate location, have better perfor-
mance compared to the state-of-the-art coordination method
SR. This behavior is more evident with the hypothesis of
victims in big rooms, because MRv1 and MRv2 directly
accelerate the exploration of big rooms, as more robots are
sent to such rooms. The result is valid in the hypothesis of
victims in small rooms as well but, in this case, the reason
seems to be that MRv1 and MRv2 send more robots in corri-
dors, to which several rooms are connected and can be easily
accessed. However, no statistically significant trend can be
observedwhen comparingMRv1 andMRv2. In addition, our
experimental results suggest that the coordination method
has comparatively less impact on the performance than the
exploration strategy. This is in line with the results obtained
by Amigoni et al. (2012), for different search and rescue
settings. Note also that our semantically-informed approach
generally performs better than traditional approaches inde-
pendently of the percentage of relevant area over total area.
However, with few relevant areas (e.g., big rooms in office,
Fig. 4a), the advantage in using semantic information in coor-
dination is more evident. With many relevant areas that are
easily accessible from the starting positions of the robots
(e.g., small rooms in mall, Fig. 4b), using semantically-
informed coordination is less effective (robots can be simply
spread using traditional approacheswith good chances of vis-
iting relevant areas). Finally, our system proved to be enough
robust to random errors in semantic labeling of the areas of
the test environments.

5 Conclusions

In this paper, we have presented a semantic-based multirobot
exploration approach for search and rescue that consid-
ers a priori information about the location of victims in
order to focus on relevant areas. We have shown how to
exploit knowledge of semantic map in both exploration strat-
egy and coordination method. Experimental results obtained
in two realistic test environments show that the proposed
semantically-informed approach obtains significantly better
performance than state-of-the-art approaches in exploring
relevant areas and also, as previous work already pointed
out, in exploring total area.

Future work will address the further assessment of the
proposed system considering real robots with noisy commu-
nication and mapping. Furthermore, it could be interesting
to change at runtime the information about relevant areas. In
addition, we could find an automated way to compute some
of the parameters used in our system. For example, the mem-
bership functions of the proposed coordination method can
be set according to the specific building typology (e.g., being
a school), on the basis of the results of Luperto et al. (2013).

Moreover, they could be set looking at the robots’ capabili-
ties (e.g., if sensor range is R = 5 m instead of R = 20 m,
then the curves for RoomSize in Fig. 1 should be shifted to
the left). It could be interesting also to extend this work by
considering distribution of probability about the location of
the victims, starting from results of Aydemir et al. (2013).
Moreover, a deeper study of the impact of knowledge pro-
vided by semantic maps for exploration will be performed.
A direction of interest is the investigation of multi-task (MT)
coordination methods (i.e., each robot plans how to reach a
sequence of candidate locations) or path optimization, start-
ing from results of Tovar et al. (2006).
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