
Auton Robot (2015) 39:487–502
DOI 10.1007/s10514-015-9472-x

A mechanism for real-time decision making and system
maintenance for resource constrained robotic systems through
ReFrESH

Yanzhe Cui1 · Richard M. Voyles2 · Josh T. Lane2 · Akshay Krishnamoorthy1 ·
Mohammad H. Mahoor3

Received: 21 November 2014 / Accepted: 9 July 2015 / Published online: 19 July 2015
© Springer Science+Business Media New York 2015

Abstract Robot operating environments and the status
of robots are complex and varying, so it is practically
impossible for a robotics designer to anticipate all sys-
tem configurations to successfully complete a task prior
to deployment. Therefore, a mechanism for dynamic deci-
sion making and configuration synthesis that copes with
system fault and uncertainty is necessary. This paper imple-
ments such a mechanism within a self-adaptive framework
(ReFrESH). The goal of this presented mechanism is to pro-
vide diagnosability andmaintainability tomanage the system
performance during task execution in the presence of unex-
pected uncertainties. Specifically, the functionality of the
proposed mechanism include: (1) detection of system per-
formance degradation; (2) diagnosis and locate of the fault
module; (3) synthesis of feasible task configurations; (4)
selection of the optimal one. We illustrate the feasibility of
the proposed mechanism through a visual servoing task.

B Yanzhe Cui
cui56@purdue.edu

Richard M. Voyles
rvoyles@purdue.edu

Josh T. Lane
lane54@purdue.edu

Akshay Krishnamoorthy
krishn41@purdue.edu

Mohammad H. Mahoor
mmahoor@du.edu

1 College of Engineering, Purdue University, West Lafayette,
USA

2 Purdue Polytechnic, Purdue University, West Lafayette, USA

3 Department of Electrical and Computer Engineering,
University of Denver, Denver, USA

Keywords Decision making · System maintenance · Fault
detection and location · Fault mitigation · ReFrESH

1 Introduction

Autonomous robotic systems are playing increasingly impor-
tant roles in space, military, and Urban Search and Rescue
(USAR) missions (Michael et al. 2012; Zhang and Parker
2013). At the same time, there is growing concern for
system reliability during operation in such unpredictable
environments. For instance, the dense dust caused by an
unexpected wall collapse in an unstructured roommay block
the camera on an unmanned ground vehicle (UGV) and
affect the survivor search mission. Furthermore, due to the
large configuration combination space of a task for robotic
systems, exhaustive testing of all combinations is general
impractical (Nie and Leung 2011). Therefore, to increase
reliability, robotic systems will require high-level decision
making capabilities to dynamically react to unexpected sit-
uations that emerge in both the system and environment,
while also automatically preserving the health of the system.
In this way, successful task completion can be guaran-
teed.

The method of increasing reliability through on-line deci-
sion making and dynamic maintenance mentioned above
has been widely studied in the field of multi-robot systems,
namely in the area of robot coalition (Gerkey and Mataric
2002; Vig and Adams 2006; Zhang and Parker 2012). In
order to help a robotic system, which consists of either a sin-
gle robot or multiple robots, to accomplish tasks in a not fully
anticipated environment, a mechanism for decision making
and system maintenance should: (1) possess knowledge and
real-time performance data about the system and task, such
as resource efficiency and required module performance, to

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-015-9472-x&domain=pdf

488 Auton Robot (2015) 39:487–502

Fig. 1 Layered ReFrESH architecture to support self-adaptation and
dynamic decision making

support detection of a system fault; (2) locate the system
fault to reduce the cardinality of search space that can con-
struct the new task configurations; (3) generate feasible task
configurations that enable accommodation of unexpected
contingencies during execution; and (4) cope with modules
within a single robot, as well as modules across multi-robot
networks, considering their physical and logical dependen-
cies.

To this end, we propose a mechanism for decision
making and system maintenance that is based upon the
Reconfiguration Framework for distributed Embedded sys-
tems for Software andHardware (ReFrESH) framework and
its related work, the Embedded Virtual Machine (EVM) (Cui
et al. 2012, 2013, 2014a; He et al. 2012; Mangharam and
Pajic 2009).

ReFrESH is a self-adaptive framework aimed at manag-
ing the performance of robotic systems through dynamic
diagnosis and maintenance of unexpected issues of mod-
ules in a task configuration (Cui et al. 2013, 2014a). As
shown in Fig. 1, ReFrESH extends the familiar layered
execution model to include (1) specific mechanisms for self-
evaluation of the performance of execution units “in-vivo”
at the component layer (Evaluator); (2) specific mechanisms
for estimation of the expected performance of execution units
prior to execution “in-vitro” at the component layer (Estima-
tor); and (3) extended interfaces for decision making and
system configuration synthesis at the task layer (Decider and
Generator).

EVMprovides runtimemechanisms for control and actua-
tion algorithms to adapt and reorganize resource utilization in
the face of planned changes (e.g. mode changes, plant output
targets) and unplanned changes (e.g. link and node outages)
(Mangharam and Pajic 2009). This capability allows for reli-
able wireless network control and is achieved by decoupling
functionality, so communication, computation and coordi-

nation may be maintained across physical node boundaries.
We intend to provide the EVM method in ReFrESH so as
to standardize the programming interfaces and synchronize
connectivity between the heterogeneous categories of hard-
ware platforms.

With the support of the aforementioned priorworks for the
framework and inter-node communication, this paper mainly
focuses on the challenge of designing a mechanism for deci-
sion making and system maintenance from the following
perspectives:

1. Design a new component paradigm to provide knowl-
edge of module performance and resource consumption
to support runtime decision making;

2. Design an algorithm to determine the performance degra-
dation in a system and to locate the fault source to reduce
the configuration search space;

3. Design an algorithm to generate new system configura-
tions and choose an optimal configuration tomaintain the
system.

The rest of this paper is organized as follows. Section 2
presents a review of related work regarding fault detection
and location, configuration synthesis, and fault mitigation. In
Sect. 3, a motivating example is proposed and we formalise
the problem addressed in this paper. Section 4 presents the
details of decision making mechanism. Section 5 introduces
the built-in maintenance mechanisms of ReFrESH both from
software and hardware accelerator perspectives. The experi-
mental analysis that validates the feasibility of ReFrESH is
presented in Sect. 6. We then conclude and list the future
work in Sect. 7.

2 Related work

Decision making is a broad research area. In this paper, we
mainly focus on using decision making to increase the relia-
bility of a robotic system in terms of detecting and locating
faults in a system task configuration, synthesizing feasible
configuration candidates, and mitigating faults.

2.1 Fault detection

There is extensive valuable research to detect faults in a sys-
tem. TheRainbow (Garlan et al. 2004) uses an abstractmodel
to monitor an executing software system’s runtime proper-
ties and evaluates the model for constraint violation. Kieker
van Hoorn et al. (2012) provides the necessary monitoring
capabilities and the tools and libraries for the analysis and
visualization of monitored data. KAMI (Epifani et al. 2009)
can continuously monitor and analyse data at runtime to
detect system faults. ReFrESH (Cui et al. 2014a) provides a

123

Auton Robot (2015) 39:487–502 489

framework to monitor task performance based on each exe-
cuting module, which makes it possible for the system to
target and diagnose the source of the fault. In this paper, based
upon ReFrESH, we provide a newmodule design abstraction
to support dynamic monitoring and evaluation of the perfor-
mance of a system.

2.2 Fault location

Once the faults has been detected, the next step in designing a
fault-tolerant system is to locate(identify) the fault (McIntyre
et al. 2005). Here, due to the simplicity of implementation in
the resource constrained systems, we focus on the fault loca-
tionmethod through executing feasible test cases. In this type
of method, the fault location accuracy is related to the num-
ber of coverage of test cases. The more test cases generated,
the more precise result we can obtain. However, covering all
the test cases is an NP-hard problem (Nie and Leung 2011).
Thus, to efficiently locate faults, there are several outstanding
methods. The base choice (BC) (Grindal et al. 2006) strategy
generates test cases by only modifying a single module at a
time. It is efficient in the scenario in which only one fault
has emerged in the system. Automatic efficient test genera-
tor (AETG) (Tung and Aldiwan 2000) contains a heuristic
algorithm for generating a test suite that satisfies pair-wise
coverage. It finds one new test case per iteration, attempting
to find a test case that maximizes the increase in pair-wise
coverage. Several test case candidates are identified and eval-
uated. In this paper, we assume a single fault occurs in the
system. Thus, the BC strategy is adapted to locate the fault
in a system configuration.

2.3 Fault mitigation

The three-layer framework (Kramer and Magee 2007) is
one of outstanding work. It presents a self-adaptive architec-
ture that enables components to automatically configure their
interaction in a way that is compatible with an overall archi-
tectural specification and achieves the goals of the system.
ALLIANCE Parker (1998) provides a software architecture
that facilitates cooperative control of teams of mobile robots
for fault tolerance and allows each robot to select its appropri-
ate action on the fly. Georgas and Taylor (2008) demonstrates
an architecture-based self-adaptive system that focuses on
supporting change of adaptation policies at runtime that are
decoupled from the architectures they relate to. These self
maintenance approaches are defined in the single robot view
although they could potentially be used for multiple robots.
In ReFrESH (Cui et al. 2014a), self adaptation methods for
both single robot and multi-robot systems through use of
EVM techniques are proposed along with hardware acceler-
ator dynamic reconfiguration.

3 Motivating example and formalism of the
problem

In this paper, we mainly use the single task application sce-
nario. To motivate the need for the proposed mechanism for
decision making and system maintenance under ReFrESH,
we introduce a visual servoing application, which is defined
as a single task and is coherently accomplished by a team
of robots. We then formally define the problem we should
address for this visual servoing application by using the pro-
posed mechanism.

3.1 Visual servoing application

The objective of this application is to detect different tar-
gets and move robot to face to the targets with the optimal
task configuration. For the purposes of this discussion, we
assume that each target is marked by a unique characteristic
(we use different shape) and each robot is assigned to a differ-
ent initial target and then from left to right direction to detect
all the targets circularly. We assume that each robot is pre-
programmed with an initial task configuration without any
coalition with other robots. We further assume that sensors
and communication on each robot can be turned off manu-
ally, as well as the environment can be changed dynamically
to simulate faults in the system. For example, we can shut
down the camera on a robot or inject dense fog in front of
destination location.

The visual servoing application is implemented by a series
of modules. Each module can be allocated to every robot
in the system. Thus, when determining the system perfor-
mance degradation and generating new task configurations,
we need to consider the whole system of robots instead of
considering a single robot functioning independently. Addi-
tionally, when multiple feasible configurations are available,
the mechanism must determine which is the best fit to the
current situation.

Note that from our perspective, though we assume that
initially each robot is preprogrammed with a configuration,
a task cannot be defined in advance as running on a sin-
gle robot or running on multi-robot cooperatively. Instead,
whether or not a task runs on multiple robots depends on
the capability and the current status of a robot. Some robots
may be able to detect and face to target on their own while
another robot whose malfunctioned may need assistance
from the other robots. Our proposed mechanism in ReFrESH
is able to determine the systemperformance, the cause of per-
formance degradation, find combinations of modules based
upon the capability of the whole system to generate feasible
task configurations, and then decide the best configuration to
re-instantiate on the robots.

123

490 Auton Robot (2015) 39:487–502

3.2 Formalism of the problem

We formally define the problem we should address with the
proposed decision making and system maintenance mecha-
nism:
– R = {R1, R2, · · · Rn} shows a collection of n robots in

a system, where Ri represents a single the robot in a
system.

– Ri = {RE, SS, AS,CS}, a robot Ri is modeled by:

– RE The set of resources on a robot, such as node com-
putation capability, power capacity, communication
methods.

– SS The set of sensor schemas a robot contains. For
example, eye-in-hand CCD camera schema, laser
range finder schema.

– AS The set of actuator schemas a robot has. For exam-
ple, DC motor schema, RC motor schema.

– CS The set of computation schemas a robot has.
For example, image filter schema, template match-
ing schema.

– T = {
SM,

⋃
(Ri : SSi),⋃(Ri : ASi),⋃(Ri : CSi)

}

denotes the task specification that one robot should
achieve and is composed of:

– SM = (S1 → S2 → · · · → Sn → S1 · · ·) is a state
machine, Si is one of the states. SM is executed
continuously based on the proper state order and
event-based transition condition of a task. For exam-
ple, Si ≺ S j means that after completing Si and based
upon the event condition generated, the task transi-
tions to S j .

–
⋃

(Ri : SSi) shows a group of required sensor
schemas on one or multiple robots (Ri : SSi) to
achieve a task.

–
⋃

(Ri : ASi) shows a group of required actuator
schemas on one or multiple robots (Ri : ASi) to
achieve a task.

–
⋃

(Ri : CSi) shows a group of required computa-
tion schemas on one or multiple robots (Ri : CSi) to
achieve a task.

– C = {C1,C2, · · · ,Cn} gives the configuration search
space that helps the decision maker choose the optimal
task configuration, where Ci is one of the generated fea-
sible task configuration candidates.
Ci = {Module1, Module2, · · · Modulen} is an assem-
bly of the required modules of all the schemas that are
defined in the task specification T .

– PT defines a task configuration quality function, which
enables the decision maker to determine whether a con-
figuration satisfies the task requirement or not. Two types
of systemperformance are considered in the quality func-
tion:

– PNFk is the non-functional performance of a sys-
tem. It measures utilization of the kth resource on
a robot, such as the power consumption or compu-
tational requirement. If utilization is less than the
remaining capacity of the resource, the requirement
of the system is satisfied, else it is not.Thus, PNFk is
a binary value:

PNFk =
{
1, Resource k requirement is satisfied.

0, otherwise.

(1)

– PFj is the functional performance of a system which
measures system performance according to the j th
task-related metric, such as distance given to a target
or template matching error. The task-related metrics
are threshold values that are defined by the applica-
tion designer. If PFj is larger than the threshold for
that metric, the requirement of the system is satisfied,
else it is not. Thus, PFj is a binary value as well:

PFj =
{
1, Metric j requirement is satisfied.

0, otherwise.

(2)

To determine the feasibility of a configuration in the
search space, Eq. (3) is used. If PT = 1, the config-
uration on this robot is valid and satisfies the system
requirement; otherwise, the configuration is invalid
and does not satisfy the system requirement.

PT =
(

n∏

k=1

PNFk

)
⋂

⎛

⎝
m∏

j=1

PFj

⎞

⎠ =
{
Satisfy, 1.

Not satisfy, 0.

(3)

– Given a feasible task configuration search space C , we
define a utilization function Util(Ci) for each Ci ⊂ C .
We again consider this function in two parts:

– UtilN Fk (Ci) measures the resource cost of Ci , such
as power consumption and computational require-
ment.

– UtilFj (Ci) measures the task-related functional cost
of Ci , such as distance to a target.

– The overall cost of Ci , Util(Ci), is the weighted
summation of all UtilN Fk (Ci) and UtilFj (Ci), with
the weighting parameter α defined by the application
designer, as shown in Eq. 4:

Util (Ci) = α

n∑

k=1

UtilN Fk (Ci)+(1 − α)

m∑

j=1

UtilFj (Ci)

(4)

123

Auton Robot (2015) 39:487–502 491

Table 1 Decision making and
system maintenance in
ReFrESH

Input:

1. (T , R)

2. Ccurrent = {Module1, Module2, . . . Modulen}a
1. Monitor the performance of Ccurrent based on Eq. 3.

If PT = 1, keep monitoring the Ccurrent

until it does not satisfy the performance requirement.

2. Determine the faulty module Modulei in Ccurrent .

3. Synthesize the task configuration search space C for task T

based on Eqs. 1 and 2.

a Ccurrent is the current running task configuration on a robot

For the decision making process, we should choose
the configuration in the search space which is the best
fit for the current situation by:

minimize
Ci

Util(Ci)

subject to
m∏

j

PFj = 1; j = 1, . . . ,m,

n∏

k

PNFk = 1; k = 1, . . . , n.

(5)

4 The approach: diagnosis–synthesis-decision
making

To increase the reliability of task completion for a system
(single robot or multi-robot), based upon ReFrESH, we pro-
pose a mechanism that consists of three main steps as shown
in Table 1.

In ReFrESH, a module database is maintained as a tree
data structure. Eachmodule specifies its domains, such as the
schemas it belongs to and which robots it can be instantiated
on, as shown inFig. 2. From this tree structure,we can retrieve
the alternatives of amodule easily by checking their common
ancestor. For example, in Fig. 2, for robot Rn−2, module
M2 and Mp−1 have the same parent sensor schema SS j ,
so M2 and Mp−1 can only be instantiated either one in a
configuration Ci , but they are interchangeable; also, M2 has
two children robot R1 and Rn−2, so M2 can be instantiated
on R1 or Rn−2. Therefore, if we should modify Mp−1 to
M2 in Ci , it generates two cases: instantiate M2 on Rn−2

or instantiate M2 on R1 which means the Ci on Rn−2 is a
coalition of R1 and Rn−2.

Furthermore, every step of decision making and system
maintaining are closely related to a new component design
abstraction, we named extend port-based object (E-PBO).
Therefore, in this section,we introduce theE-PBOfirstly, and
then illustrate the details of the decision making approach.

Fig. 2 Modules database in the form of tree data structure

4.1 Extended port-based object

The port-based object (PBO) (Stewart et al. 1997) is a mod-
ule design abstraction which consists of an independent
concurrent process whose functionality is defined by the
methods of a standard object, as well as the ports: (1) using
port-automation theory, one module’s connection (commu-
nication) to other modules is restricted to its variable input
ports and variable output ports; (2) the configuration con-
stants ports are used to reconfigure generic components for
use with specific hardware or applications; (3) the resource
ports are for communication with sensors and actuators via
peripheral drivers.

The reliability and performance of a system in accom-
plishing a task is closely related to the reliability and
performance of eachmodule. As previously stated, we divide
the performance of a system into two perspectives: (1) non-
functional performance, which is related to the physical
resources of a system. For instance, the remaining power
in regard to the power consumption of all the modules on a
robot or the communication link qualitywith other robots; (2)
functional performance, which is related to how efficiently a
system completes a task based on the user specification. For

123

492 Auton Robot (2015) 39:487–502

Fig. 3 Abstract view of an E-PBO. Subscript f denotes functional per-
formance and nf denotes non-functional performance

example, a camera blocked by dust that produces very noisy
image will degrade the performance of a target detection
module and affect the visual servoing task execution. Both
non-functional performance and functional performance of
a system are affected by the runtime resources and func-
tional output characteristics of each module. Therefore, to
provide knowledgeofmodule performance and resource con-
sumption to support runtime decision making, the E-PBO is
modelled after the PBO.

As shown in Fig. 3, the E-PBO is composed of two parts.
The first is a conventionalPBOExecutor (EX), which defines
the functionality and provides ports to communicate with
other actively executing E-PBOs, reconfigure the module
constants, or connect to sensors/actuators. The other part is
the extension to the PBO, which consists of the E-PBO Eval-
uator and the E-PBO Estimator.

4.1.1 E-PBO evaluator

The E-PBO evaluator (EV) evaluates the performance of
an E-PBO and it is triggered only if its corresponding
E-PBO is executing. EV does not need to take input(s)
from other E-PBOs since it only evaluates performance
based upon the variable output ports of its own E-PBO.
Thus, EV only includes evaluator performance output ports,
which are needed to supply the functional performance (such
as target detection accumulated error) and non-functional
performance (required power usage versus system power
capability). Furthermore, EV does not communicate with
other E-PBOs, but instead connects to a system manage-
ment unit, such as the Decider in ReFrESH. The outputs
of EV provide the evidence for self-adaptation to the system
to determine if the performance of a task configuration is
satisfactory or not.

4.1.2 E-PBO estimator

The E-PBO estimator (ES) estimates the performance of an
E-PBO and it can be used by both running and non-running
E-PBOs. It is triggered only if the current running task con-
figuration could not satisfy the performance requirement and
a new task configuration is generated by a configuration gen-
eration unit, such as theGenerator in ReFrESH. ES includes
the same functionality of its corresponding E-PBO as well as
standalone sets of ports, estimator variable input ports and
estimator variable output ports, which connect and commu-
nicate with other ES’s, and estimator performance output
ports that provide the functional performance values to a
system management unit, such as the Decider in ReFrESH.
The reason there is no non-functional performance output
from the ES is that only configuration from the configuration
search space are estimated and all of these are know to be
feasible. After connecting all of the ES in a potential config-
uration, the management unit of ReFrESH combines all the
performance values from each ES to determine if the new
task configuration is suitable or not. The ES of each E-PBO
provides the recommendation for self-adaptation so that it
can determine which new configuration should be used in
the presence of faults in place of the current configuration.

A sample library of E-PBOs for a robotic visual servoing
application is shown in Fig. 4, which is a subset of the E-
PBOs that were created in our laboratory at Purdue. In order
to clearly illustrate the proposed decisionmaking and system
maintenance mechanism, we have visual servoing task con-
figuration composed of several E-PBOs (for a description of
each E-PBO please refer to Fig. 4) in the layered format of
ReFrESH, as shown in Fig. 5.

4.2 Decision making phase 1: monitor running
configuration

As previously stated, in this paper, we focus on the sce-
nario in which each robot accomplishes the same task with or
without assistance from other robots. Therefore, given task
T , a collection of robots R and current running configura-
tion Ccurrent , ReFrESH is able to execute the first phase of
decision making: Decide whether the system configuration
satisfies the task performance requirement.

Each E-PBO EV runs at the same frequency as its
E-BPO EX, which is predefined by the application designer.
Although the outputs of all EVs are connected to the
non-functional and functional performance buffers in the
management unit (as shown in Fig. 5), based upon the appli-
cation, the user can choose which task-related parameters
should output to ReFrESH. For example, in the sample task
configuration in Fig. 5, the power consumption EVpower

of each module updates to the non-functional performance
buffer and the output θd and deviation EVdi f f of module

123

Auton Robot (2015) 39:487–502 493

Fig. 4 Sample library of
E-PBOs for the robotic visual
servoing application

“TrajGen” update to the functional performance buffer. With
all values available in two buffers, based on Eqs. (1), (2) and
(3), “Decider” (in Fig. 5) can evaluate and determinewhether
the performance of a configuration for a task violates the
requirement or not. If the Ccurrent satisfies the performance
requirements, ReFrESH keeps monitoring the Ccurrent ; oth-
erwise, the cause of the performance degradation should be
located, which is illustrated in the next section.

4.3 Decision making phase 2: locate faulty module

Currently, the mechanism we propose here only handles the
situation inwhich a singlemodule causes performance degra-

dation; two or more modules simultaneously affecting the
task performancewill be addressed in the futurework. There-
fore, we assume that only one module has a fault when the
configuration violates the performance requirement and so
we need to locate this module.

The process of locating the faulty module in this paper
uses combination strategy to narrow down the fault module
search space gradually. Grindal et al. (2006) demonstrates
the comparison among several combination strategies in
terms of case coverage and fault detection success rate.
We choose the BC strategy due to its low case num-
ber and high fault detection success rate (Grindal et al.
2006).

123

494 Auton Robot (2015) 39:487–502

Fig. 5 A sample configuration built by E-PBOs which is running in ReFrESHs

TheBCstrategy requires every alternative of everymodule
to be included in at least one test case and so the number
of test cases is: (

∑n
i=1 ai) − n, where ai is the number of

alternatives of every module and n is the number of modules
who have alternatives in Ccurrent (Nie and Leung 2011). For
example, as shown in Fig. 5, suppose all modules initially
run on robot R1:

Ccurrent = {CamReader, SSD, TrajGen, HexMan}.
Suppose there are no alternatives of CamReader and
HexMan and there are two and three the alternatives of
SSD and TrajGen respectively. With this we get a total of
2 + 3 − 2 = 3 test cases instead of getting 2 ∗ 3 = 6 test
cases by using the brute force method.Without loss of gener-
ality, suppose we have n components and each of them hasm
alternatives, so by using the BC strategy, the search space is
O(m(n−1)); while using the brute force strategy, the search
space is O(nm). This shows that using the BC strategy can
greatly reduce the search space to find the faulty module.

Provided with the module database from ReFrESH, the
alternatives of each module can be obtained and the faulty
module detection process can be executed as shown in Algo-
rithm 1.

4.4 Decision making phase 3: find an optimal
configuration

The faulty module found in Phase 2 can be seen as the seed-
ing. In other words, the new system configuration candidates
for a task can be synthesized by only modifying the seeding
module and an optimal configuration exists in this candidates
search space.

As presented in Sect. 4.1, the E-PBO uses the port-
automata theory such that onemodule’s connection (commu-
nication) to other modules is restricted to its variable input
ports and variable output ports. Thus, given the output(s) of
themodule that feeds into the seedingmodule and the input(s)

Data: T, R, Ccurrent = {Module1, Module2, · · · Modulen}
Result: FaultModule
initialization: numAlt[n]; // number of alternatives of each
module;
Module[n][m]; // m alternatives of Modulen ;
for (i = 1; i <= n; i++) do

for (j = 1; j <= numAlt; j++) do
Ccurrent = {Module[i][j], Module2, · · · Modulen};
PT = call E-PBO Estimator(Ccurrent);
if PT then

return Modulei ;
else

break;
end

end
end
return None; // no fault found, error status, exit

Algorithm 1: Algorithm for locating faulty module by
using the Base Choice (BC) strategy.

of the module that is fed by the seeding module, by parsing
the inputs/outputs of a set ofmodules, new combomodules (a
new “module”which has the same inputs/outputs as the seed-
ing module, but is a combination of more than one module)
are generated. In this case, though the modules search space
is reduced by finding a seeding module, due to the uncer-
tainty of the number of combo modules, the module search
becomes NP-hard again. Therefore, besides seeding, we also
add a constraint to limit the number of modules in a combo
module. For example, as shown in Fig. 4, since the outputs
of the Dehazer module match the inputs of the SSD mod-
ule, an Enhanced SSDmodule composed of theDehazer and
SSD can replace the single SSD module. However, since the
Dehazer output matches its own input, theDehazer could be
cascaded together infinitely. In this case, the system would
get stuck in this phase and will not arrive of any decision.
For this reason we currently limit the number of modules in
a combo to two.

123

Auton Robot (2015) 39:487–502 495

With the seeding and this constraint, the configuration can-
didates can be generated and the greedy algorithm shown in
Nie and Leung (2011) can be used to choose an optimal
one. Algorithm 2 shows the process of phase 3 and after run-
ning algorithm, an optimal configurationCupdate is returned.
In Algorithm 2, Modulep[i] is defined as an alternative of
Modulep.

Data: T, R, Modulep , module database,
Ccurrent = {

Module1 · · · Modulep, · · · Modulen
}

Result: Cupdate
initialization: numAlt; // number of alternatives of fault module
Modulep;
numMod; // number of modules in the database;
C[MAX]; // create an array that can contain the number of MAX
configurations;
/* generate configuration candidates */
for (i=1; i <= numAlt; i++) do

C[i]=
{
Module1 · · · Modulep[i], · · · Modulen

}
;

end
while numMod > 0 do

combo = construct_combo(Modulep ,
moduledatabase[numMod]);
if combo ! = null then

C[i++] = {Module1 · · · combo, · · · Modulen};
numMod−−;

else
numMod−−;

end
end
/* greedy algorithm - generate optimal one */
UtilC = I n f ;
index ;
for (j = 1; j <= i; j++) do

/* calculate UtilC based on Eq. 4 */
Utiltemp = call E-PBO Estimator(C j);
if Utiltemp < UtilC then

UtilC = Utiltemp;
index = j;

end
end
return Cindex ; // optimal configuration

Algorithm 2: Algorithm for generating configuration can-
didates and choosing an optimal configuration using greed
algorithm.

5 ReFrESH built-in maintenance approaches

After an optimal configuration Ci generated from the pro-
posed mechanism, to run it, some modules may need to
migrate to and instantiate on the different robots. ReFrESH
provides methods to support software module adaptation
as well as hardware accelerator dynamic reconfiguration to
maintain the system.

5.1 Software adaptation

Software adaptation refers to the runtime software download-
ing and installation of reusable software modules that are not

compiled into the existing executable running on an embed-
ded system (SWEX in Fig. 1). This requires support from
both the operating systemand the communication subsystem.
The PBO (Stewart et al. 1997) framework of the PBO/RTOS
provides a good basis for component migration in embedded
and real-time systems because it encapsulates the methods
needed to control periodic and non-periodic tasks into a uni-
form programming interface that is easily ported. E-PBOs
in ReFrESH are object-oriented software modules based on
port automata. Port automata can represent a broad class of
arbitrary processes, so we will restrict our attention to tasks
based upon them.

Every embedded system, such as a robotic system,
requires somemethod to download code during development
and ours is no exception. We generally use hex files [Intel
HEX in microcontroller and MCS HEX in field program-
mable gate arrays (FPGA)] to download code to the CPU, so
it was natural to use the hex file structure to implement code
migration in PBO/RT. The format is simple and efficient to
implement in real-time, it works on both lossy RS-232 and
packet-based networks, it’s easy to control with an ASCII
terminal, and the limited address range is not a problem for
compact, real-time tasks.

The standard hex file specification allows for only six
basic record types: data, end-of-file (EOF), extended linear
address, start linear address, and two record types for Intel
segmented addresses for legacy ×86 systems. We use only
the data and EOF records for normal downloading. Since hex
files are based on specific, located addresses, we augmented
the file record structure to include two new commands: offset
function pointer and module initialization pointer.

The offset function pointer record identifies the location of
internal function pointers in the code that must be updated.
Currently, there is no mechanism to link non-OS function
calls, so all required subroutines must be included in the
migrated object code. To build the “07” (offset) commands,
note that the .map file indicates each function start address.
So, the assignment of the functionpointers occurs somewhere
in the component initialization routine. The module initial-
ization pointer is a pointer to the initialization subroutine that
is unique to the PBO structure. This subroutine registers the
module with the OS.

Upon receiving the file from the network, the OS loads
the module into memory [flash memory, in the case of the
ATmega or FPGA, which requires buffering the program
code in SRAM or Block RAM (BRAM) and breaking it
into 256-byte blocks] and spawns the PBO. At this point,
the module is installed, initialized, and ready to run.

5.2 Hardware accelerator dynamic reconfiguration

With the proliferation of programmable logic and flashmem-
ory, it would seem that logic hardware reconfiguration is

123

496 Auton Robot (2015) 39:487–502

(a)

(b)

Fig. 6 TheMorphingbus structure is replicated internally on theFPGA
to create the morphing crossbar. a When the external peripheral boards
are plugged into the base board through the local crossbar, the respond-

ing internal modules interconnect together. b The same external boards
when we swap the board order; the responding internal modules inter-
connection will change also

a trivial matter. In fact, many commercial systems permit
system reconfiguration through FPGAs. But for real-time
systems, dynamic reconfiguration remains a challenge as
time-determinism does not allow for the entire system to
be shut down while the FPGA is re-flashed. To achieve logic
hardware adaptation for real-time robotic systems (HWEX
in Fig. 1), only a part of the system can be reconfigured at
runtime at any given instant.

We have been developing architectures and tools for hard-
ware static and dynamic reconfiguration, which include the
real-time operating system, application software, and the
Morphing Bus for sensor/actuator robotic systems (Cui et al.
2014b). By mirroring the external Morphing Bus structure
and combining a local crossbar inside a single FPGA, a new

partial dynamic reconfiguration (PDR) architecture named
Morphing Crossbar has been proposed, as shown in Fig. 6.
It is important to point out that while the standard interface
concept and circular routing of the Morphing Crossbar was
inspired by ourMorphingBus for peripheral interconnection,
it is not dependent on it and can be used in any application.
Thus, through bitstream migration, we are able to dynami-
cally load a bitstream1 on-demand through PBO/RT andmap
it to the hardware.

To address the problems of resource consumption and
high timing overhead in the process of PDR, the Morph-
ing Crossbar uses a hybrid mechanism that combines the

1 Bitstream is the compiled hardware accelerator module in FPGA.

123

Auton Robot (2015) 39:487–502 497

low resource consumption of bus-based PDR mechanisms
with the speed of a point-to-point crossbar. Specifically, each
hardware component is separated into two parts: one part
is responsible for the data flow and reconfiguration control
(termed “wrapper”) and the other part is responsible for the
data processing (termed“functionality”). Thewrapper is con-
nected to the corresponding function module. During PDR,
instead of changing both parts for each component, by only
changing the wrapper the system can achieve hardware com-
ponent adding, removing, and swapping. This decreases the
configuration (partial bitstream) size and so decreases the
reconfiguration timing overhead. Also, this abstraction of the
hardwaremodule interface to the re-routingdesignpatternwe
have employed reduces consumption of internal resources
and enhances hardware reusability. The details of the Mor-
phing Crossbar design and implementation can be found in
our previous work (He et al. 2012).

6 Experiments

To date, we have implemented a basic decision making and
systemmaintenancemechanismwithinReFrESH to increase
the reliability of a two-robot system. This mechanism is vali-
dated through accomplishing a visual servoing task as shown
in Sect. 3 by a two-robot system2. The performance met-
rics we considered here are (1) non-functional performance:
power consumption PNFpower , and (2) functional perfor-
mance: deviation in pixels from the target to the center of
the image PFdi f f . Thus, staying consistent with the formal-
ism in Sect. 3, the performance of a configuration for the task
(PT) and the utilization of a configuration (UtilC) are deter-
mined according to Eq. (6) through Eq. (10). To point out,∑n

i=1 PNFpower (Mi) is the summation of all the power con-
sumption of modules (Mi) in a configuration C ; 20 is a user
defined threshold that is normalized in (0, 100) and shows
the tolerance of leftover power in a system to guarantee per-
formance; Loctarget is the horizontal location of the detected
target in the picture frame, where (0, 0) is defined at the cen-
ter of the image; 30 is the user defined maximum allowable
deviation of pixels from the target to the image center along
with horizontal (X) axis; andUtilN Fpower shows the overall
power utilization in a configuration.

PT = PNFpower

⋂
PFdi f f (6)

where,

PNFpower =
{
0,

(
100−∑n

i=1 PNFpower (Mi)
)
�20.

1, otherwise.
(7)

2 For implementation please refer to GitHub: https://github.com/
cuiyanzhe/ReFrESH.

PFdi f f =
{
1, ‖Loctarget‖ � 30.

0, otherwise.
(8)

UtilC = 0.5 ×UtilN Fpower (C) (9)

where,

UtilN Fpower =
n∑

i=1

UtilN Fpower (Mi) (10)

Given the above equations, a robot running ReFrESH
can incorporate the power consumption and target deviation
information into the decision making and system mainte-
nance process for the visual servoing task.

6.1 Hardware platform

The robotic platform used in this case study consists of a sin-
gle sevoing rotation robot and the HexManipulator that was
built in our laboratory, which is a form of Stewart–Gough
platform (Dasgupta and Mruthyunjaya 2000) configured as
defined by Uchiyama’s HEXA-Parallel-Robot (Pierrot et al.
1990; Last et al. 2005). The HexManipulator consists of six
links where each link is a serial combination of a 1 DoF
active rotary joint, a 2 DoF passive universal joint, and a 3
DoF passive spherical joint. All the links are connected to
a base and travelling plate and are actuated by a total of six
Futaba S3003 servo motors. An RGB camera which is capa-
ble of outputting30 framesper second is fixedon the traveling
plate as a vision sensor. The RecoNode (Voyles et al. 2010) is
selected to run the PBO/RT operating system. TheRecoNode
is a high performance Reconfigurable Node, whose multi-
processor architecture is based on the Xilinx Virtex-4 FPGA
with low-power, hardcore PowerPC CPUs and is capable of
up to 1600 MIPS which is more powerful than microcon-
trollers. The hardware platform setting for a visual servoing
application is shown in Fig. 7.

6.2 Software configuration

The applied task is to enable each platform to autonomously
detect three targets cyclically andmove from its current posi-
tion to a goal position based on the angle between the current
target and the next target. We mainly inject error to HexMa-
nipulator platform and mainly analyse proposed mechanism
based on it. The system configuration involves several func-
tionality, such as target detection (SSD E-PBO), trajectory
generation (trajGenE-PBO), control of the physical HexMa-
nipulator platform (HexMan E-PBO), and runtime switching
of the target template (using the resource port “template” of
SSD E-PBO). Figure 5 has shown the initial system con-
figuration for this task within ReFrESH. The “Decider” and
“Generator ” (Fig. 1) in ReFrESH are running the proposed

123

https://github.com/cuiyanzhe/ReFrESH
https://github.com/cuiyanzhe/ReFrESH

498 Auton Robot (2015) 39:487–502

Fig. 7 The hardware platform
setting for a visual servoing
application

decision making and system maintenance mechanism. Fur-
thermore, we provide a module database that consists of the
modules in Fig. 4.

6.3 Fault detection and location

To test the methods of fault detection and fault location, we
created an alternative for each E-PBO as shown in Fig. 5
except for HexMan, such as camReader_alt , SSD_alt ,
TrajGen_alt . We deliberately injected error into the sys-
tem by adding noise into the CamReader module while the
leftover power of system is 90, which is greater than 20, thus,
according to Eq. (8), PNFpower = 1. We run a total of five
trials under the exact same hardware and software configu-
ration settings.

Due to the injection of noise in the image, the template
matching module sum-squared difference (SSD) generates
the location of target with larger error. This error propagates
to the followingmodules and affects system performance. As
shown in Fig. 8, after the noise is injected in the camReader
module, around 4.4 s, the system detects the fault when the

output of SSD is larger than the threshold, so PFdi f f = 0.
Therefore, according to Eq. (6), PT = 0.

After the system fault is detected, Algorithm 1 runs to
locate the fault by using BC strategy. A total of 3 test cases
are generated by BC:

1.
{
CamReader_alt, SSD, TrajGen, HexMan

}

2.
{
CamReader, SSD_alt, TrajGen, HexMan

}

3.
{
CamReader, SSD, TrajGen_alt, HexMan

}

Then, Algorithm 1 calls the E-PBO ES of each module, con-
nects the estimator variable inputs/outputs accordingly (red
line in Fig. 9) and accumulates all the estimated performance
values (red dash line in Fig. 9). The advantage of the E-PBO
module design abstraction is the separation of E-PBO EX
variable input/output ports andES variable input/output ports
in that it allows running the estimation process without inter-
feringwith the execution of the current system configuration.

In this experiment, configuration
C = {CamReader_alt, SSD, TrajGen, HexMan}

satisfies the performance requirement, so Algorithm 1 is ter-

Fig. 8 The system error of a
HexManipulator executing a
visual servoing task

123

Auton Robot (2015) 39:487–502 499

Fig. 9 The running task configuration and the estimation process for a new non-running task configuration composed by E-PBOs. We use red
wires to distinguish current running configuration and non-running configuration that needs estimate (Color figure online)

Fig. 10 A new system configuration by swapping in a “Dehazer” E-PBO

minated after finding the first configuration and returns the
module CamReader as the faulty module.

6.4 Synthesize configuration candidates and choose an
optimal one

With the seeding module detected in the previous section
and given the module number constraint of a combo module,
Algorithm 2 runs to generate the configuration candidates
and uses greedy search to find an optimal configuration.

In this experiment, searching in the module database,
based on output ports/input ports matching, two combomod-
ules are constructed:

CamReader_alt + Dehazer ;
CamReader + Dehazer .
To point out, Dehazer is an image enhancement and noise

cancellation module. Thus, three configuration candidates
are generated as shown in the following:

1.
{
CamReader_alt, SSD, TrajGen, HexMan

}

2.
{
CamReader, Dehazer, SSD, TrajGen, HexMan

}

123

500 Auton Robot (2015) 39:487–502

3.
{
CamReader_alt, Dehazer, SSD, TrajGen,

HexMan
}

In the next step,Algorithm2generates an optimal configu-
ration based onEq. (10). The optimal configuration generated
in this case is:

C = {
CamReader, Dehazer, SSD, TrajGen, Hex

Man
}

As shown in Fig. 8, once the optimal configuration C is
instantiated, after 53.4 ms the system goes to the status that
satisfies the task performance. The updated system configu-
ration is shown in Fig. 10.

6.5 Discussion

Through this basic implementation, we justify the feasibility
of our proposed decision making and system maintenance
mechanism within ReFrESH. Though in this paper, it only
involves two robots and five modules, compared to brute
force combination method, we also can see the efficiency
improvement by using BC strategy to locate the fault. In this
case study, using brute force would generate 8 test cases,
while using BC, there are only 3 test cases generated. For the
general case analysis please refer to Sect. 4.3. Furthermore,
with the seedingmodule and the constraint for the newcombo
module, our method reduces the search space for finding an
optimal configuration.

7 Conclusion and future work

In order to increase the reliability of robotic systems, this
paper presented amechanism of decisionmaking and system
maintenance built in ReFrESH. This proposed mechanism
could monitor the system performance and detect the abnor-
mal status of the system. Also, when the fault is detected, the
BC strategy based algorithm can locate the fault efficiently.
Then based on the faulty module as a seed, and with the
constraint of constructing a new combo module, all feasible
configuration candidates can be generated and the greedy
algorithm is used to choose an optimal configuration as the
system maintaining configuration. Through a visual servo-
ing application involving runtime fault detection and fault
mitigation, we have demonstrated the utility of the proposed
mechanism for fault tolerance in robotic systems.

Our ongoing work includes testing the feasibility and
efficiency of proposed mechanism in some more complex
application scenarios which involve more than two robots
and over ten modules.We also will work on the fault location
phase by using a more sophisticated method compared to the
combination method, such as using neural networks to detect
fault in the system. Furthermore, we will keep working on
ReFrESH to have a better support of dynamic self-adaptation
in robotic systems.

Acknowledgments This work was supported by National Science
Foundation Grants CNS-0923518, CNS-1450342 and IIS-1111568
with additional support from the NSF Center for Robots and Sensors
for the Human Well-Being (RoSe-HUB).

References

Cui, Y., Voyles, R., He,M., Jiang, G.,MH.,M. (2012). A self-adaptation
framework for heterogeneous miniature search and rescue robots.
In Safety Security and Rescue Robotics (SSRR), 2012 IEEE Inter-
national Workshop on SSRR (pp. 1–7).

Cui, Y., Voyles, R.&Mahoor,M. (2013).Refresh: A self-adaptive archi-
tecture for autonomous embedded systems. In Automation Science
and Engineering (CASE), 2013 IEEE International Conference on
CASE (pp. 850–855). doi:10.1109/CoASE.2013.6654042.

Cui, Y., Voyles, R., Lane, J. & Mahoor, M. (2014a). Refresh: A self-
adaptation framework to support fault tolerance in field mobile
robots. In Intelligent Robots and Systems (IROS 2014), 2014
IEEE/RSJ International Conference on IROS 2014 (pp. 1576–
1582). doi:10.1109/IROS.2014.6942765.

Cui, Y., Voyles, R., Nawrocki, R., & Jiang, G. (2014b).Morphing bus: A
new paradigm in peripheral interconnect bus. IEEE Transactions
on Components, Packaging and Manufacturing Technology, 4(2),
341–351. doi:10.1109/TCPMT.2013.2273663.

Dasgupta, B., &Mruthyunjaya, T. (2000). The stewart platform manip-
ulator: A review. Mechanism and Machine Theory, 35(1), 15–40.

Epifani, I., Ghezzi, C., Mirandola, R. & Tamburrelli, G. (2009) Model
evolution by run-time parameter adaptation. In Proceedings of the
31st International Conference on Software Engineering, ICSE ’09
(pp. 111–121). Washington, DC: IEEE Computer Society. doi:10.
1109/ICSE.2009.5070513.

Garlan, D., Cheng, S. W., Huang, A. C., Schmerl, B., & Steenkiste,
P. (2004). Rainbow: Architecture-based self-adaptation with
reusable infrastructure. Computer, 37(10), 46–54. doi:10.1109/
MC.2004.175.

Georgas, J.C. & Taylor, R.N. (2008). Policy-based self-adaptive archi-
tectures: A feasibility study in the robotics domain. InProceedings
of the 2008 International Workshop on Software Engineering for
Adaptive and Self-managing Systems, SEAMS ’08 (pp. 105–112).
New York: ACM. doi:10.1145/1370018.1370038.

Gerkey, B., & Mataric, M. (2002). Sold!: auction methods for multiro-
bot coordination. IEEE Transactions on Robotics and Automation,
18(5), 758–768. doi:10.1109/TRA.2002.803462.

Grindal, M., Lindstrm, B., Offutt, J., & Andler, S. (2006). An
evaluation of combination strategies for test case selection.
Empirical Software Engineering, 11(4), 583–611. doi:10.1007/
s10664-006-9024-2.

He, M., Cui, Y., Mahoor, M. & Voyles, R. (2012). A heteroge-
neous modules interconnection architecture for FPGA-based par-
tial dynamic reconfiguration. In Reconfigurable Communication-
centric Systems-on-Chip (ReCoSoC), 2012 7th International
Workshop on ReCoSoC (pp. 1 –7). doi:10.1109/ReCoSoC.2012.
6322887.

Kramer, J. &Magee, J. (2007). Self-managed systems: An architectural
challenge. In Future of SoftwareEngineering, 2007,FOSE ’07 (pp.
259–268). doi:10.1109/FOSE.2007.19.

Last, P., Budde, C. & Hesselbach, J. (2005). Self-calibration of the
hexa-parallel-structure. In Automation Science and Engineering,
2005, IEEE International Conference on Automation Science
and Engineering, 2005 (pp. 393–398). doi:10.1109/COASE.2005.
1506801.

Mangharam, R. & Pajic, M. (2009). Embedded virtual machines for
robust wireless control systems. In Distributed Computing Sys-
tems Workshops, 2009, 29th IEEE International Conference on

123

http://dx.doi.org/10.1109/CoASE.2013.6654042
http://dx.doi.org/10.1109/IROS.2014.6942765
http://dx.doi.org/10.1109/TCPMT.2013.2273663
http://dx.doi.org/10.1109/ICSE.2009.5070513
http://dx.doi.org/10.1109/ICSE.2009.5070513
http://dx.doi.org/10.1109/MC.2004.175
http://dx.doi.org/10.1109/MC.2004.175
http://dx.doi.org/10.1145/1370018.1370038
http://dx.doi.org/10.1109/TRA.2002.803462
http://dx.doi.org/10.1007/s10664-006-9024-2
http://dx.doi.org/10.1007/s10664-006-9024-2
http://dx.doi.org/10.1109/ReCoSoC.2012.6322887
http://dx.doi.org/10.1109/ReCoSoC.2012.6322887
http://dx.doi.org/10.1109/FOSE.2007.19
http://dx.doi.org/10.1109/COASE.2005.1506801
http://dx.doi.org/10.1109/COASE.2005.1506801

Auton Robot (2015) 39:487–502 501

ICDCS Workshops ’09 (pp. 38–43). doi:10.1109/ICDCSW.2009.
31.

McIntyre, M., Dixon, W., Dawson, D., & Walker, I. (2005). Fault iden-
tification for robot manipulators. IEEE Transactions on Robotics,
21(5), 1028–1034. doi:10.1109/TRO.2005.851356.

Michael, N., Shen, S., Mohta, K., Mulgaonkar, Y., Kumar, V., Nagatani,
K., et al. (2012). Collaborativemapping of an earthquake-damaged
building via ground and aerial robots. J Field Robot, 29(5), 832–
841.

Nie, C., & Leung, H. (2011). A survey of combinatorial testing. ACM
Computing Surveys, 43(2), 11:1–11:29. doi:10.1145/1883612.
1883618.

Parker, L. (1998). Alliance: An architecture for fault tolerant multiro-
bot cooperation. IEEE Transactions on Robotics and Automation,
14(2), 220–240. doi:10.1109/70.681242.

Pierrot, F., & Uchiyama, M. (1990). A new design of a 6-DOF parallel
robot. Journal of Robotics and Mechatronics, 2(4), 308–315.

Stewart, D., Volpe, R., & Khosla, P. (1997). Design of dynamically
reconfigurable real-time software using port-based objects. IEEE
Transactions on Software Engineering, 23(12), 759–776. doi:10.
1109/32.637390.

Tung, Y.W. & Aldiwan, W. (2000). Automating test case generation
for the new generation mission software system. In 2000 IEEE
Aerospace Conference Proceedings (Vol. 1, pp. 431–437). doi:10.
1109/AERO.2000.879426.

van Hoorn, A., Waller, J. & Hasselbring, W. (2012). Kieker: A
framework for application performance monitoring and dynamic
software analysis. InProceedings of the Third Joint WOSP/SIPEW
International Conference on Performance Engineering, ICPE ’12
(pp. 247–248). New York: ACM. doi:10.1145/2188286.2188326.

Vig, L., & Adams, J. (2006). Multi-robot coalition formation. IEEE
Transactions on Robotics, 22(4), 637–649. doi:10.1109/TRO.
2006.878948.

Voyles, R., Povilus, S., Mangharam, R. & Li, K. (2010). Reconode: A
reconfigurable node for heterogeneous multi-robot search and res-
cue. In Safety Security and Rescue Robotics (SSRR), 2010 IEEE
International Workshop on SSRR (pp. 1–7). doi:10.1109/SSRR.
2010.5981569.

Zhang, Y. & Parker, L. (2012). Task allocation with executable coali-
tions in multirobot tasks. In Robotics and Automation (ICRA),
2012 IEEE International Conference on ICRA (pp. 3307–3314).
doi:10.1109/ICRA.2012.6224910.

Zhang, Y., & Parker, L. (2013). IQ-ASyMTRe: Forming executable
coalitions for tightly coupled multirobot tasks. IEEE Transactions
on Robotics, 29(2), 400–416. doi:10.1109/TRO.2012.2228135.

Yanzhe Cui (S’10) received
the B.S. in Electrical Engineer-
ing and the M.S. degree in
Electrical Engineering from the
Chongqing University of Tech-
nology, Chongqing, China, in
2007 and 2010, respectively. He
is now a Research Assistant
with the Collaborative Robot-
ics Laboratory at Purdue Uni-
versity, West Lafayette, IN,
USA. He is interested in partial
dynamic reconfiguration, wire-
less sensor/actuator/control net-
works, and cyber physical sys-

tems. His current research interests include heterogeneous teams of
urban search and rescue robots, which need an infrastructure to support
dynamic self-adaptation under a volatile environment.

Richard M. Voyles (S’92-
M’97-SM’00) received the B.S.
in Electrical Engineering from
Purdue University in 1983, the
M.S. in Manufacturing Systems
Engineering from the Depart-
ment of Mechanical Engineering
at Stanford University in 1989,
and the Ph.D. in Robotics from
the School of Computer Science
at Carnegie Mellon University
in 1997. He is currently a Pro-
fessor and Associate Dean for
Research in the School of Engi-
neering Technology at Purdue
University and a Senior Member

of the IEEE. He was at the University of Minnesota from 1997 to 2006,
University of Denver from 2007 to 2013, and currently holds a dual
appointment in the Office of Science and Technology Policy at the
White House. His research interests are in the areas of robotics and
artificial intelligence. Specifically, he is interested in the development
of small, resource-constrained robots and robot teams for urban search
and rescue and surveillance. He has additional expertise in sensors and
sensor calibration, particularly haptic and force sensors, and real-time
control.

Josh T. Lane (S’14) received
the B.S. in Electrical Engineer-
ing from the University of Den-
ver in 2013 and is currently
enrolled as a graduate student
in the School of Engineering
Technology at Purdue Univer-
sity. He is a Research Assistant
with the Collaborative Robotics
Laboratory conducting research
in the area of search and rescue
robotics. His research interests
include the design and devel-
opment of robotic systems as
well as mechanical and electrical
hardware design.

Akshay Krishnamoorthy (S’
14) received theB.S. inElectrical
Engineering from M.S Ramaiah
Institute of technology—India in
2013 and is currently enrolled as
a graduate student in the College
of Engineering at PurdueUniver-
sity. He is a Research Assistant
with the Collaborative Robotics
Laboratory conducting research
in the area of search and rescue
robotics. His research interests
include the design and develop-
ment of robotic systems as well
as software and electrical hard-
ware design.

123

http://dx.doi.org/10.1109/ICDCSW.2009.31
http://dx.doi.org/10.1109/ICDCSW.2009.31
http://dx.doi.org/10.1109/TRO.2005.851356
http://dx.doi.org/10.1145/1883612.1883618
http://dx.doi.org/10.1145/1883612.1883618
http://dx.doi.org/10.1109/70.681242
http://dx.doi.org/10.1109/32.637390
http://dx.doi.org/10.1109/32.637390
http://dx.doi.org/10.1109/AERO.2000.879426
http://dx.doi.org/10.1109/AERO.2000.879426
http://dx.doi.org/10.1145/2188286.2188326
http://dx.doi.org/10.1109/TRO.2006.878948
http://dx.doi.org/10.1109/TRO.2006.878948
http://dx.doi.org/10.1109/SSRR.2010.5981569
http://dx.doi.org/10.1109/SSRR.2010.5981569
http://dx.doi.org/10.1109/ICRA.2012.6224910
http://dx.doi.org/10.1109/TRO.2012.2228135

502 Auton Robot (2015) 39:487–502

Mohammad H. Mahoor (S’03-
M’07) received theB.S. degree in
Electronics from Abadan Insti-
tute of Technology, Iran, in 1996,
the M.S. degree in Biomedical
Engineering from Sharif Uni-
versity of Technology, Iran, in
1998, and the Ph.D. in electrical
and computer engineering from
University of Miami, Florida,
in 2007. He joined the Univer-
sity of Denver (DU) as assistant
professor of computer engineer-
ing in September 2008. He has
authored or co-authored over 60

refereed research publications. He is the director of image processing
and computer vision laboratory at DU. His research interests include
affective computing and particularly developing automated systems for
facial expression recognition.

123

	A mechanism for real-time decision making and system maintenance for resource constrained robotic systems through ReFrESH
	Abstract
	1 Introduction
	2 Related work
	2.1 Fault detection
	2.2 Fault location
	2.3 Fault mitigation

	3 Motivating example and formalism of the problem
	3.1 Visual servoing application
	3.2 Formalism of the problem

	4 The approach: diagnosis--synthesis-decision making
	4.1 Extended port-based object
	4.1.1 E-PBO evaluator
	4.1.2 E-PBO estimator

	4.2 Decision making phase 1: monitor running configuration
	4.3 Decision making phase 2: locate faulty module
	4.4 Decision making phase 3: find an optimal configuration

	5 ReFrESH built-in maintenance approaches
	5.1 Software adaptation
	5.2 Hardware accelerator dynamic reconfiguration

	6 Experiments
	6.1 Hardware platform
	6.2 Software configuration
	6.3 Fault detection and location
	6.4 Synthesize configuration candidates and choose an optimal one
	6.5 Discussion

	7 Conclusion and future work
	Acknowledgments
	References

