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Abstract This paper presents a dense monocular mapping
algorithm that improves the accuracy of the state-of-the-art
variational and multiview stereo methods by incorporating
scene priors into its formulation. Most of the improvement
of our proposal is in low-textured image regions and for
low-parallax camera motions; two typical failure cases of
multiviewmapping. The specific priors wemodel are the pla-
narity of homogeneous color regions, the repeatinggeometric
primitives of the scene—that can be learned from data—and
the Manhattan structure of indoor rooms. We evaluate the
performance of our method in our own sequences and in the
publicly available NYU dataset, emphasizing its strengths
and weaknesses in different cases.
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1 Introduction

Estimating a 3D reconstruction of a scene from 2D images
has been one of themost studied topics in the computer vision
community for the last four decades. As a result the geo-
metric models for single and multiple views are currently
well-known (Hartley and Zisserman 2004). The topic also
has a key importance for robotics, as robots need accurate
models of their environment in order to interact safely with
it. The sequential 3D estimation of the scene and the camera
pose is usually known in the robotics community as visual
SLAM, the latter acronym standing for Simultaneous Local-
ization and Mapping.

From a geometric point of view, we need at least two
views to estimate the depth of a general scene. The standard
3D reconstruction pipeline starts from multiple views of a
scene and uses the well-known geometric models to min-
imize an error related with the goodness of the estimation.
The traditional approaches minimize the geometric reprojec-
tion error of a sparse set of salient points (e.g., Davison et al.
2007; Klein and Murray 2007; Snavely et al. 2008) while
more recent ones use the photometric error (Newcombe et al.
2011; Engel et al. 2014). These algorithms have two main
limitations that are rarely mentioned in the literature, failing
in the cases of low-texture scenes and low-parallax camera
motions. Both cases are likely to appear in indoor and man-
made scenes.

Although single-view reconstruction is an ill-posed prob-
lem, meaning that in general depth cannot be estimated
from one view, there are solutions based on exploiting non-
geometric cues and assumptions on the scene. For example,
Sturm andMaybank (1999) creates a piecewise planar recon-
structionwith user interaction.Hoiemet al. (2005), also using
planar assumptions, is able to reconstruct outdoor scenes.
Saxena et al. (2005) and Eigen et al. (2014) predict the depth
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(a) Variational mapping 

(h) Ours: Variational Mapping + 
3DS, DDP and Layout

Monocular sequence (multiple views)

Prior 1: Textureless Regions are planar segments

Prior 3: Rooms are Box-like

Prior 2: Multi-planar patterns 

(b) 2D superpixelss (c) 3D superpixels (3DS)

(e) Layout (f) Room Labelsels (g) Objects

(d) Data-driven Primitives (DDP)

Fig. 1 Incorporating scene priors to dense monocular mapping. (a).
Variational mapping fails in textureless regions (top view). Notice for
example the large errors in the walls. We use the following information
to fix this error. Prior 1 Textureless regions are planar segments. We
segment the image into superpixels (b) and triangulate them from mul-
tiple views (c).Prior 2Man-made scene entities have repeating patterns
that can be learned from RGB-D data. (d) Shows the detections of such

data-driven primitives, capturing the three normals of the scene. Prior
3 Indoor scenes are box-like. We fit a box to a sparse reconstruction (e).
Given the room layout, we classify the image into the room geomet-
ric parts walls–floor–ceiling (f ) and clutter (g). This gives us the prior
depth and shape for the pixels classified as room geometric parts in (f ).
(h) shows how the 3D reconstruction is improved when the three scene
priors are used

from a single image by learning models from training data.
Single-view reconstruction has been proposed for robot navi-
gation and planning (Nabbe et al. 2006; Saxena ewt al. 2008),
but its accuracy is usually lower than multiview techniques
and might fail catastrophically if the underlying assumptions
are not met or the current image is far from the training set.

In this paper we propose the combination of state-of-
the-art dense monocular SLAM algorithms (specifically we
take Newcombe et al. 2011 as our baseline) with higher-
level features, data-driven and scene understanding cues to
address the failure cases of low-texture scenes and low-
parallax motions.We use 3D superpixels (3DS) (Concha and
Civera 2014) to model areas of homogeneous color, data-
driven 3D primitives (DDP) to predict the depth of repeating
scene patterns from a single view (Fouhey et al. 2013) and
layout estimation and classification (Hedau et al. 2009) to

predict the depth of the walls and ceiling, usually textureless.
Our experimental results show that our approach outper-
forms our baseline (Newcombe et al. 2011) in all the cases.
Through several sequences, we illustrates the weaknesses
and strengths of each of our depth cues.

See Fig. 1 for an overview of our system. Figure1a shows
the 3D reconstruction of a state-of-the-art dense SLAM
method in a bedroom scene. Notice the errors in the walls.
Observe the scene priors; 3D superpixels (3DS) in (c), data-
driven primitives (DDP) in (d) and Layout and room labels
in (e) and (f). (h) shows the improved reconstruction.

This paper builds on the previous work (Concha et al.
2014). The specific contributions of this paper are

– The evaluation of a new single-view depth prior based on
learning geometric primitives from training data.
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– The fusion of the three priors. Notice that Concha et al.
(2014) just evaluated two of the priors separately.

– An extended experimental evaluation of the proposed
algorithm, including several sequences from the publicly
available NYU dataset.

The rest of the paper is organized as follows. Section 2
describes the related work. Section3 gives the details of
our proposal. Section4 presents the experimental results and
Section 5 concludes.

2 Related work

2.1 Dense monocular mapping

Real-time and dense 3D reconstructions of small-size envi-
ronments from monocular sequences were first achieved in
Graber et al. (2011), Newcombe et al. (2011), and Stühmer
et al. (2010). The problem is formulated as the minimization
of an energy composed of a photometric and a regulariza-
tion term; the first one modeling the photometric consistency
of corresponding pixels and the second one the smoothness
of regions with low image gradients. A typical limitation
of standard regularizers based on the Total Variation or the
Huber norm is that they have high errors in large low-textured
image regions. Engel et al. (2014) estimates the depth only for
high-gradient pixels, producing semidensemaps. In contrast,
our proposal produces fully dense maps. Piniés et al. (2015)
uses a non-local regularizer, able to propagate information
from distant pixels and obtainmore accurate reconstructions.
Instead of relying in the regularizer, our proposal intro-
duces new features (3D superpixels, 3D primitives learned
from data and floor-ceiling-walls-clutter classification) to the
formulation. Our proposal improves over the state of the art
in the case of textureless regions. But it also improves in the
low-parallax case, as our two latest cues use single view—
zero-parallax—information.

2.2 Data-driven depth cues

There are several works that use machine learning and high-
level cues to improve multiview reconstructions. Bao and
Savarese (2011) jointly optimize 3D objects and sparse key-
points achieving a better performance in both tasks than the
performance achieved optimizing them separately. Owens
et al. (2013) detects patches based on gradients in the images
and looks for them in a RGB-D dataset to infer depth infor-
mation and use it to fill low texture areas in keypoint-based
Structure from Motion. Differently from them we estimate
fully dense 3D reconstructions. Bao et al. (2013) and Dame
et al. (2013) use object constraints to improve 3D dense

reconstructions. Our approach aims to reconstruct scenes
instead of objects.

2.3 Manhattan and piece-wise planar models

Furukawa et al. (2009), Gallup et al. (2010) andVanegas et al.
(2010) used theManhattan assumption to fill textureless gaps
in sparse 3D reconstructions. Mičušík and Košecká (2010),
Concha and Civera (2014), Concha and Civera (2015a), Flint
et al. (2011) and Tsai et al. (2011) have used superpixels
and indoor scene understanding respectively to fill texture-
less gaps in sparse 3D reconstructions. Our contribution is
to fuse the previously mentioned cues and a new one—data-
driven primitives—in a dense variational formulation. Our
main advantages over them are the estimation of pixelwise
reconstructions—the previously referred ones are not fully
dense.

3 Dense mapping using scene priors

3.1 Problem formulation

Our aim is to estimate the inverse depth ρ(u) for every pixel
u of a reference keyframe Ir using a set of overlapping views
{I1, . . . , I j , . . .}. In order to do that we minimize a global
energy function Eρ ; which is the weighted sum of a pho-
tometric error data term C(u, ρ(u)), a regularization term
R(u, ρ(u)) and our newly proposed term which is a summa-
tion of the three scene priors ρ1, ρ2 and ρ3

Eρ =
∫

(λ0C(u, ρ(u)) + R(u, ρ(u))

+
3∑

π=1

λπ

2
P(u, ρ(u), ρπ (u))∂u (1)

λ0 andλπ are theweighting factor that account for the relative
importance of the energy terms.

3.2 The scene priors

To extract our three scene priors we need two preprocess-
ing steps. We extract first a set of salient points u∗ ∈ u
in every keyframe of the sequence, compute correspon-
dences and estimate the salient points’ 3D positions which
we defined as p = (p�

1 . . . p�
i . . . p�

n )� and camera poses
c = (c�

1 . . . c�
r . . . c�

j . . . c�
m)� using a standard Bundle

Adjustment optimization (Snavely et al. 2008).
In the second preprocessing step, we segment every

reference keyframe Ir into a set of superpixels Sr =
{sr1, . . . , srl , . . . , srt } using the algorithm by Felzenszwalb
and Huttenlocher (2004).
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3.2.1 3D superpixels (3DS)

We assume that the superpixels Sr = {sr1, . . . , srl , . . . , srt }
correspond to approximately planar areas in the scene. We
will estimate their 3D parameters using Concha and Civera
(2014), which we will summarize here for completeness.

We can estimate the geometric parameters � = (
π�
1 . . .

π�
k . . . π�

q

)�
for the q planar superpixels {s1, . . . , sk, . . . ,

sq} that were matched in two or more keyframes with the
following optimization

�̂ = arg min
�

m∑
r=1

q∑
k=1

F(εrsk ) . (2)

εrsk = ursk − h(u j
shk

,πh
k , cr , c j ) stands for the reprojection

error of the superpixel sk contours in the keyframe Ir . As
we are approximating the superpixels by planar surfaces, h
stands for a homography model. We use a robust function of
the error F(∗) to avoid the influence of outliers. Superpixels
πk are parametrized by its plane normal nk and distance to
the origin dk .

The superpixel correspondences between several views
are computed as follows. We first search for pairwise corre-
spondences between two keyframes Ir and I j using a Monte
Carlo approach. For every superpixel sk in Ir we create sev-
eral plane hypotheses πh

k . The plane hypothesis are ranked
according to the reprojection error of the superpixel contours
in image I j

εshk
=

∣∣∣∣
∣∣∣∣u j

shk
− h

(
ur
shk

,πh
k , cr , c j

)∣∣∣∣
∣∣∣∣ (3)

The planar superpixel hypotheses πh
k with the smallest

error εshk
are taken as the initial seed for the optimization of

Eq.2.
The scene prior inverse depth ρ1(u) for every pixel u ∈ sk

is computed as the intersection of its backprojected ray and
the plane πk

ρ1(u) =
∣∣∣∣
∣∣∣∣−uK−1

r Rrnk
dkK

−1
r u

∣∣∣∣
∣∣∣∣ . (4)

where Rr is the rotation matrix of the keyframe Ir and Kr is
its internal calibration matrix.

3.2.2 Data-driven primitives (DDP)

A data-driven primitive is a repetitive and distinctive image
gradient pattern with an associated 3D pattern. The models
for such patterns can be learned from RGB-D training data.
At test time, and from a single view, the gradient patterns

can be detected and their depth can be predicted. Imagine,
for example, the case of a room corner. It is a primitive that
appears frequently indoors, it has a clear 3D pattern and sev-
eral associated image patterns depending on the viewpoint.

Specifically, we use the approach of Fouhey et al. (2013).
Each primitive is defined by 〈w,N, y〉; wherew is the weight
of an SVM classifier, N = {n(u)} is the set of normals for
each pixel u of the primitive patch, and y = {0, 1}m is an
indicator vector where yi = 1 if the training patch xi is
an instance of such primitive. Each patch has a geometric
component xGi and an appearance component xAi (HOG). In
order to build the SVM classifiers w the following objective
function is minimized on m training images

arg min
y,w

R(w) +
m∑
i=1

(
Δ(N, xGi ) + c2L(w, xAi , yi )

)
(5)

where R is the classifier regularizer, each ci trades off
between terms, and L is the loss function. Notice that the
above classifiers will provide a set of sparse detections of
some geometric primitives in the test images. Dense results
can be achieved by the propagation of these sparse detections
to the entire image. But we have observed that such propaga-
tion might be innacurate if only a small number of primitives
is detected. In order to keep the geometric primitives as accu-
rate as possible, we only consider the sparse detections.

Similarly to Sect. 3.2.1 we extract superpixels and assume
that they correspond to approximately planar areas in the
scene. For every superpixel πk its plane normal nk and dis-
tance to the origin dk are estimated. For each superpixel, the
common normal direction is the most voted one from the
geometric primitives. The distance dk is estimated using the
approach of Sect. 3.2.3; and the inverse depth prior ρ2(u)

for every pixel u ∈ sk is computed as the intersection of its
backprojected ray and the plane πk (Eq. 4).

3.2.3 Layout

One of the goals of indoor scene understanding is the esti-
mation of the rough geometry of a room—its layout—and
the classification of every image pixel u into the wall, floor,
ceiling or clutter classes. In this paper we basically use the
algorithm of Hedau et al. (2009) and extend it to a multi-
view case. For an overview of the layout and the labelling
algorithm see Fig. 2.

The main assumption is that we are in a cuboid room. The
geometric model of the room layout L will be composed of
six planes L = {π1,π2,π3,π4,π5,π6}. Every plane πk

will be parametrized by its plane normal nk and distance
to the origin dk . We first estimate the plane normals nk by
extracting the vanishing points vrk from the dominant direc-
tions of the room in every keyframe Ir (Košecká and Zhang
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(a) Sparse Reconstruction

(b) Manhattan World

 Multi-view 3D Box Layout Scene Labels

(e) Room Geometry

(f) Room Objects

1

2
3

(c)

(d)

Fig. 2 Overview of the layout and the labelling algorithm. See Sect. 3.2.3 for details

2006). These vanishing points are estimated by clustering
the detected 2D line segments in the keyframe in three dom-
inant clusters. Figure2b shows the vanishing points as red,
green and blue circles. We backproject them to the 3D world
Vr
k = K−1

r vrk (Kr standing for the calibration matrix), group
them into three clusters, and take their centroids.

In order to estimate the room layout box, we will fit planes

to the sparse reconstruction p = (
p�
1 . . . p�

i . . . p�
n

)�
of

Fig. 2a. For this plane fitting, we start from the 3 dominant
orientations of the room; the Manhattan directions provided
by the vanishing points. For each orientation, we hypothesize
Nhyp planes at different distances. Specifically, Nhyp = 25
in our experiments. A plane hypothesis is considered valid
if it is supported by a minimum number of points (6 in our
experiments). A point supports the hypothesis if it is within a
predefined threshold. Finally, out of the winning planes, we
select 6 extremal planes consisting the3Dbox layout (Fig. 2c)

Next, leveraging this 3D box layout, we label every super-
pixel from the segmentation Sr = {sr1, . . . , srl , . . . , srt } into
4 different classes {W, F,C,Cl}—wall, floor, ceiling and
clutter respectively. See Hoiem et al. (2007) for details on
the superpixel features and the classification algorithm. One
of the most informative features for this classification is the
interposition feature. The superpixels belonging to the room
geometry must be totally contained in one of the projected
box polygons. The superpixels belonging to the object clutter
can cross the boundary between two polygons of the project
layout box. For example, in Fig. 2d, superpixels numbered
1 and 3 are totally contained in the wall and the floor poly-
gon. Hence, they get the room geometry labels (Fig. 2e). The
superpixel numbered 2 is crossing the red line of the projected
box layout. Only 3D objects have this physical property and
hence it is labelled as clutter (Fig. 2f). For more details see
Hedau et al. (2009). Notice that this method only tells us

where the objects are but it does not give us the orientation
nor the depth prior for the clutter (object) region. Therefore,
we will not constraint the depth of the pixels u ∈ Cl that are
labeled as clutter. For the rest of the pixels u ∈ {W, F,C}we
will compute an a priori inverse depth ρ3(u) from the inter-
section between the backprojected ray K−1

r u and the layout
plane πk ∈ L where it has been classified using Eq.4.

3.3 The photometric cost (C(u, ρ(u)))

As in Newcombe et al. (2011), our photometric error is based
on color difference between the reference image and the set of
short-baseline images. Every pixel u of the reference image
Ir is first backprojected at an inverse distance ρ and projected
again in every close image I j .

u j = Tr j (u, ρ) = KR�
((

K−1u
||K−1u||

ρ

)
− t

)
(6)

whereT,R and t and respectively the relative transformation,
rotation and translation between keyframe r and frame j . The
photometric error is the summation of the color error between
every pixel in the reference image and its corresponding in
every other image at an hypothesized inverse distance ρ.

C(u, ρ(u)) = 1

|Is |
m∑

j=1, j �=r

f
(
ε(I j , Ir ,u, ρ)

)
(7)

ε(I j , Ir ,u, ρ) = Ir (u) − I j (Tr j (u, ρ)) (8)

where Is is the number of images used in the reconstruction,
used for normalization of the photometric term. Differently
from (Concha et al. 2014) we use a robust cost function—
Tukey’s cost function f—in the photometric term instead of
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L1 norm, which improves the accuracy of the reconstruction
in depth discontinuities due to the influence of outliers in
occlusions Concha and Civera (2015b).

3.4 The gradient regularizer (R(u, ρ(u)))

The gradient regularizer is the Huber norm of the weighted
gradient of the inverse depth map ||∇ρ(u)||ε

R(u, ρ(u)) = g(u)||∇ρ(u)||ε (9)

Depth discontinuities often coincides with contours. g(u)

is a per-pixelweight that decreases the regularization strength
for high-gradient pixels.

g(u) = e−α||∇Ir (u)||2 (10)

where α is a constant.

3.5 The terms associated with the scene priors
(P(u, ρ(u), ρπ(u)))

The scene prior terms model the distance from every point to
its estimated planar prior (or priors) ρπ detailed in Sect. 3.2.
Differently from (Concha et al. 2014) we use iterative
reweighted least squares to be robust against outliers Concha
and Civera (2015b). This is of key importance to deal with
classification or segmentation errors. In those cases the cost
function of the error should saturate for large values and have
a limited influence on the solution.

P(u, ρ(u), ρπ (u)) = wπ

(
ρ(u) − ρπ (u)

)2 (11)

wπ is the Tukey’s cost function weight. In the areas of the
image where we do not have a planar constraint (areas clas-
sified as clutter in the Manhattan layout, small and textured
superpixels and areas where we did not detect any geometric
primitive) we set λπ = 0. We set the lambda of 3D super-
pixels λ1 = 10 and we set a smaller lambda for the other
two priors λ2 = 5 and λ3 = 5. The reason is that superpixels
are based on multiview geometry whereas layout and geo-
metric primitives use learning which is more prone to large
errors.

3.6 Solution

The energy is composed of two convex terms g(u)||∇ρ(u)||ε
+

3∑
π=1

1
2λπwπ

(
ρ(u) − ρπ (u)

)2 and a non-convex term

λ0C(u, ρ(u)). The convex terms and the non-convex term
are optimized differently and an auxiliary variable a is used
to couple these two terms:

Eρ,a =
∫ (

λ0C(u, a(u))+g(u)||∇ρ(u)||ε

+
3∑

π=1

1

2
λπwπ

(
ρ(u) − ρπ (u)

)2 +

1

2θ
(ρ(u) − a(u))2

)
∂u (12)

The coupling term 1
2θ (ρ(u) − a(u))2 will enforce ρ and

a to become the same as the parameter θ is initialized in 0.2
and it is derived to 0 iteratively. Therefore, Eq. 12 will result
in the original energy 1.

The non-convex term will be optimized by sampling and
the convex termswill be efficiently optimized using a primal-
dual approach.

The convex terms are converted to their primal-dual
formulation using the Legendre–Fenchel transformation
(details and proofs inAngeli et al. 2011). The energy inEq.12
is then minimized as follows

ρ̂ = arg max
q,||q||2≤1

{
arg min

ρ,a
E(ρ, a,q)

}
(13)

E(ρ, a,q) =
{〈
gAρ,q

〉 − δq(q) − ε

2
||q||22

+
3∑

π=1

1

2
λπwπ

(
ρ − ρπ

)2 + 1

2θ
(ρ − a)2

+ λ0C(a)
}

(14)

where q is the dual variable, Aρ stands for the gradient of ρ,
ε is the threshold of the Huber norm which determines when
L1 or L2 norm are used (Newcombe et al. 2011) and δq is an
indicator function (Angeli et al. 2011).

For the dual variable q the energy has to be maximized,
therefore a gradient ascent step ∂E(ρ,a,q)

∂q = ∇(q) is com-
puted:

∂E(ρ, a,q)

∂q
= gAρ − εq (15)

Discretizing ∇(q) = q(n+1)−qn

σq
and rearranging terms:

q(n+1) − qn

σq
= gAρn − εq(n+1) (16)

where σq is the differentiation step.

q(n+1) = (
qn + σqgAρn) /

(
1 + σqε

)
(17)

q(n+1) = q(n+1)/max(1, ||q(n+1)||1) (18)

In the case of the variable ρ, the energy is minimized,
therefore a gradient descent step ∂E(ρ,a,q)

∂ρ
= ∇(ρ) is com-
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puted. Using the divergence theorem
∂
〈
Aρ,q

〉
∂ρ

= −div(q) =
ATq, where ATq forms the negative divergence of q:

∂E(ρ, a, q)

∂ρ
= gATq + 1

θ
(ρ − a)

+
3∑

π=1

λπwπ

(
ρ − ρπ

)
(19)

Discretizing ∇(ρ) = ρ(n+1)−ρn

σρ
and rearranging terms:

ρ(n+1) − ρn

σρ

= −gATq(n+1)

− 1

θn
(ρ(n+1) − an)

−
3∑

π=1

λπwπ (ρ(n+1) − ρπ ) (20)

where σρ is the differentiation step.

ρ(n+1) =

(
ρn+σρ

(
−gATq(n+1) + an

θn
+

3∑
π=1

λπwπρπ

))

(1 + σρ

θn
+

3∑
π=1

λπwπσρ)

(21)

The remaining non-convex function is minimized using a
point-wise search for each a in the range a = [ρmin, ρmax ]:

â = arg min
a

Eaux (ρ, a) (22)

Eaux (ρ, a) = 1

2θ
(ρ − a)2 + λ0C(a))) (23)

Finally, we use the acceleration of the non-convex solution
recommended inNewcombe et al. (2011) and alsowe achieve
sub-sample accuracy by performing a single Newton step
using numerical derivative in the discrete variable a:

â(n+1) = â(n+1) − ∇Eaux

∇2Eaux
(24)

Equations17, 18, 21, 22 and 24 are computed iteratively
while θ(n+1) = θn(1 − 0.001 ∗ n) is higher than 0.0001.

For the initialization of the iterative optimization we will
use the photometric depth in the high-gradient image regions
and the average of the depths of the scene priors for texture-
less areas. We have observed that this initialization has better
convergence than a photometric one.

4 Experimental results

We have evaluated different aspects of our proposal in indoor
and outdoor sequences of small and middle-size scenes. For
every indoor experiment we have a RGB-D sequence. We
used the D channel as the ground truth depth for the scene
and our algorithm used the RGB data. We used our own
sequences and sequences from the public NYU dataset (Sil-
berman et al. 2012). In both cases the camera used was the
Microsoft Kinect. The outdoor experiments were recorded
with a RGB camera and we only show qualitative results,
due to the limitations of RGB-D sensors under direct sun-
light.

We divided our results on two subsets. Section4.1 presents
results on low texture scenes. Section4.2 presents results on
low parallax camera motions using the sequences from the
NYU dataset.

4.1 Low texture scenes

4.1.1 Indoors

We have evaluated the performance of 3D superpixels (3DS)
as a prior for direct mapping with 5 indoor sequences
(Bookshelf, Desktop, Corner1, Corner2 and Wall). The
experiments in this section deviate from the assumptions
of the other two priors—layout and geometric primitives—
as most of them are close ups. We will only evaluate the
improvement obtained using 3DS. 3DS is a more general
prior than Layout and data-driven primitives (DDP), as it
can be applied in any scene. DDP requires scenes simi-
lar to the training set and Layout requires a global view
of the indoor scene. On the other hand, the triangulation
of superpixels require a high-parallax camera motion while
the other two perform reasonably even for the single-view
case.

Figure3 and Table1 show the qualitative and quantita-
tive results for these experiments. The so-called—Bookshelf
experiment is a clear textured scenario where the photomet-
ric term is already very informative and the reconstruction
is quite accurate with standard dense mapping. But even in
this case, 3DS improves the mean error 6%. In the other four
sequences there are larger textureless areas and the gradient-
based regularization produces larger errors. In these latest
cases, 3DS improves the 3D reconstructions significantly.

We have used a larger sequence recorded in our Lab to
compare 3DS and Layout. Find a qualitative summary of
the results in Fig. 4, the 3D maps obtained in Fig. 5 and the
quantitative results in Table1. 3DS and Layout mean errors
are 10.2 cm and 15.5 cm respectively, both smaller than the
DTAM baseline error (28.2 cm). 3DS outperforms Layout in
this case because the sequence was recorded with large cam-
era translations—and hence high parallax. This is the best
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Fig. 3 Indoor experiments,
high-parallax camera motion,
close-ups. First column
Reference image. Second
column 3D superpixels. Third
column ground truth depth—red
stands for no-depth-data. Fourth
column DTAM depth. Fifth
column Ours, using 3DS. Notice
how this latest column is
visually closer to the ground
truth than the DTAM one (Color
figure online)

Table 1 Mean of the estimated depth error for the standardDTAM and
our approach using 3DS

Sequence Mean error (cm)

DTAM Ours (3DS)

Bookshelf (3DS) 2.9 2.7

Desktop (3DS) 4.4 2.9

Corner1 (3DS) 6.6 3.2

Corner2 (3DS) 18.5 13.7

Wall (3DS) 30.4 10.3

Lab (3DS) 28.2 10.2

Lab (layout) 15.5

Lab (3DS+ layout) 10.5

configuration for 3DS. You can observe a large error in the
layout in the last row of Fig. 4. The red line standing for a cor-
ner iswrongly estimated at themiddle of awall.Our approach
using Layout, in the last column, has a high depth error.

Notice in the last row of Table1 that the combination of
3DS and Layout is slightly worse than 3DS alone. The rea-
son is that the different energy terms in the optimization are
weighted with the parameters λπ , that we learn from training
data.

Finally, we have used three more sequences (Bedroom1,
Bedroom2 and Kitchen) to further evaluate the performance
of our algorithm in a high-parallax low-texture case, this
time using the three scene priors and comparing against the
baseline DTAM and also against the state-of-the-art batch
approach PMVS (Furukawa and Ponce 2010). See Fig. 7

and Table3 to observe the distribution of the errors in these
experiments. Note that in the Bedroom2 and the Kitchen
experiment the solution for standard DTAM is already quite
accurate and we only slightly outperform it. For the case of
Bedroom1 the baseline DTAM leads to big errors because
of the large untextured wall. This error is fixed by Layout
and DDP but the algorithm did not find a 3D Superpixel for
the large wall, so the error is close to the DTAM baseline.
Notice thatweobtained competitive results in the comparison
against PMVS. Note also in Fig. 11 that PMVS creates semi-
dense maps and leaves holes in low textured areas, whereas
we achieve fully dense reconstructions (Fig. 6; Table2).

4.1.2 Outdoors

We have performed two outdoor experiments—in a building
corner and a façade—to evaluate 3D superpixels in outdoor
scenes. Figure8 summarizes the results. Observe how in both
cases the low texture walls are not planar for the DTAM
baseline. 3D superpixels are able to improve the results and
estimate the correct planar surfaces.

4.2 Low parallax camera motion

We have used the NYU dataset (Silberman et al. 2012) to
evaluate the performance of our algorithm in low-parallax
camera motion sequences. The first thing to remark is that
3D superpixels will perform badly for this case. In our expe-
rience, in order to have an accurate estimation of the 3D
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Fig. 4 Lab experiment. Each row shows the results for a reference
image. First column RGB image. Second column 3D superpixels. Third
column Room layout and labels. Red lines stand for the projected box.
Magenta stands for clutter, green for floor and dark blue for ceiling.
Other colors stand for walls. Fourth column ground truth depth—red

stands for no-depth-data. Fifth column DTAM depth. Sixth column Our
approach, using 3DS. Seventh columnOur approach, using Layout. The
improvement of the depth maps of DTAM with planarity constraints
against the standard DTAM is visually noticeable (Color figure online)

(a) DTAM.
Top view

(b) Ours (3DS).
Top view

(c) Ours (Lay-
out). Top view

(d) Ours (3DS). Side view

Fig. 5 3Dmaps for the Lab experiment. Notice the largeDTAM errors
in (a) and the more accurate reconstructions in (b)—using the layout—
and (c)—using 3D superpixels. Notice the differences: b shows small
misalignments, while c is globally consistent but with large errors in

the objects and final parts of two walls due to wrong labels and layout
errors.dShows a side viewofDTAM using 3D superpixels.Quantitative
results are in Table1

superpixel the baseline has to be greater than 0.2 times the
average depth of the keyframe. This constraint does not hold
for the sequences tested in this dataset, so the results for 3DS
are the same than the baseline DTAM and we only present
results for DDP and Layout. As previously said, this is a clear
limitation of 3DS—and in general of multiview geometry—
and an advantage of DDP and Layout, that give reasonable
results even in the single-view case.

We have performed 4 reconstructions of the NYU dataset,
that we will denote as NYU #1, #2, #3 and #4 and that cor-

responds to the sequences printer room 0001 rect (#1 and
#2), bedroom 0106 rect (#3) and bedroom 0110 rect (#4) of
the dataset. Figure9 shows the Box-and-Whiskers plot of the
depth error in this sequences for the baselines DTAM and
PMVS and our dense mapping algorithm using Layout, DDP
and both. Notice first the huge error of PMVS compared with
the rest of the approaches. The reason is, being a multiview
stereo algorithm, it is very affected by low-parallax measure-
ments. The magnitude of the error—one order of magnitude
higher than the others—can be seen in Table3, that shows
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Fig. 6 Results from the Bedroom1, Bedroom2 and Kitchen sequence

Table 2 Mean of the estimated depth error for DTAM, PMVS and ours
in high-parallax low-texture sequences

Sequence Mean error (cm)

DTAM PMVS (%) Ours

Bedroom1 (3DS) 15.8 7.0 (18%) 15.0

Bedroom1 (DDS) 4.2

Bedroom1 (Lay.) 7.9

Bedroom1 (All) 5.9

Bedroom2 (3DS) 7.1 5.7 (22%) 6.7

Bedroom2 (DDP) 7.6

Bedroom2 (Lay.) 7.7

Bedroom2 (All) 6.8

Kitchen (3DS) 7.2 5.5 (20%) 5.6

Kitchen (DDP) 7.7

Kitchen (Lay.) 5.7

Kitchen (All) 5.2

(%) is the percentage of pixels reconstructed by PMVS, notice that
PMVS only reconstruct high texture pixels

the mean error values. DTAM is less affected by the low par-
allax; but still the use of scene priors improves its accuracy.
See the mean values in Table 3.

The performance of the different scene priors on these 4
NYU scenes can be better appreciated in Fig. 10. Observe
that in the experiment NYU #1 the Layout is wrongly labeled
(some cupboards are labeled as walls). This is the reason for
the Layout algorithm performing slightly worse than DTAM
in this sequence (see themean values inTable3). The labeling
has also big errors inNYU#4,where part of thefloor is labeled
as clutter. But in this case the texture in the floor allows to
reconstruct it more accurately than DTAM. In any case, this
is precisely the limitation of DDP and Layout. As they rely

Table 3 Mean of the estimated depth error for DTAM, PMVS and ours
in low-parallax sequences

Sequence Mean error (cm)

DTAM PMVS (%) Ours

#1 (Lay.) 9.7 157.5 (3%) 10.4

#1 (DDP) 7.9

#1 (All) 9.0

#2 (Lay.) 21.2 43.8 (8%) 8.4

#2 (DDP) 9.2

#2 (All) 7.6

#3 (Lay.) 22.2 246.0 (2%) 12.5

#3 (DDP) 19.4

#3 (All) 14.5

#4 (Lay.) 42.3 288.4 (9%) 23.8

#4 (DDP) 39.1

#4 (All) 20.9

(%) is the percentage of pixels reconstructed by PMVS, notice that
PMVS only reconstruct high texture pixels

on data-driven models, their accuracy can be low if the test
image is very different than the training ones.

Finally, Fig. 11 shows the comparison of our approach
against PMVS in our high-parallax sequences and the
low-parallax NYU ones. Notice first in the high-parallax
sequences that PMVS is a semidense approach that only
reconstructs high-gradient pixels. Our approach has the
fundamental advantage over PMVS of doing a full 3D recon-
struction, as seen in the figure.

Secondly, observe the bad results of PMVS in the low-
parallax sequences of Fig. 11. Our approach, leveraging the
single-view cues given by theData-Driven Primitives and the
Layout of the room, is able to reconstruct the scene with high
accuracy even if the geometric constraints are weak.
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Fig. 7 Box and Whiskers plots showing the depth error distribution for the indoor high-parallax sequences

Fig. 8 Outdoor results, in a Corner and a Façade. The improvement of 3DS can be noticed visually
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Fig. 9 Box and Whiskers plots showing the depth error distribution for 4 indoor low-parallax sequences of the NYU dataset

5 Conclusion

In this paper we have presented an algorithm that fuses
several scene priors and depth cues in a dense mapping
algorithm based on variational methods. Although the mul-
tiview geometric constraints stand out as the preferred
ones for monocular map building, their results are poor in
low-textured areas and for low-parallax motions. We show

how the use of (1) Superpixels as mid-level features, (2)
Data-Driven Primitives that appear frequently and can be
discovered from training samples, and (3) the rough room
Layout estimation and pixel labeling can improve the 3D
reconstructions in the two failure cases mentioned before.

Our experimental results show that 3D superpixels offer
the highest accuracy, but they suffer from the multiview
geometry limitations. Firstly, their accuracy decreases if the
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Fig. 10 Overview of the DDP and layout results, the Ground Truth depth and our estimated depth in the NYU dataset sequences. We are able to
estimate accurate reconstructions for these low-parallax sequences

Fig. 11 Qualitative comparison of our approach against PMVS in our
high-parallax sequences (left) and the NYU low-parallax sequences
(right). Notice the sparsity of PMVS in textureless areas and our dense

results. Also notice the bad 3D maps produced by PMVS in the low-
parallax cases and how our algorithm produces reasonable results

parallax is low. And secondly, superpixel matching can be
difficult in certain cases. Their use as mid-level features is
then recommended only with strict thresholds in the parallax
angle and descriptor distances. We think that superpixels can
be an excellent mid-level feature for mapping low texture
regions if mid-baseline correspondences can be found.

Data-Driven Primitives and Layout estimation and label-
ing are techniques designed for the single-view case, hence

being more robust to low-parallax motions. In this paper we
use a multiview version of the second one for robustness,
but it works reasonably well for single images. Both cues
improve the reconstruction if the camera motion is small,
and also in low-textured areas. The reason for the latest is (1)
data-drivenprimitives capture non-local primitives andhence
cover some textureless areas, and (2) the Layout is a global
scenemodel.As theirmain limitation, their data-based nature
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makes them inaccurate as the image differs from the training
samples. In this case, more training data or more sophisti-
cated learning techniques could alleviate this problem.

For future work, we would like to study the potential
of this research for a robust and real-time implementation.
Regarding robustness, our main concern is that data-driven
techniques can give large errors that are difficult to predict.
Regarding real-time, we are quite confident that the tech-
niques we used are low-cost. Concha and Civera (2014)
already demonstrated that 3D superpixels can be recon-
structed in real-time. Flint et al. (2011) and Tsai et al.
(2011) estimated a multiview layout—without labeling the
image—in real-time. Finally, although there is no experi-
mental evidence of real-time for Data-Driven Primitives, it
consists of HOG features extraction and SVM classification.
Both algorithms require low computation.
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