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Abstract This paper presents an alternative approach to
the problem of outdoor, persistent visual localisation against
a known map. Instead of blindly applying a feature detec-
tor/descriptor combination over all images of all places, we
leverage prior experiences of a place to learn place-dependent
feature detectors (i.e., features that are unique to each place
in our map and used for localisation). Furthermore, as these
features do not represent low-level structure, like edges or
corners, but are in factmid-level patches representing distinc-
tive visual elements (e.g.,windows, buildings, or silhouettes),
we are able to localise across extreme appearance changes.
Note that there is no requirement that the features posses
semantic meaning, only that they are optimal for the task
of localisation. This work is an extension on previous work
(McManus et al. in Proceedings of robotics science and sys-
tems, 2014b) in the following ways: (i) we have included
a landmark refinement and outlier rejection step during the
learning phase, (ii) we have implemented an asynchronous
pipeline design, (iii) we have tested on data collected in an
urban environment, and (iv) we have implemented a purely
monocular system.Using over 100 kmworth of data for train-
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1 Introduction

Visual localisation across different lighting conditions, dif-
ferent weather conditions, and different seasons is a hard
problem due to extreme appearance changes. Most vision
systems use a feature-based front end, whereby salient image
regions are both detected and described in a compact man-
ner to enable the matching of these features across different
images. The typical approach is to apply these feature detec-
tors/descriptors [e.g., scale invariant feature transform (Lowe
2004) or speededup robust features (Bay et al. 2008)] over the
entire image at various scales. However, we believe there are
some serious issueswith just blindly applying these detectors
across the entire image for the problem of localisation.

Firstly, matching point features typically fails under
extreme appearance changes, such as different lighting con-
ditions and weather conditions (Furgale and Barfoot 2010;
McManus 2010; Churchill and Newman 2012). Recent
attempts have been made to address the issue of light-
ing changes by using an illumination-invariant colour space
(McManus et al. 2014a; Maddern et al. 2014) or learning
a lighting-invariant descriptor space (Ranaganathan et al.
2013). However, dealing with gross appearance changes
from night-to-day or summer-to-winter requires something
beyond point features. Matching sequences using whole-
image information has shown impressive results to this end
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Fig. 1 Examples of our system running on challenging datasets with
significant appearance changes; Oxford on the top and the Bebgroke
Science Park on the bottom. Our system learns unique visual elements
that are place specific (i.e., distinctive to a particular place in the envi-
ronment). These unique visual elements, called scene signatures, are
used for realtime localisation to provide a rough metric estimate of the
vehicle’s position and orientation

(Milford 2013; Milford and Wyeth 2012), but is limited to
topological localisation.

The second and perhaps most significant issue with the
standard feature-based approach is that it seems somewhat
naive with regards to the problem of localisation against a
knownmap. If we have been to an environment several times
under different appearance conditions, it must be possible to
learn what is unique and important at a given place and to
use this information for coarse metric estimation. From this
weak localisation, other systems, such as lane/curb detectors,
can be run in concert to refine the estimate for smooth local
control.

We put forth an alternative approach to the problem of
localisation against a knownmapandpresent anoffline, unsu-
pervised method to learn a bank of place-dependent feature
detectors that fire on unique visual elements in the environ-
ment. These unique elements, called scene signatures, can be
used online for rough metric localisation across a variety of
challenging appearance changes (see Fig. 1). It is worthmen-

tioning that there is no requirement that these features hold
any semantic meaning; we are not trying to solve the prob-
lem of scene understanding. Instead, we are simply searching
for mid-level patches that can be reliably observed across a
variety of appearance changes, making them suitable for the
task of localisation.

This work is an extension of our previouswork (McManus
et al. 2014b) in the following ways: (i) we have included
an offline landmark-refinement step that optimises landmark
positions in the map for improved localisation, (ii) we have
implemented a realtime localisation pipeline, (iii) we have
tested it on more data and in dynamic environments, and (iv)
we have developed a monocular version of the system as
opposed to stereo. We believe that our approach is a step in
the right direction and moves away from the naivety of using
one feature detector for all time. Instead, we believe that
leveraging prior knowledge of appearance and/or structure
to learn what is useful to us for navigation tasks is the way
forward.

This paper is organised as follows. Section 2 reviews a
variety of techniques that leverage knowledge of prior struc-
ture to aid in motion estimation and/or localisation. Section
3 provides a high-level system overview. First, we introduce
the offline learning algorithm that is used to produce a set of
place-dependent feature detectors, as well as the offline land-
mark refinement stage. We then describe how these scene
signatures are used for localisation. Section 4 presents our
feature stability and localisation experiments/results from the
Begbroke Science Park and central Oxford. In total, we used
over 100 km of data for the training. Finally, Sect. 6 presents
a conclusion of our work.

2 Related work

The central idea of this paper is to challenge the traditional
view of blindly applying one technique (e.g., out-of-the-box
feature detector) for navigation tasks. Point-featurematching
across extreme lighting and weather conditions often fails as
finding associations of low-level structure is extremely chal-
lenging and sometimes not possible due to gross appearance
changes. Although Valgren and Lilienthal (2010) showed
that topological localisation across seasons could be feasible
with point features, metric localisation was never examined
and the experiments were conducted on a very limited set of
images.1 We wish to leverage knowledge of prior structure
and/or appearance to improve our systems in terms of robust-
ness and reliability. There have been several works that share

1 In their earlier work, Valgren and Lilienthal (2007) originally con-
cluded that it was not possible to perform localisation across seasons
with point features. Their later work incorporated epipolar geometry
constraints to make this possible over a limited set of images.
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this belief and have been investigating alternative approaches
to traditional problems like egomotion estimation and local-
isation.

Richardson and Olson (2013) presented an approach to
learn an optimal feature detector, based on a family of con-
volutional filters, for visual odometry (VO) tasks. Lategahn
et al. (2013) learn a whole-image descriptor to optimise
place recognition outdoors. Milford and Wyeth (2012) pre-
sented SeqSLAM, which use sequences of whole-image
information for topological localisation across challenging
appearance conditions. Neubert et al. (2013) showed how to
improve SeqSLAM to localise across seasons by learning
a dictionary to translate between a winter/summary visual
vocabulary. However, these approaches are very sensitive
to viewpoint changes and are purely topological. Naseer
et al. (2014) presented another sequence-based localisation
system, but instead of performing direct image-to-image
matching, they used HOG-based description of the images
and formulated the problem as a minimum cost network flow
to find the best matching sequence. Their method outper-
forms SeqSLAM, but is again purely topological. Johns and
Yang (2013) learned visual and spatial feature co-occurance
maps to perform localisation across different lighting condi-
tions throughout the day. Their method relies on visual words
quantised from local features, but was able to outperform
SeqSLAM in their datasets. However, their method is again
purely topological and did not test across different weather
conditions or seasons.

Several researchers have investigated the idea of semantic
localisation, which shares a similar viewpoint that higher-
level information is useful for localisation. Atanasov et al.
(2014) present a system that uses random finite sets (RFS)
to represent semantic information from their object detec-
tor, which allows them to account for missed detections,
false positives, and perform data association. They show
how the RFS observation model is equivalent to a matrix
permanent computation, which makes the filtering problem
tractable. Renato et al. (2013) present SLAM++; an object
oriented approach to simultaneous localisation and mapping
(SLAM) that uses 3D models of common indoor objects,
such as chairs and tables, to perform realtime, full 6 degree-
of-freedom (DOF) SLAM. Ko et al. (2013) and Yi et al.
(2009) present an approach for semantic mapping, active
localisation, and local navigation and planning. Their sys-
tem abstracts spatial relationships and actions to higher level
concepts (e.g., object is near or distant). Anati et al. (2012)
side stepped the problem of data association by using the
dense heat maps produced by the object detectors and incor-
porate a per-pixel likelihood score for observing a particular
class. They incorporated these soft detections using a par-
ticle filter and demonstrated the system working in a large
indoor environment. Bao and Savarese (2011) introduced the

concept of semantic structure from motion, which attempts
to find the optimal maximum-likelihood estimate of cam-
era poses, objects, and points. They show that in addition to
outperforming a point-feature-based structure-from-motion
system, they can also improve object detection due to extra
geometric informationwhen compared to detecting objects in
images alone. Castle et al. (2007) developed a hybrid monoc-
ular SLAM system that combined traditional sparse features
with known planar objects.

Although all of these aforementioned approaches shared
the view that matching low-level structure isn’t always the
best approach for localisation, they introduce the challeng-
ing problem of scene understanding. As we will show, it
is not necessarily the case that a visual element must have
semantic meaning to be valuable for localisation tasks. For
instance, our algorithm is able to find unique rectangular
strips that encompass various structures, such as a building,
road, and vegetation. This on its own is not a singular class,
but simply a unique visual strip associated with that place.
We are therefore not limited to a predefined set of classes,
but instead let the algorithm find what is unique in a given
place.

Note that our approach is very different from the local-
isation and mapping systems of Davison et al. (2007) and
Davison and Murray (2002), which use image patches as
their landmarks. These methods still rely on interest-point
detection to find the patches, which are relatively small (e.g.,
11×11 pixels in size). By construction, scene signatures are
large distinctive elements in the scene that can be matched
across different appearance conditions.

We presented a proof-of-concept system in our earlier
work (McManus et al. 2014a), which showed it was pos-
sible to produce metric localisation estimates across extreme
appearance changes. Our training algorithm is inspired by
the work of Doersch et al. (2012), which uses an itera-
tive, discriminative clustering scheme similar to Singh et al.
(2012). In this paper, we extend the training phase to include
landmark refinement for each candidate scene signature for
improved localisation performance.

We wish to emphasis that we are not taking the stance that
point features are bad. There is a rich heritage of using point
features inmany successful visual navigation systems (Kono-
lige et al. 2010; Sibley et al. 2010; Piniés et al. 2010; Kaess
et al. 2012) and they certainly have their place for a number
of applications. For relative-motion estimation, like Visual
Odometry, point features work extremely well as viewpoint
and lighting conditions typically do not change much from
frame to frame. Or if one is localising in an environment
without much visual change, then point features could be a
good solution. However, for outdoor localisation over long
periods of time, we believe that point features may not be the
best solution for the problem at hand.
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Fig. 2 Offline, we learn scene signatures in the form of SVM clas-
sifiers, where each classifier is associated with a particular place, π p .
At run-time, we use the bank of pre-trained classifiers associated with
the nearest place, π p , to perform data association and then localisation.
By using larger, distinctive visual elements, we are able to localise in
regionswith extreme appearance change, where the point-feature-based
counterpart fails

3 System overview

This section presents an overview of the two primary
components to our system: (i) unsupervised learningof place-
dependent features and (ii) our online localisation system. At
a high level, our system works as follows. Offline, we learn
a bank of place-dependent classifiers, {ci }p, that can detect
unique visual elements specific to a particular place,π p, such
as trees, buildings, or unique strips in the image. At runtime,
the vehicle can load the set of classifiers, {ci }p, associated
with the closest location, π p, and use them for rough, metric
pose estimation (see Fig. 2). We say “rough”, metric pose
estimation because these features typically represent distant
objects, meaning that the translational component of the esti-
mate is not well constrained. However, with a motion prior to
guide the system, we show that the accuracy is comparable if
not better than our inertial navigation system (INS) system.

Having said this, it’s important to note that like all local-
isation systems, our system does become lost at times (i.e.,
fail to localise). In these situations, we require a seed to relo-
calise the vehicle, such as GPS or a place recognition system.
However, as we will show, the likelihood of traveling large
distances without localising is lower with our approach than
with a standard point-feature-based approach, meaning that
the number of resets is minimised.

Nonetheless, it is true that we assume that this oracle (i.e.,
purely topological localiser) is available when the system
becomes lost. This is a reasonable assumption, since in prac-
tice, if GPS is available, we would certainly make use of it to
keep track of the approximate location of the system. Addi-

tionally, this allows us to better asses the performance of the
system over the entire range of datasets.

3.1 Offline learning

There are two steps in the learning phase. The first step
involves training SVM classifiers to find a set of can-
didate scene signatures through unsupervised, iterative,
discriminative-clustering training. The second step performs
bundle adjustment to find optimal landmark locations for
each scene signature (i.e., optimal in that the landmark loca-
tionminimises reprojection error over a sequence of frames).
The output of these two processes yield a bank of motion-
consistent classifiers, {ci }p, for each place, π p.

For clarity, we reiterate that a scene signature is the under-
lying visual element in the scene that can be identified across
various appearances. Thus, we seek to train a classifier that
will detect a given scene signature.

3.2 Training algorithm

Our training data consist of a collection of images at approx-
imately the same location and viewpoint under a variety of
appearances (see Fig. 3). We collected these data using a sur-
vey vehicle equipped with an INS system, and defined places
as physical locations spaced 10m apart along the driven route
according to INS. The important aspect of the training data is
that the viewpoint is as similar as possible. Ideally, we would
like the viewpoints to be identical, but this is not possible due
to inaccuracies in the INS and because the driven routes vary
from one dataset to the next.

Referring to Fig. 3, the reader will see three shapes drawn
on every image (i.e., the red, blue, and green rectangles). The
goal is to find out which set of patches represent “stable”
visual elements across different appearances. By “stable,”
we mean that if we trained a classifier to detect these types
of patches, we would expect the classifier to find the same
visual elements in a validation set, regardless of appearance
conditions. In other words, we want a classifier that will
always fire on the same set of trees, for example, in the same
physical place, regardless of time of day, time of year, or
weather. It is important to note that not all patches represent
stable visual elements. For example, one can imagine that a
classifier trained to detect the green rectangle may fire any-
where along the curb (i.e., this is not a locally distinctive
feature as the surrounding region looks similar in appear-
ance). However, the other two shapes (i.e., the red and the
blue shape) would likely serve as good patches from which
to train, because the underlying visual element appears very
distinctive. In the red patch, we see a building with a win-
dow. This appears nowhere else locally and can be associated
across all the images. The blue patch is a unique strip that
transitions vertically from the ground to a wedge of brick
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Fig. 3 Illustration of the first stage of our training algorithm. The train-
ing data consist of images of the same place under varying appearance
conditions. These images are partitioned into three groups, such that
each group has as much visual variability as possible. Then, we sample
a set of shapes from each image, represented in this figure by coloured
rectangles. The steps proceed as follows. Take a shape (e.g., red), com-
pute HOG descriptors (Dalal and Triggs 2005) for each red shape in all
images in partition 1. These will be the positive set. Sample the image
around that shape and compute HOG descriptors (shown on the right
column). These will be the negative set. Train a linear SVM classifier

and use this classifier on partition 2, which acts as a validation set. Take
the top K firings in partition 2 and use these as positives to retrain the
SVM. The new SVM, which was trained on just the subset of positives
in partition 2 and its respective negative samples, is then applied to par-
tition 3 in the same fashion. The validation set becomes the training set
and the process repeats, wrapping around to the first partition again. If
the top K firings in each respective partition remain unchanged, then
we have converged to a discriminative feature. If we have not converged
within three iterations, we terminate the process and reject the classifier
as a candidate scene signatures (Color figure online)

wall to a bush. We might expect this to be very distinctive as
well.

The question is, how do we determine which shapes serve
as a basis for a stable classifier? We could train a classi-
fier for each candidate set of shapes (e.g., the red, blue, and
green) and then use the classifier on a hold-out set to see
where the detections fire relative to the groundtruth location.
However, this is unappealing as we would have to define a
closeness threshold in image space to label a positive detec-
tion. Additionally, it fails to take into account that not all of
the positive patches are informative. For instance, in Fig. 3,
we can see that some of the blue patches encompass texture-
less, black regions in the image and would not be helpful to
use as positive examples. Thus, we seek an unsupervised
training technique that can accomplish the following two
tasks: (i) it must be able to identity what types of patches
represent “stable” elements (e.g., red, blue, or green?), and
(ii) it must be able to select a discriminative subset of the pos-
itives for training (e.g., ignore the textureless blue patches or
occluded patches). Fortunately, we can use an iterative train-
ing scheme similar to Doersch et al. (2012) and Singh et al.
(2012) to accomplish this task.

The basic idea is as follows. Consider separating the
images in Fig. 3 into three partitions as shown,2 and training
an SVM classifier on the red patches, which, initially, are all
labeled as positives, with the negatives being sampled around
the local region. After training this classifier, we apply it to
the red rectangles in the second partition (i.e., a validation
set). We then rank each red rectangle in the validation set
according to its score and train a new SVM using the top K
detections.3 This new classifier is then applied to the third
partition in a similar manner. The top K firings from the val-
idation set become the new positive examples from which
to retrain. This new SVM would then be applied back to
the first partition and the cycle would continue until conver-
gence criteria are met. The convergence criteria require that
the top K firings in each respective partition do not change,
as this implies that we have found a subset of discriminative
patches. Note that this is a very conservative approach, as
it would select only the most representative examples of the
visual element we seek to classify. However, we gladly trade

2 As was done in Doersch et al. (2012).
3 We set K = 5 as done in Doersch et al. (2012).
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recall for higher precision in this context, aswe are concerned
with limiting the number of mis-associations for pose esti-
mation. If the convergence criteria are not met within three
iterations,4 we reject the candidate classifier as representing
a “stable” visual element.

In summary, the output of this procedure is a set of clas-
sifiers, each of which detects a region in the image that is
constant under appearance changes and distinct in the image
(i.e., a scene signature).

For our implementation, we used fixed set of 296 pre-
defined shapes for every image. From this fixed template
of shapes, the training algorithm selects the subset using the
process described above. Increasing the sample size increases
the training times required since our algorithm works by
exhaustively training/testing each candidate shape. In the
future, we wish to examine how to more intelligently pre-
select these candidate shapes as a function of place. For
example, having found a set of scene signatures for a given
place, if wewere to retrain withmore data, we could focus on
sampling in regions that produced the most scene signatures,
as these are likely feature-rich areas in the image.

The next stage in this process looks at the stability of the
classifiers over a local window of images and optimises a
motion-consistent landmark location for each scene signa-
ture.

3.2.1 Landmark refinement

The final step involves landmark refinement for each scene
signature, which represents one of the extensions to our pre-
vious work. The landmark refinement serves two purposes:
(i) to eliminate bad candidate classifiers and (ii) compute a
landmark position for each scene signature to enable metric
localisation.

The contribution of this section comes purely in the
application to our weak localisation system that uses scene
signatures. As each scene signature represents a large patch
in the image, assigning a singular point value is not a true
representation of the depth since it can encompass many
structures within the patch.We therefore attempt tominimise
the error in this point-value assumption through a nonlinear,
least-squares optimisation.

Consider one of the images in Fig. 3 and imagine taking
a window of images forward and backward in time from the
initial training image to test the classifier on each image in
the window.5 As the vehicle moves smoothly over this image
sequence, one would expect the feature detections to move

4 We chose three as was done in Doersch et al. (2012). Note that Singh
et al. (2012) came to a similar conclusion that only 4–5 iterations are
necessary.
5 In our experiments, the window was taken to be the distance between
places, which is 10m.

Fig. 4 Each candidate classifier is subjected to a round of temporal
checks during the landmark refinement stage. A window of frames is
taken around each place and the classifier is fired on all frames in order
to compute statistics on the stability of the classifier. Inlier detections
are then used for landmark refinement

smoothly over time as well. Figure 4 illustrates this process.
We use 2-point RANSAC to compute a line of best fit for the
temporal x − y locations and reject any candidate classifiers
if the ratio of inliers is less than half of the samples. If the
inlier set is over half, we take this set of feature detections to
perform landmark adjustment.

In our originalwork (McManus et al. 2014a),we estimated
the landmark position by performing left-to-right stereo
matching. However, as these features represent large patches
in the image, template matching to obtain a single point esti-
mate is not very sensible due to the large parallax. Instead,
we first discretely sample a number of possible depths from
0–100mwith a resolution of 1m and compute the total repro-
jection error over the window for each depth. We then take
the best depth and perform a non-linear refinement around
this initial guess, which is similar to a common method used
in GPU depth computation (McKinnon et al. 2012).

Assuming that we have odometry along with the training
data, such as wheel odometry or VO, we can use the known
incremental transformations, {T0,1, . . . ,Tk−1,k}, between
each image to reproject a landmark, pip, defined in π p, into
each frame in the window according to our monocular cam-
era model:

zij := h(T j,p,pip) + vij , vij ∼ N (0,Ri
j ) (1)

where zij = [u, v]T in the j th image and vij is zero-
mean Gaussian noise. Our objective function is then just
an uncertainty-weighted squared difference between the
observed location, zij , (given by the classifier) and the pre-

dicted location, ẑij = h(pip,T j,p), given by our reprojection
function:
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J (pip) = 1

2

(
z − h(pip)

)T
R−1

(
z − h(pip)

)
(2)

where

z :=

⎡
⎢⎢⎢⎣

zi0
zi1
...

ziM

⎤
⎥⎥⎥⎦ , h(pip) :=

⎡
⎢⎢⎢⎣

h(T0,p,pip)
h(T1,p,pip)

...

h(TM,p,pip)

⎤
⎥⎥⎥⎦ ,

R := diag(Ri
0,R

i
1, . . . ,R

i
M ).

TheRi
j represent the measurement noise covariance for each

detected scene signature. These were determined according
to the approach described in McManus et al. (2014a). The
uncertainty of a visual element in image space, Ri

j , will be a
function of the scale, s, at which it was detected, the area of
the patch, a, the search resolution used when detecting the
feature, r, and the SVM detection probability, λ:

Ri
j = f(a, r, s, λ). (3)

The relationship between the scale and search resolution is
given by:

Ri
j ∝ 1

s
Qi

j , (4)

where Qi
j is the noise covariance on the search resolution,

which is scaled according to the pyramid level at which the
detector fires. The relationship with the other parameters is
less clear. Intuitively, the lower the likelihood of being a scene
signature and the larger the area of the patch, the less certain
the keypoint position should be.We therefore use the follow-
ing heuristic:

Ri
j := a

λs
Qi

j . (5)

As this is a nonlinear least-squares system, we take the
standard approach and perform a first-order Taylor series
expansion:

J (p̄ip + δpi ) ≈
(
ēp − Hpδpi

)T
R−1

(
ēp − Hpδpi

)
, (6)

where ēp := z − h(p̄ip) and Hp := ∂h/∂δpi . Taking the
derivative of J (·) with respect to the perturbation, setting it
to zero and solving yields the following system:

(
HT

pR
−1Hp

)
δpi = −HT

pR
−1

(
z − h(p̄ip)

)
, (7)

allowing us to iteratively update the landmark until conver-
gence. For the non-linear optimisation we use Levenberg
Marquardt (LM) (Levenberg 1944), which augments the

Fig. 5 Example scene signatures learned by our algorithm.Collections
of images from the same place but different appearance conditions are
used for training data (left) and the output of our training algorithm
is a collection of SVM classifiers trained on distinctive image patches
(right)

coefficient matrix by a block-diagonal matrix, λ1, where 1
is the identity matrix and λ is used during the optimisation
to control the convergence properties. We also use a Huber
cost function for robustness. The Huber cost is given by the
following (Hartley and Zisserman 2004):

ρ(c) =
{
c2 |c| < α

2α|c| − α2 otherwise

which results in just reweighting the inverse covariance terms
in (8). The resulting system is given by:

(
HT

p R̃
−1Hp + λ1

)
δpi = −HT

pR
−1

(
z − h(p̄ip)

)
, (8)

where R̃ := diag(w0R0, . . . , wMRM ), with the weights
being given by:

wi =
{
1 |c| < α
α
ci

otherwise.
(9)

To summarise, after finding a coarse initial guess from our
discrete sampling we solve the above nonlinear least-squares
problem using LM. This landmark position is then stored
with the scene signature and used for pose estimation online.
The end result of this procedure is a set of motion consistent
scene signatures, {ci }p, defined for each place, π p. Example
scene signatures can be seen in Fig. 5.

3.3 Online localisation

3.3.1 Weak localisers

This section introduces the notion of a weak localiser. As
the scene signatures represent large image patches that are
mostly located in the far field, the translational estimates
from the nonlinear solver are not very accurate. As a result,
we use a strong motion prior from an odometry source to
bound the solution. We wish to stress however, that for our
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application, we believe that a weak localiser which is accu-
rate on the order of meters (i.e., similar to a commercial GPS
system) is good enough to seed other onboard navigation
systems for realtime control. In other words, we envision a
hierarchical approach, whereby a crude topological localiser
seeds our system, which produces an estimate accurate
to within meters. We believe such an approach is ade-
quate for autonomous navigation, since local observations
onboard the vehicle can be used for planning and obstacle
avoidance.

At runtime, we load the bank of classifiers, {ci }p, associ-
ated with the closest place π p and use them on the live image
at time tk to produce a set of measurements, zik . As each clas-
sifier in the map has an associated landmark position, pip,
we can use our camera model (1) to predict the location of a
landmark in the live frame, according to the transformation
matrix, Tk,p.

As stated earlier, we use a strong motion prior to predict
the transformation, T̂k,p. Including the prior estimate, T̂k,p,
the final least-squares system we seek to optimise is given
by the following:

J (Tk,p) =1

2
q(Tk,p, T̂k,p)

TP−1
x q(Tk,p, T̂k,p)

+ 1

2

(
zk − h(Tk,p,pp)

)T R−1 (
zk − h(Tk,p,pp)

)

(10)

where

zk :=
⎡
⎢⎣
z0k
...

zMk

⎤
⎥⎦ , pp :=

⎡
⎢⎣
p0p
...

pM
p

⎤
⎥⎦ , R := diag(R0

k , . . . ,R
M
k ),

and q(·) is a function that takes two SE3 transformation
matrices and computes a 6×1 error vector. We also incorpo-
rate a Huber cost function and perform LM for the nonlinear
optimisation.

3.3.2 Realtime system

To obtain realtime operation, an asynchronous pipeline
design was used in order to fuse lower frequency localisation
updates (∼5 Hz) with high frequency odometry measure-
ments (∼20 Hz). The pipeline is illustrated in Fig. 6. The
major processing blocks are described below.

– Detector This block performs the detection using a bank
of classifiers, {c}p, for the current place,which are trained
on Histogram of Oriented Gradient (HOG) descriptors
of each scene signature. Currently, OpenCV’s OpenCL
GPU HOG is being used for the detection. Depending
on the graphics card and the number of models being

Fig. 6 Block-flow diagram of our localisation pipeline. In separate
threads, the detection block and solver perform the scene-signature
localisation as described in Sect. 3.3.1. The high-level localiser inte-
grates the odometry measurements in-between localisation updates and
also performs posegraph relaxation to smooth the output

Fig. 7 Using the two nearest keyframes in the map, we define a local
plane and project the estimate vehicle pose onto this plane. This aug-
mented pose solution is then used in the next localisation cycle. This
trick proved to work well in preventing drift in the z-direction. We also
adjusted the roll and pitch to lay within the plane

used, this block runs anywhere from 2–5 Hz. Note that
the detector block receives knowledge of π p from the
localiser block.

– Solver This block performs the estimation detailed in
Sect. 3.3.1 and also requires knowledge of the current
place, π p, to load the associated landmarks for the pose
solve. This block runs very fast but is limited by the rate at
which the detections are given, and thus, runs at roughly
the same rate as the detection block. Again, knowledge
of the closest place is provided by the localiser.

– Localiser This is the high-level localiser that outputs
vehicle pose relative to current place, π p. The localiser
block listens for high-rate odometry measurements that
are used to predict the vehicle’s pose in between the
low-rate localisation updates. As the localisation updates
occur slower, we run a sliding-window posegraph relax-
ation technique.

The posegraph relaxation technique takes into account the
following constraints: (i) relative constraints from odometry,
(ii) sparse localisation constraints from the solver, and (iii) a
prior constraint on the initial pose in thewindow.When local-
isation updates are not available, the system simply integrates
the odometry for an estimate.
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3.3.3 Projecting to SE(2)

Themap, VO poses, localisation solver, and posegraph relax-
ation all operate in SE(3). However, we found the following
“trick” proved useful in improving the localisation perfor-
mance by preventing significant z-drift.

Since the vehicle is driving on a road, we know that at any
point time it is reasonable to approximate the local vicinity
as a plane. If we take the pose estimate in the map, we can
project the pose down onto a local plane defined by the two
closest keyframes. This is illustrated in Fig. 7. Essentially,
we allow for the full 6 DOF pose, but then snap the solution
down to SE(2). Again, this turned out to be a helpful trick to
prevent slow drift in the z-direction.

4 Experiments and results

In this section we present two experiments. The first exper-
iment analyses the matching performance of the scene
signatures across extreme lighting and weather conditions
(i.e., we focus purely on the front-end of the system). The
second experiment looks at the performance of the complete
end-to-end localisation system on kilometres of data col-
lected from the Begbroke Science Park and central Oxford
(see Fig. 8). Before proceedingwith the experimental results,
we first discuss the training and setup of the experiments.

4.1 Training and setup

For Begbroke, we used 36 runs of a 650m loop (see Fig. 8a),
with places defined every 10m along the respective routes
according to our INS system. We note however, that places
can be defined by other means, either manually or by using
place recognition techniques. The only important factor is
that the training images for a particular place have roughly
the same viewpoint.

We trained our system with 31 datasets, which included
images taken under different lighting andweather conditions.
For our test data, we used five separate datasets with a wide
range of visual variability, which included a sunny day run,
an evening run, a rainy evening run, a snowy run, and a snowy
and foggy run (example images are shown in Fig. 9). After
training the scene signatures, we picked one reference run
from the training data, which will be denoted as “the map,”
and is the reference we localise against.

Similar to the Begbroke datasets, for Oxford, we defined
places every 10m along the 8km route shown in Fig. 8b.
Unfortunately, as our INS system is not reliable in urban
environments, we were not able to automatically generate
training data for certain sections of the route. We therefore
only trained places on the 6 segments illustrated in the figure,
which amounts to approximately 5.5km.We used 15 datasets

Fig. 8 Dataset routes used in our localisation experiments. Note that
for the Oxford route (right image), we only report errors relative to each
segment indicated with white arrows. This was a consequence of not
having enough training data due to poor GPS measurements (recall that
the training images are gathered from GPS-tagged surveys)

for training and 3 for testing. Example images of themap and
live runs is shown in Fig. 10. Again, we wish to stress the
selection of the live runs was hand-chosen to be the most
challenging datasets for localisation, owing to their extreme
differences in appearance from the map.

The learning phase took approximately 120min per place,
but were run as 5 separate processes, reducing the effec-
tive training time to 24 min. As each place is represented
by a collection of SVM classifiers, the memory footprint
is quite low at approximately 5MB per place. This file size
depends on the appearance of the scene (i.e., howmany scene
signatures are detected) and is therefore very environment
dependent.

Since each place is separated by 10m in our datasets, this
is approximately 0.5MB/m. If we were to train classifiers
at a higher sampling density along the path, then it would
be approximately 5/XMB/m, where X is the new separa-
tion distance between places. However, reducing the spacing
between places is not necessarily advantageous. As men-
tioned earlier, the translational estimates are only accurate to
within meters, so the system could incorrectly reference the
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(a) Map image: clear and
sunny; noon.

(b) Test image: clear and
sunny; morning.

(c) Test image: clear;
evening.

(d) Test image: rainy;
evening.

(e) Test image: clear and
snowy; morning.

(f) Test image: foggy and
snowy; noon.

Fig. 9 Example test images used in our Begbroke localisation experi-
ments. These were chosen due to their large visual variability

(a) Map image: clear and
sunny; noon.

(b) Test image: dark,
night.

(c) Test image: sunny
with shadows.

(d) Test image: clear and
sunny; noon.

Fig. 10 Example test images used in our Oxford localisation experi-
ments. These were chosen due to their large visual variability

wrong bank of classifiers if the places are too close together.
Conversely, if they are separated too far apart, the appearance
changes for each patch may be too significant to correctly

match. Thus, it would seem that a happy medium needs to
be struck. We found a separation of 10m to work well in our
experiments.

4.2 Feature matching experiments

The purpose of this section is to contrast the matching per-
formance of the scene signatures against our point-feature
system, in the absence of any geometric checks or motion-
consistency checks that take place in the localisation pipeline.
In other words, we wish to isolate the front-end of the sys-
tem to seewhatmatching potential is possible across extreme
lighting and weather conditions.

For each INS-defined place in our training data, we took
the corresponding groundtruth location of each test image
so that the viewpoints of all images for every place are as
similar as possible. By ensuring that the viewpoints of the
test images and map image are well aligned, we can define
a successful match as one in which the feature locations in
both the live image and map image are in approximately the
same location in image space. In other words, if we have a
feature defined in the map image, y j

m , we would expect that
the corresponding measurement in the live frame, y j

l , would

be close in image space: ||y j
m−y j

l ||2 < δ, since we know that
the transformation between the live and map frame is close
to identity, by construction. In the following experiments,
we defined δ = 15 pixels. The same criteria applied to our
point-feature system.

4.2.1 Begbroke

Figure 11 shows the number of feature matches per place
around Begbroke for both our scene signatures and the point-
feature system. As expected, we see that we are able to
achieve correspondences across all appearance conditions
with the scene signatures, but not with point features. In par-
ticular, point features fail to find enough matches for foggy
and evening runs, due to motion blur, lack of texture, and
environmental changes (e.g., snow on the road and build-
ings).

Figures 12 and 13 show heat maps of the locations in the
image where matches are most likely to occur. To generate
these heat maps, we added a count of +1 to each pixel con-
tained within one of the matched shapes and averaged over
the five test images for each place. Thus, we can compute an
average distribution in image space for each place, as well
as an average over the entire dataset. As expected, most of
the matches occur in the far field, where we typically see
distinctive structure, such as buildings and trees.
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(a) Begbroke matches per place using scene signatures.
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(b) Begbroke matches per place using point features.

Fig. 11 Feature matches for each place in our Begbroke dataset using
scene signatures (top) and point features (bottom). Places were defined
as 10m segments along the reference trajectory shown in Fig. 8a. In
this experiment, we used groundtruth aligned images at each place and
performed feature matching against the map image for each respective
live run. The results show that using scene signatures, we are able to
match under all appearance conditions; not the case for the point-feature
counterpart, which fails for the evening and foggy runs

(a) Map image (left) and feature
distribution (right).

(b) Map image (left) and feature
distribution (right).

(c) Map image (left) and feature
distribution (right).

(d) Map image (left) and feature
distribution (right).

(e) Map image (left) and feature
distribution (right).

(f) Average map image (left)
and average feature distribution
(right).

Fig. 12 Sample feature distributions per place, represented by heat
maps. Each pair of images has the map image at a particular place (left)
and the average heat map at that place (right), which was computed by
adding a count of +1 for each pixel within a detection box and averaging
over all detections. The bottom right figure shows the average place and
average heatmap over the entire dataset. Note thatmost of the detections
are made on the upper half of the image, which is where we typically
see distant buildings, trees, and distinctive structure

(a) Map image (left) and feature
distribution (right).

(b) Map image (left) and feature
distribution (right).

(c) Map image (left) and feature
distribution (right).

(d) Map image (left) and feature
distribution (right).

(e) Map image (left) and feature
distribution (right).

(f) Average map image (left)
and average feature distribution
(right).

Fig. 13 Sample feature distributions per place, represented by heat
maps. Each pair of images has the map image at a particular place (left)
and the average heat map at that place (right), which was computed by
adding a count of +1 for each pixel within a detection box and averaging
over all detections. The bottom right figure shows the average place
and average heat map over the entire dataset. These heat maps show
more interesting structure than the Begbroke datasets, as we see density
around traffic lights and road markings. This is the reason the average
heat map has a bias towards the left side of the image

4.2.2 Oxford

Figure 14 shows the feature matches for the Oxford datasets
using scene signatures and point features. It should be reiter-
ated that not all the live runs followed the same trajectory as
the map, so matches are only shown against the segments in
common with the map (see Fig. 8b). Once again, the results
show that using scene signatures is muchmore robust and we
are able to match against all datasets for all places, while the
point-feature approach fails over a number of places, espe-
cially for the nighttimedataset. Thiswas themost challenging
dataset as there is extreme motion blur and very little detail
in the images.

4.3 Localisation experiments

In this section, we compare our weak-localiser approach to a
point-feature-based system for the task of localisation. The
goal of these experiments is to show that we can use scene
signatures and a weak localiser to produce metric estimates
even with some of the most challenging appearance changes.
In order to ensure repeatable results, the processing was done
offline to control the rate of localisation updates.We gave the
system the opportunity to localise on every 4th image, which
is equivalent to saying the localiser ran at 5 Hz for a 20 Hz
camera feed.

123



374 Auton Robot (2015) 39:363–387

Fig. 14 Feature matches for each place in our Oxford dataset using
scene signatures (top) and our point features (bottom). Note that gaps in
the data represent regionswhere a live run did not intersectwith themap.
Failures are when the feature counts are at zero. Places were defined
as 10m segments along the reference trajectory shown in Fig. 8b. In
this experiment, we used groundtruth aligned images at each place and
performed feature matching against the map image for each respective
live run. The results show that using scene signatures, we are able to
match under all appearance conditions, which is not the case for the
point-feature counterpart, which fails for the nighttime run (the flat
cyan line for the point feature approach) (Color figure online)

4.3.1 Begbroke

As our vehicle controller is only concerned with lateral and
heading errors, we focus on these two metrics for assess-
ing localisation performance. Figures 15, 16, 17, 18, 19 each
show the following four plots for the 5 live runs: (i) lateral
estimates, (ii) heading estimates, and (iii) speed estimates,
and (iv) number of feature matches. The plots also show
areas were our system was able to localise, represented by
vertical red strips. Recall that our system localises at a rate of
about 5 Hz and integrates odometry in between the updates,
which results in small gaps between each localisation update.
Some sample images of the feature matches have also been
provided to give a visual interpretation of the system’s per-
formance.

A localisation failure was defined as travelling blind on
odometry for more than 20m (i.e., 2 segments in our case).
If a failure occurred, we would reset the system using the
INS. This criteria applied to both systems. Also note that
simply seeding each respective system with the correct loca-
tion in the map does not guarantee a localisation, due to
significant appearance changes, which was the case with the
point-feature system in most runs.

There are a number of interesting results from these plots.
Firstly, one can see the scene-signature systemworks as well,
if not better than our INS system and somewhat compa-
rable to the point-feature system when it is working. As
expected, the point-feature system was unable to localise
in most of the cases where the appearance changes were
drastic. Secondly, we see that there are two runs where the
scene-signature system struggled: Figs. 16 and 17. This is
most likely due to a lower number of feature matches dur-
ing those runs and, more significantly, poor dead reckoning.
Referring to the VO outputs for each run (Figs. 16a, 17c), we
see that the two runs where the system struggled correspond
to the two runs where the VO output was very noisy. Since
the localisation system depends heavily on a strong motion
prior, the runs where the motion priors were noisy most
likely corresponded to suboptimal localisation estimates. To
test this hypothesis, we swapped the VO output with the
INS incremental transformations. These plots are shown in
Figs. 20 and 21 and confirm the hypothesis. Although the
average number of feature matches during those runs were
lower due to the extreme appearance changes between the
map image and the live run, we see that it was the poor
dead reckoning estimates that contributed to the significant
error.

It is interesting to note that due to GPS drift, localisa-
tion estimates from one day to another with the INS system
are only accurate to within meters; a common problem with
groundtruthing localisation systems. The velocity estimates,
however, are relatively smooth for a given run, as these are
integrated from the IMU. The only time jumps are observed
in the velocity estimates are when we lose GPS signal (e.g.,
under trees) and reacquire it at a later time. In these situations
the INS attempts to reach a balance between the smooth esti-
mates from the IMU and the apparent teleportation from the
GPS.

4.3.2 Oxford

Figures 22, 23, and 24 show the lateral errors, heading errors,
velocity profile, and number of feature matches for the three
Oxford runs, which included a nighttime run, a sunny and
shadowy run, and a clear sunny run. To reiterate, as each live
run took a different path from the reference route, or because
there were areas where we did not have training data, errors
are only reported on the segments indicated in Fig. 8b.

The scene-signature system struggled during the night-
time run (Fig. 22) because of the extreme lack of any texture
or detail in the images. This resulted in poor VO estimates
and noisy feature matches. As a result, the system drifts in
a number of locations, as indicated in the plots. We wish to
stress that the point-feature systemwas unable to work under
these conditions, further demonstrating the robustness of the
scene-signature approach.
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Fig. 15 Localisation results for
the sunny afternoon run
(Begbroke). The scene-signature
system (red) performed
comparably with the
point-feature system (green) and
outperformed the INS (blue),
which drifted quite significantly
from one dataset to the next.
The top two plots represent the
key error terms fed into our
vehicle controller. The vertical
red lines represent scene
signature localisations (Color
figure online)

(a) Lateral estimates for a sunny visual memory vs. a sunny run.

(b) Heading estimates for a sunny visual memory vs. a sunny run
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(c) Live VO profile against groundtruth.
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(d) Number of feature matches.
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Fig. 16 Localisation results for
the clear, evening run
(Begbroke). The scene-signature
system experienced greater
lateral deviations in this run due
to the noisy VO output (third
subfigure from the top). Note
that when the VO was
substituted for the INS relative
poses, the accuracy significantly
improved (shown later in
Fig. 20)

(a) Lateral estimates for a sunny visual memory vs. a clear, evening run.

(b) Heading estimates for a sunny visual memory vs. a clear, evening run
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(c) Live VO profile against groundtruth.
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(d) Number of feature matches.
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Fig. 17 Localisation results for
the rainy, evening run
(Begbroke). Similar to the other
evening run, the VO output was
very noisy and as a result, the
localisation performance
suffered. However, when the VO
was substituted fro the INS
relative poses, we observed a
significant improvement in
accuracy (shown later in
Fig. 21). We did, however,
outperform the point-feature
system (green), which was
unable to cope with such
extreme appearance changes
(Color figure online)

(a) Lateral estimates for a sunny visual memory vs. a rainy, evening run.

(b) Heading estimates for a sunny visual memory vs. a rainy, evening run
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(c) Live VO profile against groundtruth.
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(d) Number of feature matches.
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Fig. 18 Localisation results for
the a clear, snowy run
(Begbroke). As the VO output
was quite good for this run, even
with significant appearance
differences to the map, the
scene-signature system (red)
was able to successfully
localise, whereas the
point-feature system failed over
most of the run (green) (Color
figure online)

(a) Lateral estimates for a sunny visual memory vs. a clear, snowy run.

(b) Heading estimates for a sunny visual memory vs. a clear, snowy run
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(c) Live VO profile against groundtruth.
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(d) Number of feature matches.
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Fig. 19 Localisation results for
the misty, snow run (Begbroke).
Another example where the
scene-signature system (red)
was able to localise over the
entire run despite significant
appearance differences, while
the point-feature system failed
(green) (Color figure online)

(a) Lateral estimates for a sunny visual memory vs. a misty, snow run.

(b) Heading estimates for a sunny visual memory vs. a misty, snow run
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(c) Live VO profile against groundtruth.
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Fig. 20 Begbroke localisation results for the clear, evening run using
the INS for dead reckoning (top plot). By replacing the noisyVO relative
poses (bottom plot) for this run with the smoother INS measurements,
we see that the scene-signature system is able to localise with a com-

parable accuracy to both systems. Again, this is due to the fact that the
system relies on a strong motion prior for localisation, so if this motion
prior is noisy, the estimates will suffer

The shadowy daytime run (Fig. 23) went well, produc-
ing estimates commensurate to the point-feature system and
better than the INS. As mentioned earlier, the point-feature
system works well when the appearance conditions are sim-
ilar, meaning that it serves as better groundtruth for the
like-against-like runs, owing to the unreliability of the INS.
The clear daytime run (Fig. 24) shows similar performance
again to the point-feature system.

4.4 Distance traveled on dead reckoning

The previous subsections presented a number results
analysing the performance of the system over a variety of
lighting, weather, and seasonal conditions. In order to pro-
vide the reader with a concise summary of the results for
both Begbroke and Oxford, we turn our attention to Fig. 25,
which shows the likelihood of traveling blind on odometry
in between localisation updates.

When the system fails to localise, wewish to knowhow far
the vehicle is likely to travel on dead reckoning alone. This
is a very interesting way of framing the performance of the
system, as it implies that a localiser that fails frequently but

with short intervals between failures is preferable over one
that fails infrequently but over large distances. The results
show that the likelihood of traveling on dead reckoning is
significantly less with our approach, which is an ideal char-
acteristic of a localisation system and the key result of our
experiments.

5 Discussion

Referring to the results in the previous section, we observed
a significant increase in the robustness of the system for
a slightly reduced metric accuracy when compared to our
point-feature system. Having said this, we also saw that
for sunny-against-sunny experiments, the scene signature
approach did comparably to point features and better than
the INS on average.

We also demonstrated the important role accurate dead
reckoning has with regards to localisation performance. Dur-
ing the nighttime runs, the VO output suffered due to motion
blur and low feature matching counts. However, when we
swapped out the incremental transformations with the INS,
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Fig. 21 Begbroke localisation results for the rainy, evening run using
the INS for dead reckoning (top plot). Results using VO poses are
shown in the bottom plot. Another example where accurate dead reck-

oning improved the system’s localisation performance despite drastic
differences in appearance. The point-feature system was unable to cope
and failed over a majority of the run

we saw that the localisation performance improved signif-
icantly. As our system is agnostic to the relative motion
source, one could use wheel odometry and/or an IMU as
opposed to VO. In our experiments however, we did not have
access to this, which is why we used the VO output.

As we begin tomove tomore heavily cluttered urban envi-
ronments, accounting for distractions (e.g., large busses) will
likely be an important factor. In McManus et al. (2013), we
presented a method for both stereo and monocular systems
called distraction suppression,which leverages knowledge of
prior 3D structure to generate distractionmasks (see Fig. 26).
We envision this type of system being critical in busy urban
environments, as it will restrict the attention of our localiser
to only search in areas of the image that belong to the static
background.

In the future, we also wish to address the issue that most of
the detected scene signatures represent distance visual ele-
ments, meaning that the translational estimate is not well
constrained. The primary reason we tend to only identify
far-field features is because the training data is not perfectly
aligned due to variations in the driving for each data col-
lection and the fact that we select images based on their
GPS location, which can be off by several meters in some
cases. Since our training algorithm works by assuming that

samples in the same location in image space represent the
same visual element, the lateral/longitudinal offsets result
in failures to converge on many near-field objects. The data
association problem is difficult since the images are not per-
fectly aligned. One approach may be to use GPS as a seed for
a sequence-based topological localiser to try and find better
image matches for a given place. However, even if this is
accomplished, it is unclear how we would be able to cope
with the lateral offsets that result from variations in driving
the same route. This is certainly an open research problem
that we wish to pursue.

It is worth taking a moment to contrast the scene sig-
nature approach with other localisation system our group
have developed, such as LAPS (Stewart and Newman 2012)
and experience-based navigation (EBN) (Churchill andNew-
man 2012). LAPS is a monocular-based localisation method
that leverages appearance of prior structure, in the form of
coloured point clouds. The technique estimates the 6DOF
pose of the vehicle byminimising the normalised information
distance between the appearance of 3D lidar data repro-
jected into overlapping images.Results on57kmof driving in
central Oxford (Stewart 2015) demonstrate successful locali-
sation over a variety of lighting conditions. However, as with
the scene-signature localisation system, when LAPS became
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Fig. 22 Localisation results for
the night run through segments
1–4 (Oxford). The localisation
performance for this run was
poor due to extremely low-light
conditions and the lack of
texture in the images. However,
we note that the estimates seem
commensurate with the INS and
that the point-feature system
failed on this run which is why
there is no green line

(a) Lateral estimates for a sunny visual memory vs. a dark, night run.

(b) Heading estimates for a sunny visual memory vs. a dark, night run.
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(c) Live VO profile against groundtruth.

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

N
um

be
r 

of
 M

at
ch

es

Distance Traveled [m]

9.94

(d) Number of feature matches.
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Fig. 23 Localisation results for
a sunny, shadowy run through
segments 1–4 (Oxford). The
scene-signature system
performed well on this run, with
one dip around the 600 m mark,
which corresponded to a
localisation drift during a turn.
The rest of the run followed the
point-feature estimate closely,
which is more trustworthy as
groundtruth than the INS in
these runs, since the conditions
were similar

(a) Lateral estimates for a sunny visual memory vs. a sunny run.

(b) Heading estimates for a sunny visual memory vs. a sunny run.
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(c) Live VO profile against groundtruth.
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Fig. 24 Localisation results for
a sunny run through segments
1–6 (Oxford). This was a longer
run and again, we see that the
scene-signature system
performs as well, if not better
than the INS, and commensurate
in a number of locations with
the point-feature system, which
performs well because the
appearance conditions are
similar

(a) Lateral estimates for a sunny visual memory vs. a sunny run.

(b) Heading estimates for a sunny visual memory vs. a sunny run.

0 1000 2000 3000 4000 5000
0

2

4

6

8

10

12

Distance Traveled [m]

V
el

oc
ity

 [m
/s

]

INS
VO

(c) Live VO profile against groundtruth.
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(a) Begbroke results.
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(b) Oxford results.

Fig. 25 When a localisation failure occurs, these plots show the likeli-
hood of traveling blind on dead reckoning by distance. The ideal system
would push the lines towards the bottom left-hand corner. These plots
represent the key summary of our results, which is that scene signatures
enable vastly superior robustness over point features

(a) Image taken in central
London during the Olympics,
where large parts of the scene
are occupied by dynamic ob-
jects, which can distract and
impede egomotion estimation.

(b) Using knowledge of prior
3D structure, we can generate
probability masks that indicate
which regions in the image are
likely to belong to the static
background (white).

Fig. 26 Example of a distraction mask (right image) that can be gener-
ated using the methods described in McManus et al. (2013). The white
regions represent areas most likely to belong to the background, while
the black represents areas that most likely belong to ephemeral objects.
This type of system can be used to reject feature matches on ephemeral
objects of any class. Image credit: McManus et al. (2013)

lost, GPS resets were used to reinitialise the system. Again,
this is not a unique problem to scene signatures or LAPS.
Any localisation system that becomes lost will need a seed
from an external system.

Although LAPS is fairly robust to appearance changes
caused by different lighting conditions,6 it is not robust to
appearance changes caused by different weather or seasons
(i.e., when there is gross change in appearance). However,
LAPS is able to producemore accurate localisation estimates,

6 Maddern et al. (2014) demonstrated improved robustness to LAPS by
using an illumination-invariant colour space.

so as with the point-feature-based system, there is a tradeoff
between accuracy and robustness with our system.

EBN presents a different approach to the long-term local-
isation problem. It is a more a framework that can be applied
to any localisation system, such as LAPS, scene signatures,
or a point-feature-based system, as was presented originally
(Churchill and Newman 2012). The concept is to record
distinct visual experiences of an environment, and contin-
ually grow this database over time to capture all the different
visual modes. For example, consider a vehicle traversing
its workspace for the first time and recording stereo image
sequences of its environment. When the vehicle revisits
the same environment, it can refer to the archived image
sequences to attempt to localise. If the appearance of the
scene has changed significantly and localisation is not pos-
sible, the system archives a new visual experience of that
region until it is able to relocalise or it is finished its journey.
In this way, the system only records experiences where the
appearance of the world has changed enough as to prevent
localisation. Over time, the system will hopefully saturate
and will be able to represent all the different appearances
of that environment. Recently, Linegar et al. (2015) exam-
ined the problem of knowing which subset of experiences
to use online for localisation, taking into consideration finite
computational resources.

The concept of EBN could also be applied to scene sig-
natures. For example, imagine training scene signatures for
nighttime experiences or daytime experiences, with the aim
of discovering visual elements that are unique to night but
perhaps not day and vice versa. However, issues surround-
ing the question of what to do when lost still remain (e.g.,
requiring an oracle topological localiser like GPS). EBNwill
record new visual experiences if lost, but during that time, it
is using odometry and therefore will drift relative to the map.

To summarise, although EBN has been presented with a
point-feature-based system, the concept of archiving only
distinct visual experiences can be applied to any local-
isation system such as LAPS or scene signatures. Both
LAPS and the point-feature-based approach aim to pro-
vide centimetre-level accuracy in pose estimates, but are
unable to cope with gross appearance changes such as
different weather or seasons. As we have shown in this
paper, using scene signatures enables much more robust
localisation performance over a traditional point-feature
approach.

6 Conclusion

This paper presented a new approach to metric pose estima-
tion in outdoor environments. We use training data in the
form of image sequences of the same environment collected
under varying appearance conditions and learn unique, place-
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dependent feature detectors that fire on distinctive visual
elements in the scene. These feature detectors, called scene
signatures, enable feature matching across extreme appear-
ance conditions. We presented a pipeline design that uses
these scene signatures at runtime to perform coarse, met-
ric localisation, with an accuracy commensurate with an
expensive INS system. We believe that the idea of lever-
aging knowledge of prior data to learn what is important or
distinctive for application-specific tasks is the way forward
for reliable navigation systems.
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