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Abstract Our research aim is to develop interactions and
algorithms for learning from naïve human teachers through
demonstration.We introduce a novel approach to leverage the
goal-oriented nature of human teachers by learning an action
model and a goal model simultaneously from the same set of
demonstrations. We use robot motion data to learn an action
model for executing the skill. We use a generic set of percep-
tual features to learn a goal model and use it to monitor the
executed action model. We evaluate our approach with data
from 8 naïve teachers demonstrating two skills to the robot.
We show that the goal models in the perceptual feature space
are consistent across users and correctly recognize demon-
strations in cross-validation tests. We additionally observe
that a subset of users were not able to teach a successful
action model whereas all of them were able to teach a mostly
successful goal model. When the learned action models are
executed on the robot, the success was on average 66.25 %.
Whereas the goal models were on average 90 % correct at
deciding on success/failure of the executed action, which we
call monitoring.
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1 Introduction

There is a growing interest in deploying robots in dynamic
and unstructured humans environments. Endowing robots
with all of the skills needed in these environments is a
large task, and our work is aimed at empowering end-users
to teach these skills through Learning from Demonstration
(LfD) interactions. Our work is focused on LfD techniques
for personal robots that will have a non-robotics expert as
their end-user, addressing both the interactions and the algo-
rithms that are best suited for LfD from these naïve human
teachers. This scenario presents several interesting design
challenges:

– We need the demonstrations to be easy for a teacher to
provide.

– The system needs to learn efficiently from very few inter-
actions with the teacher.

– We want generic LfD systems that can learn a variety of
skills without tuning parameters or features for each skill
to be learned.

– We cannot assume that all end-user will give accurate
demonstrations of complex motor skills (e.g., in our case
skills for a 7-DOF manipulator).

In this work we present an approach that addresses all of
these challenges. We make use of keyframe demonstrations
since our prior studies with end-users have shown that these
result inmore consistent and noise-free demonstrations com-
pared to providing full trajectories (Akgun et al. 2012a, b, c).
Keyframes are a sparse (in time) set of sequential points that
the teacher demonstrates to the robot. In addition to ease of
use, our focus is on efficiency. In the experiments presented
here, the robot receives less then ten demonstrations of a skill
for its modeling task.
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The approach we take to skill learning in this work is
motivated by an observation we have made several times in
experiments with end-users teaching object-directed motor
skills: they tend to concentrate on achieving the goal of the
demonstrated skill rather than on consistent demonstrations
of how to achieve it (Akgun et al. 2012b, c; Akgun and
Thomaz 2013). In retrospect, this is quite logical and agrees
with a vast literature in developmental psychology pointing
to the fact that humans are goal-oriented in their perception
and imitation of motor skills from a very early age (Csibra
2003; Meltzoff and Decety 2003). Additionally, we believe
that asking people to provide keyframe demonstrations is
particularly aligned with goal demonstrations, since they are
sparsely highlighting the salient parts of the skill.

Given this observation, the approach we take in this work
learns an action model and goal model for a skill simultane-
ously, but we maintain them as separate learning problems.
This is a novel approach to skill learning in LfD where typ-
ically the problem is defined as learning in a motion space
(e.g. joint space, end-effector space) or in a combined sen-
sorimotor space that is known in advance to be good for
representing a particular skill. In this work, we use the action
model to execute the learned skill and the goal model tomon-
itor the execution:

1. Learning a goal model The feature space of the goal
model is a generic and high-dimensional visual repre-
sentation of how the object of attention changes in the
workspace over the course of the action.We use the same
feature space to learn two different skills (pouring from
a cup and closing a box), i.e., we do not change our rep-
resentation based on a skill. This constitutes learning the
perceptual objective of the skill, and in thisworkwe show
that goal models taught by users with just 9 demonstra-
tions are able to accurately monitor the learned action
model. Even demonstrations that resulted in unsuccess-
ful action models were able to successfully model the
perceptual goal of the skill in order to achieve accuracy in
themonitoring task. The average success rate of skill exe-
cution monitoring was 90 %. In future work this will be
used as an objective function in policy search to improve
the action model itself.

2. Learning an action model The feature space of the action
model is the end-effector pose with respect to an object
of attention. Prior work suggests end-users vary in their
ability to give good actionmodel demonstrations, and our
experimental findings presented here confirms this. The
average success rate of execution success was 66 %.

In the next sectionweprovide an overviewof relatedwork.
We then detail our approach in Sect. 3 and our implemen-
tation in Sect. 4. We explain our data collection procedure
in Sect. 5 and evaluate the results in Sect. 6. We discuss our

approach, system requirements, results, and future work in
Sect. 7. We make concluding remarks and summarize our
work in Sect. 8.

2 Related work

General surveys of the field of LfD can be found in Argall
et al. (2009) andChernova andThomaz (2014). In LfD, exist-
ing works tend to fall into two categories, what we call skill
learning and task learning. One of the aims of our work is
to bridge this dichotomy, by learning task goals for a skill
learning method.

2.1 Task learning

The main idea of task learningmethods is to map motor and
sensor level information to pre-defined symbols and learn the
relationship between them (Levas and Selfridge 1984; Nico-
lescu and Matarić 2003; Ekvall and Kragic 2008; Dantam
et al. 2012). Typically these approaches assume a pre-defined
mapping of sensor data to objects/symbols, and assume the
task uses a given set of primitive actions. In contrast, we
aim to learn the perceptual goals of a skill without assuming
predefined symbols for actions or objects.1

A similar approach is described in Jäkel et al. (2006),
which presents a method that learns kinematic task con-
straints through low-level demonstrations and generalizes
them with semi-supervision. The aim is to learn these con-
straints for planning. The demonstrator, environment and
objects are fully modeled. We focus on simple interactions
with naïve teachers rather than heavily instrumented expert
demonstrators. Another similar work is presented in Chao
et al. (2011). Pre- and post-conditions for pick and place
skills are learned from continuous perceptual features from
human demonstrations. The aim is to use the learned models
to bootstrap learning new skills (in the form of pre- and post-
conditions).Our insight is that the salient keyframes provided
by the teacher are highly suitable for learning perceptual rep-
resentations of goals (similar to Chao et al. 2011) but taking
intermediate steps into account), learning the accompanying
action at the same time and using the goal models to monitor
executed action models.

2.2 Skill learning

There is a large body of literature on learning motor control
levelmodels, or skill learning. Dynamical systemapproaches
such as Stable Estimator of Dynamical Systems (SEDS)
(Khansari-Zadeh and Billard 2011) and DynamicMovement
Primitives (DMP) (Pastor et al. 2009) as well as mixture

1 We only assume that a segmentation for objects is available.
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models, such as Gaussian Mixture Models (Calinon et al.
2007), are skill learning methods. These methods all involve
estimating parameters of a dynamical system, a distribution
and/or a function approximator.

Classification based methods, such as Hovland et al.
(1996) and Jenkins et al. (2000), can be seen as skill learning
methods in which input demonstrations are mapped to action
primitives or robot states. The transition structure between
the primitive actions or states represent the skill.

Most current work does not incorporate the perceptual
state into the learning problem other than object pose esti-
mation.

A similar idea related to monitoring and presented along
skill learning is given in Pastor et al. (2011). The robot exe-
cutes its learned skill, collects sensory data and the successful
executions are labelled by hand. The robot then builds a
Gaussian model for the trajectories for each sensory state
dimension, which requires a high number of skill execu-
tions. These models are used in hypothesis testing during
future executions to monitor the skill. In contrast, we use
the sensory data obtained during the skill demonstrations to
learn a goal model without further manual labelling and skill
repetition.

2.3 Inverse reinforcement learning

Another approach to skill learning, is Inverse reinforcement
learning (IRL) (Abbeel and Ng 2004) or similarly inverse
optimal control (IOC) (Ratliff et al. 2009). In IRL, a reward or
cost function is estimated from demonstrations and then used
to extract a policy. The main idea behind the IRL approaches
is that the reward function is a better representation of the
demonstrated skill than the policy. Our goal learning idea is
similar to the main idea of inverse reinforcement learning;
extracting a reward function from demonstrations.

2.4 Keyframes and trajectory segmentation

Keyframe related ideas exist in other fields as well. In
industrial robot programming, these are referred to as via-
points. A robot programmer records important points by
positioning the robot and specifies how to move between
them. Keyframes are used extensively in computer ani-
mation (Parent 2002). The animator creates frames and
specifies the animation in-between. However, there is no
learning component in these approaches. In Miyamoto et al.
(1996), keyframes are extracted automatically from continu-
ous demonstrations and updated to achieve the demonstrated
skill. Another approach is to only record keyframes and use
them to learn a constraint manifold for the state space in a
reinforcement learning setting (Bitzer et al. 2010). Whole
body grasps for a simulated humanoid are learned in Hsiao
and Lozano-Perez (2006) by forming template grasp demon-

strations via keyframes, which are the start/end points of a
demonstration and the points of contact and points of lost
contact with the objects.

A related topic to keyframes in LfD is trajectory segmen-
tation. Keyframes are similar to the segmentation points. In
our prior work (Akgun et al. 2012a), we introduced hybrid
demonstrations, in which teachers can demonstrate both
keyframes and trajectories in any sequence and number in the
context of a single demonstration. This gives the teacher the
ability to segment trajectories as well as provide keyframes
where the trajectory information does not matter.

Some LfD methods employ automatic trajectory segmen-
tation to break down the demonstrations to facilitate learning.
Kulić et al. (2012) describes an incremental LfD system in
which the demonstrations are first segmented and the result-
ing trajectory segments are treated as small actions which are
then learned using Hidden Markov Models (HMM). Then
these models are grouped together with the similar models
to form a tree structure. In addition, a graph is built between
action groups to form a higher level representation. A sim-
ilar approach is presented in Niekum et al. (2013), which
uses DMPs to learn small actions. These methods also aim
to bridge the gap between skill learning of particular actions
and task learning of higher level plans or graph structure.
An example LfD system towards this direction is presented
in Niekum et al. (2015), which builds a finite state represen-
tation of the task through demonstrations and leverages this
for adaptive skill sequencing and error-recovery. Their work
differs to ours since they are not building perceptual models
for monitoring the execution.

Although similar, trajectory segmentation and keyframes
are not directly comparable. Some of the trajectory segmen-
tation methods aim to break down trajectory demonstrations
to learnable chunks to alleviate model selection, and as such
the segmentation points may not be of specific importance.
Other trajectory segmentation methods try to find important
points (e.g. when the relevant reference frame changes dur-
ing demonstration) to gain higher level information but this
is a hard task and it depends on a predetermined definition of
these important points. In contrast, the aim of keyframes is
to let the human teacher highlight the important parts of the
skill from the human teacher’s perspective.

2.5 Human–robot interaction

One of the primary distinctions of our work is our focus on
human–robot interaction in the context of LfD. For exam-
ple, most methods implicitly assume the demonstrators are
good at using the robot. In general, the demonstrators used
in evaluations are the developers of the methods themselves.

The related work on LfD evaluations with non-experts is
sparse. Suay et al. (2012) tested three LfD methods, with
naïve users. One of their findings was that these users were
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not able to teach successful policies whereas experts (the
authors themselves) were able to do so within minutes.
Thomaz et al. have investigated how humans teach software
agents and robots various tasks, and developed a reinforce-
ment learning algorithm to leverage natural human behavior
(Thomaz and Breazeal 2008a, b). In the context of skill learn-
ing, Cakmak and Thomaz investigated how naïve users can
be guided to provide better demonstrations through teaching
heuristics and active embodied queries by the robot in LfD
interactions (Cakmak 2012).

In Akgun et al. (2012b, c), we evaluated trajectory demon-
strations and keyframe demonstrations (temporally sparse
set of ordered points) with end-users, finding that both
have their merits. Trajectories are necessary for dynamic
skills whereas skill with non-dynamic constraints were best
taught with keyframes. Based on these results, we have
introduced a keyframe-based learning from demonstration
(KLfD) method in Akgun et al. (2012a) that learns from
hybrid keyframe and trajectory demonstrations. Keyframes
are extracted from the trajectory portions while retaining
velocity and acceleration information. A dynamic timewarp-
ing (DTW) approach is used to learn from the demonstrated
and extracted keyframes. In our current work, we extend this
approach to add goal models but remove the inclusion of
trajectory demonstrations and use a Hidden Markov Model
(HMM) approach to learning. This HMM approach can be
used within the context of the original KLfDmethod as well.
We think that the HMM approach is superior given that it
is inherently stochastic and handles multiple demonstrations
better than the DTW approach.

3 Approach

In the work presented here we concentrate on object-based
manipulation skills in which dynamics is not a component of
the goal. This class of skills encapsulates many day-to-day
activities (e.g., fetching items, simple kitchen tasks, general
cleanup, aspects of doing laundry or ironing, etc. ). Our aim
is to develop a generic LfD approach that does not require
tuning per skill and that can handle a wide variety of such
skills.

In our previous work, we investigated how naïve teachers
demonstrate these types of goal-oriented object-based skills
to robots (Akgun et al. 2012b, c). We observed that teachers
were more concerned with achieving the skill than providing
good demonstrations. People showed the robot what-to-do
for a skill, rather than how-to-do the skill. For example, when
teaching the robot how to close a box lid as pictured in Fig. 1,
itwas not uncommon to see a single demonstration thatwould
include multiple attempts at swinging the hand to hit the lid
until the box was successfully closed. This demonstrates the
goal of the skill, but a single demonstration that includes

Fig. 1 Ateacher providing akinesthetic demonstrationof a boxclosing
skill to the robot

several failed attempts is not a very good example of the
target action itself.

Our interpretation of this behavior is that teachers were
goal-oriented. Their primary objective was to show the suc-
cessful completion of the skill, and some people were also
able to provide reasonable demonstrations for the exact
motion the robot should take to achieve it. Based on this
observationwe propose a skill learningmethod thatwill learn
goals in addition to actions and treat these modeling prob-
lems separately. This observed duality in human teachers has
influenced our overall approach to LfD, illustrated in Fig. 2.

In addition to being goal-oriented, we found that some of
the naïve users have difficulty in manipulating the robot to
provide demonstrations (Akgun et al. 2012b, c). As a result,
their trajectory demonstrations were inconsistent and noisy,
which complicates learning. However, all the teachers were
able to utilize keyframe demonstrations to provide data. The
drawback of the keyframe demonstrations is that it loses
any dynamics information. Since the demonstration pauses
at each keyframe, the robot does not receive any information
about target velocities for the keyframes. However, a large
class of skills for personal robots do not feature complex
dynamics, hence this is the class of skills we choose to focus
on initially. Thus, keyframes help naïve teachers to provide
better demonstrations to the robot and allow them to high-
light important and salient aspects of the demonstrated skills.
For these reasons, we utilize keyframes as our input in Fig. 2.
The input modality in Fig. 2 refers to different ways teach-
ers could demonstrate these keyframes to the robot such as
teleoperation or kinesthetic teaching.
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Fig. 2 The developed LfD system. The user demonstrates the skill
by using keyframes. Two types of data is extracted at each keyframe;
motion data (related to robot control) and object data (related to the
object being manipulated for the skill). Then the same algorithm is used
to learn two distinct models from the aforementioned data; an action
model and a goal model. The learned action model is used to execute
the skill and the learned goal model is used to monitor the execution

As seen in Fig. 2, the main idea of our approach is to
use two different information streams, from the same set
of demonstrations, to learn two different models. During
demonstrations, we collect data from two sources: motion
data and object data. The former is related to the motion
of the robot, for example motor commands, joint positions,
end effector pose etc. The action model is learned using
this motion data. Our focus is on object related skills and
the goals of these skills is to achieve certain object states
during the skill. Hence, we use an external sensor to cap-
ture the state of the object. The goal model is learned using
this object data. A single demonstration involves the teacher
marking a series of keyframes that complete the skill. Each
time the teacher marks a keyframe we record two differ-
ent types: (1) a goal keyframe consisting of object data; and
(2) an action keyframe consisting of motion data. Thus a
single demonstration is treated as two simultaneous demon-
strations: the goal demonstration is the set of goal keyframes,
and the action demonstration is the set of action keyframes.
In this work, we use the same learning algorithm on each
type of data to learn the two different models but it is pos-
sible to use different algorithms for each. The exact skill
modeling technique is not of key importance as long as some
requirements for themodels are satisfied (discussed further in
Sect. 7).

There are multiple reasons for separating action and goal
learning. For our purposes, data for both are from inherently
different sources; the action data comes from the robot and
the goal data comes from theobject of interest. The separation
allows for different levels of granularity between the models.
The action might require multiple steps to change to state of
the object. For example to lift a cup, the robot would need
to approach the cup grasp it and then lift it. From the goal
point of view, the object only changed its height. Learning the
mapping between the action and goal spaces is an interesting
problem.However, it would be highly complex and noisy and
would require more data to learn a joint representation. We
do not concentrate on this problem for this paper. Finally, the

learned models have different purposes. The action model is
used to execute the skill. The goal model is used to monitor
the execution of the skill. The monitoring task involves using
the goal model to classify the object data stream captured
during skill execution.

We want to develop a generic LfD approach that can han-
dle a variety of skills without tuning and that can represent
the acceptable variance on executing the skill (as opposed
to a single optimal way). Relatively generic feature spaces
are needed to handle a variety of skills. This requires us to
learn from multiple demonstrations so that there is enough
information about the variance over how to execute the skill.
Having a variance on the action model allows the robot to
execute the skill with variety which is important in cluttered
and/or new environments. Simply repeating a single demon-
strationsmight fail ormight not be possible at all.An example
to the latter is when a transformed demonstration falls out of
the robot’s workspace due to new object location. The allow-
able variance over the execution is also useful for avoiding
collisions in clutter but we are not addressing this problem
in our current work. In addition, having multiple demon-
strations allows us to estimate the variance on how the skill
“looks”, important for monitoring, especially given that sen-
sors are noisy. A single demonstration is not enough to build
a good goal model; even the same exact repetitions will not
look the same.

Our approach and current implementation imposes sev-
eral assumptions on the types of skills that we can handle.
For this work we assume that skills have a single object of
attention, they can be executed by a single end-effector, they
are not cyclic and their goal involves a perceptual change in
the object. Future work will look at removing some or all of
these assumptions within the introduced framework.

4 Implementation

In this section, we describe our hardware platform, setup and
how we implemented the individual components in Fig. 2.

4.1 Hardware platform

We are using a bi-manual upper-torso humanoid robot that
has 7 degree-of-freedom (DoF) compliant arms with series-
elastic actuation and gravity compensation. We employ
an overhead ASUS Xtion Pro LIVE (RGBD camera) as
our external sensor with an overhead view of the tabletop
workspace seen in Fig. 1. We use the Point Cloud Library
(PCL),2 to process point cloud data. During the LfD interac-
tion, there is a limited grammar of speech commands used to

2 http://pointclouds.org/.
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Fig. 3 A teacher providing a goal-only demonstration of the pour skill
to the robot

mark keyframes and move the interaction forward. We use
theMicrosoftWindows 7 SpeechAPI for speech recognition.

4.2 Demonstrations

In this work, the teachers use kinesthetic teaching to demon-
strate skills to the robot. In kinesthetic teaching, the teacher
guides the robot’s arm physically to provide demonstrations,
as shown in Fig. 1.

We also allow for the situation where the teacher provides
a goal-only demonstration, by doing the skill themselves, as
seen in Fig. 3. While this loses the action keyframes entirely,
it does have the advantage that teachers can give demonstra-
tions quickly and likely with less occlusions (due to only the
human being in the view instead of human and the robot). In
this case, when the teacher marks a keyframe, the robot only
records a goal keyframe, and in the end the robot will have
different size demonstration sets for learning the goal model
and the action model. Our intention with this alternative is
to provide a wider variety of ways that the teacher can pro-
vide goal demonstrations to the robot. In future work we will
compare the utility of each interaction modality, but for the
purpose of this paper we use both forms of goal demonstra-
tions simply to show that a valid goal model can be learned
from this.

The interaction flow and the demarcation of keyframes
is controlled by speech commands. The list of speech com-
mands and their function is shown in Table 1. The robot
begins in an idle state, from which the teacher can put the
robot in gravity compensation mode, open/close the hand,
etc. prior to giving a demonstration. The teacher can choose

Table 1 Speech commands for controlling the interaction and their
function

Command Function

Let’s begin the experiment Start the overall interaction

Release your arm Put the robot in gravity
compensation mode (needed for
kinesthetic teaching)

Hold your arm Put the robot in joint position mode

Let’s learn a new skill Start learning the first skill or move
to the next skill

Watch me do it Transition to a goal-only
demonstration

I will guide you Transition to a kinesthetic
demonstration

Start Here Indicate the starting of a skill
demonstration and mark the first
keyframe

Go Here Mark a keyframe. Effective only
between start here and end here
commands

End Here Indicate the end of a skill
demonstration and mark the last
keyframe

Close your hand Close the robot’s fingers and mark
a keyframe if used between start
here and end here commands

Open your hand Open the robot’s fingers and mark
a keyframe if used between start
here and end here commands

whether to provide a kinesthetic demonstration by saying I
will guide you (default) or a goal-only demonstration by say-
ingWatch me do it. Then the demonstration begins when the
teacher marks the first keyframe by saying start here. Each
intermediate keyframe ismarked by saying go here. And then
the demonstration ends when the teacher says end here, tak-
ing the robot back to an idle state. As will be described in the
data collection protocol (Sect. 5.2), this cycle is completed
multiple times to provide a set of demonstrations for a skill.

4.3 Feature spaces

4.3.1 Object data

In selecting a feature space for the object data, our aim is to
have a feature space that is going to allow the robot to build
a visual model of how the object is changes over the course
of the action. Thus we select a set of features commonly
utilized in the literature for object tracking and perception
tasks; a combination of location, color, shape and surface
features. As advances in object perception are made, this
object feature space can be updated to reflect the state of the
art.
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We use an overhead RGBD camera as our external sensor.
As a result, the raw sensor information for the object data
is the colored point cloud data. The goal keyframe consists
of features extracted from this RGBD data. We first segment
the object(s) in the point cloud data, fit a bounding box and
then extract features. This section details each of these steps.

To segment the objects, we use the approach in Trevor
et al. (2013) to find spatial clusters of similar color. This
procedure often results in over segmentation, especially if the
object is occluded. The clusters are inspected and, if needed,
are merged manually by one of the authors.3

As stated in Sect. 3, we assume that there is a single object
of attention for eachmanipulation action that is to be learned.
In the work presented here selecting this object is simpli-
fied by using a clean workspace in which only the object
of attention is visible, in future work this could be selected
automatically based onwhich objects the handmoves closest
to, or which objects changed the most over the action, or by
interacting with the teacher etc.

After segmentation, we fit a rotated bounding box to the
object and use the pose of this box as the object pose. An
example of the segmentation and the bounding box results
can be seen in Fig. 5. We extract color and generic shape
related features from the object using the point cloud and
bounding box data. These include average RGB (3), num-
ber of points in the cloud, centroid of the bounding box (3),
rotation of the bounding boxwith respect to the table normal,
bounding box volume, bounding box area, bounding box side
lengths (3), aspect ratio parallel to the table plane, bounding
box area to volume ratio (scaled down) and bounding box
volume to number of cloud points ratio, resulting in 16 fea-
tures. Some skills can change the object location (e.g. pick
and place) and color (e.g. pouring a different colored liquid
in to a cup). Remaining features are extensions of commonly
used 2D features. They represent the generic silhouette of the
object, which can be changed by certain skills. Overall these
are more global features for the object.

In addition to these, we use Fast Point Feature Histogram
(FPFH) descriptors presented in Rusu et al. (2010) to cap-
ture surface features, to go beyond the object silhouette. We
chose these features since they have been shown work for
object recognition. The first step to calculate these features
is to estimate the surface normals at each point followed by
finding the centroid of the points. Then, the angular devia-
tions between the axes of the surface normals at each point
to the centroid of the object is calculated and binned to form

3 Integrating more robust object segmentation into the perception
pipeline is left for future work. Since our experiments in this article
are performed on a batch of demonstrations offline, robust online track-
ing is not our current focus. This will become important in our future
work when we want learning to be an incremental online process, and
we believe solutions exist for obtaining a robust segmentation for this
purpose.

a histogram. In our work, we use 9 bins per angle and utilize
the reference implementation in the PCL. In the end, we get
a 43 (16+ 9× 3) dimensional goal space, treated as R43, for
the goal keyframe.

4.3.2 Motion data

We use the end-effector with respect to the target object as
ourmotion data, which constitutes the action keyframe.After
a demonstration, we transform the end-effector poses to the
object reference frame (as calculated in Sect. 4.3.1).4 We
represent the end effector pose as the concatenation of a 3D
vector as the translational component and a unit quaternion
(4D) as the rotational component, resulting in a 7D vector,
hence the action model lives in a 7 dimensional action space,
treated asR7. A point in this action space is projected onto the
space of rigid body transformations, SE(3), by normalizing
the quaternion part wherever necessary (e.g. before execu-
tion).

Some existing work uses a state space that is known in
advance to be appropriate for representing a particular skill.
For example, learning a pool stroke with the specialized state
space of cue rotations, tip offset and elbow posture (Pastor
et al. 2011). Other seminal examples with a skill specific fea-
ture space include the pendulum swing up and balance task
(Atkeson and Schaal 1997), playing table tennis (Mülling
et al. 2013), flipping pancakes (Kormushev et al. 2010) and
flying a model helicopter (Abbeel et al. 2010). In all of these
prior works automatic feature selection problem is acknowl-
edged as an important problem for future work. In other LfD
work, the problem is defined as learning in the joint space,
end-effector space (with respect to robot or landmark(s)) or
both. We argue that the end-effector space is more general
in most situations and hence more suitable to our aim of
allowing end-users to teach a wide range object directed
skills without changing the feature space. Although it is not
addressed by our current work, we think a feature selection
mechanism, applied on a per skill basis, on top of this generic
space would be highly suitable.

4.4 Notation

In this section we define a list of symbols for several of the
constructs introduced so far, to be used in the rest of the text.

a j
i : The i th action keyframe for the j th demonstration,

a j
i ∈ R

7.

g j
i : The i th goal keyframe for the j th demonstration, g j

i ∈
R
43.

4 This object based representation is fairly common in robotics.
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A j : The j th actiondemonstration, a set of actionkeyframes
where m( j) is the number of keyframes (the number
of keyframes can be different for each demonstration),

A j =
{
a j
1 , a

j
2 , . . . , a

j
m( j)

}
.

G j : The j th goal demonstration, a set of goal keyframes,

G j =
{
g j
1 , g

j
2 , . . . , g

j
m( j)

}
.

DA: The set of n action demonstrations,
{
A1, . . . An

}
.

DG : The set of k goal demonstrations,
{
G1, . . .Gk

}
. k and

n can be different, but in general k ≥ n, since we get
both action and goal demonstrations during kinesthetic
teaching and also allow for goal-only demonstrations.

qr : The r th observed keyframe during a skill execution,
qr ∈ R

43.
Q: The set of observed keyframes during a skill execution,{

q1, . . . q p
}
, where p is the number of keyframes used

in execution.
MA: The action model.
MG : The goal model.

4.5 Algorithm

In this work we use a Hidden Markov Model (HMM) to rep-
resent both the action model and the goal model of the skills.
HMMs are useful tools for modeling sequential data where
observations are noisy and sample independence assumption
is too constrained.Keyframedemonstrations lend themselves
naturally to such amodel since they can be treated as sequen-
tial observations that are not independent. We interpret the
hidden states as canonical steps (or true keyframes) of the
skill. In addition, HMMs are generative which enables us to
use them in skill execution.

We model the emissions as multivariate Gaussian distri-
butions on the corresponding state space (either the action
space or the goal space) and use full covariance. The HMM
notation we use consists of the following:

N : The number of states
s j : The j th state ( j = 1 . . . N ). The states are not

directly observable.
S : The set of all states, S = {s1, . . . , sN }

μ j : The emission mean for the j th state
Σ j : The covariance matrix for the j th state
T : The N × N state transition matrix,

T (k, j) = P
(
s(t) = sk |s(t − 1) = s j

)
is the tran-

sition probability from state j to state k
y: An emission vector

P(y|s j ): The probability for the emission y in state s j ,
P(y|s j ) ∼ N (μ j ,Σ j )

π : The N dimensional prior probability vector
ζ : The N dimensional terminal probability vector

Fig. 4 A depiction of the learning process. The resulting model is a
representative 4-state HMM with emission distributions. In addition to
these, we learn transition probabilities, prior probabilities and terminal
values

The set of action demonstrations DA is used to learn the
action model, MA. Similarly the set of goal demonstrations,
DG is used to learn the goal model, MG . We learn these
models from multiple demonstrations and both MA and MG

are individual HMMs.
We train these HMMs with the Baum–Welch algorithm

(BWA) (Baum et al. 1970), which is an Expectation–
Maximization (EM) type algorithm, initialized with k-means
clustering, which itself is initialized uniformly randomly in
the state space and restarted 10 times. We use the Bayesian
Information Criterion (BIC) for model selection, i.e. , to
select the number of states of the HMMs .We start by setting
the number of states as the minimum number of keyframes
seen during the demonstrations. The number of states is
increased until we hit a minimum BIC score and select the
corresponding one. Since the learning is initialized randomly,
we run BWA 10 times given a number of states and select
themodel with the highest likelihood to calculate BIC.5 Note
that the action model and the goal model can have different
number of states after training.

The standard BWA calculates T, π, μ1...N ,Σ1...N . In
addition, we calculate the terminal probabilities. The termi-
nal probability of a state represents the likelihood of that state
being the last state for the HMM, and is calculated similar to
the prior probability. We denote terminal probabilities with
ζ . A representative learning process and the resulting HMM
is shown in Fig. 4. We are going to use superscript to denote
model membership for the parameters, for example π A is the
prior probabilities for the action model, TG is the transition
matrix for the goal model etc.

Another advantage of HMMs is that a single EM-step
run of the system, with the Gaussian emission models, is
polynomial, i.e. tractable, as opposed to learning an arbitrary
dynamic Bayesian network (DBN).6 This tractability is due
to the Markov assumption of state transition, emissions only

5 These details are given for completeness but another model selection
procedure can be used as well.
6 Although tractable approximate methods exist for DBNs.
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depending on current state and the tractability of Gaussian
model parameter estimation.

4.6 Action execution

To execute the learned skill, we generate a state path from
MA, extracting end-effector poses using the emission distri-
bution and splining between the poses to get a trajectory for
the robot to follow. This process is detailed in Algorithm 1.

We start by finding the most likely path between each
prior state in π A to each terminal state in ζ A and store them
(lines 1–11). The function FindStatePath (p, z, T A) does the
path finding between the state p and the state z, given T A.
It applies Dijkstra’s algorithm on the negative logarithm of
the entries of T A as the edge weights. The shortest path we
get by using the addition of the negative log-likelihoods is
equivalent to the one we would get by maximizing the multi-
plication of the probabilities. We then select the most likely
path among these paths, given the transition probabilities T A,
prior probabilitiesπ A and terminal probabilities ζ A (line 12).
If the initial position of the robot is important, we can select
the prior state that is closest to this and then only consider
the corresponding paths.

Algorithm 1 Tra = GenerateTrajectory(MA)
1: Φ = ∅
2: for all p ∈ SA do
3: if π A(p) �= 0 then
4: for all z ∈ SA do
5: if ζ A(z) �= 0 then
6: φ = FindStatePath(p, z, T A)
7: Φ = Φ ∪ φ

8: end if
9: end for
10: end if
11: end for
12: ρ = argmaxφ∈Φ (loglik(φ))

13: R ← ∅
14: for all s ∈ ρ do
15: R ← μs
16: end for
17: Tra = Spline(R,vavg , Δt)
18: return Tra

It might be the case that there is a cycle in the resulting
path, for example when the user starts and ends the demon-
strations at close enough robot poses. For this paper, we
assume that the skills are not cyclic thus when we detect
a cycle in the generated path, we stop i.e. allow for only a
single cycle. Another way to resolve this is to interact with
the user and ask if the skill has a cyclic component and how
many times (or until what condition) the cycle should be
executed. This is not something we address in our current
approach.

Oncewe have selected a state path,we extract the resulting
emission means of the generated path in the same sequence
(lines 13–16), transform them to the robot coordinate frame
(skipped in the algorithm for clarity) and fit a quintic spline
between them (line 17). The robot follows the resulting tra-
jectory (in the end effector space) to execute the skill. The
transformation is done based on the current object pose, as
estimated by the perception system. We assume a constant
average speed (vavg) between two points to decide on the
timing of the spline, choose the initial and target velocities
and accelerations as zero between the points and use a given
time step (	t) to decide on the density of the trajectory in
time. This results in a straight path in the end-effector space
between two points.

4.7 Goal monitoring

The goal model, MG , is used to monitor the execution of the
action model, MA. This information could then be used by
the robot for error recovery or to ask the human teacher for
help in case of a failure or to move onto its next task in case
of success.

Toperformmonitoringduring execution, the robot extracts
an observation frame (q) from object data in the goal space at
each action keyframe it passes through. The action keyframes
are at the emission means obtained as described in Algo-
rithm 1. This results in an observation sequence, Q ={
q1, . . . , qp

}
, where p is the length of the state path ρ that

is calculated in Algorithm 1.
A sequence of a short length can have a high likelihood

score but it might not be enough to complete the skill. For
example, observing an incomplete execution of a skill would
yield a high likelihoodbut in reality it should be a failure since
the skill is not completed. This is the reasonwe are estimating
the terminal probabilities from demonstration data. On the
other hand, it is not enough to just check whether the end-
state is a terminal state for all the skills. Sub-goals of the
skill might be important to achieve it but not be visible at
the end state. We use the forward algorithm to calculate the
likelihood of the the observed sequence with the inclusion of
the terminal probabilities, ps = P(Q; MG), given the goal
model. We then decide failure if ps < τs holds true where τs
is a selected threshold.

In the current implementation, the monitoring decision is
made at the end of execution. However, there is no techni-
cal limitation for it to be done as the skill is being executed.
The likelihood of the current observation sequence can be
calculated online and evaluated with a threshold. The only
difference would be that the terminal state check would be
done at the end of the execution. This could be used to deter-
mine early failure and showwhen the action failed. However,
these are left for future work.
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Fig. 5 Image snapshots as seen
by the overhead camera

5 Data collection

To test our approach, we collected demonstration data from
8 users (4 male and 4 female) with ages between 18 and 26
(median 21.5). They were recruited from the campus com-
munity, and none had prior experience interacting with a
humanoid robot in an LfD setting. Each person spent an aver-
age of 30 min with the robot, first practicing the interaction
and then providing 9 demonstrations for each of our 2 skills.
In this section we detail the skills and the data collection
procedure.

5.1 Skills

We have one practice skill and two evaluation skills. Touch is
the practice skill, with the goal of touching two objects in a
given order. This skill is used to get the participants familiar
with the two types of demonstration (kinesthetic and goal-
only) and the keyframe interaction dialog in general. The two
evaluation skills are as follows.

In the close the box skill, the aim is to close a particular
box, as seen in Fig. 5a. The reference point of this skill is the
box. The pose of the end-effector is encoded with respect to
the box reference frame. The centroid and angle of the bound-
ing box features for the keyframe sequence is also encoded

with respect to the reference frame of the box in the first
keyframe. The success metric for this skill is whether or not
the box lid is closed.

The aim of the pour skill is to pour coffee beans from
the cup to the square bowl, as seen in Fig. 5b. We assume
the object of interest is the target bowl, since the cup can be
considered as the part of the end-effector. The end-effector
pose and the relevant features are encoded with respect to the
bowl. The amount of coffee beans in the cup is measured to
be the same across all demonstrations.

An interesting future work is to select the objects of inter-
est and the reference points either automatically or through
user interaction. However, for this study, we keep them fixed,
and this is the only skill specific representation decision we
make.

These two skills are very different fromeach other in terms
of both object data and motion data. We chose these skills in
order to show that we can learn different goal models without
engineering the feature space for a particular task. These are
two different examples of the class of object directed motion
tasks that the approach is designed for (see Sect. 3).While we
would have liked to include even more skills, this decision
is a trade-off with collecting a greater set of demonstrations
from a single user.We opted for asking each participant to do
six complete demonstrations and three goal-only demonstra-
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Fig. 6 The three poses of the
objects for demonstrations for
both skills overlaid

tions of each skill, which took around 30 min to complete.
This was our target length for teaching sessions since longer
sessions risk losing the participant’s interest and could affect
the quality of data.

5.2 Protocol

The data collection session begins by first giving the par-
ticipant a brief verbal description of kinesthetic teaching,
keyframes, speech commands and the interaction flow. Then
the participant is asked to pose the arm in certain config-
urations in order to get them acquainted with kinesthetic
teaching and moving the robot. Once the participant is famil-
iar with kinesthetic teaching, we move on to the practice
keyframe demonstration of the touch skill, followed by doing
the same skill as a goal-only demonstration. During the prac-
tice skill,wehelp the user by showinghow to achieve a certain
pose or by pointing out the right speech command (see Table
1). This assistance is not given during the evaluation skills.
The introduction and practice takes 5–8 min. The participant
stands to the right of the robot during the kinesthetic demon-
strations (see Fig. 1), and is positioned on the opposite side
of the table during goal-only demonstrations (see Fig. 3).

After the practice session, we collect data for the two eval-
uation skills, counterbalancing to control for order effects.
Before each skill, we explain the skill with similar words
as they are described in Sect. 5.1, without explicitly show-
ing it with the robot, so as not to bias their motion input.
For each skill, there are three initial poses of the reference
objects. These poses can be seen in Fig. 6. For each pose of
the object, the participant is first asked to show a goal-only
demonstration and then to provide two kinesthetic demon-
strations. The objects are placed such that the same point of
view for the user is maintained for both of the demonstration
modes.7 This is repeated for the second skill, then the data
collection session ends. The overall experiment takes results
in 18 demonstrations (2 × (6 + 3)) from each participant.

7 They are mirrored since the participant is standing across the table in
one and standing next to the robot in the other.

The reason we collect multiple demonstrations from dif-
ferent poses of the objects is to build a more general model
of the action, as pointed out in Sect. 3. As a result, a direct
playback of the user demonstrations is not always feasible
to execute the skill. For example, the arm motion required
for completing the close the box skill for the horizontal box
position in Fig. 6 would be out of the robot’s workspace if
transformed for the vertical box position. Similarly for the
pour skill, the demonstrations for the rotated bowl would not
be applicable to the non-rotated bowl, unless we use our prior
knowledge of rotation independence of the skill.

6 Evaluation

We first evaluate the models via cross-validation with the
demonstration data. We do this analysis for both the action
and the goal models in order to show the level of similarity
of the demonstrations in the two different feature spaces.
However, cross-validation is just a first step to assess model
performance. The real aim of the goal models is to provide
information about the success of the skill execution, and the
aim of the action model is to produce successful executions
of the skill. To this end, we evaluate both models in a series
of robot trials. We evaluate the action models by running
the generated trajectories on the robot and we evaluate the
goal models on recognition accuracy of the success/failure
of these executed actions.

Throughout the analysis, we fix log(τs) = −500 for the
goal models and log(τs) = −1000 for the action models.
The threshold for the goal model is chosen such that there
is correct classification of both successful and unsuccessful
trials, based on cross-validation results. The threshold for
the action model is chosen based on the distinct cutoff of
likelihood estimations; anything below the selected threshold
was too low (e.g. at the smallest floating-point value). We
threwout 1 demonstration of participant 4 and1of participant
8 for the pour skill due to the object being fully occluded in
one of their keyframes.
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6.1 Cross-validation on demonstration data

6.1.1 Aggregate models

Our first analysis is designed to show the between-participant
similarity in goal versus action demonstrations. We use a
modified k-fold cross-validation. Instead of randomly divid-
ing the data, we leave one participant’s demonstration set
out as test data and train a single aggregate model with all
of the other participants’ demonstration data together. Since
there is more goal data than action data, due to goal-only
demonstrations, we ran the same analysis twice for the goal
models; once for all the demonstrations and once with only
kinesthetic demonstrations (removing the goal-only demon-
strations).

– Goal model recognition accuracy The average results for
all the users is 100%correct recognition for both the close
the box skill and the pour skill. This shows that the users’
demonstration were overall similar to each others’. We
get 100 % correct recognition for both of the skills when
we remove the goal-only demonstrations as well.

– Action model recognition accuracy The average recog-
nition accuracy of the action models across all users is
also high, 89.6 % for the close the box and 97.5 % for the
pour skill. These results suggest that the demonstrations
are consistent overall with a relatively large set of data.

6.1.2 Between participants

Next we evaluate the generality of each individual partici-
pant’s model, training with a single participant’s data and
using the other seven participants’ demonstrations as test
data. This analyzes the ability of the model built from one
participant’s data to generalize to other participants’ data.
The action models performed very poorly in this task, even
though they performed well with the aggregate data. As a
result we do not include them in the analysis.

These results are shown in Table 2a. For the close the box
skill, apart from participant 1, all the other participants had
better than chance goal recognition performance and partic-
ipants 2, 4, 5, 6 and 7 had very good performance.8 We get
somewhat lower recognition performance for the pour skill
but all participants did better than chance with participants 5,
6 and 7 had very good performance. These results imply that
our participants provided perceptually similar demonstra-
tions.As seen in the table, someparticipants (4, 5, 6) provided
quite general demonstrations (i.e., good variance) across both

8 Participant 1 has only provided between 2 or 3 keyframes per demon-
strationwhereas other participants provided 4–6. As a result, participant
1s goal model was not able to recognize the demonstrations of other
users.

Table 2 The cross-validation results for the goal model

Close the box Pour

All Reduced All Reduced

(a) 1 vs 7: trained with 1 user, tested against 7

1 0 0 76.2 30.1

2 88.9 71.4 60.3 45.2

3 58.7 38.1 71.4 83.3

4 98.4 95.2 95.2 47.6

5 88.9 85.7 81.0 73.8

6 98.4 92.9 85.7 71.4

7 96.8 100.0 71.4 61.9

8 63.5 42.9 60.3 71.4

Avg. 74.2 65.8 75.2 60.7

(b) Single user: cross-validation with the
8–9 demonstrations for a single user

1 100.0 100.0 88.9 66.7

2 88.9 83.3 100.0 66.7

3 100.0 100.0 100.0 100.0

4 88.9 100.0 75.0 40.0

5 100.0 100.0 100.0 100.0

6 77.8 100.0 100.0 100.0

7 88.9 100.0 88.9 100.0

8 100.0 66.7 75.0 40.0

Avg. 93.6 93.8 91.0 76.7

Avg. refers to the average results. The columns under “All” refers to
data including goal-only demonstrations and “Reduced” refers to data
from only kinesthetic demonstrations

skills (higher than 80 % accuracy); and the average recog-
nition accuracy for all the participants was 74.2 % for close
the box, and 75.2 % for pour. We believe these results are
quite good considering the low number of training data in
this analysis (1 participant = 9 demonstrations) and the high
dimensionality of the feature space of the goal model. The
results without the goal-only demonstrations have slightly
lower success rates apart from participants 1 and 4 for the
pour skill.This is because the kinesthetic demonstrations tend
to have have more occlusions due to having both the user’s
hand and the robot’s end-effector over the target bowl in the
frame of the sensor, resulting in worse data for the pour skill.

6.1.3 Within participants

Lastly, we evaluate within-participant recognition perfor-
mance by applying leave-one-out cross-validation for each
participant’s demonstration set. These results are seen in
Table 2b. The recognition results for the goal models are
similar across both skills and as expected are better than the
generalized 1 versus 7 task, with an average 93.6 % accuracy
for close the box and 91.0 % for pour. The results without the
goal-only demonstrations are the very similar for the close
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Fig. 7 Image snapshots for a
close the box execution. The
first row shows a successful
execution and the second row
shows a failed one. In the failure
case, the robot’s fingers got
stuck to the body of the box
during, as shown in the last row.
As a result it tilted the box,
instead of closing it

the box skill but differ for some participants in the pour skill.
The reason is same as before, more occlusions when both the
users’ hands and robot’s end-effector occluding the object.

The action models were not successful in this cross-
validation recognition task as well. This was somewhat
expected in the between-participant case, due to a wide range
of possibilities to demonstrate the skill and user differences.
However, the within-participant results show that the number
of demonstrations we obtained is not enough to model the
variance and/or the different ways to execute the skill. This
does not imply that we cannot learn good action models but
imply that the demonstrations are diverse.

6.1.4 Discussion

These three sets of results show that demonstrations are sim-
ilar and consistent both between and within the users in the
goal space, and even 9 demonstrations per user is enough
to learn accurate goal models for these skills. We also show
high recognition rates without the goal-only demonstrations
(i.e. 6 demonstrations). However, more action data was need
to span the state space with varied examples. These results
are expected given that (1) naïve users are goal oriented and
(2) there are many ways to accomplish the same skill in the

action space but all of these will look similar in the goal
space.

6.2 Robot trials: skill execution

One aim of learning both models is to be able to exe-
cute the skill on the robot and know whether the execution
succeeded or not. This is arguably the main purpose of
LfD, making use of the learned models in practice. The
individual learned action models had very low recognition
performance in the cross-validation tests (both within- and
between-participants), but low cross-validation scores do not
imply that the resulting actionmodels are useless, a more fair
analysis of the action models is evaluating their success at
generating motion.9 We perform this analysis by executing
the skills with each of the learned action models, using Algo-
rithm 1. An example of executing a learned action model for
the close the box skill is depicted in Fig. 7.

We tested the learned action model for each skill for the
8 individual participants. We used each model to generate
robot motion, executing it 5 times and noting the success

9 The cross-validation tests how similar the demonstrations are but not
how the action itself is modelled.
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Table 3 Skill execution and
monitoring results

Close the box Pour

Execution success (%) Monitoring results Execution success (%) Monitoring results

True False True False

Pos:Neg Pos:Neg Pos:Neg Pos:Neg

1 100 5:0 0:0 100 5:0 0:0

2 0 0:5 0:0 100 5:0 0:0

3 60 2:2 0:1 0 0:3 2:0

4 40 2:3 0:0 100 4:0 0:1

5 40 2:1 2:0 100 5:0 0:0

6 100 5:0 0:0 100 5:0 0:0

7 40 2:2 1:0 0 0:4 1:0

8 80 4:1 0:0 100 5:0 0:0

Average 57.5 22:14 3:1 75 27:9 3:1

or failure as the ground truth. We regarded the fully closed
box as successful for the box skill and for the pour skill, we
regarded it successful if the robot was able to pour most of
the coffee beans to the bowl (i.e., a bean or two bouncing out
was still called success). These results are seen in Table 3,
under the Execution Success columns. There is a wide range
of success rates across participants. Six of the eight partici-
pants achieved a 100 % success rate (5/5) with at least one
of their skills, and two people did so for both. Whereas three
people had one of their actionmodels with a 0% success rate.
In general the pour skill was more successful, with a 75 %
success rate across all participants, compared to the close the
box skill with a 57.5 % aggregate success rate.

There were a few common modes of failure. For the close
the box skill, the fingers sometimes touched too lightly to the
lid and lost contact. This is exacerbated by the highly com-
plaint fingers of the robot as they bend slightly with touch.
Another case was when the fingers got stuck on the body of
the box and tilt it instead of closing it, as shown in the bottom
row of Fig. 7. This happens due to user demonstrations; not
enough clearance is demonstrated when going from under
the lid to over the box.10 For the pour case, the common
mode of failure was having not enough downward rotation
to pour the entire cup.

6.3 Robot trials: skill monitoring

While executing the action models, the robot extracts an
observation frame in the goal space at each action keyframe
of the skill, as described in Sect. 4.7. We then provide each
of these observation sequences as input to the goal model
for the corresponding participant, as described in Sect. 4.7.
These results are seen in Table 3, under the Monitoring

10 In an interactive scenario, the teacher might realize this and fix it
with their follow-up demonstrations.

Results columns. This table shows the correctly recognized
execution outcomes (true positives and true negatives) and
the mistakes (false positives and false negatives) for each
participant’s goal models across both skills. The recogni-
tion accuracy at monitoring is good for both of the skills.
Looking at the overall rates, only 4 of the the 40 trials was
incorrectly classified across both skills. Thus, a 90 % suc-
cess rate in the goal monitoring task for each skill. The
exciting result is that even for participants with low exe-
cution success, their goal model is good. This is a result we
expected based on the successful cross-validation results, but
is reassuring to see that the goal models perform well on new
data observed when the robot is executing the learned action
models.

7 Discussion

7.1 System requirements

In this work, we propose the LfD system in Fig. 2 and pro-
vide a single implementation of the components. There could
be other implementations. In this section, we discuss the
requirements of the components and talk about other poten-
tial implementations in relation to existing work.

The information to learn action models and goal models
need to be available during a demonstration. In our current
implementation, we use kinesthetic teaching to get motion
data. Teleoperation is an option to get direct access to this
data. Another option is to observe the teacher doing the skill
and then use a re-targeting function to map it onto the robot,
which is an example of indirect access to motion data. For
the object data, we use a RGBD camera. Other sensors can be
used instead or in addition, such as 2D cameras (e.g. Akgun
and Thomaz 2013) and force/torque sensors. Even thoughwe
are not using any suchmethod, feature selectionmethods can
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be employed on top of the resulting data given that the goal
space has high number of dimensions. Currently, the method
assumes that there is a single object of attention which is
known beforehand.

Keyframes play an important role in our implementation.
Keyframes help users highlight important parts of a skill, but
they are not the reason to decouple action and goal learning.
Trajectories can also be used with the proposed method, as a
tractable way that can overcome difficulties associated with
naïve teacher input is used. In the current work, it seems that
keyframes help the goal models (the salient points argument)
more so than the action models.

As mentioned in Sect. 3, we use the same learning algo-
rithm to learn two different models but it is possible to use
different algorithms for each. The exact skill modeling and
learning method is not of key importance as long as some
requirements for the models are satisfied.

The requirement on the action model is that it needs to
be generative, in the sense that it should be able to generate
motion related information to execute the skill. The methods
mentioned in Sect. 2.2 are all candidates for action learning.
After learning, the skill is executed by either using the action
model as a policy or using it to generate a trajectory and
following it with some other means.

The requirement on the resultinggoalmodel is that it needs
to be suitable for classification to be used in monitoring the
skill execution. Given our LfD scenario, we have access to
only successful demonstrations. With only positive exam-
ples, the monitoring task becomes a one-class classification
problem; the classifier is trained only on positive labels. Any
method that can model the probability distribution of the
object data can be used with likelihood calculation given
observations and thresholding or hypothesis testing. In this
paper, we have used HMMs. Conditional Random Fields is
another option. Other alternatives include nearest neighbors
and one-class SVMs, but applying these to sequential data of
arbitrary length may not be straightforward.

7.2 Future work

The results set up interesting future work. The current use of
goal models is to monitor the executed action and try again
if failed. A next step is to use the prior state information to
decide if the skill is actually executable, treating this infor-
mation to judge whether the pre-conditions are met.

A future use of the learned goal models in this work is to
utilize them as an objective in a policy search to improve the
learned action models. In Sect. 2.3, we mentioned that IRL
is similar in spirit to our approach; learning goals is similar
to learning rewards. However, there are some problems to
overcome. Keyframes provide sparse rewards which is not
typical for IRL. The dimensionality of our goal space is pro-
hibitive for some of the existing IRL methods to be used in

interaction time.11 The IRL idea was developed with expert
demonstrators12 in mind. The naive user input to IRL meth-
ods has been considered but, suitable methods for a generic
interaction have not been explored. Future work would look
at how to overcome these in an IRL sense or utilize the goal
models in other ways to do policy search. An example to
the latter would be to execute sampled trajectories from the
action model and use them to update the action model if
deemed successful by the goal models.

Another alternative is to do reward shaping to alleviate
some of the problems with sparsity and delay in the context
of RL. This would require the teacher to be in the loop during
skill improvement to provide feedback for reward shaping,
since this would need to be skill specific. Having the teacher
in the loop, at least initially, would be useful to both refine
the action models and the goal models.

Policy search and reinforcement learning in general can be
costly and unsafe for robots. Safe exploration is an important
area of future research. Goal models can be utilized online to
detect early failures in exploration to mitigate some of these
problems.

The user preference on the types of demonstrations (kines-
thetic vs goal-only) is an important point to consider to
develop futureLfD interactions.Wedid not have a post exper-
iment interview or a survey in this work but consider this to
be a useful future addition.

Our aim is to build a generic LfD approach. Towards
this end, several parts of the current approach needs to be
improved/augmented. These include generalizing to skills
that have multiple objects of interest, selecting reference
frames formotion data, allowing actionmodels for bi-manual
manipulation and addingmechanisms to handle cyclic behav-
iors.13

8 Conclusion

Our aim is to build LfD techniques for personal robots
that will have an everyday person as their end-user. In this
paper we address the goal-oriented nature of human teach-
ers, with the expectation that people will be more focused on
successfully demonstrating task goals than particular motor
trajectories.

Wedeveloped a novel framework forLfDwith naïve users,
learning task level goals and motor level actions simultane-
ously, but maintaining them as separate learning problems.

11 Fast enough to have a fluid interaction with the user.
12 Expert in the sense of demonstrations, not necessarily the underlying
algorithms.
13 We can represent cyclic behaviors with the current action model
but currently have no means to decide on when to stop the cycle, see
Sect. 4.6.
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Explicitly separating the learning problem into these two
spaces leverages the fact that human demonstrators are going
to be goal-directed, and good at showing what to do, while
only a subset of those teachersmay also focus on showing the
robot good demonstrations of how to do it. We use a motion
space to learn action models and a generic perceptual feature
space to learn the goal model. Our framework is outlined in
Fig. 2.

We collected data from eight naïve users for 2 skills to
evaluate our approach. We have seen that the skill demon-
strations are more consistent in the goal space, both across
users and within users. This confirms our observation about
the goal-oriented nature of naïve users. Some users were not
able to teach successful action models with the average suc-
cess rates being 57.5 % for the close the box skill and 75 %
for the pour skill. Successful goalmodels can be learned from
all the users, even for users with less successful/failed action
models. The average execution monitoring success rate was
90 %.

This sets up interesting future work. We see the potential
in using the goal models to facilitate self-learning. We also
envision several scenarios in which the goal model can be
used to decidewhen to prompt the teacher for particular input
to further refine the learned models.
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