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Abstract Assuming that a robot trajectory is given from
a high-level planning or learning mechanism, it needs to
be adapted to react to dynamic environment changes. In
this article we propose a novel approach to deform trajec-
tories while keeping their local shape similar, which is based
on the discrete Laplace–Beltrami operator. The approach
can be readily extended and covers multiple deformation
techniques including fixed waypoints that must be passed,
positional constraints for collision avoidance or a cooperative
manipulation scheme for the coordination of multiple robots.
Due to its low computational complexity it allows for real-
time trajectory deformation both on local and global scale
and online adaptation to changed environmental constraints.
Simulations illustrate the straightforward combination of the
proposed approach with other established trajectory-related
methods like artificial potential fields or prioritized inverse
kinematics. Experiments with the HRP-4 humanoid suc-
cessfully demonstrate the applicability in complex daily-life
tasks.
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1 Introduction

Multiple approaches exist to find a suitable robot trajectory
in a given environment. Depending on the requirements the
trajectory is either planned from scratch using for example
sampling-based approaches like RRT/RRT* (Lavalle 1998;
Karaman and Frazzoli 2011) or adapted based on a pre-
viously learned trajectory. In the latter case programming
by demonstration (PbD) (Billard et al. 2008) is a standard
method for teaching a robot complex movements. Instead
of programming every single movement by hand, the robot
imitates a demonstrated movement either through physi-
cal guidance also known as kinesthetic teaching (Lee and
Ott 2011) or through suitable learning and adaption meth-
ods (Schaal 2006; Hoffmann et al. 2009). PbD approaches
are also motivated by the goal of a pleasant human-robot-
interaction and there are observations in this field based
uponmotor interference, indicating that similar motions ease
the perception of humanoid robots as interaction partners
(Kupferberg et al. 2011; Kilner et al. 2007).

A major challenge of PbD and planning approaches are
its adaption capabilities to changed environments, requiring
modifications of the original robot movement. In general,
there are two classes of approaches: Direct adaption and indi-
rect adaption through inverse optimization. Direct adaption
modifies the existing movement according to the constraints
in task space (Pastor et al. 2009). Closely related to this
approach are explicit trajectory optimization schemes as
CHOMP or TrajOpt (Zucker et al. 2013; Schulman et al.
2014). Indirect adaption requires a cost function calculated
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from a set of demonstrations to be valid over the task
space (Levine and Koltun 2012; Mombaur et al. 2013).
Whereas indirect adaption methods may have better general-
ization capabilities, the cost function is difficult to obtain for
complex movements and multiple repetitions might be nec-
essary. In this article we focus on direct trajectory adaption.
Therefore we assume that a trajectory based on previ-
ous demonstrations is given, either from demonstration or
a motion planner. The objective is to keep the resulting,
deformed trajectory as similar as possible to the original one
in terms of position and/or positional differences.

Various non-differential trajectory adaptionmethods exist
in literature, including polynomials, Bézier curves (Hilario
et al. 2011), splines, affine transformations (Pham and Naka-
mura 2013); elastic bands (Quinlan and Khatib 1993) or
elastic strips (Brock and Khatib 2002). Despite being advan-
tageous for specific applications, they do have individual
disadvantages the presented approach overcomes. Polyno-
mials, splines and Bézier curves all suffer from a fixed
granularity determined by the number of support points,
thus restricting trajectory adaption operations either to the
global or local scale. High-order polynomials have the
additional problem of overshooting, that are large spatial
variations in between two subsequent support points. Con-
cerning affine transformations it has been stated in Pham
(2011) that three concatenated affine transformations are
required in between two fixed sampling points for generic
first-order boundary conditions, hence they produce unin-
tuitive deformed trajectories with straight lines in between.
Both elastic bands and elastic strips share some common
properties with the approach presented in this article, yet
they aim for shortest paths whereas our approach focuses
on shape similarity between original and modified trajec-
tory.

The contribution of the article is the introduction of Lapla-
cian trajectory editing (LTE) to deform trajectories and
overcome the disadvantages of overshooting and a fixed
granularity, thus allowing trajectory modifications both on
a local and global scale. The proposed approach provides an
intuitive way for deformation. By interpreting a discretized
trajectory as an m-dimensional path with associated tem-
poral information, the problem can be transformed to keep
the geometric trajectory properties as similar as possible. For
this purpose, the discrete Laplace–Beltrami operator encodes
intrinsic path properties. The Laplace–Beltrami operator is
well-known in the computer graphics community where it
is applied to deform (Botsch and Kobbelt 2004a; Sorkine
and Cohen-Or 2004); classify (Luxburg 2007; Reuter et al.
2009) and compress (Karni and Gotsman 2000; Levy 2006)
triangular surfaces meshes. So far, however, the potential
of this approach has not yet been exploited for robotics
problems. By interpreting a path as an undirected graph,
the deformation can be calculated using least squares. Yet

Fig. 1 Application of Laplacian trajectory Editing to deform a given
reference motion while maintaining its local shape: Adaption of a bi-
manual task from different start positions maintaining a fixed spatial
distance between both hands (left) and modification of a one-handed
pick-and-place task to avoid a possible obstacle (right)

the straightforward approach suffers from two drawbacks,
a large computational complexity due to a matrix inver-
sion involved (Eck et al. 1995; Kobbelt et al. 2000) and
the inadequate treatment of large deformations (Lipman
et al. 2004; Zhou et al. 2005). The method in this arti-
cle overcomes both challenges by using a multiresolution
approach. This way all computationally demanding path
modifications are performed only on a reduced set of sam-
pling points. In addition, positional constraints are modified
in such a way as to avoid obstacles while maintaining the
local shape of the trajectory. The method is also extended to
handle the coordinated movements of multiple agents, mak-
ing cooperative manipulation possible. Simulations compare
the approaches presented in this article both in the spatial
domain, with respect to computational complexity and with
existing state of the art approaches. A demonstration sce-
nario using a HRP-4 robotic platform shows the successful
completion of a typical household task involving biman-
ual pick-and-place operations while avoiding static obstacles
(Fig. 1).

The remainder of the article is organized as follows:
Sect. 2.1 introduces LTE as a method for direct trajectory
adaptation. Extensions are presented in Sect. 3 to solve a set
of specific yet commonly occurring problems in robotics. In
Sect. 4 both simulations and a robotic experiment validate
the proposed approach.

Notation: Throughout the article scalars are written in
non-bold letters (e.g a), vectors in bold lower case letters
(e.g. a) and matrices in bold capital letters (e.g. A). Access-
ing a specific element of a matrix/vector is denoted by curly
subscript brackets (e.g. A{3:} for the third row, entire column
of A).
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2 Basics of Laplacian trajectory editing

This section introduces LTE as the underlying framework
used throughout the article to adapt and deform discretized
trajectories. It also provides an intuitive understanding by
relating the abstract Laplace–Beltrami operator to the well-
known concept of finite differences along a path.

2.1 General framework

A trajectory consists of a pathP = [p(t1),p(t2), . . . ,p(tn)]T
∈ R

n×m with m ordered sampling points and corresponding
temporal information ti represented as time ti ∈ R, p(ti ) ∈
R
m , written P = [p1,p2, . . . ,pn]T for simplicity. The path

can be interpreted as an undirected graph G = (V ,E )where
each vertex vi is associated with one sampling point pi . The
neighbor set Ni of the vertex vi is the set of all adjacent
vertices v j and the edge set is defined as E = {ei j }, i, j ∈
{1, .., n} with

ei j =
{

wi j if j ∈ Ni ,

0 otherwise.
(1)

and the edge weight wi j . Multiple weighting schemes for
wi j exist in literature, the most prominent ones being
uniform umbrella weights wi j = 1 working best for regular-
shaped meshes and scale-dependent umbrella weightswi j =

1
‖pi−p j‖2 to compensate for irregular-shaped meshes (Des-
brun et al. 1999).

Rather thanworking in absoluteCartesian coordinates, the
discrete Laplace–Beltrami operator specifies the local path
properties, called Laplacian coordinates δi (Lipman et al.
2005). For vertex vi , this results in

δi =
∑
j∈Ni

wi j∑
j∈Ni

wi j
(pi − p j ),

written in matrix form, it turns out that the discrete Laplace–
Beltrami operator resembles the graph Laplacian matrix L ∈
R
n×n encoding the topology of the graph as

L{i j} =

⎧⎪⎪⎨
⎪⎪⎩
1 if i = j,
− wi j∑

j∈Ni

wi j
if j ∈ Ni ,

0 otherwise.

Using uniform umbrella weights, one obtains the typical
strucure for paths as

L = 1

2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 −2
−1 2 −1 0

−1 2 −1
. . .

. . .
. . .

−1 2 −1
0 −1 2 −1

−2 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

When concatenating all Laplacian coordinates δi into a single
matrix Δ = [δ1, δ2, . . . , δn]T , one can thus write

LP = Δ. (2)

As the equation system in (2) is underdetermined, i.e. the
Laplacianmatrix is singular, theCartesian coordinatesP can-
not be uniquely calculated using the inverse of Lwhen given
only theLaplacian coordinates.However, by specifying addi-
tional constraints in the form

P̄P = C̄, (3)

rank

([
L
P̄

])
= n,

the resulting concatenated equation system

[
L
P̄

]
Ps =

[
Δ

C̄

]
, (4)

can be solved for the trajectory Ps = [ps,1, . . . ,ps,n]T ∈
R
n×m

Ps =
[
L
P̄

]+ [
Δ

C̄

]
, (5)

using least squares. Note that due to the least squares
approachPs andP generally differ fromeachother, seeFig. 2.
In addition, the constraints in C̄, P̄ are only approximately
met.

Only few viable options for P̄with a physical meaning are
known so far. The first and probably most important one are
positional constraints of the form

pi = ci ,

pinning a sampling point pi to a desired position ci . By intro-
ducing the weighting factors ω = {ωi , ωi,1, ωi,2, . . .}, i =
1, . . . , n determining the importance of the corresponding
constraint with respect to the Laplacian coordinates δi , it can
be rewritten as

ωipi = ωici , (6)

see the Matlab example in Nierhoff (2013a).
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Fig. 2 Various possible path deformations by applying positional con-
straints to individual sampling points (round dots)

Another option are first order finite difference constraints
of the form

pi+1 − pi = ci,1,

resulting in a fixed spatial difference between two sampling
points p j and pi along the path. With the weighting factor
ωi,1 it is rewritten as

ωi,1(pi+1 − pi ) = ωi,1ci,1. (7)

This scheme can be extended to higher order finite differ-
ences. Hence it is for second order central finite differences

pi+1 − 2p j + pi−1 = ci,2,

and with the weighting factor ωi,2

ωi,2(pi+1 − 2p j + pi−1) = ωi,2ci,2. (8)

Writing the unweighted first nz finite differences in matrix
form⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
−1 1 0
1 −2 1

−1 3 −3 1
1 −4 6 −4 1
...

...
...

...
...

. . . ,

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

one sees that they are linearly independent. Hence any row of
P̄ with nz nonzero entries can be represented as a weighted
sum of the first nz order derivatives, thus providing an intu-
itive understanding of an arbitrary, non-zero row of P̄.

Remark 1 Various definitions of discrete Laplace operators
exist in literature: Being mainly based upon the connectivity
of the underlying graph, the graph Laplace operator belongs
to the wider class of combinatorial mesh Laplacians (Zhang
et al. 2010). Another class are geometric mesh Laplacians,
explicitly taking into account the underlying Riemannian
geometry (Strichartz 1983; Meyer et al. 2002; Dierkes et al.
2010). Even if they do capture the geometric properties bet-
ter, they are only defined on triangle meshes and thus not
straightforwardly applicable to paths.

2.2 Interpretation

Despite looking abstract at first glance, there exist intuitive
geometric and physical interpretations of LTE.

Given a continuous path Π(s) ∈ R
3 parameterized by arc

length s, the Frenet-Serret formula describe the local curva-
ture κ and the local torsion τ . By introducing the unit tangent
vector t, the normal unit vector n and the binormal unit vec-
tor b = t × n with × as the cross product for a given point
along the path, one obtains (Do-Carmo 1976)

dt
ds

= κn,

dn
ds

= −κt + τb,

db
ds

= −τn.

Then κ can be calculated as

κ =
∥∥∥∥ dtds

∥∥∥∥ =
∥∥∥∥d2Π(s)

ds2

∥∥∥∥ . (9)

If the path is not continuous but discrete, one can represent
the continuous path Π(s) by its discretization P and m = 3.
Then the central difference approximation of (9) is

∥∥∥∥d2p(s)

ds2

∥∥∥∥ = p(s + h) − 2p(s) + p(s − h)

h2
, (10)

with step length h. Assuming the sampling points are equidis-
tantly spaced with distance h, (10) is rewritten as

∥∥∥∥d2 pids2

∥∥∥∥ = pi+1 − 2pi + pi−1

h2
, i = 2, 3, . . . , n − 1. (11)

This formula is closely related to the Laplacian coordinates
(Taubin 1995), that is

δi = pi+1 − 2pi + pi−1

−2
, i = 2, 3, . . . , n − 1, (12)

differing from (11) only in terms of the scaling factor ( 1
h2

vs.
1

−2 ).
Until now only the spatial domain is considered. In reality

however, e.g. when recording a movement with a motion
capture system, subsequent trajectory points are typically
sampled at a constant temporal rate, hence spaced rather
equitemporally than equidistantly. With Δt = ti − ti−1 as
the temporal difference between any two subsequent sam-
pling points the acceleration p̈ along the trajectory is

p̈i = pi+1 − 2pi + pi−1

Δt2
, i = 2, 3, . . . , n − 1,
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differing from (12) again only in terms of the scaling factor
( 1
Δt2

vs. 1
−2 ). In case two subsequent sampling points are

fixed - see (7) - it is interpreted as a velocity constraint. In
case of three subsequent sampling points, (8) corresponds to
an acceleration constraint.

Looking at the weighting factors ω in (6)–(8) they deter-
mine the importance of the additional constraints in P̄ with
respect to L. Speaking loosely, they define the admissible
amount of deformation. For ω ≈ 0 the path is deformed just
insignificantly and the constraints specified in P̄ and C̄ are
hardly met. On the other hand, weighting factors ω � 0
prioritize the constraints, leading to larger deformation.

Numerous variations exist: The Laplacian matrix L can
also be constructed based on the first/third order derivatives
(a different name should be used in this case). For a given
straight lineP consisting of equidistantly and equitemporally
spaced sampling points, the deformed trajectory P̄ resembles
a minimum velocity/jerk trajectory. This is consistent with
findings about minimum jerk trajectories for human move-
ment generation (Flash and Hogan 1985).

3 Extension to Laplacian trajectory editing

Having introduced the basic concepts of LTE, this arti-
cle continues with several improvements over the original
approach in Sect. 2.1, making it applicable to a wider class
of trajectory retargeting problems arising in robotics. As
mentioned in the introduction, the approach presented so
far suffers from two main drawbacks, a high computational
complexity due to the matrix inversion and the incapabil-
ity to handle nonlinear deformation effects. To overcome
both challenges, a multiresolution approach is presented.
The severity of not handling nonlinear deformation effects
becomes clearwhen looking at the example in Fig. 3. A hand-
written word (“Hello”) is deformed by fixing three sampling
points through positional constraints. Whereas the origi-
nal approach of Sect. 2.1 obviously has low similarity, the
multiresolution approach resembles the word well. In addi-

Fig. 3 Comparison between the original and the multiresolution
approach

tion, the article shows novel extensions for reactive collision
avoidance, cooperative manipulation of multiple manipula-
tors or endeffectors and the inclusion of kinematic constraints
for execution on a real robot.

3.1 Arun’s method for handling nonlinear deformation
effects

As stated in the introduction, nonlinear deformation effects
are not handled properly by LTE. Probably the most fre-
quent nonlinear effect occurring during path adaption are
rotations. In order to cope with them on a local path scale,
the method of Arun et al. (1987), Umeyama (1991), Nierhoff
and Hirche (2012) is combined with LTE. Its core concept
can be recapitulated as follows: Assume that one is given
two sets of points, namely Pr = [pr,1, . . . ,pr,k]T ∈ R

k×m

and Pd = [pd,1, . . . ,pd,k]T ∈ R
k×m that should be matched

using the homogeneous transformation

pd,i = cRpr,i + t ∀i = 1, . . . , k,

with constant c as a scalar scaling factor, R ∈ R
m×m as a

rotation matrix and t ∈ R
n as a translational vector. Because

the matching is usually not perfect, one has to find an affine
transformation that matches both Pr and Pd “as good as pos-
sible”. The problem can be reformulated as a minimization
problem using the error term no as

no =
k∑

i=1

∥∥pd,i − (cRpr,i + t)
∥∥2 .

The elements of the homogeneous transformation can be cal-
culated using singular value decomposition: Let Q ∈ R

m×m

be the covariance matrix as

Q = 1

k

k∑
i=1

(
pr,i − p̄r

) (
pd,i − p̄d

)T
,

with p̄r as the centroid of Pr and p̄d as the centroid of Pd

p̄r = 1

k

k∑
i=1

pr,i , p̄d = 1

k

k∑
i=1

pd,i .

Similarly, the variance σ 2
s is calculated as

σ 2
s = 1

k

k∑
i=1

∥∥p′
ri

∥∥2 .

The SVD of Q is calculated such that

Q = USVT . (13)
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Then c, R and t can be computed as

R = VS′UT ,

c = 1

σ 2
s
tr(SS′),

t = p̄d − cRp̄s .

with S′ preventing mirrored mappings

S′ =
{
I if det(U ) det(V ) = 1,
diag(1, . . . , 1,−1) if det(U ) det(V ) = −1.

As shown in Sorkine and Alexa (2007), the method can be
adapted with c = 1 to rotate the Laplacian coordinates indi-
vidually for every sampling point. When applied to paths,
this results in new Laplacian coordinates δ̂i as

δ̂i = Riδi ,

with the rotation matrix Ri based upon the sampling points’
position of original and deformed path. For the Laplacian
coordinate δi the two sets of sampling points are Pr = [pi −
pi−1,pi − pi+1]T and Pd = [ps,i − ps,i−1,ps,i − ps,i+1]T .
Whereas the SVD solution can be used in arbitrary dimen-
sions and also for higher order derivatives, we realize that
both Pr and Pd consist only of two vectors when using
Laplacian coordinates. Then an optimal rotation Ri can be
calculated in 2D and 3D using basic geometry. Although
the latter has a lower computational complexity, it is only
marginally faster to compute in Matlab as there are highly
optimized routines to calculate the SVD.

3.2 Multiresolution approach for possible online
application

Whereas the method in the previous section can handle non-
linear deformation effects, it is also slow as every Laplacian
coordinate has to be rotated individually. In combinationwith
the matrix inversion of LTE the method is inapplicable for
time-critical applications. To overcome the computational
bottleneck, we propose a multiresolution approach together
with a detailed evaluation both in the spatial and the tem-
poral domain and an extension for fast path deformation in
3D. By downsampling the path first, Arun’s method will be
applied only to a reduced number of sampling points during
the adaption step. The Laplacian coordinates of all remaining
sampling points are then interpolated in a final reconstruction
step, thus speeding up calculation (Fig. 4). A preliminary ver-
sion of this approach is presented in Nierhoff et al. (2013a),
consisting of three steps:

Fig. 4 Overview of the multiresolution approach

3.2.1 Downsampling

The goal of the downsampling step is to find a reduced set of
so-called support sampling points P′ = [p′

1,p
′
2, . . . ,p

′
n′ ]T ∈

R
n′×m , subject to

P′ ∈ P, (14)

min
n′−1∑
i=2

(‖p′
i − p′

i−1‖2 − ‖p′
i+1 − p′

i‖2
)2

. (15)

The first condition enables the remaining sampling points to
be directly interpolated during the reconstruction step based
on the deformed support sampling points. The second con-
dition is necessary as combinatorial mesh Laplacians do not
take into account the geometry of the graph and thus rely
on a regular mesh structure (‖p′

i − p′
i−1‖2 = ‖p′

i+1 − p′
i‖2)

for a good approximation (Taubin 1995; Botsch and Kobbelt
2004b; Wardetzky et al. 2007). It is

F (Δ f (x)) = F
(
∇2 f (x)

)
∝ u2F(u),

with F as the Fourier transform from the spatial domain f (x)
to the frequency domain F(u). Hence the Laplace operator
is heavily influenced by high-frequency noise. To increase
robustness, the path is smoothed in the spatial/frequency
domain using a spatial moving average filter (SMA) respec-
tively a Fast Fourier Transform (FFT). In the limit, this results
in a regular mesh structure ‖p′

i − p′
i−1‖2 = ‖p′

i+1 − p′
i‖2 =

const. If we impose additional constraints on specific sam-
pling points, they must be included in P′ as well.

3.2.2 Adaption

During the adaption step, a two-staged approach modifies
the shape of the downsampled trajectory P′ (Sorkine and
Alexa 2007). For the remainder of this section, we will mark
the support sampling points of iteration i t with P′

i t and the
Laplacian coordinates of the support sampling points with
Δ′

i t . In the first step, the resulting LTE equation system is
solved for P′

i t+1 as

P′
i t+1 =

[
L
ωP̄

]+ [
Δ′

i t
ωC̄

]
.
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In the second step, the elements of Δ′
i t are updated individ-

ually for every support sampling using Arun’s method based
on P′

i t and P′
i t+1, resulting in Δ′

i t+1.
After l iterations, this results in the downsampled path

P′
l = [p′

l,1, . . . ,p
′
l,n′ ]T . The final step of the adaption is to

calculate a rotation matrix R′
k, k = {1, 2, . . . , n′} for every

support sampling point, measuring the rotation between P′
1

and P′
l using Arun’s method.

3.2.3 Reconstruction using LTE

After deformation of the downsampled path P′, the posi-
tion of all remaining sampling points must be reconstructed,
resulting in Ps . Let the k-th path segment of Ps , named Ps,k ,
be defined as the set of all sampling points between p′

l,k and
p′
l,k+1, with “between” referring to the graph structure and

not the spatial domain. Then the position of all sampling
points of the k-th trajectory segment is calculated as

Ps,k =
[
Ls,k

P̄s,k

]+ [
Δs,k

C̄s,k

]
,

with Ls,k as the Laplacian matrix for the k-th trajectory
segment, Δs,k containing the rotated Laplacian coordinates
and suitable boundary constraints encoded in P̄s,k, C̄s,k . The
matrix Ls,k is simply a submatrix of L with similar struc-
ture. The boundary constraints in P̄s,k, C̄s,k are calculated
by fixing the first and last sampling point of every trajectory
segment, that is p′

l,k and p
′
l,k+1. The elements ofΔs,k are cal-

culated by linearly interpolating the differential coordinates
of the path segment based on R′

k and R′
k+1. Depending on

the used representation either axis/angle based interpolation
or SLERP/NLERP (Shoemake 1985) might be better suited
for up to three dimensions.

3.2.4 Reconstruction using affine transformations

Another option for reconstruction are affine transformations
p̃ = M (p) as presented in Pham and Nakamura (2013). For
a path consisting of multiple sampling points pi they are of
the general form

p̃i = Mpi + w,

with M = {M,w},M ∈ R
m×m,w ∈ R

m . Boundary
constraints for discrete paths ensuring Cq continuity at the
beginning/end of the path can be incorporated by fixing the
first respectively last q + 1 sampling points. Hence for C0

continuity it is

p̃1 = Mp1 + w,

p̃n = Mpn + w,

and for C1 continuity it is in addition

p̃2 = Mp2 + w,

p̃n−1 = Mpn−1 + w,

resulting in the linear equation system

Vb = c, (16)

with V ∈ R
4m×(m2+m), b ∈ R

m2+m containing the elements

of M,w and c = [
p̃T1 , p̃T2 , p̃Tn−1, p̃

T
n

]T
. It is clear that Cq

continuity can be only achieved if there are less or exactly as
many boundary conditions as free variables in M . As such
forC0 continuity at least one dimension and forC1 continuity
at least three dimensions are required. The latter case is for
the remainder of this article.

Affine transformations are advantageous from a compu-
tational perspective as only a small-sized linear equation
system (12 unknowns in Mk,wk for the k-th path segment
based upon the four boundary sampling points of every path
segment) has to be solved. Yet the method suffers from insta-
bilities if the matrix Vk for the k-th path segment becomes
singular. To prevent this, the four boundary sampling points
must span a three-dimensional space. By defining the con-
dition numbers κ(Vk) and κ(Vk−1) based on (16) for every
path segment, we reformulate (14)-(15) as

P′ ∈ P, (17)

min f1

n′−1∑
i=2

(‖p′
i − p′

i−1‖2 − ‖p′
i+1 − p′

i‖2
)2 (18)

+ f2

n′−1∑
i=1

κ(Vk),

with constants f1 and f2 ensuring a good tradeoff between a
regularly shaped mesh and a non-degenerated solution.

3.3 Positional constraints for obstacle avoidance

An extension of LTE allows reactive obstacle avoidance in
task space. The method presented in this chapter is an exten-
sion of the work in Nierhoff et al. (2013b), providing higher
robustness and allowing larger deformations. When using
positional constraints with weighting factors ωi � 1 the
small deviation from the desired position due to the least
squares approach constitutes an inevitable yet often negligi-
ble error. In contrast this section focuses on low-weighted
positional constraints, i.e. ωi ≈ 1 or ωi < 1 with a non-
negligible error. Differing from positional constraints with
ωi � 1 imposed generally on a few vertices only, low-
weighted positional constraints impose positional constraints
on all vertices. The desired behaviour of avoiding dynamic
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obstacles while maintaining the original path shape in a least
squares sense is then achieved by smoothly varying both the
positional constraint matrix P̄ and the positional constraint
C̄ along the path. The presented approach consists of three
superposed parts

1. A repulsive positional constraint for obstacle avoidance
2. An attractive positional constraint pulling the path back

to its original position
3. Laplacian coordinates maintaining the local path shape

Given an obstacle Ω with with uniquely defined minimum
distance di to each sampling point pi of the path, the obstacle
exerts a repulsive positional constraint on pi according to

C̄1{i :} = β

(
pi + α

di
‖di‖γ

2

)
, (19)

P̄1 = diag(β, . . . , β),

with constants α, β, γ . The attractive positional constraint
pulling the path back is described using each sampling point’s
original position po,i before deformation

C̄2{i :} = δpo,i , (20)

P̄2 = diag(δ, . . . , δ),

with constant δ. By concatenating the conditions in (19) and
(20) into C̄ and P̄ as

C̄ =
[
C̄1

C̄2

]
, P̄ =

[
P̄1

P̄2

]
(21)

and solving (5) for Ps , the desired behavior can be achieved.
Some sample code is publicly available under Nierhoff
(2013b).

Unfortunately the approach becomes unstable for large
deformations. In this case the force exerted by the attractive
positional constraint and the Laplacian framework that pulls
the path back to its original position gets too strong, causing
small obstacles to slip through the deformed path.Amodified
and more stable version evaluates the shortest distance d̂i
not between obstacle Ω and every sampling point pi as in
(19), but between obstacle Ω and every line segment pi +
αL(pi+1 − pi ), αL ∈ [0, 1].

C̄1{i :} = pi + α
d̂i

‖d̂i‖γ
2
, (22)

C̄1{i+1:} = pi+1 + α
d̂i

‖d̂i‖γ
2
,

to prevent small obstacles from slipping through the path
if two subsequent sampling point are far apart. Moreover,

the attractive positional constraint is scaled with a distance-
dependent factor as

C̄2{i :} = pi + ε
po,i − pi

1 + ‖po,i − pi‖2 , (23)

with constant ε, imposing upper bounds to the absolute value
of the attractive positional constraint. To reduce the effect of
the Laplacian coordinates, let Δo and Δd be the matrices
containing the Laplacian coordinates of the original respec-
tively currently deformed path. Then the resulting matrix Δ

is calculated as

Δ = (1 − ζ )Δo + ζΔd , (24)

with constant ζ ∈ [0, 1]. For ζ = 0 the method is similar
to the unmodified version and for ζ = 1 only the Laplacian
coordinates of the current path are considered, effectively
disabling the convergence back to the original path posi-
tion. Both equations (23) and (24) diminish the influence
of the attractive positional constraint respectively the Lapla-
cian coordinates, thus increasing robustness at the cost of an
increased computational complexity and slower convergence
speed back to the original path position.

A small scenario illustrating the obstacle avoidance capa-
bilities of LTE in combination with low-weighted positional
constraints is depicted in Fig. 5. With increasing number of
obstacles (red circles), the initially sinusoidal path deforms
more andmore to avoid all obstacles.We compare two trajec-
tories, corresponding to the basic and the modified version.

3.4 Cooperative Manipulation

So far we only considered single paths. Yet in many scenar-
ios like bimanual manipulation it is necessary to adapt the
movement of twoormore agents/manipulators in an adequate
manner. LTE is adapted in this section to take such kind of
constraints into account. Note that we are now considering
trajectories, thus corresponding agent positions must match
both in the spatial and temporal domain.

Given two agents’ trajectoriesP1 = [p1,1, . . . ,p1,n]T and
P2 = [p2,1, . . . ,p2,n]T with corresponding equation sys-
tem L1Ps1 = Δ1, L2Ps2 = Δ2 and same timing ti (p1,i ) =
ti (p2,i ), it can be rewritten as

Fig. 5 Obstacle avoidance scenario with spatial plots at different time
steps t
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[
L1 0
0 L2

] [
Ps1

Ps2

]
=

[
Δ1

Δ2

]
.

Tomaintain a defined spatial relation,we expand the equation
system similar to (4) as

⎡
⎣L1 0

0 L2

P̄− P̄+

⎤
⎦[

Ps1

Ps2

]
=

⎡
⎣Δ1

Δ2

C̄

⎤
⎦ , (25)

with the definition of the matrices P̄−, P̄+ ∈ Rn×n and C̄ as

P̄− = diag(−ω1, . . . ,−ωn),

P̄+ = diag(ω1, . . . , ωn),

C̄{i :} = ωi (p1,i − p2,i ).

in analogy to (7). With {ω1, . . . , ωn} � 1 the two agents
maintain a defined spatial distance di ≈ p1,i − p2,i at time
instance i . Fixed positional constraints according to (6) can
be incorporated in a straightforward manner: As the trajec-
tories of both agents are coupled through C̄, it is sufficient
to specify positional constraints only for a single agent to
deform both trajectories. When extending the approach to
three agents the analogy of (25) is

⎡
⎢⎢⎢⎢⎢⎢⎣

L1 0 0
0 L2 0
0 0 L3

P̄− P̄+ 0
P̄− 0 P̄+
0 P̄− P̄+

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎣Ps1

Ps2

Ps3

⎤
⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎣

Δ1

Δ2

Δ3

C̄1

C̄2

C̄3

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Yet as computational complexity for a agents is O(a2), the
approach is limited to few agents only.

Figure 6 shows a toy scenario in which two respectively
three agents have to maintain a defined spatial distance (e.g.
when holding an object) while circumnavigating two obsta-
cles (black cylinders). It shows both undeformed trajectories
without obstacles and deformed trajectories in the presence

Fig. 6 Cooperative manipulation involving two and three agents in the
presence of obstacles. Trajectory paths (left) and distance between every
two agents (right)

of obstacles. An additional graph on the right side displays
the spatial distance di j for the undeformed trajectory and
di j,m for the deformed trajectory between agents j and j
over time. It is visible that the distance between every two
agents stays constant over time and changes only by an neg-
ligible amount due to the least squares solution (<4e−10 m)
during deformation. One also sees how the trajectories of all
agents adapt when just fixing the position of a single agent.
Note that only the most primitive case with both a constant
spatial distance and direction is displayed. Depending on the
task it is necessary to vary the distance or orientation of the
ensemble over time. This is done easily by modifying the
elements in C̄1, C̄2, . . ..

3.5 Kinematic constraints

All calculations so far only consider the trajectory adaption of
a single point in a n-dimensional space. Inmost cases this sin-
gle point refers to the position of the endeffector of a robotic
manipulator in 3 dimensions. Here it is often required to ful-
fill additional constraints like joint limit avoidance, collision
avoidance or maintaining a specific endeffector orientation.
Such constraints can be incorporated through a prioritized
inverse kinematics approach of the form

θ̇ = J+
1 ṙ1 + (

E − J+
1 J1

)
J+
2 ṙ2, (26)

see Nakamura (1991). In (26) the variables J1, J2 and ṙ1, ṙ2
refer to the task-specific Jacobians and task space veloci-
ties of primary and secondary task, E is the identity matrix
and θ̇ denote the generalized coordinates of the robot. Both
self-collision avoidance and obstacle avoidance are achieved
based upon enclosing cylinders covering all robot links and
a repellent artificial potential field. In case the shortest dis-
tance dca between two links or link and obstacle falls below a
defined thresholddmin

ca , the desired collision avoidance veloc-
ity becomes

ṙ1 = Kca

(
dmin
ca − dca

)
if dca < dmin

ca ,

with gain factor Kca . Joint limits can be avoided by defining
upper/lower bounds θmax

i , θmin
i that must not be exceeded

for joint θi . In case they are exceeded, the desired joint limit
velocity becomes

ṙ1 =
{
K jl

(
θmax
i − θi

)
if θi > θmax

i ,

K jl
(
θmin
i − θi

)
if θi > θmin

i ,

with gain factor K jl , see Yamane and Nakamura (2003). If
the desired endeffector position is encoded in the secondary,
lower prioritized task, it’s real position can differ from the
desired position during task execution due to other higher pri-
oritized tasks. In this case LTE allows to calculate an updated
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Fig. 7 Prioritized inverse kinematics with continuous trajectory
replanning. Trajectory following without obstacle (left) and with obsta-
cle (right)

optimal trajectory online during task execution. This effect
is illustrated Fig. 7. The left side shows a planar manipulator
with 3 DOFs following a straight trajectory. On the right side
an additional constraint is imposed, namely that the last joint
(in red) must not collide with an added obstacle (in black).
As the real endeffector trajectory deviates from the planned,
straight trajectory, LTE replans new trajectories online (in
orange).

4 Experimental evaluation

This section evaluates the presented approaches on the one
hand through simulations both with respect to computational
complexity and in the spatial domain. As the LTE framework
shows similarities with elastic strips, both approaches are
compared. It concludes with a real-life experiment involving
a HRP-4 robot executing a bimanual task while maintaining
additional constraints. It must be mentioned that the choice
of using sinusoidal paths in many examples is intentional as
this type of path is well suited for evaluating the quality of
each algorithm by inspection.

4.1 Path similarity measure

When evaluating LTE, it offers the advantage of implicitly
providing intrinsic measures how similar two paths P and Ps

are. As the preferred measure may vary from application to
application, several are presented in this section to quantify
the amount of deformation. A first measure is given by the
least squares residual of (5) as

E = ‖LPs − Δ‖2F +
p∑

i=1

ω2
i ‖pi − ci‖22. (27)

with F as the Frobenius norm. Implicitly it is assumed in
(27) that only positional constraints apply. For positional con-
straints the offset ‖pi − ci‖22 between desired and resulting
sampling point position is invisible to the human eye. Thus a
more human-oriented measure (Nierhoff et al. 2014) focuses
solely on the local trajectory properties while neglecting the
error of the positional constraints as

E1 = ‖LPs − Δ‖2F .

Both residuals do not account for nonlinear deformation
effects like rotations. Because LTE is expanded to consider
them as well, a correspondingmeasure adapted from Sorkine
and Alexa (2007) is presented in advance as

E2 =
n∑

i=1

∑
j∈Ni

wi j‖
(
p j − pi

) − Ris
(
p js − pis

)‖22.
withRis being the rotational matrix described Sect. 3.1 such
that the resulting sampling point positions p js,pis ∈ Ps

match the original sampling points p j ,pi ∈ P best. A more
general measure accounting not only for rotational effects
but also for scaling is

E3 =
n∑

i=1

∑
j∈Ni

wi j‖
(
p j − pi

) − cRis
(
p js − pis

)‖22.
with a scalar scale factor c. One last and quite often used
measure in literature is the summed quadratic difference of
the Cartesian positions between original and deformed path,
defined as

E4 =
n∑

i=1

‖(pis − pi )‖22,

for the original sampling point position pi and the modified
sampling point position pis . When presenting several expan-
sions to LTE later in this article, the different path similarity
measures will give the reader not only a qualitative but also
quantitative impression about the quality of each expansion,
making it easier to compare them. In addition they are well
suited to show the amount of deformation over time.

4.1.1 Computational complexity comparison

Simulations compare the computational complexity of the
different presented approaches in Sects. 2.1 and 3.2. Shown
in Fig. 8 is the processing time for a single deformation step
over the number of path sampling points n. Four different
approaches are evaluated, see Table 1. The table also shows
whether it is a multiresolution approach and whether the
approach can handle nonlinear deformation effects. Depend-
ing on the requirements, small paths are deformed in real
time. As such it takes around 10ms to adapt a path with
300 sampling points using any of the two multiresolution
approaches. Due to highly optimized routines for solving
sparse equation systems, the original approach is by far the
fastest one for n < 104, yet unable to cope with nonlin-
ear deformation effects. For large trajectories with n > 104

the multiresolution approach with affine transformations for
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Fig. 8 Processing time comparison between a state-of-the-art
approach (ARAP optimization) and the different methods presented
in this article

Table 1 Properties of different approaches

Approach Described in Multires. Nonlin.

Original Section 2.1

Laplacian rec. Section 3.2.3 � �
Affine rec. Section 3.2.4 � �
ARAP Sorkine and Alexa (2007) �

the reconstruction step is fastest, yet it is only applicable in
three dimensions. All methods clearly outperform an exist-
ing state-of-the-art approach (ARAP) in terms of processing
time. The original approach has a computational complexity
of O(nm) due to a sparse linear equation system for every
dimension. All other approaches have a computational com-
plexity ofO(nm3) because they rely at some point on Arun’s
method requiring a SVD on a m × m-matrix (13) and scale
linearly with the number of sampling points n.

4.1.2 Spatial comparison

This subsections shows comparisons between the different
approaches of Sects. 2.1 and 3.2 in the spatial domain. For
this purpose, a helix-shaped sinusoidal path is deformed by
defining four positional constraints, see Fig. 9. The com-
pared methods are: the original approach (Sect. 2.1), the
ARAP optimization (Sorkine and Alexa 2007) and multi-
ple downsampling/reconstruction combinations described in
Sect. 3.2. It is visible that the affine reconstruction method
without proper downsampling (19) - in cyan - differs strongly
from all other approaches. The bottom bar graphs show the
normalized similarity measure values for all other meth-
ods. As the original approach minimizes E1 and the ARAP
optimization minimizes E2, their values are smallest in the
corresponding plots.

Fig. 9 Spatial comparison. Spatial extension of differentmethods (top)
and corresponding similarity measures E1-E4 (bottom)

4.2 Comparison with elastic strips

The obstacle avoidance method in Sect. 3.3 shares com-
mon properties with the elastic strips framework (Brock
and Khatib 2002). Both methods rely on the decomposi-
tion into internal forces maintaining the original path shape
and external forces deforming the path. Both methods use
curvature-based methods to describe the internal forces. Yet
both their definition and purpose differs. Whereas LTE uses
the discrete Laplace-Beltrami operator

Fint,L
i = δi = pi−1 − 2pi + pi+1

−2
, i = 2, 3, . . . , n − 1,

to describe the internal force Fint,L
i , elastic strips rely on a

heuristic definition for the internal force Fint,E
i as

Fint,E
i = kc

(
di−1

di−1 + di
(pi+1 − pi−1) − (pi − pi−1)

)
,

i = 2, 3, . . . , n − 1,

(28)

with di = ‖pi+1 −pi‖2. The external force Fext,E
i is defined

as

Fext,E
i =

{
kr (d0 − ‖di‖) di‖di‖ if ‖di‖ < d0,

0 otherwise.

Whereas elastic strips try to maintain the shortest possible
path in task space, LTE tries to maintain the original shape
of the path. If the undeformed trajectory is a straight line,
the result after deformation is roughly the same, see Fig. 10.
Yet elastic strips cannot be applied to non-straight paths as
they will always converge to a straight path in the absence of
obstacles. Both methods tackle the problem of large defor-
mations by modifying the internal forces. Whereas elastic
strips use amodifiedminimum-distance formulation (28) that
shares common properties with curvature based methods,
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Fig. 10 Comparison between elastic strips and LTE in the presence of
obstacles (black)

LTE scales the internal forces as described in (23) and (24).
Elastic strips are advantageous from a computational point of
view in two ways. First they only add sampling points (robot
configurations) to the path when necessary, keeping the over-
all number low. LTE on the other hand always considers all
sampling points. It also relies on a matrix inversion whereas
elastic strips are calculated through a computationally more
efficient gradient descent approach. The advantage of LTE is
that it converges faster due to its least-squares approach.

4.3 Robotic task

Real-life experiments consider a typical household task of
disposing garbage in a bin by using LTE. The task comprises
of lifting a bucket from a lower position onto a table, collect-
ing garbage and disposing the garbage in the bin. To complete
the task in a changed environment, safe circumnavigation of
obstacles needs to be ensured, requiring the obstacle avoid-
ance scheme in Sect. 3.3. For reliable bimanual manipulation
tasks the cooperative scheme of Sect. 3.4 is adopted. The
human demonstration movements are recorded at a frame
rate of 200Hz using aVortexmotion capture system, tracking
the position and orientation of both hands, bin and garbage.
AHRP-4 robotic platform is used for task reprodution. A pri-
oritized inverse kinematic approach as described in Sect. 3.5
ensures a physically consistent whole-body motion incorpo-
rating joint-angle limitations, self collision and COM-based
balance while specifying the desired trajectories of both
hands. Displayed in Fig. 11 are pictures of the key frames
of the experiment. Each column corresponds to a different
run: Human demonstration (left), robotic movement imita-
tion (middle) and robotic movement adaption (right). Due to
the different figure of robot and human, the objects of the
imitation run are placed closer together. The multiresolution
LTE approach of Sect. 3.2 in combination with positional
constraints (6) accounting for the changed objects’ positions
is used to adapt the trajectory. Twomodifications let the adap-
tion run differ from the imitation run: During the first part of
the adaption run the robot has to avoid an added obstacle (yel-
low book) when placing the bucket on the table. By creating
a repellent artificial potential field (19) around the obstacle,
positional constraints with low weights according to (20-21)
maintain the shape of the original trajectory while lifting the
bucket over the obstacle. This is illustrated in Fig. 11a. Dur-

Fig. 11 Motion imitation task: Human demonstration (left), robotic
movement reproduction (middle) and adaption (right)

ing the second part the initial garbage position is elevated
by around 40cm, see Fig. 11b. The otherwise independent
trajectories of left and right armare coupled through the coop-
erative manipulation scheme in (25), maintaining a specific
distancewhen holding the garbage bag and preventing it from
falling down as indicated in Fig. 11c, d.AsLTEonlymodifies
the position of each endeffector, the orientation of both end-
effectors is calculated independently. From the position of
all hand markers during the demonstrated motion the human
handorientation is calculated andmapped to the robot.Veloc-
ity and acceleration of both endeffectors (EE) are shown in
Fig. 12. Whereas there is a small velocity and acceleration of
both endeffectors during the imitation run, the adaption run
leads to high accelerations and velocities of the left endef-
fector when avoiding the obstacle. Both runs have a smooth
velocity/acceleration profile.

5 Discussion

Experiments showed how LTE can be adapted to suit
common robotic problems for discretized trajectories. The
multiresolution approach accounts for large deformations,
overcomes the Laplacian-typical problems of being a linear
operator and proves to be faster than an existing state-of-
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Fig. 12 Motion imitation task: Endeffector velocity (top) and accel-
eration (bottom) over time for the robotic movement reproduction and
adaption

the-art approach. Positional constraints in combination with
low weighting factors make it possible to deform a trajectory
in a smooth manner while avoiding obstacles. Through suit-
able choice of parameters they can be fit to a user-specific
tasks. Though a lot of extensions and improvements were
presented, the original approach provided satisfying results
when dealing with simple-shaped paths and small defor-
mations. This is advantageous as the original approach is
intuitive and extremely simple to implement (<15 LOC in
Matlab).

Some issues of the LTE approach need special attention:
The multiresolution approach depends on a proper parame-
terization of the number of support sampling points n′ for a
good tradeoff between capturing local and global trajectory
properties. The same accounts - in weaker form - also for the
parameters of the positional constraints for obstacle avoid-
ance as otherwise undesired deformation effects occur.When
being executed on the robot, one must be aware of all the
problems associated with the prioritized inverse kinematics
like a possible deviation from the desired trajectory requiring
online replanning and workspace constraints of the hardware
which can lead to singular configurations. As the inverse
kinematics approach does not consider dynamic constraints
like torque limits of the motors, they have to be considered
separately.

6 Conclusion

The online adaptation of a-priori planned or learned motion
trajectories is an important capability of autonomous robots
moving in unstructured and dynamic environments. In this
article we introduce LTE as a general framework for real-
time retargeting of trajectories subject to constraints while
preserving the local shape of the original trajectory. Due to
its generality, the framework can be easily combined with
other methods and task-specific extensions, of which some

are described in this article. Positional constraints with low
weighting factors make it possible to deform a trajectory
in a reactive manner to avoid obstacles without explicitly
specifyingwaypoints the trajectory has to pass. The combina-
tion with a prioritized inverse kinematics approach makes it
possible to consider constraints in joint spacewhilemaintain-
ing local trajectory properties in task space. The presented
methods are evaluated in the spatial domain, with respect to
processing time and through real-life experiments with the
HRP-4 robot.
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