Auton Robot (2016) 40:109-124
DOI 10.1007/s10514-015-9440-5

@ CrossMark

Learning to plan for constrained manipulation

from demonstrations

Mike Phillips! - Victor Hwang! - Sachin Chitta® -
Maxim Likhachev!

Received: 28 September 2013 / Accepted: 5 June 2015 / Published online: 21 June 2015

© Springer Science+Business Media New York 2015

Abstract Motion planning in high dimensional state
spaces, such as for mobile manipulation, is a challenging
problem. Constrained manipulation, e.g., opening articulated
objects like doors or drawers, is also hard since sampling
states on the constrained manifold is expensive. Further, plan-
ning for such tasks requires a combination of planning in free
space for reaching a desired grasp or contact location fol-
lowed by planning for the constrained manipulation motion,
often necessitating a slow two step process in traditional
approaches. In this work, we show that combined planning
for such tasks can be dramatically accelerated by provid-
ing user demonstrations of the constrained manipulation
motions. In particular, we show how such demonstrations
can be incorporated into a recently developed framework of
planning with experience graphs which encode and reuse
previous experiences. We focus on tasks involving articula-
tion constraints, e.g., door opening or drawer opening, where
the motion of the object itself involves only a single degree
of freedom. We provide experimental results with the PR2
robot opening a variety of such articulated objects using
our approach, using full-body manipulation (after receiv-
ing kinesthetic demonstrations). We also provide simulated

B Mike Phillips
mlphilli@andrew.cmu.edu

Victor Hwang
vchwang @andrew.cmu.edu

Sachin Chitta
sachinc@willowgarage.com

Maxim Likhachev

maxim@cs.cmu.edu

Carnegie Mellon University, Pittsburgh, USA
2 willow Garage, Menlo Park, USA

results highlighting the benefits of our approach for con-
strained manipulation tasks.

Keywords Motion planning - Manipulation planning -
Experience graphs

1 Introduction

In order to perform useful tasks robots must not only be able
to move safely through their environments but must also be
able to manipulate objects in them. Motion planners can be
used to solve manipulation problems though planning times
suffer for more complex tasks. An example of such tasks
is constrained manipulation, e.g., opening doors or drawers.
The motion required for such tasks occurs on a constrained
manifold, e.g., the motion of the gripper is constrained to
stay on the handle of the door with a firm grip.

Tasks such as opening doors or drawers are often addressed
using two stages of planning: a first stage where a motion
planner is used to plan the initial path to a contact or grasp
location followed by a second stage where a constrained plan
is computed. This two stage approach can be slow since the
goal state of one stage needs to be fed as the start state for
the next. In particular, traditional approaches that plan from
scratch every time are unable to exploit previous experiences
which is a huge disadvantage for tasks like door or drawing
opening which are essentially repetitive.

In this work we augment an existing Experience Graph
planner Phillips et al. (2012) with user generated demonsta-
tions in order to obtain fast planning times in such challenging
constrained problems. Experience graphs (E-Graphs) are
formed from a collection of paths. These could be previ-
ous paths that the planner generated or, as we show in this
work, come from user demonstrations. Planning on E-Graphs

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10514-015-9440-5&domain=pdf

110

Auton Robot (2016) 40:109-124

is done with an A* based algorithm and therefore, the state
space is represented as a discretized graph. When planning
with E-Graphs the search is focused toward reusing parts
of paths that look like they help find a solution quickly.
The planner guarantees completeness and a bound on the
sub-optimality of the solution cost with respect to the graph
representing the problem.

We show that by using demonstrations with experience
graphs, motion planning can be significantly sped up. This
approach is flexible as we are still running a complete plan-
ner which is focused on reuse when useful, but is not forced
or hard-coded to make a previous path work where it is not
helpful.

2 Related work

There has been a large amount of work within the field of
“learning from demonstration” which incorporates teacher
examples to generate policies for the robot Kormushev et al.
(2010) Kober and Peters (2009) Pastor et al. (2009) Argall
et al. (2009) Stolle and Atkeson (2006). Our work also uses
demonstrations but differs from these approaches. In learn-
ing from demonstration literature, the provided examples
show the desired behavior and therefore are goal (or reward)
directed. This means that the demonstrations are provided
with the goal or reward of the task already in mind. In our
problem, demonstrations are given before knowing the goal
or task. Some or all of the demonstrated movements may be
irrelevant for a given query and the planner determines this
during the search. The demonstrations are purely used to help
search the state space more efficiently.

In our approach the demonstrations are used to guide the
planner to a solution more quickly and avoid unnecessary
exploration. There has been quite a bit of research on incorpo-
rating prior information from prior searches into the planning
process. Perhaps the most straight forward reuse approach
is the PRM Kavraki et al. (1996), which simply by begin
a multi-query approach, reuses computation across trials.
Bruce et. al. Bruce and Veloso (2002) extended RRT's to reuse
cached plans and bias the search towards waypoints from old
paths. A feature-based approach involves selecting a trajec-
tory from a database from a similar scenario based on the
positions of the start, goal, and obstacles relative to the robot
Jetchev and Toussaint (2010). The selected path is then tuned
to fit the current scenario using a local optimizer. In Jiang and
Kallmann (2007) a bi-directional RRT is used to draw the
search toward a path from a database which is most similar
to the new motion planning problem (based on distances to
the start, goal and obstacles). MP-RRT extends the RRT to
replanning scenarios by maintaining a forest from the previ-
ously computed RRTs Zucker et al. (2007). Another family
of planning methods that reuses previous search effort are

@ Springer

D* Stentz (1995) and D* Lite Koenig and Likhachev (2002).
Like E-Graphs, these are graph search methods, unlike E-
Graphs, these methods require either the start or the goal
to stay constant for any reuse to occur. Lightning Berenson
et al. (2012), is a recent work that also attempts to repair
paths from a database of past paths using sampling-based
planners. We provide an experimental comparison against
this state of the art method. Planning on experience graphs
is an A* based method for reusing paths in new queries by
guiding the search toward parts of old paths if they appear as
though they will help the planner find the goal faster Phillips
et al. (2012). This method provides guarantees on complete-
ness and solution quality which the other methods we refered
to lack. E-Graphs are able to do this regardless of the qual-
ity of the paths put into the experience graph. We use this
method in our work. The method has been extended to any-
time and incremental planning scenarios as well Phillips et al.
(2013).

This work is focused on planning to manipulate objects
in the environment. In particular, we deal with objects in
the environment that inherently have constraints enforced
on them. For instance, a cabinet door is constrained to
swing about its hinge. Planning with constraints has been
addressed in the recent past. Past approaches include local
methods that provide fast smooth trajectory generation while
maintaining workspace constraints Yang and Brock (2010).
However, this lacks global exploration of the state space
and therefore is not guaranteed to find a valid solution
even if one exists. Sampling-based planners on constraint
manifolds allow for probabilistic completeness, Berenson
et al. (2009) Oriolo and Mongillo (2005). Other approaches
include offline computation of constraint manifolds Sucan
and Chitta (2012) and constructing an atlas for the con-
straint manifold at runtime Porta Pleite et al. (2012). Reusing
demonstrations can help in improving the performance of
planning for constraint tasks, something that no existing
approach exploits. We aim to show that our approach can
significantly improve its performance by reusing demonstra-
tions while at the same time dealing robustly with changes in
the environment, and gracefully planning from scratch(PFS)
when necessary.

3 Experience graphs

This section provides a description of how E-Graphs work
[first introduced in Phillips et al. (2012)].

An experience graph G is a collection of previously
planned paths (experiences). Planning with experience
graphs uses weighted A* to search the original graph G
(which represents the planning problem) but tries to reuse
paths in G¥ in order to minimize the exploration of the orig-
inal graph G (as G is dramatically smaller than G). This

Auton Robot (2016) 40:109-124

111

is done by modifying the heuristic computation of weighted
A* to drive the search toward paths in G that appear to lead
towards the goal.

Weighted A* maintains an O PEN list of states (initial-
ized with only the start state) which have been discovered but
not yet expanded. When a state s is expanded, each neighbor
s’ (a state connected to it directly by an edge) may have its
cost from the start, g(s") updated if by reaching it through s
was cheaper and if so, s” is put in O PEN with a priority of
f(s") = g(s") + eh(s’). Where h(s’) is a heuristic estimate
for the remaining cost to the goal and ¢ > 1. Weighted A*
works by iteratively expanding the state in O P EN with the
minimum priority until the goal state has the minimum pri-
ority, at which point the algorithm terminates. If the heuristic
is admissible (never overestimates the cost to the goal) then
the solutions are guaranteed to be no larger than ¢ times
the cost of an optimal solution Pohl (1970). If the heuristic
function is also consistent, i(s) < c(s, s’) + h(s')Vs, s’ and
h(Sgoar) = 0, the same guarantee is maintained when not
allowing a state to be expanded more than once Likhachev
et al. (2003).

As stated eariler, the key to planning with experience
graphs is creating a heuristic function 2* which is biased
to follow edges in the E-Graph which lead to the goal. The
E-Graph heuristic 2% (so) for some state sq is computed by
dynamic programming by finding the shortest path from the
goal to so through a graph which only contains E-Graph
vertices, the goal, and so. There are two types of edges in
this graph: pairs of states may be connected by an E-Graph
edge, or connected by the original heuristic penalized by £ .
Essentially, the path computation from the goal to the state in
question penalizes traveling off of G¥ but traveling on edges
of G¥ is not. Formally, for any state s in the original graph:

A2
WE(so) = min > min{efhCGsivsiv), Esiosien] (1)
T
i=0
where 7 is a path (so...s,—-1) and 5, 1 = Sgoa and ef is

a scalar >1. As shown later, the heuristic is sE_consistent

and therefore guarantees that the solution cost will be no
worse than &£ times the cost of the optimal solution when
running A* search to find a path. More generally, planning
with experience graphs using weighted A* search inflates
the entire 4% heuristic by &. Consequently, the cost of the
solution is bounded by ¢ - £¥ times the optimal solution cost.

Equation 1 is computed by finding the shortest path from
s to the goal in a simplified version of the planning problem
where there are two kinds of edges. The first set are edges
that represent the same connectivity as 29 in the original
planning problem but their cost is inflated by £ . The second
set of edges are from GZ with their costs ¢ (oo if the edge is
notin G¥). As ¢F increases, the heuristic computation goes
farther out of its way to use helpful E-Graph edges. Note that

(©) ¥ > o0

Fig. 1 Effect of ¢. The light gray circles and lines show the original
graph. The darkened states and edges in a show the E-Graph. In b and
¢ the dark gray circles show states explored by the planner in order
to find a solution. The light dashed line shows the heuristic path from
the start state. Notice that when &F is large, this path travels along the
E-Graph and avoids most obstacles (there are few explored states). On
the other hand when ¢% is small, the heuristic (in this case euclidean
distance) drives the search into several obstacles and causes many more
expansions. It should be noted that ¢ > 1 is used in these examples

the edges that use 2 allow A% to guide the search to connect
previous path segments and connect to the goal state, which
might not lie on the E-Graph.

Figure 1 shows the effect of varying the parameter £©. As
it gets large, the heuristic is more focused toward E-Graph
edges. It draws the search directly to the E-Graph, connects
prior path segments, and only searches off of the E-Graph
when there aren’t any useful experiences (such as around the
last obstacle). There are very few expansions and much of
the exploration of the space is avoided. As £ approaches 1
(optimality) it ignores G¥ and expands far more states.

4 Demonstration-based experiences
The main contribution of our paper is in showing how

demonstrations can be integrated into planning with expe-
rience graphs. The use of demonstrations in conjunction

@ Springer

112

Auton Robot (2016) 40:109-124

/7777

Fig. 2 A two link planar arm and a drawer that can be manipulated

with experience graphs is not as simple as just adding the
demonstrations into the graph as additional experiences for
several reasons. First, demonstrations may not lie on the orig-
inal graph. Second, since the demonstrations show how to
manipulate an object (e.g., how to open a door), they require
adding a new dimension to the state-space, the dimension
along which the object is being manipulated. Consequently,
the underlying graph as well as experience graph must be
updated, to include this dimension. Finally, the heuristic used
in the graph search will need to be improved to guide the
search towards the object that needs to be manipulated as
well guide it in how to manipulate the object. We describe
how to address these challenges in this section. We will use
a running example of a 2 link planar manipulator opening a
drawer to make the explanation clearer (Fig. 2).

4.1 Notations and overall framework

First we’ll go through some definitions and notations and
briefly describe the overall framework.

The original graph representing the planning problem is
G = (V, E). Each vertex v € V represents a robot state:
coord(v) € R". We also assume a database of demonstra-
tions D = (77 ...7,). Each 7; is a set of discretized trajec-
tories corresponding to the ith object in the environment that

can be manipulated. 7, = {(a'lbl ...a]bkl) .. (ai?l "'a?kﬂ}

b
where q; ;€ Ty is the jth point in the ith trajectory for object

b. af’. € R"*!. The extra dimension corresponds to the state
of the manipulated object, which we will term z. In Fig. 2
this would be how far the drawer is pulled open. We will use
zcoord (af’j) to represent the value of the state of the object

b at af’j. For every object b, we also use Z; to represent
the set of all values of z that are present in 7;,. Formally,
2Zp ={z|3a;j € Ty s.t.z = zcoord(a;})}.

Finally, we assume that the objects we are manipulating lie
on one dimensional manifolds in a higher dimensional space.
For instance, when opening a cabinet, the door is constrained
to move on a one dimensional manifold. The planner infers
how to operate the manipulated objects automatically from
one or more demonstrations. There is no prior model of any

@ Springer

of the objects the robot interacts with. Instead we assume
there is a stationary point of contact on the object that the
robot’s end-effector comes into contact with during manip-
ulation. For simplicity, the algorithm will be described with
only one possible contact point on the object, however, the
algorithm works with an arbitrary number of demonstrations
starting from any number of contact points. In our experimen-
tal analysis, we show how this works. During demonstration,
we observe the movement of this contact point along a curve,
which z parameterizes. As stated earlier, coord(v) specifies
the complete configuration of the robot. We then use a domain
specific function y = ¢[coord(v)]to compute the coordinate
of the contact point on the robot, given the robot’s configura-
tion (i.e., forward kinematics). This function is many-to-one.
In Fig. 2 this corresponds to the pose of the end-effector and
would be computed from coord(v) using forward kinemat-
ics. Note that in our simple example there are two states x
that could produce the same y (corresponding to an elbow
up or down configuration). The drawer handle’s constraint
manifold is the small line segment which would be traced by
the handle while opening the drawer.

planToManipulate(G, D, Ssiart» Zgoal» 0b))

1: T =T €D

2: Guanip = buildGraph(G, T)

3: GF = create EGraph(T)

4: v = find Path(Gumanip, GE, T, Sstart» Zgoal)
5: returnm

The planT oManipulate algorithm shows the high-level
framework. First it selects the demonstrations from D that
correspond to object obj. Then it constructs a new graph
Gmanip to represent the planning problem. This graph rep-
resents the robot’s own motion (as before), contact with
the object, and manipulation of the object by the robot.
The create EGraph function uses the demonstration to cre-
ate the experience graph G¥ as well as to augment the
graph with a new dimension. Finally, a planner is run on
the two graphs as described in Phillips et al. (2012). The
following sections describe the construction of the graph
Gmanip = (Vmanip> Emanip) and a new heuristic to guide
search for motions that manipulate the objects.

4.2 Task-based redefinition of states

The provided demonstrations change the state space in two
significant ways. First, the manipulated object adds a new
dimension to the graph. Secondly, the demonstration may
contain robot states that do not fall on any state in the original
graph. In order to handle this, we construct a new vertex set
Vinanip as shown below.

Auton Robot (2016) 40:109-124

113

&
Q,
: Z=0.1
\\ \ ll
b '
.. ' .
: Q, 7=0.2
e | 1 |
e
o. P ’
Qs
L]
L]

Fig. 3 The graph construction. The layered planes show how the
original graph is duplicated for each value of z € Z. The a;;
elements are points on a demonstrated trajectory. During the demon-
stration the robot’s state changes (movement within the plane) as
well as the object’s state (movement between planes). Each a;; ele-
ment is in a set of states §2;. In addition to this state £2; contains
ss.t. ((p(coord(s)), w(coord(aij))) A zcoord(s) = zcoord(a;j)

Vmanip =Vorig U Viemo, where

Vorig ={v|(c00rd(v), zcoord(v)) = <000rd(u), z)
YueV,ze Z}

Viemo ={v|(coord(v), zcoord(v)) = ajj € ']'}

The new vertex set is a combination of the old vertices and
the vertices from the demonstrations. The vertex set Vg
contains the vertices in the original graph but repeated for
each possible value of the new variable z. The set Ve, 1S
the set of vertices that exist in the demonstration trajectories.
In Fig. 3 the planes show the layers of the original graph
repeated for each value of z. Additionally, we can see the
states that come from the demonstration.

4.3 Task-based redefinition of transitions

The demonstrations not only change the state space, but also
affect the connectivity of the graph due to the additional
dimension as well as motions in the demonstration that are
not used in the original graph. We introduce two functions
which are used in the definition of the new edge set Eyqnip-
The connectable(u, v) function returns true if two states can
be connected in a simple collision free manner, such as by
linear interpolation. The function is only applicable if the
two states # and v are very close (such as when state # and v
fall in the same “discretized bin”). The within Error func-
tion determines if two contact poses are close enough to each

other to be considered equivalent. The allowable error off the
manifold is up to the user (not smaller than the discretization)
but depends on the compliance of the object and robot.

Emanip = Eorig U Edemo Y Ebridge UE; where
Eorig = {(u, v)|3u, v € Vs.t.coord(it) = coord(u)A

coord(v) = coord(vV)A

(@i,) € EA
zcoord(u) = zcoord(v)}

Egemo = {(u, v)|(coord(u), zcoord(u)) =a;;€TA
(coord(v), zcoord()) = ai j+1 € T}

Epridge = {(u, v)|(coord(u), zcoord(u)) eTAh

v € Vs.t.coord(v) = coord(v)A

connectable(u, vV)A

zcoord(u) = zcoord(v)}
E.= {(u, 0|3, 5) € Edemo s.1.

withinError ((p(coord(u)), (p(coord(ﬁ)))/\
zcoord(u) = zcoord (W) A
withinError ((p(coord(v)), (p(coord(f))))/\

zcoord(v) = zcoord (D)]

The new edge set Ejqnip is a combination of edges from
the original graph E,;, (replicated for each value of z),
edges that come from demonstrations E g, “bridge edges”
Epridage, and Z edges E;.

Bridge edges connect demonstration states to states in
the discretized original graph. The two states must be
connectable and must also share the same z-value (the
manipulated object must be in the same state). For example,
in Fig. 2 a bridge edge may be added whenever the euclidean
distance between the two joint angles of demonstration state
and an original graph state are within a small distance of each
other and the drawer is pulled open the same amount.

Z edges generalize the demonstrations in order to create
edges on the object’s constraint manifold that may not have
existed in the demonstrations. This means that if the contact
point of the robot at state u is very close to that of state i,
withinError(¢(coord(u)), ¢(coord(it))), the object is in
the same state (zcoord(u) = zcoord(u)), these conditions
are also true for v and v, and & is connected to v in the demon-
strations, then we will connect u to v (provided the action is
collision free, as with any edge in the graph). These edges
allow the planner to find ways to manipulate the object other
than exactly how it was done in demonstrations. This is espe-
cially important if part or all of the specific demonstration is

@ Springer

114

Auton Robot (2016) 40:109-124

invalid (due to collision) but it may still be possible to manip-
ulate the object. Figure 3 shows this using the cloud-shaped
§2. Any of the states that fall in £2; can connect to states in
$2i41 01 82;_1.

4.4 Task-based heuristic

Since the goal is to manipulate an object to a particular state
(for instance, open a drawer), the search will be slow unless
the heuristic guides the planner to modify the object toward
the goal configuration. With that in mind we outline a heuris-
tic that takes into account the motion of the robot required
to reach contact with the object as well the manipulation of
that object.

We introduce a two part heuristic 2S,, built on top of
the original heuristic for the environment #¢. The E-Graph
heuristic £ described in section ITT will now use S, instead
of hC. For any state s = (x, z) we are trying to provide an
admissible (underestimating) guess for the remaining cost to
get to the goal (have z = Zzgoq/). The general idea is that
hG,,(s) estimates the cost of getting the robot in contact with
the object plus the cost of manipulating the object so that the
variable z moves through all the required values to become

Zgoal- More formally,

Zgoal_l
G . G G
henv(s) = min h™ (s, vy) + E h™ (Uk, Vks1)
Vz---Vzgoq1 k=z

Vg € {v € VmanipHaij eT,s.t.
withinError ((p(coord(aij)), <p(c00rd(v)))

A zcoord(a;j) = k}

This computation has the contact point pass through all
the poses shown in the demonstration (between the z of state
s and the goal 7). There may be many robot configurations
to choose from for each of these contact poses in order to
get a minimum sequence. In our experiments, we chose a
heuristic 4% (a, b) that computes the linear distance that the
contact point travels between the two robot configurations
Cohen et al. (2014). An advantage of this heuristic is that we
do not need to consider the set of all robot configurations.
Since all the robot configurations in a set (e.g., all possible
states to choose for some vi) have the same contact point,
they are equivalent inputs to this heuristic function (so any
state with that contact point will do). Therefore, the sequence
of v;...v,,, can just be that segment of a demonstration.
This makes 1% easy to compute. Specifically, the choices
of vy to search over becomes significantly smaller.

Uk e{v € Viaemol N zcoord(v) = k}

@ Springer

Therefore heG,w can be computed using a Dijkstra search over
the vertices from the demonstration and s, starting from the
set of vertices from the demonstrations which have z-value
of Zgoar. As we are running a Dijkstra search backward, our
edges will be directed from any demonstration state with z-
value i to any with value i — 1. Finally, all demonstration states
with value z connect to state s. We are therefore searching
on a directed acyclic graph with the number of vertices on
the order of the number of vertices in the demonstrations
(which is typically very smaller), making this computation
efficient. Additionally, the Dijkstra computes the minimum
of the summation on the right first, which could be computed
once at the start of planning and cached. When hgw is queried

with some s, only the final edge to it must be chosen from
the vertices with zcoord (s).

4.5 Theoretical properties

As we showed earlier, it is possible for edges (motions) in
the demonstration to not exist in the original graph. These
extra edges can help the planner find cheaper solutions than
what it would have been able to achieve without them. It also
may be able to solve queries for which there was no solution
in the original graph G alone.

An important thing to note is that while the quality of the
demonstration can dramatically affect the planning times and
the solution cost, the planner always has a theoretical upper
bound on the solution cost with respect to the optimal cost
in graph G anip-

Theorem 1 For a finite graph G and finite Experience
Graph GE, our planner terminates and finds a path in G pan; »
that connects ssiqrs to a state s with zcoord(s) = Zgoai if one
exists.

We are searching the graph Gqnip with Weighted A*
(a complete planner), if a solution exists on this graph, our
algorithm will find it.

Our planner provides a bound on the sub-optimality of
the solution cost. The proof for this bound depends on our
heuristic function 4% being &£ -consistent.

Lemma 1 If the original heuristic function h® (u, v) is con-
sistent, then the heuristic function hE is eE-consistent.

From Eq. 1, forany s, s’ € VY, (s, s") € EC.
hE(s) < min{eEhG(s, s’), cE (s, s/)} + hE(s’)
hE(s) < 8EhG(s, s’) + hE(s’)

hE(@s) < sEc(s,s/) + hE(s/)

The argument for the first line comes from Eq. 1 by
contradiction. Suppose the line is not true. Then, during

Auton Robot (2016) 40:109-124

115

the computation of hE(s), a shorter path 7 could have
been found by traveling to s’ and connecting to s with
min{efh%(s,s’), cE (s, s")}. The last step follows from h¢
being admissible. Therefore, hE is e -consistent.

Theorem 2 For a finite graph G and finite Experience
Graph G, our planner terminates and the solution it returns
is guaranteed to be no worse than ¢ - €€ times the optimal
solution cost in Gyanip-

Consider h'(s) = hf(s)/eE. h'(s) is clearly consistent.
Then, ehf(s) = & - eEN'(s). The proof that & - eEh/(s)
leads to Weighted A* (withoutre-expansions) returning paths
bounded by &-£ £ times the optimal solution cost follows from
Likhacheyv et al. (2003).

It is interesting to note that since we are running a full
planner in the original state space, for a low enough solution
bound, the planner can find ways to manipulate the envi-
ronment objects more efficiently (cheaper according to the
planner’s cost function) than the user demonstrations.

5 Experimental results

We tested our approach by performing a series of mobile
manipulation tasks with the PR2 robot including opening
drawers and doors. All the tasks involve manipulation with a
single arm, coupled with motion of the base. The end-effector
of the right arm of the PR2 is restricted to be level i.e., its roll
and pitch are restricted to a fixed value (zero). This results the
arm moving in a 5 dimensional space parameterized by the
position of the right end-effector (x,y,z), the yaw of the end-
effector and an additional degree of freedom corresponding
to the shoulder roll of the right arm. We consider the overall
motion of the robot to be in a9 dimensional state space: the 5°
of freedom mentioned above for the arm, the three degrees of
freedom for the base and the an additional degree of freedom
for the vertical motion of the torso (spine).

When performing a task, an additional degree of freedom
is added to the state space corresponding to the articulated
object, bringing the dimensionality of the state space to a total
of ten. A possible goal for the planner would be to move
the joint of an object to a specified z-value e.g., moving a
cabinet door from the closed to open position. This requires
the creation of plans for the combined task of grasping the
handle of the cabinet door by coordinated motion of the base,
spine and right arm of the robot, followed by moving the
gripper appropriately (again using coordinated motions of
the base, spine and right arm) along the circular arc required
to open the cabinet door.

The planner can support arbitrary cost functions (as long as
no motion results in negative cost), though the heuristic must
be chosen to be consistent with respect to the cost function.
The cost function we used for the planner is a weighted sum

of end effector linear and angular motion, base linear and
angular motion, motion of the spine, and motion of the arm’s
redundant joint.

Kinesthetic demonstration, where the user manually
moves the robot along a desired path to execute the task, was
used to record paths for different tasks. The values of the state
space variables were recorded along the desired paths. Once
the demonstrations have been recorded, the robot replays
the demonstrated trajectories to execute the given task. As it
executes the demonstrations, it uses its 3D sensors to record
information about the changing environment. The 3D sen-
sor’s trace (represented as a temporal series of occupancy
grids in 3D) represents the motion of the target object (e.g.,
the cabinet door) throughout the demonstration.

The stored temporal sensor information provides infor-
mation about the evolution of the changing environment,
particularly for use in collision checking. Forward kinematics
is used to determine the demonstrated workspace trajectory
for the contact point of the gripper and the articulated object.
This information, along with the recorded state data, repre-
sents data that can be fed back into the E-Graph for later
use.

5.1 Robot results

Our planner was implemented in five different scenarios with
the PR2 robot: opening a cabinet (45 cm wide door), opening
a drawer with an external handle attached (extends 30 cm),
opening an overhead kitchen cabinet (45 cm wide door),
opening a freezer (61 cm door), and opening a bread box
(handle is 18 cm offset from hinge). The overall goal for
each task is for the robot to start from an arbitrary position,
move to the desired task location, grasp the handle and open
the cabinet or drawer.

For each scenario, a full 3D map of the environment was
first built using the stereo sensors on the robot. The opening
part of the task was then demonstrated with the robot by a
user. The robot then replayed the demonstrated motion on
its own, recording the additional visual sensor data needed
in the process to complete the demonstration. This data is
available to the planner for incorporation into the E-Graph.

The planner was then tested using different start states.
This required the planner to generate motions that would
move the robot to a location where it could grasp the han-
dle on the drawer/cabinet/freezer/box. Note that this part of
the motion had not been demonstrated to the planner. The
planner also had to generate the motion required to open the
objects. Again, note that the robot could be in a different start
state at the beginning of its motion for opening the objects
as compared to the start state for the demonstrated motion.
Further, there may be additional obstacles in the environ-
ment that the planner needs to deal with. Figure 4 shows still
images of these trials. It should be noted that for the bread

@ Springer

116

Auton Robot (2016) 40:109-124

Fig. 4 PR2 opening an Ikea cabinet, metal drawer, overhead kitchen
cabinet, freezer door, and bread box, respectively. Each sequence
shows the execution of the completely planned full-body motion which

Table 1 Planning times in seconds for opening a file drawer, lkea cab-
inet, overhead kitchen cabinet, freezer, and bread box

E-Graph Weighted A*
Drawer 2.06 2.96
Cabinet 1.83 12.87
Kitchen cabinet 2.87 (Unable to plan)
Freezer 1.52 7.81
Bread Box 1.04 (Unable to plan)

box trial, roll and pitch of the gripper were added as addi-
tional degrees of freedom (bringing the search space to 11
dimensions).

Table 1 shows the planning times for these demonstra-
tions. While the weighted A* planner solution time is shown,
only the E-Graph planner result was executed on the robot. In
two cases, the weighted A* was unable to produce a plan in
the allotted 60 seconds. Weighted A* was run with ¢ = 20,
while our planner ran with ¢ = 2 and ¢¥ = 10 for an equiv-
alent bound of 20.

@ Springer

approaches, grasps, and opens each object. The numerical results of
these real robot experiments are shown in Table 1

5.2 Simulation results

A separate set of simulated tests was conducted to measure
the performance of the planner and compare it to weighted
A* (without re-expansions) and a sampling-based approach.
Weighted A* was run with ¢ = 20, while our planner ran
with ¢ = 2 and ¢ = 10 for an equivalent bound of 20. The
environments were generated by rigidly transforming two
target objects (cabinet and drawer) to various locations in a
room (the robot start pose was constant). Figure 5 shows a
snapshot of the simulation environment.

Table 2 shows planning statistics of weighted A* ver-
sus planning with E-Graphs. These results show that using
the Experience Graph allows us to find solutions with fewer
expansions and therefore, in less time.

We also compared against Constrained Bi-directional
Rapidly-Exploring Random Tree (CBiRRT), which is
designed to help the RRT algorithm deal with planning on
constraints which may be small compared to the state space
and therefore difficult to sample Berenson et al. (2009). Like
most RRT algorithms this method repeatedly chooses a ran-

Auton Robot (2016) 40:109-124 117
i Table 3 A comparison between E-Graphs and CBiRRT
\“” E-Graph time (s) CBiRRT time (s)
Mean Std dev Mean Std dev
Drawer 2.76 1.88 4431 28.39
Cabinet 1.94 0.76 1.72 1.60
E-Graph base motion (m) CBiRRT base motion (m)
Mean Std dev Mean Std dev
Drawer 0.61 0.30 1.51 045
Cabinet 0.88 0.27 1.53 0.34
E-Graph arm motion (rad) CBiRRT arm motion (rad)
Fig. 5 The simulation environment. The red boxes represent example
locations of the target object to be manipulated. The green boxes rep- Mean Std dev Mean Std dev
resent the contact point that the robot gripper should attempt to grasp
(Color figure online) Drawer 5.37 2.74 5.50 2.04
. . Cabinet 6.83 2.00 442 0.86
Table 2 A comparison between E-Graphs and weighed A* over 35
simulations E-Graph consistency CBIiRRT consistency
E-Graph Weighted A*
Drawer 0.33 10.70
Mean(s) Std dev(s) Mean(s) Std dev(s) Cabinet 0.37 303
Drawer 2.75 1.73 7.25 16.62
Cabinet 1.74 0.70 54.69 43.49

dom sample, and tries to extend the nearest neighbor in the
search tree toward it (since this is bi-directional, it grows
both). The primary difference is that the extension is done
by taking small unconstrained steps (like a linear step in c-
space) followed by a projection step back on to the constaints.
We use a state variable to represent how far the object has
moved (like in our approach). If the object is “closed” then
the projection does nothing (the robot does not have to be
holding the contact point). If the object is in any other state
then it has been moved, and we project configurations so the
robot is holding the contact point. The constraint manifold
learned in our approach is used for the projection step. For
the goal state (the root of the backward tree) we provided the
final configuration from the demonstration.

Table 3 compares E-Graphs to CBiRRT. In the first sec-
tion of the table we can see that the planning times for the
two approaches are similar for simpler scenarios though E-
Graphs perform better on others (across 35 trials). We expect
E-Graphs to continue to perform better than sampling plan-
ners as tasks become more complicated since there is more
room for reuse of prior experience. We also found the E-
Graph solutions to be of similar or better quality (refer to the
base and arm distance metrics in the middle of the table).
At the bottom of the table, we see results from a consis-
tency experiment. Consistency measures how similar output
of a planner is, given similar inputs (start and goal). In many
domains, this kind of path predictability is critical for people
to be comfortable around robots. We tested this by choosing

5 similar start poses for the robot and 5 similar locations of
the cabinet/drawer. We then plan between all pairs to get 25
paths. We used the dynamic time warping similarity metric
Sakoe and Chiba (1978) to compare the methods. Having a
value closer to 0 means the paths are more similar. Since this
method is for comparing pairs of paths, we performed an all-
pairs comparison and then took the average path similarity.
We can see that E-Graphs produce more consistent paths due
to the deterministic nature of the planner.

5.3 Using a partially valid demonstration

This scenario demonstrates the capability of using a partial
E-Graph. An obstacle was intentionally placed to obstruct
a portion of the provided experience. We show that the
E-Graph planner derives as much of the solution as it can from
the provided experience before doing a normal weighted A*
search to replace the portion of the experience that is in col-
lision.

Figure 6 shows the specific case. On the left we see the final
configuration from the demonstration which is in significant
collision with an obstacle. It is clear that simply playing back
the demonstration to open this cabinet would fail (even small
modifications on the joints would not be sufficient). In the
image on the right we can see that the planner generates a
valid final pose (and a valid path leading up to it) by lowering
the elbow. The E-Graph planner actually uses the first half
of the demonstration (which is valid) and then generates new
motions for the rest. We can see from the final pose, that the

@ Springer

118

Auton Robot (2016) 40:109-124

Fig. 6 a The second half of the
demonstration is in collision
with an obstacle. The last pose
is shown here. b The planner
reuses as much of the
demonstration as it can and then
generates the rest from scratch.
The final pose in the path is
shown. The elbow has been
dropped to accomodate the
obstace.

Table 4 Performance statistics for partial E-Graph planning

Planning time Expansions
Weighted A* 51.90 16,402
Partial E-Graph 2.22 59
Complete E-Graph (without obstacle) 2.08 47

motion is dramatically different from the demonstration in
order to accomodate the new obstacle.

Table 4 shows the time performance of this trial. The
weighted A* performs worse because it must build the solu-
tion from scratch. The partial E-Graph solution completes in
an order of magnitude less time. Figure 7 shows that when
using none of the E-Graph (planning from scratch) a similar
solution is found but it takes much longer. For comparison,
the planning statistics for the provided demonstration without
the obstacle is shown as well. We see that the partial E-Graph
only took slightly more time than the case where the obstacle
is removed (and the complete demonstration could be used).

The end result of this simulation shows that the E-Graph
planner can take full advantage of provided experiences, even
when parts of the provided experience are invalid.

5.4 Multiple demonstrations

In this experiment we show how several demonstrations
can be used to teach the planner to manipulate an object.
Our results indicate that this leads to an increased level of
robustness to additional obstacles and clutter. Specifically, in
this experiment we provide two different demonstrations for
opening a drawer. Figure 8 shows the last configuration in
each of the two demonstrations. Figure 8a corresponds to a
demonstration where the elbow is held out to the right while
pulling open the drawer. This figure also shows the optional
“Right Obstacle” which is used in some of our trials. When
this obstacle is used, only this demonstration is blocked. On
the other hand, Fig. 8b depicts a demonstration where the
elbow is held downward. The figure also shows the optional
“Under Obstacle” which is used in some of our trials. This
obstacle only blocks this elbow down demonstration.

@ Springer

Fig. 7 A similar solution is found when planning from scratch

We ran experiments in three different environments (no
added obstacle, adding the under obstacle, and adding the
right obstacle). Additionally, for each of these we tried all
combinations of providing demonstrations (elbow to the
right, elbow down, both demonstrations, and no demonstra-
tions). In the case with no demonstration, the planner was
still provided the trajectory that the contact point needs to
follow, but specific configuration space trajectories were not
added to the E-Graph.

Table 5 shows the results of our experiments. We can see
that opening the drawer in this scenario was sufficiently dif-
ficult that without any demonstration (the “None” row) the
planner was unable to find a solution within 60 s, which was
our chosen timeout. The elbow right demonstration allows
us to plan except when an obstacle is added on the right
to invalidate part of the E-Graph. Similarly, the elbow down
demonstration works well unless the under obstacle is added.
By providing the planner with both demonstrations, the E-
Graph heuristic guides the search to follow the demonstration
that allows it to avoid following the less informative original
heuristic as much as possible. In this case, that results in the

Auton Robot (2016) 40:109-124

Fig. 8 Two different
demonstrations for opening a
drawer. The gray cube in each
picture is an obstacle used in
some of the experiments which
was chosen to block part of only
its corresponding demonstration

-

(a) A demonstration with the elbow to
the right. The optional “Right Obstacle”

is shown also.

L‘ h‘
(b) A demonstration with the elbow

down. The optional “Under Obstacle” is
shown also.

Table 5 Performance with

multiple demonstrations Demonstrations No obstacle Right obstacle Under obstacle
Elbow right 1.37 (Unable to plan) 9.35
Elbow down 1.52 3.69 (Unable to plan)
Both 1.16 2.88 9.81
None (Unable to plan) (Unable to plan) (Unable to plan)

planner avoiding the demonstration where some poses have
been invalidated by the newly introduced obstacle. There-
fore, by providing multiple demonstrations, the planner can
become more robust to added clutter.

5.5 Comparison against another reuse planner

In this section we compare planning with experience graphs
to another motion planner that leverages reuse, Light-
ning Berenson et al. (2012). Lightning, is a portfolio method
which runs two planners in parallel, a PFS method and a
retrieve-and-repair method (RR). Lightning terminates when
either of the methods succeed and the resulting path is put
back into a path database which the RR module can draw
upon during future planning episodes. The PFS can use any
planner but in the authors’ implementation they use RRT-
Connect Kuffner and LaValle (2000), which is considered
to be one of the faster sampling-based planners. The RR
method first selects a small number of paths from a data-
base which may solve the problem quickly (paths that have
endpoints near the start and goal). It augments the paths by
adding segments which connect the start and the goal to the
path (e.g., by linear interpolation). It then collision checks
the small set of augmented paths and selects the one with the
least invalid portions. This path will be repaired by using a
motion planner to reconnect broken sections. Again, while

any planner could be used, RRT-Connect is chosen for the
authors’ implementation.

We compare against Lightning on single arm manipula-
tion planning for the PR2 robot (7° of freedom), for which,
the authors provide an implementation. We used a simulated
kitchen environment with 100 randomly chosen starts and
goals in difficult areas as shown in Fig. 9. We used a weighted
A*based arm planner Cohen et al. (2014) and ran it both with
and without using E-Graphs. Finally, we made a planning
portfolio more similar to Lightning. We ran the weighted A*
planner (without E-Graphs) in parallel with the same plan-
ner using E-Graphs. Our planner uses a fast collision checker
that represents the robot as a set of spheres. We set up Light-
ning to use the same fast collision checker. Both E-Graphs
and Lightning start out with no prior experience but both are
allowed to remember every path they generate (so by the end,
both methods have around 100 paths). We give methods 10 s
to plan, after which it is considered a failure. A shortcutter
is run on both methods after planning is finished (included
in planning times). Additionally, the environment does not
change between queries and therefore previous paths don’t
need to be collision checked (though additions to those paths
to solve new queries do). Lightning collision checks previ-
ous paths before using them so we disabled this in order to
not have it do unnecessary computation. We used the default
parameters for Lightning which include using 1 thread for

@ Springer

120

Auton Robot (2016) 40:109-124

Fig. 9 The pink spheres show
the location of the gripper for
the start and goals states of our
experiments. Planning is
performed with the right arm
(Color figure online)

Table 6 Comparing E-Graphs,

. . . Mean Std dev Median Mean arm Success Threads
weighted A* and lightning time(s) time(s) time(s) motion (rad) of 100 used
Weighted A* 0.84 1.31 0.4 6.62 87 1
E-Graphs 0.76 1.39 0.17 11.40 95 1
Portfolio 0.34 0.77 0.13 10.39 95 2
Lightning 0.36 0.33 0.33 7.64 99 5
Consistency(m)

Weighted A* 4.85

E-Graphs 4.82

lightning 14.30

the PFS planner and 4 threads to collision check potential
paths for the RR planner.

The results of the experiments are shown in Table 6.
We can see that E-Graphs has the fastest median plan-
ning time among Lightning, and weighted A*, though there
are a number of outliers which give it a worse mean time
than Lightning. However, by using a simple portfolio with
weighted A* and E-Graphs, (much like Lightning with PFS
and RR), many of the outliers are eliminated. Our portfolio
has slightly lower mean planning time than Lightning, sub-
stantially lower median planning time and uses only 2 threads
compared to Lightning’s 5.

Lightning has slightly better success rate that E-Graphs
and better path quality, while weighted A* has the best path
quality. The weighted A* planner is minimizing the L2 norm
in joint space, which is essentially what the shortcutting does
as well. The E-Graph path quality is partially worse due to the
planner going out of its way to reuse previous paths. Addi-
tionally, the chosen heuristic is a 3D grid search which guides
the end effector to the end effector location on previous paths.
This however is not enough to get the arm on the E-Graph.
After reaching the gripper position from a previous path the
planner needs to fix the gripper orientation and arm redun-
dancy before it can follow the previous path. This results in
a relatively short end effector path while not getting a short

@ Springer

path in joint space. This could be resolved by using a different
heuristic 49, such as euclidean distance in joint space.

We also ran a consistency experiment. As discussed ear-
lier, consistency measures how similar paths from a planner
are for similar inputs (start, goal, environment). Planners that
create similar paths for similar inputs are more predictable,
which is desirable when robot operate near people. We chose
100 random starts and goals from two regions (the start and
goal are never from the same region).

Again we used the dynamic time warping (DTW) similar-
ity metric Sakoe and Chiba (1978) to compare the methods.
DTW computes a similarity score for a pair of paths. To do
this, it first aligns the two paths by finding corresponding
waypoints between the two paths. Each waypoint will have
at least 1 correspondence in the other path (but they can have
several). After correspondences have been determined, the
distances from each correspondence are summed. The simi-
larity score is therefore, the sum of the distances between
the waypoints on the paths after they have been aligned.
Having a value closer to O means the paths are more sim-
ilar as the distances between corresponding waypoints are
small. Since this method is for comparing pairs of paths,
we computed the average pair-wise similarity (we computed
DTW on all pairs of paths and then averaged the scores).
The waypoints in the paths used for the DTW computa-

Auton Robot (2016) 40:109-124

121

Fig. 10 The fop row shows all
the paths produced by E-Graphs
in the consistency experiment.
The bottom row shows those
produced by Lightning. The
pink spheres show the start and
goal locations of the gripper.
The green lines are motion that
the gripper traced during each
path (Color figure online)

tion are the location of the end-effector, and therefore, the
scores reported are in meters. Both E-Graphs and weighted
A* exhibit much more consistent behavior than Lightning.
In fact we can see that they are about 3 times more con-
sistent, meaning that Lightning tends to have 3 times as
much distance between pairs of paths. Figure 10 visually
shows the paths produced by E-Graphs and Lightning. The
images clearly show that E-Graphs has significantly less vari-
ance.

6 Discussion

This method provides a novel framework to teach robots how
to manipulate constrained objects by demonstration and then
incorporate those demonstrations into a planner using expe-
rience graphs. However, there are several ways this method
could be improved and extended.

In this work, we deal with objects which can be manipu-
lated on a one dimensional manifold. We chose to represent
this as a discretized curve that the contact point on the robot
must follow to manipulate the object. This representation is
simple, yet very expressive. While in our examples we used
objects that have commonly modeled joints (e.g., revolute
and prismatic), the representation supports arbitrary joints

that exist on one dimensional manifolds, including those that
are more difficult to capture with a few model parameters,
such as a garage door or moving a toy train along tracks. The
chosen representation also offers the ability to demonstrate
how to use new objects very easily. A non-expert can give a
demonstration as no programming or modeling needs to be
done (the motion of the contact point and the z dimension
is automatically computed and recorded). This being said,
there are drawbacks. One of them is that the minimim and
maximum extent to which the user demonstrated moving the
object also defines the limits that planner has. For example, if
the demonstration only opens the cabinet halfway, the plan-
ner will never be able to generate a plan that opens it all the
way as it is not represented. Whereas, a parametric method
may be able to hypothesize about how to continue moving
the object beyond where the demonstration ended.
Additionally, the approach assumes that the objects we
manipulate exist on one dimensional manifolds. We made
this simplification because many objects fall into this cat-
egory, but also because the entire range of motion of the
object can be shown with a single demonstration. However,
some objects in constrained manipulation exist on multi-
dimensional manifolds. For instance, a robot sweeping a pile
of dirt out of a room, where the dirt is constrained to stay
on the floor. Our planner can handle these kinds of objects

@ Springer

122

Auton Robot (2016) 40:109-124

but it would always have to follow one of the contact tra-
jectories provided. The planner would really be viewing the
object as having a set of one dimensional manifolds which
can all accomplish the task. The planner could be extended to
truly manipulate multi-dimensional manifolds, but it would
require a generalization step that takes a set of demonstra-
tions and infers what manifold they are drawn from. This
potentially could cause the planner to produce invalid paths
when this generalization is incorrect and therefore, might
require feedback and potentially more examples from the
teacher.

Along similar lines, it would be interesting to see if demon-
strations for a particular object can be generalized to other
objects. For instance, if a demonstration is given on one
cabinet, can we make use of that demonstration to open a
door that is a little wider? When given a novel object that
the user has not provided a kinesthetic demonstration for,
we are missing two things: the contact point trajectory for
how to operate the object and a robot configuration space
trajectory which can be used in an Experience Graph. The
second of these, is not actually required but as shown in
our experiments, can greatly accelerate the planning process.
However, given a contact point for the object, it may be pos-
sible to adapt a similar robot trajectory using a projection
method like Jacobian pseudo-inverse Sciavicco et al. (2000).
When projecting a prior demonstration to a new (but hope-
fully similar) object, some parts may fail due to obstacles
or joint limits, and therefore, the E-Graph will be seeded
with a partial robot trajectory. However, as was shown in our
experiments, even this can be beneficial in accelerating the
planner.

In terms of scalability, providing a kinesthetic demonstra-
tion for how to operate every object in a home is limiting.
However, it may be possible to extract a contact point tra-
jectory for an object by observing how a human performs
tasks in the home (by tracking the motion of their hand).
This would be less time consuming for the human.

In our multiple demonstration experiment we show that
having more demonstrations can increase robustness. Specif-
ically, we would block part of one demonstration at a time and
showed how we were still able to solve the problem by using
a different (completely valid) demonstration. However, there
may be cases where every demonstration is partially inval-
idated by added clutter. In these cases, each demonstration
could look equally helpful and in weighted A* type planner,
what generally happens is that each route is fully explored
before moving on to another. It may be easier to find a path to
the goal from some demonstrations than others (e.g., perhaps
some demonstrations are easier to modify while keeping the
same contact point trajectory). Therefore, the time it takes to
plan could vary wildly depending on if the planner chooses
(somewhat arbitrarily) a difficult or easy demonstration to
explore first. One way to alleviate this might be to employ

@ Springer

a version of A* which searches multiple “branches” of the
search space at the same time. One way to do this might be
to use a different heuristic for each demonstration Helmert
(2006); Aine et al. (2014). Multiple demonstrations could
also be searched using parallel planners Valenzano et al.
(2010). There are also parallel versions of weighted A* which
could be applied directly to the algorithm used in this arti-
cle Burns et al. (2010); Phillips et al. (2014).

While our method allows the contact point on the object to
be different with each demonstration, we make the assump-
tion that the contact point on the robot stays constant across
all demonstrations (the point we compute forward kinemat-
ics for). This may be limiting in scenarios where the robot
must alternate between using its two grippers to operate the
object or in the case of opening a spring-loaded door, when
people often use contact with their body to push it open. We
would like to relax this restriction in the future to support
these kinds of tasks.

It would be interesting to see how much solution qual-
ity improves (at the expense of planning time) when using
a smaller value of €. The anytime version of experience
graphs could be applied to reach a compromise between plan-
ning time and quality Phillips et al. (2013).

Finally, while plans produced by the planner are valid with
respect to the input they are given, the final execution of the
path is not always right. This can happen because the loca-
tion of the object we are going to manipulate has some error
due to sensor noise or during execution, the localization of
the robot drifts. Grabbing a small handle on the order of cen-
timeters is difficult after driving distances on the scale of
meters. To combat this error we’ve attached a visual fiducial
(AR marker) to the objects that we use to correct pose error
as we get close to grasping the object. However, there are
situaitons where this could lead to a sub-optimal execution
or even collision. A more principled approach might be to
replan regularly during execution to account for drift in the
path following. This can be done efficiently using experi-
ence graphs, as we have shown in prior work Phillips et al.
(2013).

7 Conclusion

In this work we presented a way to use experience graphs to
improve the performance of planning for constrained manip-
ulation by providing user demonstrations. The planner is able
to find paths with bounded sub-optimality even though the
demonstrations can be of arbitrary quality (and don’t even
need to be useful). Experimentally we provide results on high
dimensional mobile manipulation tasks using the PR2 robot
to open cabinets, freezers, bread boxes, and drawers both in
simulation and on the real robot.

Auton Robot (2016) 40:109-124

123

In future work we would like to look into the use of demon-
strations for unconstrained manipulation and manipulation of
objects that lie on multi-dimensional manifolds.

Acknowledgments We thank Willow Garage for their support of this
work. This research was also sponsored by ARL, under the Robotics
CTA program Grant W911NF-10-2-0016.

References

Aine, S., Swaminathan, S., Narayanan, V., Hwang, V., & Likhachev, M.
(2014). Multi-heuristic A*. In: Proceedings of Robotics: Science
and Systems. Berkeley, USA.

Argall, B., Chernova, S., Veloso, M. M., & Browning, B. (2009).
A survey of robot learning from demonstration. Robotics and
Autonomous Systems, 57(5), 469-483.

Berenson, D., Abbeel, P., & Goldberg, K. (2012). A robot path planning
framework that learns from experience. In: /CRA.

Berenson, D., Srinivasa, S., Ferguson, D., & Kuffner, J. (2009). Manip-
ulation planning on constraint manifolds. In: /EEE International
Conference on Robotics and Automation (ICRA °09).

Bruce, J., & Veloso, M. (2002). Real-time randomized path planning
for robot navigation. In: IEEE/RSJ International Conference on
Intelligent Robots and Systems.

Burns, E., Lemons, S., Ruml, W., & Zhou, R. (2010). Best-first heuristic
search for multicore machines. Journal of Artificial Intelligence
Research, 39, 689-743.

Cohen, B. J., Chitta, S., & Likhachev, M. (2014). Single- and dual-arm
motion planning with heuristic search. IJRR, 33(2), 305-320.
Helmert, M. (2006). The fast downward planning system. Journal of

Artificial Intelligence Research (JAIR), 26, 191-246.

Jetchev, N., & Toussaint, M. (2010). Trajectory prediction: Learning to
map situations to robot trajectories. In: /EEE International Con-
ference on Robotics and Automation.

Jiang, X., & Kallmann, M. (2007). Learning humanoid reaching tasks
in dynamic environments. In: /EEE International Conference on
Intelligent Robots and Systems.

Jr., Kuffner, J.J.K., & LaValle, S.M. (2000). Rrt-connect: An efficient
approach to single-query path planning. In: /CRA.

Kavraki, L. E., Svestka, P., Latombe, J. C., & Overmars, M. H. (1996).
Probabilistic roadmaps for path planning in high-dimensional con-
figuration spaces. I[EEE Transactions on Robotics and Automation,
12(4), 566-580.

Kober, J., & Peters, J. (2009). Policy search for motor primitives in
robotics. In: Advances in neural information processing systems
22 (nips 2008), Cambridge: MIT press.

Koenig, S., & Likhachev, M. (2002). D* lite. AAAI, pp. 476-483.

Kormusheyv, P., Calinon, S., & Caldwell, D.G. (2010). Robot motor
skill coordination with EM-based reinforcement learning. In: Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), (pp. 3232-3237). Taipei.

Likhachev, M., Gordon, G., & Thrun, S. (2003). ARA*: Anytime
A* with provable bounds on sub-optimality. In: Advances in
Neural Information Processing Systems (NIPS) 16. Cambridge:
MIT Press.

Oriolo, G., & Mongillo, C. (2005). Motion planning for mobile manip-
ulators along given end-effector paths. In: Proceedings of the
2005 IEEE International Conference on Robotics and Automa-
tion, ICRA 2005, (pp. 2154-2160). Barcelona.

Pastor, P., Hoffmann, H., Asfour, T., & Schaal, S. (2009). Learning and
generalization of motor skills by learning from demonstration. In:
International Conference on Robotics and Automation (icra2009).

Phillips, M., Cohen, B.J., Chitta, S., & Likhachev, M. (2012). E-graphs:
Bootstrapping planning with experience graphs. In: Robotics: Sci-
ence and Systems.

Phillips, M., Dornbush, A., Chitta, S., & Likhachev, M. (2013). Anytime
incremental planning with e-graphs. In: Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA).

Phillips, M., Likhachev, M., & Koenig, S. (2014). Pa*se: Parallel A* for
slow expansions. In: Proceedings of the International Conference
on Automated Planning and Scheduling (ICAPS).

Pohl, I. (1970). First results on the effect of error in heuristic search.
Machine Intelligence, 5, 219-236.

Porta Pleite, J. M., Jalliet, L., & Bohigas Nadal, O. (2012). Randomized
path planning on manifolds based on higher-dimensional continu-
ation. International Journal of Robotics Research, 31(2),201-215.

Sakoe, H., & Chiba, S. (1978). Dynamic programming algorithm opti-
mization for spoken word recognition. In: /[EEE Transactions on
Acoustics, Speech, and Signal Processing, 26.

Sciavicco, L., Siciliano, B., & Sciavicco, B. (2000). Modelling and
Control of Robot Manipulators (2nd ed.). Secaucus: Springer.

Stentz, A.T. (1995). The focussed d* algorithm for real-time replanning.
In: Proceedings of the International Joint Conference on Artificial
Intelligence.

Stolle, M., & Atkeson, C. (2006). Policies based on trajectory libraries.
In: IEEE International Conference on Robotics and Automation.

Sucan, I. A., & Chitta, S. (2012). Motion planning with constraints using
configuration space approximations. IEEE. Algarve: Vilamoura.

Valenzano, R., Sturtevant, N., Schaeffer, J., & Buro, K. (2010). Simul-
taneously searching with multiple settings: An alternative to
parameter tuning for suboptimal single-agent search algorithms.
In: International Conference on Automated Planning and Schedul-
ing.

Yang, Y., & Brock, O. (2010). Elastic roadmaps—motion generation
for autonomous mobile manipulation. Autonomous Robots, 28(1),
113-130.

Zucker, M., Kuffner, J., & Branicky, M. (2007). Multipartite rrts for
rapid replanning in dynamic environments. In: /[EEE International
Conference on Robotics and Automation.

Mike Phillips received his Ph.D.
from the Robotics Institute at
Carnegie Mellon University in
2015 under the guidance of
Dr. Maxim Likhachev. Mike’s
research focuses on heuristic
graph search in the context
of robot motion planning in
dynamic environments, the use
of prior experience to accelerate
planning, and planning on multi-
core machines. His work culmi-
nated in the thesis, “Experience
Graphs: Leveraging Experience
In Planning.” During his Ph.D.,
he competed in the MAGIC 2010 Competition with a team from the
University of Pennsylvania and took 2nd place at the international com-
petition. In Mike’s undergraduate career at Carnegie Mellon University,
he was a part of the RoboCup team (Standard Platform League) under
Dr. Manuela Veloso. The team took 2nd place in 2008 and 3rd place in
2007 at the international competition.

@ Springer

124

Auton Robot (2016) 40:109-124

Victor Hwang graduated with
an electrical engineering degree
from Tufts University in 2010.
He worked for two years at
NASA’s Jet Propulsion Labora-
tory in spacecraft operations. He
moved on to receive his Masters
in Robotics from Carnegie Mel-
lon University in 2014, focus-
ing on graph-search methods for
humanoid manipulation.

Sachin Chitta, Ph.D., is Asso-
ciate Director of robotics sys-
tems and software in the Robot-
ics Program at SRI Interna-
tional. His research interests
include mobile manipulation,
motion planning and learning
for manipulation. Sachin cur-
rently coordinates development
of the Movelt! software plat-
form - the premier opensource
platform for manipulation and
mobile manipulation in Robot-
ics. Sachin Chitta was a manager

= and research scientist at Willow
Garage where he led the autonomous mobile manipulation group,
developing new technology for mobile manipulation in unstructured
environments. He was a core member of the team that developed the
PR2 robot and the Robot Operating System (ROS). He initiated and
led the development of the Movelt!, ROS-Control and Arm Navigation
software platforms to enable advanced manipulation capabilities for
any robot. Sachin also helped found Redwood Robotics, a joint venture
between Willow Garage, MEKA and SRI that was acquired by Google
in 2013. Sachin was a finalist for the 2013 World Technology Award in
the IT Software (Individual) category, the keynote speaker at ROSCON
2013 and his work has won best paper awards at ICAR (2009), ASME
IDETC (2008) and been nominated for a best paper award at ICRA
2011. His work on the Open Motion Planning Library (in collaboration
with Lydia Kavraki’s group at Rice University) won the OSS World
Challenge Grand Prize in 2012. Sachin received his Ph.D. from the
Grasp Laboratory at the University of Pennsylvania in 2005.

@ Springer

Maxim Likhacheyv is an Assis-
tant Research Professor at
Robotics Institute, Carnegie Mel-
lon University (CMU), and runs
Search-based Planning Labo-
ratory there. Maxim is also
affiliated with National Robot-
ics Engineering Center (NREC)
at CMU. Maxim has obtained
Ph.D. in Computer Science
from Carnegie Mellon Univer-
sity in 2005 with a thesis
titled “Search-based Planning for
Large Dynamic Environments.”
He then had a 2-year Postdoc-
toral Appointment at the Robotics Institute in Carnegie Mellon Uni-
versity. In one of his projects, he worked on the planner of complex
maneuvers for the CMU Tartanracing vehicle that won the 1st place in
2007 DARPA Urban Challenge. Maxim’s research mainly concentrates
on planning, heuristic graph searches and planning under uncertainty
with applications to planning for mobile manipulation, aerial vehicles
and teams of heterogeneous robots. In this field, he has over 100 papers
in premier journals and major conferences. Maxim has received a num-
ber of awards including Best Paper at RSS conference, a selection to
participate on 2010 DARPA Computer Science Study Panel as one of
the promising researchers in Computer Science and a number of other
awards.

	Learning to plan for constrained manipulation from demonstrations
	Abstract
	1 Introduction
	2 Related work
	3 Experience graphs
	4 Demonstration-based experiences
	4.1 Notations and overall framework
	4.2 Task-based redefinition of states
	4.3 Task-based redefinition of transitions
	4.4 Task-based heuristic
	4.5 Theoretical properties

	5 Experimental results
	5.1 Robot results
	5.2 Simulation results
	5.3 Using a partially valid demonstration
	5.4 Multiple demonstrations
	5.5 Comparison against another reuse planner

	6 Discussion
	7 Conclusion
	Acknowledgments
	References

