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Abstract We prove universal reconfiguration (i.e., recon-
figuration between any two robotic systems with the same
number of modules) of 2-dimensional lattice-based modular
robots by means of a distributed algorithm. To the best of our
knowledge, this is the first known reconfiguration algorithm
that applies in a general setting to a wide variety of particu-
lar modular robotic systems, and holds for both square and
hexagonal lattice-based 2-dimensional systems. All modules
apply the same set of local rules (in a manner similar to
cellular automata), and move relative to each other akin to
the sliding-cube model. Reconfiguration is carried out while
keeping the robot connected at all times. If executed in a syn-
chronous way, any reconfiguration of a robotic system of n
modules is done in O(n) time steps with O(n) basic moves
per module, using O(1) force per module, O(1) size memory
and computation per module (except for one module, which
needs O(n) size memory to store the information of the goal
shape), and O(n) communication per module.
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1 Introduction

1.1 Goal

We solve the following problem for 2-dimensional lattice-
based modular robotic systems: Given two connected config-
urations with the same number of modules, reconfigure one
into the other by means of a distributed algorithm. To the best
of our knowledge, this is the first known general reconfigu-
ration algorithm that applies to both square and hexagonal
regular lattices, and uses a general framework that does not
exploit specific characteristics of any particular robotic sys-
tem. Several robotic prototypes currently in existence, as well
as several proposed ones, fit within this framework.

More precisely, in our framework, a robot is a connected
configuration of homogeneous modules that are located in a
2-dimensional lattice. Each module can attach to and detach
from a neighboring module, and can perform some basic
movements relative to it. Specifically, it can change its posi-
tion to a neighboring empty grid position in the lattice by
attaching to a neighboring module and moving with respect
to it. In addition, we assume each module has constant size
memory, can perform constant size computations, and can
send or receive constant size messages to or from its neigh-
boring modules. One designated module needs linear mem-
ory to store the information of the goal shape and to perform
computations required for the reconfiguration algorithm.

Within this framework, our algorithm is completely dis-
tributed and local. It consists of a set of rules, each one hav-
ing a priority, a precondition, and an action or postcondi-
tion. Rules are identical for all modules, and are simultane-
ously executed by all of them. The term “local” here means
that each module communicates with and receives informa-
tion from modules lying within a small neighborhood in
order to execute the algorithm. While our algorithm and its
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implementation in the simulator are synchronous, we would
like to point out that it can be implemented asynchronously
at the cost of increased communication between modules. In
the procedure we propose, all modules know when they have
reached their final destination.

1.2 Related work

Modular self-reconfigurable robotic systems were intro-
duced in the late 1980s. In recent years, they have attracted
significant attention from the research community as they are
believed to have interesting advantages with respect to fixed-
morphology unique-purpose robots. Modular robots are ver-
satile, since they can reconfigure to adapt to different envi-
ronments and tasks. They are robust, since their units can
be interchanged in order to self-repair the system. They are
potentially less expensive because the modules can be reused
and, in the future, massively produced. As a consequence,
self-organizing robotic systems are expected to be used to
build emergency structures, repair inaccessible machinery, in
outer space missions, and even in current daily life (Yim et
al. 2007). One consequence of the flexibility of such robotic
systems is the difficulty of planning actions for purposes such
as reconfiguration, which is the focus of this work.

We do not attempt to survey the state of the art, as a vast
amount of work has been done in recent years to address
issues of designing, building, and controlling sets of modules
behaving in an autonomous but collaborative way to perform
collective tasks. In this section we briefly discuss specific
issues and results that are directly related to the results we
present in this paper.

Modular robots are frequently classified into homoge-
neous or heterogeneous, depending on whether their units
are all equal or not. Although all units are structurally equal,
some units may incorporate or carry special features such as
grippers, cameras, antennas, etc. Examples of intrinsically
heterogeneous modular robots are I(CES)-Cubes (Ünsal et
al. 1999) and AMAS (Terada and Murata 2008). Our work
focuses on homogeneous systems. According to the locomo-
tion autonomy of their units, two kinds of self-reconfigurable
modular robots can be considered. In the first kind, each
unit of the robot has full locomotion capability, such as
CEBOT (Fukuda et al. 1992), S-bots (Mondada et al. 2004),
and AMOEBA (Liu et al. 2005). In the second kind, loco-
motion is achieved by cooperation between units, based on
the movement of docking joints and links between units. We
focus on the latter. Depending on the distribution of the mod-
ules in space when connected, self-reconfigurable robotic
systems may be organized into lattice, chain, or even hybrid
architectures. Examples of chain modular robots are Polypod
and its evolution Polybot (Yim et al. 2000), CONRO (Cas-
tano et al. 2000), Molecubes (Zykov et al. 2007), and GZ-
I (Zhang et al. 2008). Lattice-based modular robots include

hexagonal, such as Metamorphic (Pamecha et al. 1996) and
Fracta (Murata et al. 1994), triangular, such as Programmable
Parts (Bishop et al. 2005), and square or cubic such as Fracta
3D (Murata et al. 1998), vertical (Hosokawa et al. 1998),
Crystalline (Rus and Vona 2001), (Butler et al. 2002) and
Telecube (Suh et al. 2002), Atron (Jorgensen et al. 2004) or
Miche (Gilpin et al. 2008), and rhombic dodecahedral, such
as Digital Clay and Proteo (Yim et al. 1997). Probably among
the most famous hybrid examples is M-TRAN (Kurokawa et
al. 2008), which are modular robots that can behave both as
chain and as lattice robots, together with Superbot (Salemi
et al. 2006) and, more recently, Roombots (Sproewitz et al.
2009). Our work focuses on lattice-based modular robots.

Many algorithms have been developed for all these robotic
systems. Some have just organizing goals, such as finding
a leader, detecting holes in the configuration, counting the
total number of modules, organizing the robotic system in
a tree structure, and other organization tasks (Murata and
Kurokawa 2012; Wallner 2009). Some other algorithms have
been envisaged to perform tasks involving motion: locomo-
tion, reconfiguration, self-repair, etc. Most of the proposed
solutions are centralized algorithms. Recently, however, the
need for decentralized and local control has emerged because
of the increasing number of modules of the robot (Murata and
Kurokawa 2012). Distributed algorithms have been designed
for reconfiguring several of the above systems, and more
specifically for lattice-based modular robots such as Pro-
teo (Yim et al. 2001), Fracta (Murata et al. 2001; Tomita
et al. 1999), Crystalline and Telecube (Butler and Rus 2003;
Vassilvitskii et al. 2002; Aloupis et al. 2011) and large scale
modular robots such as Catoms (Bhat et al. 2006). It is also
worth mentioning the recent growth of interest towards sto-
chastic reconfiguration algorithms (White et al. 2004). Con-
sidering hand-coded local rules for reconfiguration a difficult
task, (Støy 2006a, b) has proposed a gradient technique for
reconfiguring dense objects.

1.2.1 Our work in relation to previous research

Our approach builds on the seminal work of Beni (1988), who
proposed the conceptual model of cellular robotic systems,
inspired by cellular automata. Some years later, Hosokawa
et al. (1998) developed a distributed algorithm for a spe-
cific square lattice-based modular robot design, also inspired
by cellular automata. It applies the so called sliding cube
model, which is comprised of a cube shaped module able to
perform three basic moves: slide, convex transition, and con-
cave transition. In Hosokawa et al. (1998), two simple sets of
rules are presented for the system to reconfigure from a strip
into a staircase and vice-versa. Subsequently, Butler et al.
(2004) and Kotay and Rus (2004) proposed a fully decentral-
ized paradigm inspired by cellular automata. In their work,
they address locomotion, with and without obstacles, of a
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rectangular set of modules, propose rules to reconfigure a
strip into a rectangle, and also solve the problem of filling
holes in 3D configurations. More recently, Fitch and But-
ler (2008) proposed a scalable locomotion strategy which
is particularly fast for dense configurations. Simultaneously,
Dumitrescu et al. (2004a, b), have studied fast locomotion
rules for horizontal (vertical) chains and diagonal snake-like
formations, and proved universal reconfiguration between 2-
dimensional horizontally convex and vertically convex con-
figurations with the same number of modules using local
rules, in a linear number of synchronized time steps. Their
work also includes theoretical results on decidability for
the general case. A similar emphasis has inspired the work
of Bojinov et al. (2000), who have proposed specific local
rules to produce particular shapes on a 3-dimensional rhom-
bic dodecahedron (Proteo), and (Walter et al. 2004, 2005)
for the reconfiguration of some specific configurations of 2-
dimensional hexagonal robots. Some years later, in (Ivanov
and Walter 2010; Bateau et al. 2012) Walter et al. addressed
several issues related to universal reconfiguration, which we
also address in our work, albeit in a different setting. More
specifically, in their work the authors assume light extra
empty space requirements for the movement of the robot
units and no communication between them, which leads
to synchronous reconfiguration between a class of admissi-
ble shapes. Dewey et al. (2008) have also used local rules
for a distributed planner in the framework of their gen-
eral metamodules’ theory. Also recently, Kurokawa et al.
(2008) have proposed specific sets of rules to produce recon-
figurations between particular shapes of M-TRAN which
are lattice-based. To the best of our knowledge, their work
presents the first execution of a distributed local rules strat-
egy on real robot units, hence proving its realizability beyond
experimental simulation. Our work is also related to that of
Dumitrescu and Pach (2004), Abel and Kominers (2008),
who proved universal reconfiguration for square and cubic
lattice-based configurations using the same basic moves,
although by means of sequential and centralized algorithms.
The novelty of our work is that it is the first universal reconfig-
uration algorithm (an algorithm that reconfigures any robot
shape to any other robot shape with the same number of mod-
ules) that is also distributed and local.

1.3 Structure of the paper

In Sect. 2 we describe in detail the framework for our result;
namely, the characteristics of the robotic system and the capa-
bilities of its modules, its rule-based behavior, and a descrip-
tion of our syntax for specifying rules. In Sect. 3 we provide
an overview of the reconfiguration strategy, which is devel-
oped in detail in the following sections. For an easier reading,
we first present our results in detail for square lattice-based
systems in Sects. 4 and 5. Section 6 is devoted to proving

the correctness of our solution, and Sect. 7 analyzes the cost
of the reconfiguration algorithm in terms of the number of
parallel steps (if run in a synchronous way), the number of
moves for each module, and the amount of memory, com-
putation and communication used. Section 8 is devoted to
the generalization of our procedures to the hexagonal set-
ting. In Sect. 9, we describe the simulations that we have
designed and report on the experimental results. Finally, the
paper closes with conclusions and open problems in Sect. 10.
An appendix provides some figures related to proofs con-
tained in the text.

2 The model

In this section, we describe the setting for the reconfiguration
of modular robotic systems in the square lattice case. See
Sect. 8 for its generalization to the regular hexagonal lattice.

In the square lattice setting, a module is any robotic unit
located in a 2-dimensional square grid. We represent modules
by squares occupying one grid cell, although their actual
shape need not be a square (see Sect. 2.1 for examples). A
module can independently attach to and detach from each of
its 4 direct grid neighboring modules (if present). A robot
is a connected set of identical modules. By “connected” we
mean that the adjacency graph of the robot configuration (a
node in the center of each module and a straight line edge for
each attachment among modules) is connected. We say that a
robot configuration has no holes if its adjacency graph has no
cycles enclosing an empty grid cell in its interior. For robot
configurations without holes, the boundary is the (possibly
self intersecting) closed path formed by all the grid edges
in the lattice that have a cell occupied by a module on one
side and an unoccupied cell on the other. For configurations
with holes, we use the terms external boundary and hole
boundary in the analogous way, and boundary for the union
of the external boundary and all hole boundaries. See Fig. 1
for an illustration.

Modules cannot move on their own, but they can move rel-
ative to each other. To be more precise, we slightly modify
the sliding-cube model (Butler et al. 2004), which assumes
that a module may perform three relative motions: slide, con-
vex transition, and concave transition (illustrated in Fig. 2a,
b, c, respectively. The dark colored module is performing the
move.). Our modification consists of introducing a fourth
move that we call opposite transition: a module that lies
between two other modules while connected to one of them
may change its connection to the other (see Fig. 2d). The first
two moves are of the change position type: a module perform-
ing slide or convex transition translates itself from its current
lattice position to a neighboring one. The last two moves are
of the change attachments type: a module performing con-
cave transition or opposite transition changes its attachment
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Fig. 1 Left a robotic configuration without holes with its adjacency graph and boundary. Right a robotic configuration with a hole with its adjacency
graph, boundary, and external boundary

Fig. 2 Change position moves: a slide b convex transition. Change attachments moves: c concave transition d opposite transition. All moves may
apply in any of the four directions (N, S, E, W) relative to the moving module

Fig. 3 Example of a sliding east rule with a graphical representation
(left) and its formalization (right). The first line of the rule contains
its name, the second line its priority (irrelevant in this very simple

example), the third line contains the precondition, and the last line
the action or postcondition. In the graphical representation, the active
module applying the rule is depicted in a darker color

from one neighbor to another without modifying its lattice
position.

In our framework, the modules of the robot are indistin-
guishable, and each module is given and applies the same
set of rules. In order to do so, we assume each module has
a (simple) processor and some (small) memory, knows its
own orientation (N, S, E, W) and state (a short text string),
can detect whether it is attached to a neighbor, can send and
receive (short) messages to and from neighbors, and is able
to perform (elementary) operations with a few counters and
text strings. For our reconfiguration algorithm, only one mod-
ule needs to store the final configuration, which is a linear
amount of information. This module, that we call the leader,
can be either determined in advance or autonomously chosen
by the set of modules (Nichitiu et al. 2001; Wallner 2009).
See Rodríguez (2013), Ordóñez (2013) for a detailed descrip-
tion of the requirements implemented in the actual simulation
system.

As stated above, all modules run the same predefined
set of rules. Each rule has the following structure: a prior-
ity, a precondition, and an action or postcondition. Priori-
ties, represented as small integers, are used by the module
to decide which of possibly several rules that apply to its
situation is executed. A precondition is any constant size
boolean combination of the following: compare priorities,
check neighboring empty/filled positions, check own con-
nections, match states/text or counters/integers, and compare
calculation results with counters, messages and integers. A
postcondition can be any and combination of the follow-
ing: change position (slide, convex transition), change attach-
ments (concave transition, opposite transition), modify state,

compute and update counters, and send messages. Figure 3
shows a simple example.

2.1 Prototypes

In this section, we briefly analyze the extent to which the
abstract model proposed in Sect. 2 represents current and
proposed prototypes of modular robotic systems.

As pointed out in (Butler et al. 2004), the sliding cube
model can be instantiated by several current prototypes,
either by their atomic robot units or by means of meta-
modules. This is also the case for our extended model. In
fact, the addition of the opposite transition move does not
restrict the class of robotic systems that can perform it, since
the sliding cube model already assumes that each module can
attach to and detach from any of its neighboring ones.

Our version of the convex transition move, however, only
assumes that the goal grid position is empty. It does not
require any empty space between the current and the goal
position of the moving module, as it does, for example, in
the models considered in Butler et al. (2004), Dumitrescu and
Pach (2004), Benbernou (2011). This assumption is impor-
tant because otherwise some configurations are blocked and
cannot be reconfigured (see Fig. 1, left), whereas in our
model, we prove universal reconfiguration, i.e., reconfigu-
ration between any two shapes with the same number of
modules.

Our assumption about the convex transition move could
be a potential limitation because the atomic robot units of
several current prototypes need some extra empty space to
produce convex transitions. For example, in the sliding model
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Fig. 4 a Our model, b the
sliding model. c the rotating
model. In all cases, the grid cells
required to be empty are
depicted in white

presented in Hosokawa et al. (1998), Chiang and Chirikjian
(2001), An (2008), the intermediate lattice cell between the
initial and the goal positions of the moving module needs to
be empty; see Fig. 4b. In the rotating model (Yoshida et al.
2000; Ünsal et al. 1999), even more space needs to be free to
avoid collisions of the moving module with the static ones;
see Fig. 4c.

There are some prototypes, however, that fit our model.
Molecule (Kotay and Rus 2000) and lattice configurations
of M-Tran (Kurokawa et al. 2008) can use the third dimen-
sion to produce a 2-dimensional move. The metamorphic
robot (Pamecha et al. 1996) is a clear example of a hexago-
nal prototype which can also perform our convex transition
move.

Grouping atomic robot units into meta-modules also
ensures that convex transition moves can be safely made
without extra free space requirements. Some of the most
well known examples of robots that display such behavior are
crystalline and telecube robots (Rus and Vona 2001; Butler et
al. 2002; Suh et al. 2002). By means of their expand/compress
capability, metamodules of these robotic systems, made out
of 2 × 2 atoms, can compress such that two metamodules
occupy one single lattice cell. Hence, referring to Fig. 2a,
the top module can perform a convex transition by first com-
pressing into the bottom module and then uncompressing to
the right. In Aloupis et al. (2013), it was proven that other cur-
rent prototypes, such as M-Tran (Kurokawa et al. 2008) and
Molecube (Zykov et al. 2007) can behave like Crystalline or
Telecube meta-modules, which implies that they can instan-
tiate our general model. In fact, the authors of Aloupis et
al. (2013) claim that many other robotic systems, such as
PolyBot (Yim et al. 2000), SuperBot (Salemi et al. 2006),
Roombots (Sproewitz et al. 2009), and Atron (Jorgensen et al.
2004) have the same behavior when organized in the appro-
priate meta-modules.

In the sliding model, it is easy to prove that the meta-
modules depicted in Fig. 5a allow slide and convex tran-
sition moves without the need for extra free space. See
Figs. 39 and 41 in the Appendix for a partial depiction of how
these meta-modules achieve the slide transition, and Figs. 40
and 42 for convex transition. The case of the rotating model
also allows both sliding and convex transitions without using
extra space if units of the meta-modules are only required to
be connected through their vertices. Figure 5b shows one
possible meta-module for this case and Figs. 43 and 44 in the
Appendix show the meta-module moves that achieve slide
and convex transition without extra space. In fact, for both

Fig. 5 a Two possible meta-modules of sliding units. b A possible
meta-module of rotating units. In both cases, slide and convex transition
can be obtained without extra space and by maintaining the component
units of each meta-module

of the proposed meta-modules, slide and convex transition
moves can be performed without any exchange of atomic
units between the meta-modules involved, as is illustrated in
the Appendix.

3 Overview of reconfiguration strategy

In this section, we present a high-level overview of the
strategy employed to achieve universal reconfiguration of
2-dimensional lattice-based modular robots by means of a
distributed algorithm. The solution we present is distributed
because each module acts on its own without the need of
a central controller, other than to get the reconfiguration
process started. The starting command may be broadcast to
all modules or sent to just one module, from where it can be
transmitted to the entire set via the connectivity of the robot.
Our solution is parallel as all modules act in parallel. In fact,
when running the simulations, it becomes evident that our
strategy allows many modules to act simultaneously because
it is local (see Sect. 9 for details). The reconfiguration rules
are designed to prevent conflicts such as collisions between
modules or obstructions created by modules trapped in bot-
tlenecks. Our solution is local because each module only
needs to communicate with modules within a small neigh-
borhood when checking rule preconditions, such as testing
for empty/full grid positions, comparing counter values in
neighboring modules, etc. In this context, the neighborhood
of a module consists of all modules lying in grid positions
within the second annulus around it (see Figs. 13, 14 for
examples). The only way to eliminate the need for commu-
nication between modules within distance two of each other
is to restrict the shape and connectivity of the robots being
reconfigured. Note that the need for a module to communicate
with another module within the second annulus is necessary
only to prevent collisions; that is, only collision rules use this
form of inter-module communication.
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The overall strategy behind our algorithm is to move mod-
ules along the boundary of the robot to reconfigure in two
stages. We first reconfigure the robot from its initial shape
into a canonical shape (the strip configuration, in our case)
and then reconfigure from the canonical to the final shape.
The modules do not need to know the robot’s complete ini-
tial shape. However, the goal shape needs to be known at
least by the leader, which is a specially designated module.
In particular, our solution to reconfigure from the canonical
to goal shape requires the leader to assign a final destination
location for each module in the canonical configuration.

Our solution is based on the following general operating
principles:

1. A particular spanning tree of the robot’s adjacency graph,
which we call the scan tree, is built so that all leaves of the
tree lie on the boundary of the robot. At the beginning, all
modules are considered to be static. At any given instant,
only leaf modules can start moving, i.e., go from static
to active. Once a module is active, its node is considered
to be cut from the spanning tree.

2. The movement of the modules along the boundary of
the robot always follows the right hand rule (turn right
along the robot boundary) when reconfiguring from the
initial to canonical shape, and the left hand rule when
reconfiguring from the canonical to goal shape.

3. Moving modules are not allowed to climb (move relative
to) other moving modules. This is a reasonable assump-
tion if we want to avoid unbounded acceleration and
unpredictable collisions.

4. Every module is assigned a number when constructing
the above stated spanning tree. Generally speaking, this
number corresponds to the DFS (depth first search) order
numbering of the nodes of the scan tree of the initial
shape for the initial to canonical reconfiguration, or the
goal shape for the canonical to goal reconfiguration. This
number is used to guide the moves of the modules and
also to prove the correctness of our solution.

The next two sections provide details for each of the two
stages of our reconfiguration algorithm.

4 Forward reconfiguration: initial to canonical

In Sect. 4.1, we first describe the preprocessing steps that
initialize each robot module with the preliminary data that
it needs to carry out the moves that reconfigure the robot
from the initial shape to the canonical strip configuration. The
details of the moves themselves, such as the rules required
to activate and advance the modules, avoid collisions and
obstructions, and finally place the modules in a strip config-
uration, are provided in Sect. 4.2.

4.1 Preprocessing

Our algorithm requires a specially designated node, which
we call the leader, that serves multiple purposes like being
responsible for “waking up” all the modules, serving as the
root node for the DFS numbering of the nodes (refer to item 4
in Sect. 3), and being the first node in the strip configuration.
Section 4.1.1 describes how we choose the leader.

In order to build the scan tree for the robot (refer to item 1
of the previous section), it is necessary to detect holes in the
robot. Section 4.1.2 describes how this is done. The proce-
dure for building the scan tree itself is given in Sect. 4.1.3.
Finally, the procedure to find the DFS number for each node
is described in Sect. 4.1.4.

4.1.1 Choosing a leader

For the construction of the canonical configuration, the leader
needs to lie on the external boundary of the configuration (the
reason for this requirement will become evident in Sect. 4.2).
For the remainder of this paper, we assume that the leader is
the topmost among the rightmost modules in the configura-
tion. We also assume that every module is in an initial sleep
state, i.e. State=sleep, prior to starting the reconfigura-
tion.

The leader module may be either designated by an exter-
nal controller or chosen by the modules themselves (Nichitiu
et al. 2001). In the case of the former, the leader simply pre-
pares the modules for the next preprocessing step, which is to
detect all the holes in the robot. This is done by propagating
a message from the leader to set State=detect_holes
in every module that has State=sleep. In the case of
the latter, the broadcast message is intended to change each
module’s state into State=choose_a_leader so that
the rules described in Wallner (2009), Rodríguez (2013),
Ordóñez (2013) apply and the modules choose the leader
on their own. At the end of this process, every module is
aware that a leader is chosen. As in the other case, the leader
now propagates a message to set State=detect_holes
in all modules.

4.1.2 Detecting the holes

The next step is to recognize whether or not the robot config-
uration has holes and, if it does, to detect the leftmost among
the bottommost modules of each hole boundary. For the rest
of this paper we will call such a module an lbh-module. This
can be done by means of local rules very similar to those
described in Wallner (2009) for choosing a leader along the
boundary. See Rodríguez (2013), Ordóñez (2013) for details.
The result is that each module in the configuration has the
information of whether or not it is an lbh-module and the
new state for all modules is State=build_scan_tree.
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Fig. 6 Left the scan tree of a
configuration without holes.
Right the scan tree of a
configuration with holes

Fig. 7 Rules for building the
scan tree

In our simulation, we implement both procedures to choose
a leader and detect holes (see Sect. 9), and in fact, they are
carried out simultaneously in our implementation.

4.1.3 Building the scan tree

Our reconfiguration algorithm uses a particular spanning tree
of the adjancency graph of the robot, which we call the scan
tree. The scan tree is a graph in which there is a (vertical) edge
between every pair of vertically adjacent modules. In addi-
tion, each vertical column of connected modules is attached
to its neighboring vertical columns by (horizontal) edges cor-
responding to the uppermost horizontally adjacent pair of
modules. When the robot configuration has no holes, each
vertical column of connected modules consists of exactly one
connected component and hence it is trivial to see that the
resulting graph is connected and acyclic. However, when the
configuration has holes, each vertical column of connected
modules could have multiple connected components. As a
result, the addition of horizontal graph edges creates cycles
around each hole. We rectify this situation by removing the
horizontal edge between a hole’s lbh-module and its neighbor
to the west. This breaks all cycles, resulting in a spanning tree
of the robot’s adjacency graph. Figure 6 shows two simple
examples.

The scan tree is formed by means of the rules illustrated
in Fig. 7. Tree_neighbor establishes a scan tree adja-
cency with another module (given in relative coordinates).
For example, Tree_neighbor(0, -1)makes the mod-
ule to the south a scan tree neighbor. Observe that the first

rule in Fig. 7 ensures acyclicity of the scan tree in robots with
holes.

In a physical robot, it would be preferable to separate
the logical structure of the scan tree from the physical con-
nectivity between modules for the sake of greater physi-
cal stability. If two modules are not adjacent in the scan
tree, only the logical link between them is missing while
the physical link stays. However, in our implementation
(see Sect. 9), we start with a configuration in which all
attachments among adjacent modules are present, and then
detach modules that are not adjacent in the tree. We do
this to make the structure of the tree clearer during simu-
lations.

4.1.4 Numbering the modules

Once the tree has been built, a positive integer value is
assigned to each module. The assigned numbers, referred
to as DFS numbers, correspond to the sequential numbering
of the modules in a counterclockwise depth-first traversal of
the scan tree starting at the leader node. The DFS number
of each module is computed by starting at the leader and
spreading its value by following the scan tree edges. The
leader sets its DFS number Num to zero and sends the value
to its first scan tree neighbor in counterclockwise order. When
a module M receives the DFS number from a neighboring
module and does not yet have its own Num, it increments the
DFS number by 1 and sets its Num to that value, and then
passes it on to its first scan tree neighbor in counterclock-
wise order. If no such neighbor exists (because M is a leaf
node of the scan tree), Num is passed back to the parent. If
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Fig. 8 Rules for assigning DFS
numbers

M already has its own Num, it simply passes on the DFS
number to its next unvisited scan tree neighbor if it exists,
or back to the parent if it does not. The process is illustrated
in Fig. 8.

Simultaneously with the DFS number Num, the modules
also compute two other functions, namely Min and Max,
which are related to Num. For the sake of clarity, imagine
that Num has already been assigned to each module. In the
scan tree, two nodes of degree greater than two are said to be
consecutive if the unique path between them contains only
nodes of degree two. This maximal path of degree two nodes
is referred to as a branch. For each node a in the tree, Min
is the DFS number of the the first module in its branch, and
Max is one more than the largest DFS number assigned in the
subtree rooted at a. Observe that all nodes in a branch have
the same Min and Max numbers. It is not difficult to see that
Min and Max can be computed along with Num during the
depth first traversal of the scan tree. The value of Min at each
node is established when the node is traversed for the first
time: a node of degree greater than two has Min equal to its
Num and a node of degree two or less receives its Min value
from its parent. Similarly, Max is established when a node is
traversed for the last time: a leaf node has Max equal to its
Num and a non-leaf node receives itsMax value from its child.
The rules of Fig. 8 can be easily modified to simultaneously
find Num, Min, and Max. See Ordóñez (2013), Rodríguez
(2013) for more details, and Fig. 9 for an example.

Notice that the value of Max at the leader indicates the
total number of modules in the configuration. Min and Max
allow us to identify modules belonging to the same branch,
and also to establish order between branches in the depth first
traversal. Num, Min, and Max will be used throughout our
reconfiguration algorithm.

4.2 Reconfigure to canonical strip

After the scan tree is constructed and the values Num, Min,
and Max have been computed by all modules, the reconfig-

Fig. 9 Example of a numbered configuration. For each module, the
triple (Num,Min,Max) is shown

uration may start. The initial robot configuration is trans-
formed into a canonical shape via relative movement of the
modules. To keep the explanation simple, the canonical shape
is a horizontal strip lying to the right of the leader. Recall that
we choose the leader as the rightmost and topmost module,
making this canonical configuration feasible. It is easy to
modify the rules to produce any other fixed shape that lies to
the right of the leader.

The reconfiguration is done by means of three sets of rules:
activation rules (Sect. 4.2.1), advance rules (Sect. 4.2.2), and
canonical strip rules (Sect. 4.2.4). In this section we describe
the rules, but we do not attempt to justify their correctness,
which is shown in Sect. 6.

4.2.1 Activation rules

At any given stage of the reconfiguration algorithm, some
modules are static and some are active. At the beginning, all
modules are static (State=to_strip). The tree of static
modules is called the static tree. During the reconfiguration,
any leaf of the static tree that is not attached to an active
module becomes an active module (State=forward). An
active module never reverts to static. Once a module becomes
active, it is pruned from the static tree. While the static tree
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Fig. 10 Activating leaves

gets pruned during the reconfiguration, it always remains a
scan tree of the static modules. For our reconfiguration algo-
rithm, DFS numbers are relevant only for static modules;
consequently, DFS numbers are not shown for active mod-
ules in the figures. Activation is achieved by means of the
rule illustrated in Fig. 10.

4.2.2 Advance rules

Active modules use the four allowed moves—slide, convex
transition, concave transition, and opposite transition - based
on the following principles:

• Advance follows the right hand rule along the boundary
of the static tree.

• Advance moves are always made relative to static mod-
ules. The static modules on which active modules are
moving is called the substrate.

• A module advances from one position with substrate
module a to another with substrate module b only if
Num(a) ≥ Num(b). See Fig. 11 for an illustration. Intu-
itively, this rule ensures that an advance move always
gets a module closer to its final destination, i.e., moves it
towards the leader.

Advance rules are designed to take care of all possible
conflicts:

1. Activation conflicts occur when an active module tries to
move to a position in which it attaches to a static leaf
that simultaneously becomes active. In this case, priority
may be given to the leaf activation or the moving module.
Either choice is appropriate, as long as it stays consistent
during the reconfiguration. Activation conflicts are easy
to avoid by simply adding a precondition to all activation

rules (in case of the former choice) or all moving rules
(in case of the latter choice).

2. Collision conflicts occur when two active modules intend
to move to the same grid cell. In this case, priority is
given to the module whose substrate module has a lower
DFS number. Specific rules implementing this priority
are described below.

3. Obstruction conflicts occur when an active module tries
to move into a grid cell which is already occupied by
an active module. In this situation, we have two possible
cases. In the first case, the obstructing module is advanc-
ing in the same direction as the obstructed module, just
one step in front. In this event, the obstructed module
waits. In the second case, the two modules are advancing
in opposite directions along portions of the boundary that
are just far enough apart to produce a bottleneck. A mod-
ule entering a bottleneck and one exiting it would obstruct
each other and halt the reconfiguration. Bottleneck con-
flicts are handled by means of special rules called jumping
rules.

We now describe the precise rules that produce the behav-
ior described above. The east concave transition rule is illus-
trated in Fig. 12. Since concave transitions produce no move-
ment of the module from one grid cell to another, there are
no collision or bottleneck issues to address. As an example,
we include the actual syntax of the rule.

Figure 13 illustrates the rules required for eastward slide;
the precondition is implied by the legends on the dashed grid
positions. In the rule depicted on the left, the precondition
guarantees no collisions. It is implicitly understood that the
right module (with DFS number k) is static and will remain
that way during the transition. In the rule depicted on the
right, there is a possible collision, in which case the mod-
ule whose substrate module has lowest DFS number moves.
Notice that there are no other situations that may cause col-
lision.

Rules for convex transition are analogous to those for
slide. They are illustrated in Fig. 14. On the left, the pre-
condition guarantees no collisions. On the right, the module
whose substrate module has lowest DFS number moves in
case of a conflict.

Fig. 11 Legends on modules
indicate their DFS numbers. All
transitions take place only if
k < i . Light modules are static,
dark modules are active
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Fig. 12 The east concave
transition rule. Legends on
modules indicate their DFS
numbers (Color figure online)

Fig. 13 Two eastward sliding rules. Legends on shaded modules indi-
cate their DFS numbers. Legends on dashed grid positions read as
follows: ∅ means that the cell is empty, s means that it is occupied by
a static to_strip or wait_in_strip module, and a means that

it is occupied by an active forward module. The arrows show the
intended final destination of the potentially colliding active modules
(Color figure online)

Fig. 14 Two south-east convex
transition rules. Meanings of
symbols are explained above in
Fig. 13 (Color figure online)

Fig. 15 Two possible bottleneck types created by a pair of co-vertical
modules (left) or a pair of modules sharing a vertex (right). Arrows
indicate the directions in which modules may attempt to move through
the bottleneck

The priority of these advance rules is equal to 2 so that
solving bottlenecks has priority over advancing. In the fol-
lowing sections, we describe the jumping rules designed to
avoid bottlenecks. All such rules have priority 1. In a jumping
rule, an active module checks whether it is entering a bottle-
neck prior to executing an advance move of any sort (slide,
convex transition, or concave transition). If so, it changes
attachments to jump ahead along the boundary, which is
equivalent to exiting the bottleneck. The following section
describes bottleneck rules in detail.

4.2.3 Avoiding bottlenecks

In our model, a robot configuration may have two types of
bottlenecks. One is created by two modules that are co-
horizontal or co-vertical (along the grid) and separated by
an empty grid cell. See Fig. 15 (left). The other is created by
two modules sharing a vertex. See Fig. 15 (right).

Let a and b be two modules in a bottleneck configu-
ration, as shown in Fig. 16. Let x be an active module
attached to a (say). Observe that x must trap a portion of the
robot’s boundary on one side, creating a cul-de-sac. Since
x is advancing along the boundary towards the leader by
following the right hand rule, x may be either entering the
cul-de-sac [Fig. 16 (left)] or exiting the cul-de-sac [Fig. 16
(right)]. Note that the presence of module x in the bottle-
neck raises the possibility of a deadlock of active modules
resulting from an obstruction conflict, a situation in which
no module is able to move. In order to avoid such a conflict,
any active module located in the entrance of a cul-de-sac is
obliged to jump to the exit of the cul-de-sac by changing
attachments from one of the modules (say a) of the bottle-
neck configuration to the other (b). Observe that, in order
to distinguish entrance from exit we need to infer global
information (namely, the side of the bottleneck that contains
the cul-de-sac) from local information (namely, the modules
neighboring x). The function Max is used precisely for this
purpose.

Topological analysis for jumping rules Let a and b, with
Num(a) > Num(b), be two modules in a bottleneck config-
uration, and let module c be the least common ancestor of
a and b in the DFS tree. Then two possible cases arise: (1)
c is distinct from a and b, in which case the path from c to
b is traversed before the path from c to a during the DFS
traversal, or (2) c is not distinct from a and b, in which case c
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Fig. 16 Active module x may
be entering (left) or exiting
(right) the cul-de-sac

must be identical to b. We now consider each of these cases
in detail.

Case 1. c is distinct from a and b, as illustrated in Fig. 17.
Since the path from c to b is traversed before the path from

c to a, there are four possible configurations for these paths,
as shown in Fig. 17. Suppose that module x is attached to
module a. Observe that in configuration 1a and 1c, x must be
entering the cul-de-sac because the DFS numbers of modules
in the path from a towards c are decreasing. In configurations
1b and 1d, x must wait to advance because the DFS numbers
of modules from a to the end of the branch are increasing.
Hence, in all four configurations, x avoids entering the cul-
de-sac by changing its attachment from a to b. In cases 1a
and 1b, x will not be able to advance as soon as it changes
attachments because the DFS number increases in front of it.
However, this will not produce a permanent obstruction, since
these modules are not trapped in the cul-de-sac. Whenever
the modules of this branch activate and start moving, x will
be free to advance as well. After that, any modules trapped
in the cul-de-sac (such as the ones ahead of module a in case
1b, for example) will eventually advance. In cases 1c and 1d,
once module x changes attachments from a to b, it will be
able to advance along the branch of b.

Case 2. c is identical to b, as illustrated in Fig. 18.
Since x follows the right hand rule when moving along the

boundary, changing attachments from a to b would ensure
that module x does not enter the cul-de-sac in cases 2a and
2b, whereas changing attachments from b to a would ensure
that module x does not enter the cul-de-sac in cases 2c and

2d. Observe also that x can keep advancing after the jump in
cases 2a, 2b, and 2d. In case 2c, though, x will not be able
to advance as soon as it changes attachments because the
DFS number increases in front of it. Nevertheless, this will
not produce a permanent obstruction, as the modules in front
of x are not trapped in the cul-de-sac: they will eventually
activate and move, and then x will be free to advance as
well. Notice that jumping rules are the only rules that allow
an active module to change attachments from a lower DFS
number to a higher one.

Implementation of jumping rules As mentioned previ-
ously, a jump move has priority over an advance move: every
time an active module x finds itself attached to a static mod-
ule (a or b) and neighboring another static module (b or a),
it checks whether or not the situation warrants a jump. This
check requires the use of functions Num and Max. Note that
Case 1 holds (that is, b and a have a lowest common ances-
tor that is distinct from both) iff Max(b) < Num(a). Cases
2a and 2b are distinguished from cases 2c and 2d as fol-
lows: Module b is the lowest common ancestor of a and b
iff Num(b) < Num(a) ≤ Max(b). Furthermore, we consider
the module b′ that is the first neighbor of b along the bound-
ary as we go in the clockwise direction from b to a (refer
to Fig. 18). Note that Num(b′) >Num(b) for Cases 2a and
2b, whereas Num(b′) <Num(b) for Cases 2c and 2d. There-
fore, a few comparisons of the values of functions Num and
Max in modules a, b, and b′ allow module x to determine
whether or not to change attachments from a to b or from b
to a.

(1a) (1b) (1c) (1d)

Fig. 17 The four possibilities in a bottleneck configuration if c is distinct from a and b. In all cases, module x applies a jumping rule, i.e., it
changes attachments from a to b. The letter � indicates the topological position of the leader of the configuration

Fig. 18 The four possibilities in a bottleneck configuration if c is iden-
tical to b. The letter � indicates the topological position of the leader
of the configuration. Recall that b must have lower DFS number than

a. This implies that it must be closer than a to �. Module x applies a
jumping rule, i.e., changes attachments from a to b in cases 2a and 2b,
and changes attachments from b to a in cases 2c and 2d
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Fig. 19 Rules for starting the
reconfiguration into canonical
strip

4.2.4 Canonical strip rules

Once an active module reaches the leader, the reconfiguration
rules do not apply any more since the DFS numbers cannot
decrease further. New rules are needed to produce the canon-
ical strip. The first two of these rules (refer to Fig. 19) change
the state of the modules as they pass by the leader. The follow-
ing two rules (refer to Fig. 20) make the strip grow. A final rule
(refer to Fig. 21) is required to make the last module aware
that the construction of the canonical strip has ended. For this
purpose, the module needs to know in advance the total num-
ber of modules. This can either be autonomously computed
by the modules as a preliminary task (Nichitiu et al. 2001;
Wallner 2009) or on the fly through a simple modification
of the rules Enter strip, by adding a postcondition in
which the leader, which has this information (as pointed out
in Sect. 4.1.4), transfers it to the modules when they advance
past it. Notice that the priorities for this set of rules guarantee
that rules Enter strip and End strip are always exe-
cuted instead of Advance strip, if they simultaneously
apply. At the end of this step, all modules form a strip. The
state of all modules except the first (leader) and the last
(backward) ones is wait.

The example in Fig. 22 shows the first steps of a synchro-
nous version of the reconfiguration process. Step (i) illus-
trates the scan tree. From step (ii) on, the DFS number is

represented. At step (iii), the leaves activate and the recon-
figuration starts. Static modules and active modules are repre-
sented in different colors. The attachment of active modules
to the static tree are depicted as thicker edges. Notice that the
active module attached to the static module numbered 24,
although active, cannot advance, since it sits on a branching
static module, and the right hand rule advance would increase
its potential function. In step (iv), a bottleneck situation can
be seen: the active module attached to 31 is about to jump and
attach to the static module labeled 14, as can be seen in step
(v). A collision conflict happens between the active modules
attached to 15 and 30 in step (viii): the first one has the pref-
erence. At step (ix) an active module gets stopped on top of
the static branching module labeled 7, and it stays still until
step (xvi), when the static branch in front of it disappears and
it is free to advance again.

5 From canonical to goal

The reconfiguration from canonical strip to goal shape essen-
tially reverses the procedure described in Sect. 4.2. Modules
advance from the rightmost end of the strip following the left
hand rule and the goal shape is constructed in a clockwise
depth-first manner starting from the current leader, which
will occupy the leader position in the final shape as well.

Fig. 20 Rules for making modules advance along the canonical strip

Fig. 21 Rule for ending
the canonical strip
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Fig. 22 First steps of a synchronous reconfiguration process (Color figure online)
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Fig. 23 Two examples of goal configurations. Recall that the number
on a module indicates the order in which it arrives at that position. In
the left configuration, the pairs of modules (8, 16) and (7, 17) form
temporary bottlenecks, before modules 18, 19, and 20 reach their goal
destination. In the right configuration, the pairs (8, 12), (7, 13) and
(6, 14) form temporary bottlenecks before modules 15, 16 and 17 reach
their goal destination

For this to be possible, at least one of the modules needs to
know the goal shape. In the solution we propose, the leader
has (receives or computes) the following information about
the goal shape:

• The clockwise depth-first numbering of the scan tree
of the goal configuration (as opposed to the counter-
clockwise numbering of the initial configuration in the
forward step), the relative coordinates, and Min and Max
values for each node.

• The position of the lbh-module of each hole. More pre-
cisely, in addition to the relative coordinates and num-
bering values mentioned above, a flag indicates whether
a goal position corresponds to a lbh-module of a hole.

• The position of each pair of bottleneck modules. In other
words, in addition to the information mentioned in the
two previous items, one bit and two integers indicate (i)
whether a goal position corresponds to the entrance/exit
of a cul-de-sac and (ii) the relative position of the other
goal position producing the bottleneck. Notice that in the
reverse procedure, temporary bottlenecks may appear as
the goal configuration is being formed. Such bottlenecks
do not show up in the goal shape, but they are present
at some point in an intermediate reconfiguration stage.
The information about temporary bottlenecks needs to be
known and relayed by the leader to the relevant modules.
These bottlenecks can be easily detected when assign-
ing DFS-values to the goal configuration modules. See
Fig. 23.

The information itemized above is equivalent to comput-
ing the leader, the lbh-modules of holes, the scan tree, and
the DFS numbering function, all described in Sect. 4.1, but
now in a clockwise direction rather than counterclockwise.

When a module advances from the rightmost end of the
strip following the left hand rule and moves past the leader, it
receives from the leader its goal destination in relative coor-

Fig. 24 When building this goal configuration, the active modules
leading to positions 40–46 may encounter the active modules leading
to positions 52–55 in the narrow passage, which is a bottleneck that has
been created on the fly. The first modules are moving upwards, while
the second ones are moving downwards, and this may cause a deadlock
that needs to be handled

dinates as determined by the clockwise DFS numbering com-
puted above (the rightmost module occupies the goal position
with DFS number 1, the next module occupies DFS number
2, and so on). As the module advances, applying the reverse
of the rules for forward reconfiguration, it updates its rela-
tive coordinates as it moves. This update allows the module
to know when it has reached its final destination, at which
point it becomes a static module.

During the reverse reconfiguration, the reverse rules do
not need to take care of activation conflicts, as these conflicts
do not have an analogous role in the reverse procedure; that
is, deactivating a module when it gets to its final position does
not generate a conflict. Collision conflicts may occur during
the reverse procedure and they are handled analogously to the
forward procedure: lower DFS number always has priority.
However, obstruction conflicts will be handled differently in
the forward and backward procedures, as will be seen below.

The main difference between the forward and the back-
ward procedures is that in the case of the latter, modules
advance to their goal destination in the order determined by
the depth-first traversal of the final configuration (whereas in
the forward procedure, the modules in the final strip are not
necessarily ordered by their DFS numbers). As a result, we
need to modify the jumping rules to make sure that no jump
modifies the order of active modules as they advance along
the boundary of the static modules. An additional issue that
the backward procedure must address is that bottlenecks and
their associated cul-de-sacs are created as the reconfiguration
is taking place. Hence an active module that did not explic-
itly enter a cul-de-sac through a bottleneck may find itself
inside a cul-de-sac (and will have to exit it) when a bottle-
neck subsequently forms because some module reaches its
final position and becomes static. See Fig. 24.

One final issue with the backward procedure is that when
a hole closes, thus breaking the boundary of the shape into
different connected components, we need to ensure that no
module gets trapped in the wrong connected component of
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Fig. 25 The neighborhood of
the lbh-module of a hole, the
path γ connecting h and w in
the scan tree, and the possible
connections of γ with the leader
through the path γ ′

the boundary. We devote this section to describing all the
differences between the forward and backward procedures,
and will not describe again the issues that are common to the
two.

5.1 Closing holes at the right time

We analyze here the configuration of the scan tree in the
neighborhood of the lbh-module h of a hole. Since h is the
leftmost among the bottommost modules along the boundary
of the hole, it must necessarily have an east and a west neigh-
bor, e and w respectively, and w must have a north neighbor
n. This situation is illustrated in Fig. 25. In addition, in order
to eliminate the cycle that the hole would produce, the scan
tree guarantees that h and w are not directly connected. Due
to the shape of the scan tree, it is easy to show that the path
γ connecting h to w along the tree must necessarily go from
h to e and from there to n and then to w, as illustrated in
Fig. 25. Let γ ′ be the path in the scan tree connecting γ to
the leader �. If γ and γ ′ connect at a module other than w, it
implies that h has a lower DFS number than w (Fig. 25 left).
If they connect at w, then w has a lower DFS number than h
(Fig. 25 right). Recall that the numbering is determined by a
clockwise depth-first ordering of the scan tree.

In the first case, when Num(h) < Num(w), the order of
the modules filling the goal shape can be described as fol-
lows: First, all modules with DFS number up to Num(h) in
the goal shape are activated by the reverse reconfiguration

algorithm. Note that all these nodes are external to the hole;
that is, they lie in the left subtrees of the nodes along the path
from the master � up to module h. The subtree numbered 1
in Fig. 26(left) is an example of such a subtree. Then, if a
subtree rooted at h exists, it is external to the hole [(as in the
subtree numbered 2 in Fig. 25(left)], and the modules of this
subtree are activated next. Note that all subsequent activated
modules up to Num(w) form the remainder of γ and all sub-
trees rooted at nodes of γ that lie within the hole, such as the
subtree numbered 3 in Fig. 25(left). In other words, all mod-
ules internal to the cycle γ ∪ wh are placed next. Finally,
w is placed, followed by all remaining modules external to
the hole. Therefore, in this case it is important to make sure
that w does not get to its position (thereby closing the hole)
before all the modules in the subtree rooted at h have exited
the hole. This can be easily controlled by a specific rule for
modules h and w which only allows w to close the hole (i.e.,
to get to the position west of h) after h has detected that the
module with DFS number equal toMax(h) has advanced past
it.

In the second case, when Num(w) < Num(h), the modules
filling the goal shape are sent in the following order. First, all
modules with DFS number up to Num(h) are activated, all of
which are external to the hole. However, when h reaches its
final position, the hole is closed, thus preventing modules in
the right subtrees (if any) of the modules in γ from entering
the hole and reaching their final position. This is illustrated in
Fig. 26(right), where the modules in the subtrees numbered

Fig. 26 Left The case whereNum(h) <Num(w). Right The case where
Num(w) < Num(h). In both cases, triangles indicate subtrees and num-
bers indicate the ordering of the modules in the reconfiguration. In the
left case, all modules with final destination in the subtree labeled 2 need
to advance past module h before module w is allowed to occupy its final

position. In the right case, modules with final position in the dashed
subtrees would never reach their destination. If h is connected to w and
disconnected from e, then the right case becomes analogous to the left
one and they do reach their destination
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Fig. 27 Left When m1 and m2 have a least common ancestor distinct
from m1, no jumping is necessary. Right When m1 is the least common
ancestor of m1 and m2, all modules whose final destination is in subtree
6 wait for m2 to reach its final position and then jump, while any other

module advancing past m1 follows its way without any jumping. In both
cases, the modules m1 and m2 forming the bottleneck are symbolically
represented by circles, triangles indicate subtrees, and numbers indicate
the ordering of the modules in the reconfiguration

6 and 7 cannot enter the hole. The scan tree rules rectify
this situation, which is detected whenever h is a lbh-module
and Num(w) <Num(h), by modifying the scan tree locally as
follows: connect h to w and disconnect it from e, as illustrated
in the rightmost scan tree in Fig. 26(right). The effect of
this change is that the behavior of the algorithm in this case
is now analogous to the previous case. Module h waits to
occupy its final position (and hence close the hole) until e
has detected that all modules in its left subtree (e.g., subtree
3 in the rightmost image in Fig. 26) have advanced past it
and moved out of the hole. Again, the Max function can be
used suitably to detect this situation. Observe that by the time
h is ready to close the hole, all active modules whose final
destination is within the hole (e.g., subtrees 4 and 5 in the
rightmost image) are already in the hole.

5.2 Preventing deadlocks without changing the order of
modules

In the forward reconfiguration, jump rules allow us to avoid
deadlocks. The issue of deadlocks is relevant in the back-
ward reconfiguration as well. However, since maintaining
(DFS number) ordering of modules is crucial for the reverse
reconfiguration algorithm, our solution to prevent deadlocks
must ensure that it does not modify ordering.

Let m1 and m2 be two modules producing a bottleneck
(recall Fig. 15) and let Num(m1) < Num(m2). We distinguish
two cases.

• If the least common ancestor of m1 and m2 in the scan
tree is distinct from m1, then observe that by the time
m2 reaches its lattice position and becomes static (thus
forming a bottleneck with m1), every module that wants
to move into the cul-de-sac is a module whose final lattice

position is within the cul-de-sac. See Fig. 27(left). Hence,
no jump rule equivalent is needed in this case. However, it
is possible that a module needs to exit the cul-de-sac (thus
creating an obstruction conflict at the bottleneck) because
it is advancing along the static modules within the cul-de-
sac and “entered” it before the bottleneck was formed. For
example, in Fig. 27(left), modules from subtree 4 could
still be advancing through the cul-de-sac after m2 has
reached its final position. Hence, a module from subtree
4 could be exiting the cul-de-sac at the same time that
a module from subtree 9 is entering it. In such a case,
the exiting module (which has a lower DFS number) has
priority.
There is a situation in which a consecutive sequence of
bottleneck pairs (a corridor, as in Fig. 24) could cause a
potential deadlock. For example, several modules of sub-
tree 9 could be entering a corridor while modules of sub-
tree 4 are exiting. In this case, a pair of obstructing mod-
ules exchange ids as well as their local information (goal
destination and other data) and their attachments. The
effect of this rule is equivalent to each module advancing
one step.

• If m1 is the least common ancestor of m1 and m2 [(refer to
Fig. 27(right)], all modules with DFS number greater than
Num(m2) need special handling. This includes modules
that lie outside the cul-de-sac (such as those in subtree
6) as well as those that lie within the cul-de-sac (such
as those in subtrees 7, 8, and 9). We need to ensure that
these modules do not produce deadlocks and that they
maintain their order in the event of a jump movement.
We avoid deadlocks by guaranteeing that no module that
enters a cul-de-sac through the bottleneck defined by m1

and m2 needs to exit it. This requires that the modules that
lie outside the cul-de-sac, such as those in subtree 6, will
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now jump from m1 to m2 rather than moving into the cul-
de-sac. When the module with DFS numberNum(m2)+1
attaches to m1, it waits until m2 has reached its lattice
position and then makes the jump move. Observe that
this maintains the order of all modules outside the cul-
de-sac. At the same time, each module lying within the
cul-de-sac, as in subtrees 7, 8, and 9, does not perform
the jump move and advances within the cul-de-sac until
it has reached its final position. A simple rule determines
whether an active module attached to m1 should wait and
jump to m2 or move into the cul-de-sac instead: if the
DFS number of the module lies in the range [Num(m2)+
1,Max(m2)], it jumps to m2; otherwise, it advances past
m1 into the cul-de-sac.
Observe that while this case could be handled in a man-
ner similar to the previous case (allow a module to
enter the cul-de-sac and handle conflicts between exiting
and entering modules using DFS numbers), we choose
to implement the wait-and-jump approach because it
reduces the number of times modules have to exchange
ids, and furthermore, avoids unnecessary walks around
cul-de-sacs.

See Fig. 28 for an illustration of the reverse reconfiguration
from canonical to goal shape. The output in the illustration
was generated from our simulator, which is discussed further
in Sect. 9 on experimental results.

6 Correctness

In this section we prove that the rules described in the pre-
vious sections allow reconfiguration between any pair of
robotic systems with the same number of modules, with
or without holes. We first state a result from (Nichitiu et
al. 2001; Wallner 2009) pertaining to preliminary compu-
tation performed by the modules before they enter into the
to_strip state and start the reconfiguration algorithm.

Proposition 1 There exists a set of rules allowing any
robotic system to detect the topmost module among its right-
most modules (Nichitiu et al. 2001; Wallner 2009).

The previous rules can be adapted to also detect holes and
their lbh-modules.

Proposition 2 There exists a set of rules allowing any
robotic system to detect the leftmost module among the bot-
tommost modules of the boundary of each of its holes, if any.

Proposition 3 The rules proposed in Sect. 4.1.3 allow any
robotic system to build a scan tree, a tree in which all leaves
lie on the boundary of the configuration and at least one leaf
lies on the external boundary.

Proof The rules produce a graph in which all possible
vertical logical connections between adjacent modules are
present. If the configuration has no holes, each vertically
connected component is horizontally connected to each of
its neighboring vertical connected components through only
one horizontal connection, namely the highest feasible one.
Therefore, the resulting graph is connected and acyclic. If the
configuration has holes, the fact that each lbh-module is not
connected to its neighbor to the west guarantees acyclicity,
while connectivity holds.

As for the location of the leaves of the scan tree, if a module
does not lie on the boundary of the robotic configuration, then
it necessarily has north and south neighbors. This implies
that its degree in the scan tree is at least 2 and it cannot be a
leaf. If the shape has no holes, all leaves belong to its external
boundary. Otherwise, consider the lowest lbh-module. Either
it is a leaf because it does not have a module to its south, or
the lowest of the modules located vertically below it must
be a leaf. In both cases, this leaf necessarily belongs to the
external boundary of the configuration. ��
Proposition 4 The rules proposed in Sect. 4.1.4 number all
the modules of the robotic system by their distance to the
master in a counterclockwise depth-first traversal of the scan
tree.

Proof Follows immediately from the rules in Fig. 8, which
increment the Num value at each module when it is encoun-
tered for the first time during the depth-first walk through the
scan tree. ��
Lemma 5 At all times along the forward reconfiguration, the
static tree, although pruned, stays a scan tree. In addition,
the numbering of the modules along its external boundary
increases counterclockwise from the leader.

Proof Follows immediately from the structure of the scan
tree and the fact that at any stage of the reconfiguration algo-
rithm, the only nodes to be pruned from the scan tree are
the newly activated nodes, which are always leaf nodes of
the current static tree. The resulting tree thus remains a scan
tree of the static modules. Since the nodes are numbered in
rightmost first DFS order, it follows that the numbering of
the static modules increases in counterclockwise order from
the leader along the external boundary. ��

A deadlock loop is a sequence of active modules a1, . . . , ak

such that the reconfiguration rules would require ai to occupy
the lattice position of ai−1 (where a0 ≡ ak).

Lemma 6 The forward reconfiguration rules cannot create
deadlock loops.

Proof In a deadlock loop a1, . . . , ak , it is obviously impossi-
ble that Num(ai ) > Num(ai−1) for all i, 1 ≤ i ≤ k. There-
fore, there exists an i such that Num(ai ) < Num(ai−1). For
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Fig. 28 Screenshots from our simulator illustrating a reconfiguration
from the canonical strip (top) to the goal shape (bottom right). The three
images in the 7th row show how active modules wait before closing a
hole, in order not to trap modules in it (see Sect. 5.1). The four images

in the 9th row show how active modules wait in front of a bottleneck
which is about to be formed, and then jump over it (see Sect. 5.2). In
the last row, the modules whose goal positions lie inside the cul-de-sac
enter it (Color figure online)
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Fig. 29 Left two possible configurations for a loop in which a1 intends
to slide (1a and 1b). Right three possible configurations for a loop in
which a1 intends to perform convex transition (2a, 2b and 2c). Only

the cases where a1 is attached to its south are depicted. There exist
analogous east, west, and north configurations (Color figure online)

Fig. 30 If a is the first module in counterclockwise order from the
leader �, then (i) module b cannot activate in front of a; (ii) in a colli-
sion conflict with b, module a has priority and advances; (iii) if module

b exchanges ids with a, the distance d decreases; (iv) if module b jumps
in front of a, the distance d decreases (Color figure online)

the sake of clarity, let us assume that Num(a1) < Num(ak).
A simple case analysis, illustrated in Fig. 29, shows that the
pair of modules, a1 and ak must be such that a1 is exiting
the cul-de-sac through the bottleneck, and ak is entering it.
However, the rules presented in Sect. 4 would prevent such
situations, because jump rules ensure that module ak does
not enter the cul-de-sac. In particular, module ak changes
attachments in cases 1a, 2b, and 2c, whereas in cases 1b and
2a, module ak will never be in the positions shown in Fig. 29.
This is because those positions (i) cannot be ones at which
it is activated, and (ii) cannot be reached by following the
right hand rule with our advance and jump rules without ak

entering the cul-de-sac. It follows, therefore, that no deadlock
loops can be produced. ��
Proposition 7 The forward reconfiguration rules to recon-
figure the robot to the canonical shape cause all modules to
advance past the leader.

Proof Proposition 3 and Lemma 5 guarantee that there
always exists a leaf of the static tree on the external boundary.
As a consequence, there also exists at least one module that
activates and travels along the external boundary. Let d be
the distance (i.e., the number of edges) along the boundary
between the leader � and the first active module in the coun-
terclockwise direction from �. We will prove that d always
decreases during the reconfiguration algorithm.

Among all active modules attached to the external bound-
ary, let a be the first module in counterclockwise order from
the leader �. Notice that a is necessarily attached to the left-
most branch of the scan tree; i.e., the branch of the tree
first traversed during the depth first traversal of the scan
tree. For example, in Fig. 22, a would be the module with

DFS number 10. The numbering decreases along the bound-
ary from a to � (see Lemma 5) and moreover, there cannot
exist a leaf between a and �. Therefore, there are no activa-
tions between a and � and hence d cannot increase. If there
are no conflicts or jumps, a can advance and d decreases
by 1.

If a is stopped by a conflicting module b, we will see that b
now becomes the first active module and hence d decreases.
In fact, b cannot stop a in an activation conflict, since there
exist no leaves between a and � (see Fig. 30i). Similarly, b
cannot stop a in a collision conflict since our choice of a
guarantees that Num(a) < Num(b) and hence a has pri-
ority (Fig. 30ii). As for obstructions, b cannot be advancing
in front of a as that would imply that it is attached to the
boundary between a and � (Fig. 30i). If a and b are in a con-
figuration that requires the exchange of ids, it follows that b
now becomes the first active module and hence d decreases
by 1 (Fig. 30iii). We are only left with the case that a and
b are involved in a deadlock loop, which is impossible from
Lemma 6. Finally, if module b applies a jump move, it must
attach to the boundary between a and �. In this case, b is the
new first module and d decreases (Fig. 30iv). ��
Proposition 8 The rules proposed in Sect. 4 produce a hor-
izontal strip to the right of the leader.

Proof Follows immediately from Proposition 7. ��
Lemma 9 At any point during the reverse reconfiguration
from the canonical strip to the goal configuration, the order
of active modules along each connected component of the
static boundary (counterclockwise if boundary is external
and clockwise otherwise) is a subset of the initial numbering.
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Proof When no conflicts appear, the regular advance move
cannot transpose the order since it only makes active mod-
ules advance one step forward along the sequence of edges
of the boundary. Furthermore, waiting rules for closing holes
and collision avoidance rules (recall that the module with
lower DFS number has priority) also guarantee that number-
ing order is maintained. Finally, since jumping rules guaran-
tee that when a module jumps a bottleneck during the reverse
reconfiguration, no active module is attached to the boundary
of the corresponding cul-de-sac, it follows that they do not
produce any modification in the order of active modules. ��
Proposition 10 The rules proposed in Sect. 5 reconfigure the
canonical horizontal strip into the goal shape.

Proof Let m1, . . . , mn be the ordering of the modules along
the strip, where mn is the leader. We prove by induction
on i that each module mi reaches its final destination. The
base case of i = 1 obviously holds because (i) Lemma 9
guarantees that m1 advances past the leader and (ii) the final
destination of m1 is adjacent to mn .

Assume by the inductive hypothesis that for all i < k,
mi eventually reaches its final destination. We prove that
mk reaches its destination as well. Consider any moment
after mk−1 has reached its final destination. Let m p be
the parent of mk in the goal scan tree. If mk has not yet
reached its final destination (contiguous to m p), then it
must be attached to the connected component of the bound-
ary containing the edge e incident on m p to which mk

needs to attach. The closing rule for holes guarantees that
mk cannot be isolated inside a hole boundary not contain-
ing e. Conversely, if e belongs in a hole, then that hole
cannot close before mk is attached to its boundary since
the module that closes the hole must have DFS number
greater than Num(mk). Hence, due to order invariance (see
Lemma 9), it will close the hole only after mk has entered
it. Therefore, mk belongs to the connected component of
the boundary containing edge e. Notice that, because of
Lemma 9, in the instance after mk−1 reaches its final des-
tination, mk must lie on the boundary as we go counter-
clockwise from � to e. Let d be the distance (i.e., the
number of edges) along the boundary between the current
attachment of mk and e. We will prove that distance d
decreases.

Notice that d cannot increase, since that requires a branch
of the goal tree to form between mk and e. The modules
in such a branch will have higher DFS number than k, and
Lemma 9 guarantees that they cannot move ahead of mk . If
mk can apply a rule, obviously d decreases (this includes the
case of exchange of ids). We will prove that mk can even-
tually apply a rule. A collision conflict with another mod-
ule mi could temporarily stop mk , but only if i < k. By
the inductive hypothesis, all modules mi with i < k reach
their final destination. Therefore, collisions can only stop the

advance of mk temporarily. Another reason that may pre-
vent mk from advancing is if it is waiting to close a hole
or is queueing behind a closing hole. In this case, the active
modules mi queueing in front of mk all have i < k. By the
inductive hypothesis, they all reach their final destination,
and let mk eventually move. Similarly, queueing in front of
a bottleneck may prevent mk from advancing. In this case,
all active modules mi that are entering the hole or queue-
ing in front while mk waits have i < k. By the inductive
hypothesis, they all reach their final destination, allowing mk

to eventually move. The only remaining reason for mk to
wait would be deadlock loops, which cannot occur. In fact,
in the strip-to-goal algorithm modules that enter a cul-de-sac
only if their final destination is inside it. In other words, mod-
ules entering a cul-de-sac never exit it, making a deadlock
loop impossible. It follows, therefore, that distance d always
decreases. ��

The following theorem follows immediately from Lem-
mas 8 and 10:

Theorem 11 Given two robotic systems with the same num-
ber of modules, the rules described in Sects. 4 and 5 recon-
figure one shape into the other.

7 Complexity

There are several issues to be taken into account when ana-
lyzing the complexity of the proposed reconfiguration.

7.1 Memory and computation

The first phase of the reconfiguration (choosing a leader,
detecting the holes and their lbh-modules, building the scan
tree, and reconfiguring into a canonical strip) only requires
O(1) memory and computation for each module. The sec-
ond phase (reconfiguring from the canonical strip to the
final shape) requires O(1) memory and computation for all
modules except the leader, which needs either O(n) mem-
ory (if it only needs to store the information of the goal
shape) or O(n) memory and computation (if it needs to com-
pute the scan tree and DFS numbering of the goal shape
on its own). Note that we assume that an integer fits in
O(1) space, which implies a bound on the number of mod-
ules of the robotic system. However, this is a natural lim-
itation that cannot be avoided if the goal shape is not pre-
defined.

7.2 Number of moves

Among the different actions each module needs to per-
form, physical moves such as slide or convex transition
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Fig. 31 The modules of the
branch advance one after the
other, separated by one (left),
two (center), or three (right)
empty spaces (Color figure
online)

are the most energy and time consuming, when compared
with attachments and detachments (such as in concave and
opposite transitions), computing, or communication. It is
hence important to realize that, in our reconfiguration, the
number of physical moves each module performs is O(n),
where n is the total number of modules in the robotic
system. In fact, the proof includes counting both position
changes and attachment changes. Once activated, each mod-
ule can attach to any of the static modules, which are at
most n − 1, and perform convex transition around it at
most twice when proceeding towards the leader, but it can
never return to the same static module, since the number-
ing of the substrate of an active module must decrease at
each move. When forming the strip, the number of posi-
tions a module needs to attach to is always smaller than
n. The same holds for the reverse reconfiguration. This
bound is tight: reconfiguring a vertical strip into a hori-
zontal one requires �(n) moves per module in any con-
stant velocity and constant force solution (Aloupis et al.
2011).

7.3 Time steps

Consider a synchronized execution of the reconfiguration.
Choosing a leader along the boundary can be done in O(n)

time steps (Wallner 2009). Consequently, detecting the holes
and their lbh-modules can also be done in O(n) time steps.
The scan tree is built in O(1) time steps, and the numbering
ends in O(n) time steps. We will prove that once the first
leaves have been activated, the robotic system reconfigures
into the canonical strip in a linear number of time steps.
Reconfiguring the strip into the final shape requires the same
number of time steps, and the entire reconfiguration runs in
O(n) time steps.

Let us start by considering the first active module in the
counterclockwise direction from the leader (recall that it may
not be the same module at all times). It is straightforward
to prove that it passes by the leader in O(n) steps. Since
it can always move except when some other active module
moves ahead of it (and thus becomes the new first module),
it is clear that the first active module advances at least one
position at each step. Since the number of possible positions
for the first active module is linear (three different edges
for each static module), it reaches the leader in O(n) time
steps.

In fact, if no active module had to wait during the recon-
figuration, the first leaf of each tree branch (or the module

successively replacing it by a jump) would reach the leader
in O(n) time steps for the same reasons discussed in the
previous paragraph. Furthermore, all modules of that branch
of the scan tree would advance one after the other, towards
the leader, separated by 1, 2 or 3 empty spaces, depending
on whether their advance consisted of only slide and convex
transition moves, if they included single concave transitions,
or they included consecutive concave transitions. The three
possible cases are illustrated in Fig. 31. Hence, all modules
of the robot would reach the leader in a linear number of
steps.

In the case that there are waiting steps for some modules
during the reconfiguration, we show below that after the first
module reaches the leader, the last module of the robot will
reach the leader in another O(n) steps. Observe that the rea-
son for a delay between two consecutive modules a and b
arriving at the leader is one of the following:

• Module b is simply advancing behind the module a. In
this case, there is only a constant delay between the arrival
of a and b, as explained previously in Fig. 31.

• Module b has to wait because of a collision or obstruction
conflict. We already know that this can happen only in
bottlenecks. In this case, module b has to wait for the
obstructing modules to move out and then either jump
or, if the bottleneck has disappeared, enter the cul-de-
sac. In the first case, there will only be constant space
between b and its predecessor. In the second case, since
the bottleneck has disappeared, it will not again cause a
new delay to any other module. Furthermore, the delay
caused to b due to this bottleneck is equal to the length of
the cul-de-sac. It follows therefore that the overall sum of
all such delays is proportional to the sum of the lengths
of all cul-de-sacs, which is O(n).

This proves that after O(n) time steps all modules have
reached the leader. Forming the strip is trivially done without
obstructions, proving that the entire forward reconfiguration
is done in O(n) time steps.

7.4 Communication

Communication is a less costly activity, when compared with
changing attachments and changing positions. Nevertheless,
it is worth noticing that the communication performed by
each module is linear, as a constant size communication is
performed by the application of each rule on a module.
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Fig. 32 The hexagonal setting. Left labels for the six neighbors of the
gray module. Right a local reference system and relative positions of
the neighbors of the gray module

8 Extension to the hexagonal setting

In this section, we give a brief overview of how our strategy
adapts to the hexagonal case. Due to its similarity to the
material presented in previous sections, we omit all proofs
and concentrate on the issues that are specific to these lattices.

For the hexagonal case, each module of the robotic sys-
tem is assumed to be centered at a point (

√
3x/2, x/2 + y),

where x, y ∈ N. In this context, a grid position has 6 neigh-
bors, which can be labeled for a more intuitive description of
the procedures, but can also be designed using relative coor-
dinates as required by the precise formulation of the rules.
See Fig. 32 for an illustration.

Each module can be attached to or detached from any of
its six neighbors, and the definitions of connectivity, holes,
and hole/external boundary of a configuration can be easily
adapted. Notice that, as opposed to the square case, two mod-
ules cannot be vertex-adjacent in a hexagonal lattice: they are
either edge-adjacent or do not touch. As a consequence, hole
boundaries and the external boundary are always pairwise
disjoint. In fact, in the hexagonal case there is no such thing
as a Moore neighborhood distinct from the von Neumann
neighborhood of a module. This simplifies the moving rules,
as there is no distinction between slide and convex transition:
in the hexagonal case, the only possible move that modifies
the position of a module consists of rotating around a static
neighbor and proceeding from one neighboring position to
a following one, either clockwise or counterclockwise (see
Fig. 33a). As for changing attachments, the choice is wider
than in the square case (see Fig. 33b).

In our model, changing position only requires the goal
lattice position to be free (refer to Fig. 33c). Some current
hexagonal prototypes of self-reconfiguring modular robots
can perform this move with no extra empty space require-
ments. This is the case, for example, for the metamorphic
robot (Pamecha et al. 1996). Some other current prototypes
require some light extra empty space requirements, namely
the cell adjacent to both the initial and the final positions
should be free. This is the case, for example of Catoms (Kirbi
et al. 2007) and, depending on the relative sizes of the com-
ponents, of Fracta (Murata et al. 1994). Finally, some other
current prototypes have the strong extra empty space require-
ment that in addition to the goal position, the following three
lattice cells must also be empty: (i) the cell (say m) that
is simultaneously adjacent to the intial and goal position,
(ii) the cell that is adjacent to m and the initial position,
and (iii) the cell that is adjacent to m and the goal posi-
tion. Examples of these are HexBot (Sadjadi et al. 2009) and
Fracta.

It is worth noticing that the classification we propose
into these three categories (no/light/strong extra empty space
requirements) applies to all current and potential prototypes
of hexagonal-shaped robotic modules, and it is possible to
classify every new design into one of the three. Therefore,
it is interesting to see that any robotic system falling into
one of these categories can perform our move without extra
empty space requirements, as long as the units are grouped
into meta-modules. For systems with no space constraints,
meta-modules and units coincide. For systems with light
constraints, meta-modules of just six units are enough (see
Fig. 34, left). For systems with strong constraints, we pro-
pose meta-modules of eighteen units (see Fig. 34, right). Our
meta-modules are inspired by Nguyen et al. (2000); to see
how they perform the move, refer to the Appendix.

In addition, some chain-type modular robots such as M-
Tran (Kurokawa et al. 2008), Polybot (Yim et al. 2000), and
Superbot (Salemi et al. 2006) can arrange into hexagonal
meta-modules with no extra empty space constraints. These
meta-modules look like the ones in Fig. 34(left), where each
of six hexagonal units are, in fact, spider-shaped: each spider
is a three dimensional construction with a central “body” and

(a) (b) (c)

Fig. 33 The hexagonal moves. a Changing position to SE . Con-
sidering all orientations, there exist 5 analogous clockwise position
changes, and 6 symmetric counterclockwise position changes. b Chang-
ing attachments from S to N E . There exist 4 more possible changes
from S to the remaining neighbors, and 5 more possible orientations for
the starting attachment. Considering all orientations and all initial/final

attachments, there exist a total of 30 possibilities for changing attach-
ments. c Space requirements for changing position. Left no extra empty
space requirements. Center light extra empty space requirements. Right
strong extra empty space requirements. In all cases, lattice cells required
to be empty are marked by dotted lines (Color figure online)
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Fig. 34 Left when the units have light extra empty space requirements,
meta-modules of six units are capable of changing positions with-
out extra space requirements. Right when the units have strong extra
empty space requirements, meta-modules of eighteen units are capable
of changing positions without extra space requirements

six “legs” which can expand and contract. See Molina (2012)
for details.

The pre-processing steps prior to the reconfiguration are
straightforward. The leader of a connected configuration can
be defined and found analogously to the square case, and
so can the holes and their lbh-modules. As for the scan tree
in the hexagonal case, all vertical connections are present,
as in the square case. Vertical strips of modules connect to
each other through the topmost possible connection. This
means that each topmost module connects to its N E and N W
neighbors (if they exist). The only exception to this rule is for
lbh-modules: these do not connect to N W . The numbering is
built analogously to the square case, by a depth-first traversal
of the scan tree. This only requires adapting the rules to the
fact that the nodes of the tree may have up to degree 6 instead
of 4.

Adapting the reconfiguration strategy is easy. As the dis-
tinction between slide and convex transition disappears, the
rules for changing position are simplified. Furthermore, col-
lision conflicts are also simpler to deal with. It is easy to see
that when a module intends to change position, only three
other modules may collide with it (compare Fig. 35 with
Figs. 13 and 14).

As for bottlenecks, the situation is similar to the square
case, although vertex adjacency is impossible (see Fig. 36).

The canonical strip is built from the leader in the N E
direction with analogous rules to the square ones. Finally,
some of the correctness proofs in Sect. 6 are the same in the
hexagonal case as in the square case, since they are of topo-
logical or combinatorial nature. This is the case, for example,
for the proof of Lemma 5, which states the fact that the static
tree, although pruned, stays a scan tree along the reconfig-
uration. It is also true of Proposition 7, which states that all
modules pass by the leader when moving forwards. Some
other proofs, which are based in a case analysis, require us

Fig. 36 Possible bottlenecks in the hexagonal setting

to consider more cases since a hexagonal module has six
direct neighbors rather than four. However, some of the case
analysis is simplified by the fact that no vertex adjacencies
are possible. This is the case for Lemma 6, which states that
deadlock loops cannot occur.

9 Experimental results

In this section we describe the main issues related to
the implementation of our reconfiguration rules, and also
present the results of some systematic experiments. The
interested reader is encouraged to visit the companion
web page to this paper at http://www-ma2.upc.edu/vera/
local-reconfiguration/, where the following can be found:

1. The square and hexagonal simulators. Two simple and
practical Java tools for simulating synchronized dis-
tributed algorithms on sets of 2-dimensional square/
hexagonal lattice-based agents. The systems allow the
user to define sets of modules and sets of rules and apply
one to the other. The systems simulate the synchronized
execution of the set of rules by all the modules, and can
keep track of all actions made by the modules at each
step, supporting consistency warnings and error check-
ing. Both simulators come with user guides and exam-
ples. The source code is available, and can be modified
as long as the following requirements are fulfilled:

(a) The source code of the modified version of the sim-
ulator must be made public.

(b) Acknowledgment to the original version and authors
of the simulator must be included.

(c) A notice must be sent by e-mail to the authors of the
original simulator, explaining what the modification
does and where it is available.

2. The sets of rules. The web page also provides implemen-
tations of the rules proposed in the previous sections,
both for the square and the hexagonal case, together with
a legend to facilitate understanding of the color codes of
states, as well as the use of counters and message chan-
nels.

Fig. 35 Rules for changing
position to SE (Color figure
online)
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3. A series of examples. These are initial and goal configu-
rations designed to show most of the issues discussed in
this paper, such as how to avoid activation conflicts and
collisions, how to make a jump move at bottlenecks in
front of cul-de-sacs, and so on.

The simulators offer a wide range of possibilities. In our
implementation of the reconfiguring rules, though, only some
of them are used. More precisely, each module can store
and is able to modify the following information: a pair of
integers, for its (relative) position (x, y); its connections to
neighbors (attached/detached); its state (5 text characters); a
number of counters (each being a 16-bit integer), which is 24
in the square case and 31 in the hexagonal case; two outgo-
ing/incoming messages per neighbor (each a 16-bit integer),
although 5 have been used for clarity. Each module can check
whether a given grid position of its neighborhood is free or
occupied by another module. In this last case, it can com-
pare its own priority with the one of the neighboring module,
check the state of the neighboring module, and compare the
values stored in its own and its neighbor’s counters. Finally,
each module can execute the following instructions, which
may be combined with not, and, and parenthesis: combine
counters, incoming messages, and integers with +, −, ∗,
/, max, min, and mod; compare counters, incoming mes-
sages, and integers with ≤, <, ≥, > and =; test for matching
of states and text, and of counters and integers. It is worth
noticing that our simulation is synchronized. At each clock
step, all modules check all rules and apply the chosen ones
simultaneously. The simulation is also completely parallel.

When implementing the rules, some design decisions have
been made in order to improve readability:

• The use of steps This is a simple way to deal with acti-
vation and collision conflicts. When a module intends to
change position, it proceeds in two steps. First it applies
a rule to declare its intentions, and then a rule to actually
move from its current position to the new one, if possi-
ble (i.e., if the intended move produces no conflict or if
the solution of the conflict allows the module to move).
We consider this to be the simplest implementation of
the procedure to check all neighbors’ intentions before
proceeding suitably.

• The use of priorities Using priorities is convenient, as pri-
orities allow us to reduce the number of rules. In fact, we
have used them as a way to simplify coding “else” options
in the pre-conditions of the rules: a module that cannot
apply a higher priority rule tries to apply rules of lower
priority. Priorities are, therefore, not strictly necessary to
produce the reconfiguration, although our implementa-
tion uses them. In the forwards reconfiguration, jumping
has priority over advancing one step; taking care of acti-

vation and collision conflicts has priority over changing
position; and holding messages has priority over all other
possibilities.

• Simultaneously applying several rules When several
rules with the same (highest) priority apply to a given sit-
uation, the module applies all of them. Again this option
is not necessary, but it simplifies coding the rules because
it reduces their number.

• The use of colors Our simulation uses colors to make
the algorithm more visual. Colors are associated with
states. This is just a visual artifact, but it means that we
have implemented specific rules (with their priorities) to
incorporate the use of colors.

It must be noted that all these decisions make the rules
easier to read and the visualization of the process clearer, at
the price of increasing the number of rules. Therefore, we do
not make any claims about the optimality of the size of the
rule sets.

In the previous sections, the reconfiguration strategy is
described in stages. In practice, though, these stages overlap.
For example, while a hole message is still being passed, some
modules are already building the scan tree, and so on. When
implementing the rules, this must be carefully taken care of.
For example, the DFS numbering function cannot return from
the leaves through a hole leader candidate if the latter has not
yet been accepted or rejected; an active module cannot apply
an advance rule if its neighboring static modules have not yet
finished computing their numbering; and so on.

Finally, since our simulators do not support the existence
of a module capable of storing a linear amount of information,
we must simulate the fact that the leader needs enough infor-
mation about the goal shape to carry out the reverse recon-
figuration. In order to handle this issue, we have designed
the following solution: (i) Place a translated copy of the goal
shape to the left of the initial configuration so that their leader
modules have the same y-coordinate, and find DFS numbers
for the goal shape. (ii) Implement specific rules for the initial
leader to locate the relative position of the goal leader (by
horizontally scanning grid positions to its left until the goal
leader is located). (iii) Each active module gets the value of
this relative position from the initial leader. It can then use
this value to determine if it has reached its goal destination
by scanning the correct number of grid positions to the left
to determine if a module with its DFS number exists at that
position in the goal shape.

All together this gives rise to a set of 558 rules in the
square case (1003 in the hexagonal case), only 198 (236) of
which take care of the actual reconfiguration itself, while the
rest are devoted to the preprocessing, as detailed in Table 1.

We have run a systematic set of simulations on several
shapes, namely vertical lines, horizontal lines and the con-
figurations illustrated in Fig. 37. The vertical line and the
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Table 1 Number of implemented rules

Stage Rules
(square grid)

Rules
(hexagonal grid)

Elect leader, detect holes,
form scan tree (both
initial and goal shapes)

129 216

DF-number the initial shape 105 256

DF-number the goal shape 126 296

Reconfigure forwards
(initial shape to strip)

109 166

Reconfigure backwards
(strip to goal shape)

89 70

horizontal line respectively are one column and one row of
the dense square. For each one of the shapes, we have run
the algorithm for n = 10, 20, 50, 100, 200, 500, and 1000,
where n is the total number of modules. In all cases, the ini-
tial shape and the goal shape have been the same. In other
words, we have converted the shape into a horizontal strip and
then we have reconstructed it again. Table 2 shows the num-
ber of parallel steps needed in our simulation. This includes
both the preprocessing steps (elect a leader, detect holes, and
elect a lbh-module for each hole, build the scan tree, and get
each module to know its numbering values), as well as the
actual reconfiguration steps (from initial shape to canonical,
from canonical to goal shape). Figure 38 shows the graph of

the results in Table 2. We do not show detailed results for
the hexagonal case, because they are analogous. For some
shapes, depending on their orientation, the number of steps
for the square and hexagonal versions of the same shape is
almost identical, and in some others it is scaled by a factor
between 1.2 and 1.3 due to the increased number of rotations
of active modules around one of the static ones.

10 Conclusions, discussion, and open problems

We have proved that, within a square or hexagonal lattice,
it is possible to reconfigure any connected set of modules
into any other connected set containing the same number of
modules by means of a distributed algorithm based on local
rules. Furthermore, the number of moves, communication,
and time steps required is linear in the number of modules.

Notice that our discussion and our implementation of the
algorithm are synchronous. Nevertheless, obtaining an asyn-
chronous implementation is quite straightforward. In the first
place, all counting rules are based on message passing, as
opposed to counting clock steps. Therefore, the only issues
to be taken care of in order to desynchronize the algorithm
are activation and collision conflicts, and this can be done by
means of shaking hands procedures, at the price of increasing
communication.

Fig. 37 Configurations for the experiments

Table 2 Number of parallel steps for the entire reconfiguration (including preprocessing steps)

n Horizontal line Vertical line Snake Square: snake hole Square: little holes Square: dense

10 166 172 170 159 165 162

20 346 372 340 333 314 320

50 886 972 920 832 792 804

100 1.786 1.972 1.843 1.684 1.585 1.584

200 3.586 3.972 3.699 3.328 3.139 3.125

500 8.986 9.972 9.357 8.392 7.722 7.711

1.000 17.986 19.972 18.750 16.978 15.338 15.322
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Fig. 38 Number of parallel steps used for the entire reconfiguration
(including preprocessing steps)

Among the different actions a module needs to take, com-
munication probably is the least time consuming one, when
compared to changing attachments or changing position.
Nevertheless, it is still an issue to be discussed. In our descrip-
tion of the algorithm as well as in our implementation, we
assume that communication is possible between a module
and any of the modules lying in its lattice neighborhood of
radius two. This is an option that we adopt to simplify the
description of the rules. In fact, it could be implemented in
several different ways. One option could be as follows: once
the leader has been chosen, all modules get to know their
relative positions with respect to the leader by message pass-
ing. In fact this can be simultaneously done when electing the
leader (Nichitiu et al. 2001; Wallner 2009). This information
could then be used as ids, allowing modules to communicate
to each other by bounded reach broadcasting. Another possi-
bility is to use the DFS numbering as ids, once the leader has
been elected. Other alternative solutions can be envisaged,
but we do not intend to exhaustively explore them here, only
to point out that this is a solvable issue.

We wish to highlight two open problems. One is related
to the fact that our strategy uses a canonical intermediate
shape. We propose it to be a strip, but it could be any other

pre-defined simple shape, such as a rectangle. However, any
choice of canonical shape implies that our strategy is not
“in-place”. The problem of designing an in-place universal
reconfiguration algorithm using local rules is of great inter-
est, both theoretically and practically, since the availability of
additional space required by an algorithm such as ours may
not always be guaranteed in certain physical environments.
One of the challenging issues for an in-place reconfiguration
algorithm is that it is more difficult to determine the final
position for each module via local rules while also avoiding
obstructions and deadlocks. An intriguing possibility is that if
we allow the “tunneling” of modules, the approach presented
in Aloupis et al. (2011) might be adaptible. An alternative
strategy might be to develop a reconfiguration algorithm that
only uses some constant size (preferably equal to 1) buffer
around the initial and goal shapes. The other open problem is
to extend this work to three dimensions, where the right hand
rule does not apply in a straightforward way. A successful
strategy in three dimensions would require a new approach.
The reconfiguration algorithm presented in Aloupis et al.
(2011) works in both two and three dimensions, but it strongly
relies on the “tunneling” capability.
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Appendix

10.1 Moves for the 8 sliding square units meta-module

Figure 39 shows how a meta-module made of 8 sliding
square units can perform the slide move. Figure 40 shows

Fig. 39 A meta-module of 8 sliding square units performs slide. Only the first half steps are shown, the rest of the move is completed by symmetry
(Color figure online)

Fig. 40 A meta-module of 8 sliding square units performs convex transition without extra empty space requirements. Only the first half steps are
shown, the rest of the move is completed by symmetry (Color figure online)
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Fig. 41 A meta-module of 5 sliding square units performs slide. Only the first half steps are shown, the rest of the move is completed by symmetry
(Color figure online)

Fig. 42 A meta-module of 5 sliding square units performs convex transition without without extra empty space requirements. Only the first half
steps are shown, the rest of the move is completed by symmetry (Color figure online)

Fig. 43 A meta-module of 8 rotating square units performs slide without extra empty space requirements. Only the first half steps are shown, the
rest of the move is completed by symmetry (Color figure online)

Fig. 44 A meta-module of 8 rotating square units performs convex transition without extra empty space requirements. Only the first half steps are
shown, the rest of the move is completed by symmetry (Color figure online)
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Fig. 45 When the hexagonal units have light extra empty space
requirements, meta-modules of six units are capable to change position
without extra empty space requirements. Only the first half of the atomic
moves are shown, the remaining are obtained by symmetry (Color figure
online)

how the same meta-module can perform the convex transition
move without any extra space requirement.

10.2 Moves for the 5 sliding square units meta-module

Figure 41 shows how a meta-module made of 8 sliding square
units can perform the slide move. Figure 42 shows how the
same meta-module can perform the convex transition move
without any extra empty space requirement.

10.3 Moves for the rotating square units meta-module

Figure 43 shows how a meta-module made of 8 rotating
square units can perform the slide move without any extra
empty space requirement. Figure 44 shows how the same
meta-module can perform the convex transition move with-
out any extra empty space requirement.

10.4 Moving meta-modules of hexagonal units

Figure 45 shows how a meta-module made of 6 hexagonal
units can change position without any extra empty space
requirement, when the units have light extra empty space
requirements. Figure 46 shows how a meta-module made of
18 hexagonal units can change position without any extra
empty space requirement, when the units have strong extra
empty space requirements.

Fig. 46 When the hexagonal units have strong extra empty space requirements, meta-modules of eighteen units are capable to change position
without extra empty space requirements. Only the first half of the atomic moves are shown, the remaining are obtained by symmetry (Color figure
online)
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