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Abstract Over the past few decades, topological segmen-
tation has been much studied, especially for structured envi-
ronments. In this work, we first propose a set of criteria to
assess the quality of topological segmentation, especially for
semi-structured environments in 2D. These criteria provide
a general benchmark for different segmentation algorithms.
Then we introduce an incremental approach to create topo-
logical segmentation for semi-structured environments. Our
novel approach is based on spectral clustering of an incre-
mental generalized Voronoi decomposition of discretized
metric maps. It extracts sparse spatial information from the
maps, and builds an environment model which aims at sim-
plifying the navigation task for mobile robots. Experimental
results in real environments show the robustness and the qual-
ity of the topological map created by the proposed method.
Extended experiments for urban search and rescue missions
are performed to show the global consistency of the proposed
incremental segmentation method using six different trails,
during which the test robot traveled 1.8 km in total.
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1 Introduction

1.1 Motivation

Topological mapping-and-segmentation is an intuitive way
to help humans to understand an environment. It is also an
important approach to provide preliminary results for fur-
ther semantic labeling or topological navigation. However,
topological segmentation for semi-structured environments
is challenging, since the definition of regions in those envi-
ronments is difficult. We define a semi-structured environ-
ment as an environment where the local areas cannot be
directly categorized into standard semantic labels, such as
“room” or “corridor” etc. At the same time, its topology may
vary due to local changes. On the contrary, a structured envi-
ronment has an inherent static topology, such as a typical
indoor environment can generally be decomposed and clus-
tered into aforementioned semantic labels. Compared with
indoor environments, the assessment of the segmentation
quality for semi-structured environments is however vague.

As the basis of navigation and localization, mapping is of
growing importance in robotics. Mapping is the process to
build a representation by which robots can share with humans
a common understanding of an environment. Metric maps
and topological maps are the two most common types. Metric
maps describe the surroundings of robots in a geometrical and
measured way, usually by defining free and occupied space
with occupancy grids (Elfes 1989) or distances and positions
of features (Civera et al. 2008; Strasdat et al. 2010). Neverthe-
less, metric maps incorporate redundant information for pre-
cise mapping but usually do not handle the data in an efficient
way. For example, if a robot navigates a long path based on
occupancy grids, the path planning can be prohibitively slow.
This shortcoming is crucial for time constrained tasks, such
as search and rescue missions (Burke et al. 2004; Balaguer et
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al. 2009). On the contrary, topological mapping (Choi et al.
2009b; Liu et al. 2011; Choset and Nagatani 2001) shows its
advantages for lightweight graph-based path planning using
sparse information.

Moreover, segmentation of the working space for robots
is generally required, since humans use mostly topologi-
cal representation of their surroundings as well (McNamara
1986). As far as environment modeling is concerned, topo-
logical segmentation provides the basis to associate extra
information to certain regions, such as the information of
detected survivors in urban search and rescue (USAR) or
functional areas for robots (Kruijff et al. 2012b). Related
semantic labeling based on probabilistic graphical models,
such as Voronoi random fields (VRF) (Friedman et al. 2007),
and semi-supervised semantic learning (Shi et al. 2012) are
also reported. The integration of such mapping scheme to
a multi-agent system can be found in our previous works
(Gianni et al. 2011; Kruijff et al. 2012a).

It is natural to decompose an indoor environment into
semantic places such as “rooms”, “corridors” etc. Analytic
methods such as ‘Z’ shape detection (Tomatis et al. 2003) or
gateway separations (Beeson 2008) have shown good perfor-
mance in such construction of topological structure. Recent
work using topological graphs to fuse metric local maps
showed the benefit of topological mapping in reconstructing
global indoor environments (Beeson et al. 2010). Dolgov and
Thrun (2009) proposed a topological navigation approach
in a strongly structured environment, where crossings in a
parking lot are modeled by Voronoi graph to facilitate the
navigation of vehicles. However, regarding semi-structured
environments, these definitions, such as “room” and “cross-
ing”, are not obvious. Inspired by these semantic definitions,
we define similar local structures for typical semi-structured
environments, which are discussed in Sect. 4.4.

Semi-structured environments are typical environments
for search and rescue missions (Baber et al. 2004; Bala-
guer et al. 2009). The topological segmentation for semi-
structured environments has not been much studied because
of the following two main reasons. Firstly, the lack of struc-
ture makes topological reasoning difficult. Secondly, as an
extension of the first reason, no existing well-recognized cri-
teria are applicable to justify the quality of a segmentation
result.

We have to recognize that the definition of inherent topol-
ogy of a semi-structured environment is sometimes not
even clear for humans. In the first part of this paper, we
propose a metric to assess the quality of topological seg-
mentation, by considering geometrical intuitivism.1 After
that, we present a novel approach for topological segmenta-
tion, which utilizes an incrementally generated generalized

1 Please notice that the metric is to assess the quality of a segmentation
result, rather than a parameter to be optimized.

(a) (b)

Fig. 1 Topological segmentation of a semi-structured environment.
The raw map in a covers an area of around 50 × 50(m2). a A raw
map from a parking lot, b Segmentation result

Voronoi graph (GVG) (Aurenhammer 1991; Barraquand and
Latombe 1991). In order to enhance the sparseness of the rep-
resentation, the spectral clustering method is then performed.
Figure 1 depicts a metric map created at a parking lot and the
segmentation result using the proposed method.

1.2 Challenges

An online incremental approach is preferable to off-line
methods since the exploration of unexplored areas typically
involves only small changes per iteration. First, incremen-
tal approaches are computationally more efficient. Besides,
most existing clustering algorithms require the cardinality
of the segmentation, which is generally impossible to define
before exploration (Choi et al. 2011). In order to define a
proper incremental segmentation approach, the following
requirements need to be considered.

1. Sensitivity The approach needs to detect what changes
have occurred since the last iteration. It is preferred to
work only on the affected parts of the map, rather than
the global map.

2. Modality and simplicity The segmentation should repre-
sent the inherent structure of the map at each iteration by
a sufficiently small number of regions for path-planning
or environment modeling. It enables the approach to be
scalable at different map sizes; meanwhile it allows the
use of intermediate results.

3. Stability The output of an incremental algorithm applied
to a complete map should not differ from a segmentation
obtained using the same approach in an off-line fashion.

4. Consistency Last but not least, the resulting topological
structure ought to be consistent throughout different runs
in the same environment, regardless the sequence through
which the global map is created.

We describe our approach in detail in the remainder of
this paper, explaining how we take these requirements into
account. Especially, the stability and consistency of the seg-
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mented regions are evaluated through different runs of real
experiments following an accident scenario in a tunnel.

1.3 Structure of the paper

In Sect. 2, a short overview of the state of the art is presented.
Subsequently, the designed quality factor is presented before
the discussion on spectral clustering, its incremental forms
and the identified drawbacks. In Sect. 4, the proposed GVG
extraction algorithm is introduced. Several core problems
related to the GVG extraction are discussed in Sect. 5. Results
and discussions are presented at the end.

2 Related work

2.1 Topological representation

Several works deal with the extraction of topological regions
from metric maps as follows. Intuitively, a topological map is
defined as a graph structure, which is composed of nodes and
links among them. In general, there are two types of topo-
logical maps depending on what a node represents. Most
existing works consider nodes in topological map as “key-
points” (Ryu and Yang 1999; Choset and Nagatani 2001;
Zender and Martínez Mozos 2008) in the metric map. The
rest considers nodes as interesting regions (Choi et al. 2009a;
Thrun 1998; Liu et al. 2011), namely region-based topologi-
cal maps. Conceptually, both types describe environments by
topology representations, typically by using graph structures.

There are alternative means to represent topological
regions such as image-based descriptors, e.g. (Liu et al. 2009;
Liu and Siegwart 2012; Tapus and Siegwart 2005), using
fused information (Ranganathan et al. 2002; Liu and Siegwart
2013) or reasoning by bayesian methods (Blanco et al. 2008)
or by non-parametric learning (Liu et al. 2012b). Because
of their irrelevance in terms of perception pattern, we only
consider those using range readings in our discussion.

2.2 Spectral clustering

Graph partition methods are widely used in this field, since
topological mapping can be considered as a clustering prob-
lem over a connected graph. The most common approach is
to use graph cut theories such as the Normalized Cut (Shi
and Malik 2000) or Ratio Cut (Hagen and Kahng 1992). The
latter may be approximated by unnormalized spectral clus-
tering, as indicated by Luxburg (2006).

Spectral clustering is widely used in robotics to extract
clusters of data which maximize the internal connectivity
while minimizing the connectivity to the exterior on the
adjacency graph. The spectral clustering approach however
is not free of drawbacks. Nadler and Galun presented in

(Nadler and Galun 2007) the difficulties to cope with multi-
scale landscapes and the failure to extract regions of dif-
ferent sizes, namely the scaling problem. Zelnik-Manor and
Perona proposed a self-tuning spectral clustering algorithm
(Zelnik-Manor and Perona 2004), through which they tried
to improve the scalability. In our previous work (Liu et al.
2011), we introduced an alternative topological segmenta-
tion method based on mutual information, and showed its
application in regional segmentation. We also showed that
how human inputs can be assistive for region generation by
using a novel markov model by (Liu et al. 2012a), where we
compared spectral clustering with other similar algorithms.

Besides the scaling problem, the computational complex-
ity of spectral clustering also hinders its performance. Due to
the expensive matrix inversions, different incremental vari-
ants of spectral clustering were developed to relieve the com-
putational complexity. Brunskill et al. (2007), took a fixed
number of scans and applied spectral clustering on a uni-
form grid with a distance adjacency function. The number
of added clusters is extracted by the analysis of the eigenval-
ues of the adjacency matrix. Choi et al. (2010, 2011) used
a quad-tree decomposition as basis for incremental spectral
clustering and the number of neighboring cells as similar-
ity indicator. Unlike Brunskill’s method, two regions were
extracted for each iteration in Choi et al. (2010, 2011) and
only one region of the two was added to the topological
map.

2.3 Generalized Voronoi graph (GVG)

Another popular approach for the segmentation of metric
maps is GVG-based segmentation as proposed by Thrun
(Thrun 1998). GVG has been used in several mapping and
navigation problems. However, the extraction of GVG in
most of the previous work uses raw range scans instead
of metric map, such as Local Voronoi Diagram proposed
by Blanco et al. (2000). These methods are easily accessi-
ble for structured environments, where well-defined edges
can be easily detected and the laser readings are with less
noise. Based on the GVG generated by raw range scans, sev-
eral works managed to achieve autonomous indoor localiza-
tion (Song and Liu 2013) and navigation on GVG such as
(Zwynsvoorde et al. 2000; Choset and Nagatani 2001). But
it is hard to extend to semi-structured environment, where the
structure is not of limited types; more important, it is inac-
cessible for environment modeling and constructing repre-
sentations that human can easily understand. The challenge
for GVG construction is that it requires the measure of the
distance to different obstacles (Drysdale 1979), but obsta-
cle designation cannot be easily handled from metric maps,
where the perspective of the mobile robot is missing. In this
paper, we discuss obstacle-designing problem by setting up
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virtual obstacles and analyzing clearance for specific exam-
ples. Please refer to Sect. 4.2 for detail.

Segmentation approaches that use GVG as the basic
structure guarantee that regions are separated if they have
weak connections, namely small passages, e.g. doorways.
However, GVG extraction is non-trivial. An efficient algo-
rithm called Brushfire, similar to the Dijkstra algorithm, was
developed by Barraquand and Latombe (1991), originally
designed for robot motion planning. Incremental Voronoi
construction was proposed independently by (Karavelas
2004; Ahn et al. 2003) and (Choset 1997). The algorithm
follows a computationally optimized form called Dynamic
Brushfire, developed by Kalra et al. (2009). In general,
because GVG is build along exact outlines of obstacles, the
decomposition error introduced by space discretization is
minimized. Hence, segmentation results based on GVG are
more stable than those based on structured decomposition.
It outperforms other decompositions which rely on global
coordination, such as quad-trees, as analyzed in (Liu et al.
2011).

Some other related methods are based on thinning skeleton
(Lee et al. 2007; Lau et al. 2010), which are either hard to gen-
erate region-based representation or easily over-segment the
free space, leading to instability of structural analysis. Vision
techniques can also be adopted such as watershed algorithms
(Galindo et al. 2005), by which the structural changes in semi-
structured environment can not be adapted easily.

In this paper, we treat the GVG extraction problem in
a discretized space, in order to alleviate the influence of
noise from metric map and allow online computation; at the
same time, analytic approaches which explicitly treat special
structures such as “doorway”, “corridor” and “dead end”-
like local structures are implemented. They help to simplify
the topology and emphasize the typical local compactness
of the generated representation, leading to relatively stable
region-based final representations.

2.4 Segmentation assessment

Assessing the quality of segmentation in an objective
manner is extremely important when comparing different
approaches. Though defining a quality measure to show
the usability of a given segmentation is essential, it is dif-
ficult to do so without considering a specific application
because the optimal structures are mostly task-dependent.
An example of a task-dependent quality factor was given by
Thrun (1998), where three criteria were proposed to eval-
uate the performance of the proposed algorithm, namely
consistency, loss and efficiency. Zivkovic et al. (2006) com-
pared the path-planning efficiency of different methods. In
this paper, we define the criteria for more general pur-
poses by considering the geometrical properties such as
convexity.

3 Region and segmentation quality

In general, a segmentation is considered to be useful if it rep-
resents the structure of the environment efficiently and suffi-
ciently. For instance, navigation and path-planning require
topological maps to have a sufficiently small number of
regions. At the same time, it is preferred to remove unneces-
sary information of an unsegmented occupancy grid. To this
end, we consider two types of criteria: first, the quality of
a well-formed region; secondly, the topology of a segmen-
tation. The proposed criteria are mainly based on geometric
intuitions.

3.1 Quality of a region

In this section, we introduce the following two criteria to
define the quality of a single region.

3.1.1 Convexity

It can be represented by the area of the convex hull of
the region compared to the area of the region (Latecki and
Lakämper 1999; Rosin 2000). The convex hull is defined as
the connected set of points extracted from the target shape
such that if any two points of a set of points are connected,
the segment connecting both points is contained within the
convex hull (Fabri and Pion 2009).

The convexity of the i th region of an arbitrary segmenta-
tion can be defined as:

ci = Ai

Hi
, (1)

where Ai is the area of the i th region and Hi is the area of the
convex hull defined by the i th region. The perfect region in
terms of connectivity is convex and has an inter-connectivity
ratio of one, whereas the quality of the region is bad if the
factor is less than one and tends to zero. Figure 2 shows
regions with different convexity.

3.1.2 Compactness

The compactness of a region defines whether a region is
widely spread or condensed around its center of gravity. It

(a) (b)

Fig. 2 Two illustrations of the convexity quality factor. Solid lines
delimitation of the region, dashed lines convex hull of the region. a
c = 0.88, b c = 0.56
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also indicates whether a region homogeneously reachable
from neighboring regions. The compactness is normalized
using the area of the region in order to have a comparable
measure independent of the region size:

si = 1

Mi Ai

∑

j

(x j − x0)
2 + (y j − y0)

2

Ai
, (2)

where x j and y j are the x- and y-coordinates of the mass
members, and x0 and y0 are coordinates of the center of
gravity of the region; M is the number of cells in the
region i .
In summary, the quality of a region could be represented as:
qi = ci − si Note that the unit for both ci and si components
are scalar. In order to emphasis different characteristics of a
region, a weighting factor for each component can be further
adopted.

3.2 Quality of a segmentation

The quality of a completely segmented map is a measure
derived using the quality of each region while including key
global characteristics of the segmentation.

3.2.1 Area coverage ratio

In the ideal case, each point on a metric map is associated to
a region in the topological description. However, since a seg-
mentation method may be based on the pre-decomposition
of the global map (Choi et al. 2009b; Liu et al. 2011), the
ratio of the segmented area compared to the totally avail-
able unoccupied space may not be 1. Such a measure depicts
whether a found topology may serve as a global map. The
ratio is defined as follows:

C =
∑N

i=1 Ai

Am
, (3)

where Am is the total area of the map and N is the number
of regions.

3.2.2 Region validity ratio

The extent of a valid region needs to hold at least the foot-
print dimension and turning clearance of a robot, such that the
robot is able to perform given tasks in the generated regions.
In most cases, a validity criterion based on the accessibil-
ity is suitable. The validation criterion is defined as: being
accessible by at least one open edge of minimal width lmin

and having a minimal extend Amin .
The ratio R of valid regions, describing to which percent-

age a segmentation consists of valid regions, is defined as:

R = # valid regions

# all f ree regions
, (4)

where # all f ree regions is the total number of regions
resulting of the segmentation and # valid regions is the
number of valid regions. As lmin and Amin are specific para-
meters regarding applications, this quality indicator highly
depends on the task and embodiment of the robot.

3.2.3 Simplicity

An important use-case of topological segmentation is to help
navigation and planning. Therefore, it is useful to penalize
solutions with a large number of regions. On the other hand,
if the number of regions is too small, the topological navi-
gation will be meaningless. This component is modeled by

the number of regions N using: e− |N−N̂ |
φ . N̂ is the expected

number of regions and φ reflects the allowable difference
between the expected number of regions and outcome, which
are application-dependent.

3.2.4 Overall quality

Finally, evaluating the quality of a segmentation goes back
to a summary of four components: the quality factors of the
regions, the coverage of the map, the region validity ratio and
the simplicity of the segmentation.

Overall, the quality of a segmentation is given by:

Q = C R

N
·

N∑

i=1

qi + λe− |N−N̂ |
φ , (5)

where λ is the relative weight between raw quality and sim-
plicity. This is the primary mean that we are going to use to
assess the quality of each experimental trail.

4 GVG extraction

The interpretation of rooms and places from humans’ point of
view certainly includes the concepts of narrow passages and
separating obstacles. The idea behind the Voronoi decompo-
sition for map segmentation is to extract places on the map
using similar concepts. An analogous interpretation exists
in semi-structured space. Even though there are no deter-
minative corridors, obstacles may obstruct the connections
between open space and thus be treated as doorway-like local
structures. The resulting segmentation may not have an inter-
pretation in terms of different places or rooms but definitely
generates featured topological regions, fulfilling the needs
for navigation.
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Fig. 3 Decomposition of the raw metric map shown in Fig. 1a

We aim at an online incremental approach. Therefore it is
preferred to firstly shrink the data amount from the raw map.
(Thrun 1998) provided a framework to generate topological
segmentation offline. However its computational complexity
doesn’t allow online computing, let alone the adaptation to
an incremental method. In this paper, the Voronoi decom-
position of the map is based on a uniform decomposition
where the cell size depends on the constraints on the preci-
sion of the map. A decomposition result is shown in Fig. 3.
The blue region marks valid free space, while the red areas
are removed automatically, considering connectivity.

Adopting the notation of Thrun (1998), we define the fol-
lowing components related to topological segmentation for
a discretized GVG, which are also indicated in Fig. 4.

1. Basis Points of a free cell: the set of points in occupied
space having (the same) minimal clearance to a given free
cell.

2. Clearance of a free cell: The distance between a cell and
its basis points.

3. Generalized Voronoi graph: The free cells which have at
least two basis points.

4. Critical cells: The cells of the Voronoi diagram which
minimize the clearance locally.

5. Critical lines: The line segments connecting a critical cell
with its basis points.

6. Topological map: The regions in free space delimited by
occupied space and critical lines represent topological
nodes. The edges are the connections among regions.

The Voronoi decomposition is designed for applications
in continuous coordinates. Nevertheless, the basic concepts
remain valid but with the following adaptations.

Fig. 4 Sketch of related elements to describe a discretized GVG

4.1 Discretized Voronoi diagram

When abusing the above definition of basis points, one can
observe that the Voronoi diagram is detected only when it
passes the mid-way of free cells. Otherwise, a free cell will
have one basis point on one side and its closest neighbor will
have another basis point to the other side (see Fig. 5). In order
to ensure that the Voronoi diagram is sufficiently represented
by discretized cells, we have to introduce a tolerance when
comparing the distances of two potential basis points: |d1 −
d2| < δ · C , with C the width of a grid cell. The situation for
both extreme cases is illustrated in Fig. 5. As for simplicity,
the width of cells is assumed to be one.

Figure 5a shows that the required tolerance, in order to
accept both basis points (dark gray), exactly equals to δ = 1.
The disadvantage of this tweak is that both free cells will
appear later on in the Voronoi diagram and have to be filtered
out. In the situation presented in Fig. 5b, similar reflections
would lead to a required tolerance of δ = √

2. Further evalu-
ations show however that the tolerance of δ = 1 is sufficient.
In the presented case, the lateral cells would only get a single
basis point whereas the top and bottom cells would have two
basis points.

4.2 Designation of obstacles

The definition of the GVG requires that the points on the
bisector of an obstacle angle have (at least) two basis points
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d d

d - 1/2
d + 1/2

(a)

d d

ds

d+ 2/2 d- 2/2

ds

(b)

Fig. 5 Clearance tolerance for different orientations of the cells. a Hor-
izontally oriented, b 45◦ orientation

from separate obstacles. Compared with the classical GVG
extraction algorithms (Aurenhammer 1991), a key issue for
the application of GVG in robot mapping is the designation
of obstacles. This is because most metric maps use occu-
pancy to indicate the presence of obstacles, and the obstacles
are always linked. For example, the wall surrounding a room
can be considered as a single obstacle. In this case, it causes
serious problems for the calculation of GVG, by using tra-
ditional algorithms, e.g. it fails in the cases that a room is
surrounded by continuous walls, where the room will not be
detected; it also fails at a dead-end corridor etc. In these cases,
even though the region of free space is formed by a single
obstacle, it is desirable to extract the surrounded region as a
separated node.

It shows that the segmentation of the map is significantly
influenced by the definition of the obstacles and their exten-
sion. An example is shown in Fig. 6: the boundaries of the
free space form a connected obstacle. It is however desirable
to separate two regions by the segment AB. Thus, point A, as
a basis point, should be on a different “virtual obstacle” than
B, even they are connected via the walls. Hereby the defini-
tion of an obstacle is extended to virtual obstacles which are
used in the basis points calculations. Virtual obstacles allow
two occupied cells to be the basis points of a same free cell
while being member of the same physical obstacle. The des-
ignation of virtual obstacles depends on the tightness of the
connectivity between two cells on obstacles, such that: two
occupied cells not being part of the same obstacle are always
loosely connected; two distinct occupied cells are a part of
the same virtual obstacle if they are tightly connected. Please
refer to Eq. (3) for further information.

In order to clearly define the tightness of a connectivity,
the following definitions are used:

Fig. 6 Illustration of the definition of loss/tight connection between
basis points

1. the linear distance between two cells dlinear

2. the shortest distance along the cells of the physical obsta-
cle dobstacle

For instance, the illustration in Fig. 6 (white color corre-
sponds to free space) shows the difference in dlinear and
dobstacle in two special cases. All four points, A, B, C and D
are candidates for being loosely connected and thus forming
a virtual obstacle. A and B are close to each other in terms of
the linear distance but further away in terms of the distance
on the obstacle, hence should be considered as loosely con-
nected, as opposed to C and D for which the linear distance
and the obstacle distance are similar. The definition of tight
and loose connection is deduced:

connectivi t y :
{

loose, if rg · dlinear < dobstacle

tight, if rg · dlinear ≥ dobstacle,
(6)

where rg defines the threshold ratio.2 Two cells forming a vir-
tual obstacle are not disassociated from their physical obsta-
cle.

Note that the extraction of the connected occupied cells
is simplified by only considering occupied cells which have
at least one free cell as first or second order neighbor. This
simplification does not affect the resulting groups but the
computational expense is considerably reduced.

4.3 Grouping of critical points

Usually the local minimization of the Voronoi diagram is
non-strict and the tolerance on the basis point distances leads
to series of critical cells with equal clearance, shown in
Fig. 7a. This effect especially occurs in corridors since they
are regions of constant width of the free space. In order to
account for this behavior, the critical cells are grouped in
accordance with the following analysis.

2 rg is chosen to be 3 empirically.
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(a) (b)

Fig. 7 Merging of highly similar critical cells (light gray Voronoi dia-
gram; gray lines associated critical lines). a Raw critical cells, b Virtual
critical cells

Even in continuous space, perfect corridors (having
exactly the same width) would give rise to a queue of crit-
ical points. However there may be more than one in the
discretized setting. The redundant critical cells should be
merged when they are first- or second-order neighbors of
the same obstacle. We define a single virtual cell as the aver-
age of the x- and y-coordinates of the centers of both critical
cells. These virtual cells are the only references that need to
be considered during the critical line generation. An intuitive
sketch is shown in Fig. 7b.

4.4 Clearance analysis

The filtering of critical cells is based on the analysis of the
clearance of the grouped critical cells. If the clearance of
the Voronoi diagram is plotted with respect to the internal
order of the cells, the variation of the clearance can be visu-
alized in a clearance graph. Depending on the structure of
the environment, different shapes are observable as we can
see in the following cases. Please note that hereby we abuse
several semantic labels of these cases from structured indoor
environments, which can be applicable to local areas of semi-
structured environments. It does not necessarily imply that
a semi-structured environment can be embedded with these
semantic meanings.

4.4.1 1: Corridor-like region

A corridor is characterized by a starting point, an end point,
a length and a width (see Fig. 8). Both ends are connected to
cells of the Voronoi diagram with a clearance superior to the
clearance in the corridor. The unique identifier of a corridor,
which makes the difference to the second type “Door” is the
ratio of its length to the its width. As the width of the corridor
may be approximated by twice the clearance of the group of
the critical cells (c) and the length of the corridor (dc) can be
approximated by the number of successive critical cells, the
following ratio is determinative.

rcc = c

dc
(7)

dc

c

c

Fig. 8 The clearance graph and an illustration of the situation for a
corridor

dc

c

c

Fig. 9 The clearance graph and an illustration of the situation for a
dead end

The value rcc = 1 is proposed as the boundary from Case
1 to Case 2. Groups of critical cells with a length superior
to their clearance are categorized as Corridors. A corridor
is designed to be a distinct region connecting two or more
regions, thus has a critical cell on each extremity.

4.4.2 Case 2: Door-like region

A corridor whose length tends to zero is interpreted as a door.
As for the corridor, both ends are connected to cells of the
Voronoi diagram with clearance superior to the clearance in
the corridor. Thus a door is characterized by a start, an end
and a width. After applying the ratio of Eq. (7) and respecting
the threshold proposed in the previous paragraph, doors are
identifiable in terms of the clearance graph. A door, as being
a separator of two regions, only has a single critical cell. The
center is defined as the average of the centers of the group
members. The basis points are the average of the neighboring
basis points of the group members.

4.4.3 Case 3: Deadend-like region

The major difference between a deadend and a corridor is the
the former is lack of connectivity to the Voronoi diagram on
one extremity of the clearance graph as shown in Fig. 9. A
deadend is a proper region with a critical cell on the extremity
connected to the Voronoi diagram.
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4.5 Extraction of regions

The output of the algorithm is a region-based partition of an
environment in the form of a topological graph. The nodes
of the graph are regions extracted from the environment; the
edges among nodes defines the relations between two nodes.
The previous steps only introduced the method to extract
local basis points, critical lines and corresponding clearances.
An additional step is required to extract a certain region as
a compact unit, containing the member cells of each region,
definition of boarders and the connections to neighboring
regions. Therefore, the grid introduced by the discretization
of map needs to be scanned to detect the regions delimited
by occupied cells and critical lines. The extraction process
can be carried out as follows.

We first select a cell from all unlabeled cells as a seed.
Starting with this seed cell, a queue of regional members are
iteratively extracted by exploring the first-ordered neighbors
of the visited cell. During this extraction process, a cell will
be added to the queue only if the following three conditions
are met at the same time:

1. The cell is within the bounds of the map;
2. The cell is not occupied (e.g. as an obstacle);
3. The cell is not crossed by any critical lines.

After the convergence of this extraction process, we define
the union of all the cells in the queue as a region. The mem-
ber cells of the region can further classified as bordering
cells and non-bordering cells. The location and sizes of the
member cells define the extent of a region. Specifically, the
bordering cells are the cells with less than four first-ordered
member-neighbors. Their locations determine the connec-
tions to neighboring regions.

5 Incremental Voronoi decomposition

The generation of Voronoi decomposition for robot mapping
includes computationally expensive steps (e.g. the calcula-
tion of the clearance of each free cell) and less expensive
steps (e.g. the generation of the Voronoi diagram). There-
fore, the challenge for an incremental implementation of the
Voronoi decomposition is rather not developing an efficient
search for grouping algorithms, but an efficient way to deter-
mine the subset of unoccupied cells affected by the removal
or addition of an occupied cell.

5.1 Dynamic brushfire

An algorithm for incremental Voronoi segmentation in
dynamic and unexplored open space was developed by Kalra,
Ferguson and Stentz (Kalra et al. 2009). They proposed an

efficient way to update the basis points in aid of the decompo-
sition. At the same time, they incorporated the calculation of
the clearance using (Barraquand and Latombe 1991), which
was known as the Brushfire algorithm. The cells, which are
affected by addition or removal of an occupied cell, are
marked as invalid and are thus re-evaluated according to non-
incremental Voronoi decomposition algorithm.

5.1.1 Removal of an occupied cell

All the cells which are closer to a removed cell than to any
other occupied cells are invalidated. The affected cells are
composed of the following two groups:

1. the removed occupied cells;
2. all the free cells that used 1. to calculate their clearance.

This implies that a free cell can also be invalidated if its basis
points are removed.

5.1.2 Addition of an occupied cell

Regarding the definition of Voronoi graph, adding an occu-
pied cell affects the cells which are closer to the newly added
cell than to any other occupied cell. Those cells are not as
easily identifiable as the cells affected by the removal of an
occupied cell. A brute force search is used in our implemen-
tation.

5.2 Incremental Voronoi segmentation with virtual
obstacles

The incremental Voronoi decomposition approaches pro-
posed in the literature are well suited in many cases. In order
to extract the desired structure for optimal path planning,
some modifications to the standard Voronoi decomposition
algorithm were proposed such as Choset (1997). However,
these methods cannot be easily extended to incremental ver-
sions, if we consider map changes instead of incrementally
fed scans. The introduction of virtual obstacles removes the
direct link between a cell and its basis points: loosely con-
nected cells may be tightly connected after slight modifica-
tions of the map. The Dynamic Brushfire approach, which
requires this relation, is only well suited for environments in
which virtual obstacles are well defined and independent of
the shape of the physical obstacles, such as the one used by
Kalra et al. (2009). We propose in the next section a novel
algorithm able to cope with the definition of virtual obstacles.

The idea of the proposed algorithm is to update as many
free cells as required to surely catch all possibly affected
cells, while keeping the number of updates as small as possi-
ble. Removing an occupied cell from a grid affects all those
cells that calculated their clearance based on the removed
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cell. This hypothesis is valid if the group association is not
re-evaluated during the basis point generation. In standard
Voronoi decomposition a free cell may only have a single
basis point per obstacle. However, in a discrete space, obsta-
cles break this rule. The results are especially affected in the
case of relatively large obstacles with rather complex shapes.
A slight change in the structure of the obstacle may then affect
multiple virtual obstacles and thus lead to additional regions.
The cells that change the structure of the obstacles are not
required to have a connection with all the affected free cells
as required by Dynamic Brushfire (Kalra et al. 2009) or other
similar algorithms.

5.3 The algorithm

Since the incremental method should deal with metric maps
that are dynamically changing, we first need to identify the
affected cells at each step. Moreover, the cells in their sur-
rounding region should also be taken as affected. Then the
Voronoi diagram for all the cells in the affected regions must
be re-generated based on the updated critical lines. There-
fore, an important feature of the incremental approach is the
constant tracking of the affected elements. As a result, we
need to consider the following aspects.

5.3.1 Adding occupied cells

Adding an occupied cell usually affects significant parts of
the Voronoi diagram around it as it pushes the cells away
from the obstacle. As a consequence, the cells containing
the new obstacle and all its neighboring cells are marked as
affected.

5.3.2 Removing occupied cells

The free cells that take the removed obstacle as their basis
point are affected as well as the cells affected by a change in
the obstacle structure.

5.3.3 Voronoi diagram

The clearance of the invalidated cells is re-computed. If a
cell was marked as Voronoi cell and the basis points have
changed, it is marked as affected. If it is no longer a Voronoi
cell, it is removed from the Voronoi diagram and marked as
affected.

5.3.4 Updating critical cells

The local minimization of the Voronoi diagram is modified
but that does not affect the whole diagram. Thus local mini-
mal are searched in the affected parts of the Voronoi diagram

including the first- and second-order neighboring regions of
the affected cells.

5.4 Region extraction

Finally the regions are extracted using the same algorithm as
in the non-incremental approach, except that only the regions
marked as affected are considered. The region generation
starts with a seed cell in the set of affected cells. Each result-
ing region is further analyzed and categorized with respect
to the following three cases:

5.4.1 No valid region was generated

Starting from the selected seed node did not result in a
valid region. This implies that the region, to which the seed
node was associated is no longer valid, and thus should be
removed.

5.4.2 A single valid region was generated

The region with which the algorithm started is still valid and
delivers a single result. No significant changes occurred in the
region except a potential resize; In the case of a region resize,
the old region is updated and marked as resized; otherwise,
the region is marked as unchanged.

5.4.3 An arbitrary number of regions was generated

The most common case for incremental Voronoi segmenta-
tion is a regrouping in the region. In general, the bordering
cells of a region are displaced, which leads to an augmenta-
tion of the available area. During the segmentation, the area
of the region is rearranged into multiple regions. The named
region is identified by comparing the distances among the
centers of gravity of the old region and the new ones. The
region with the smallest deviation is accepted as the substi-
tution of the old region. The other newly detected regions are
added as new topological nodes.

5.5 Results of incremental Voronoi decomposition

Our result of the sample experiment on semi-structured envi-
ronment is shown in Fig. 10. At each step, the whole map is
segmented and every valid free grid cell has a corresponding
region. Green regions mark the incrementally changed areas
of the map; red regions mark the affected regions. The algo-
rithm works incrementally and topological regions defined by
previous steps are updated accordingly. We must notice that
the decomposition is however not perfect: the combination
of grid-based segmentation with non-straight edged obstacles
results in regions that are not decomposed properly. As for
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(a) Step 1 (b) Step 2 (c) Step 3 (d) Step 5 (e) Step 6 (f) Step 8

(g) Step 1 (h) Step 2 (i) Step 3 (j) Step 5 (k) Step 6 (l) Step 8

(m) Step 1 (n) Step 2 (o) Step 3 (p) Step 5 (q) Step 6 (r) Step 8

Fig. 10 Incremental Voronoi decomposition on the sample map. The
first row shows the incremental segmentation results. The second row
shows the regions which are incrementally changed by each iteration
step. The third row shows the regions where the GVG needs to be recal-

culated due to the incremental changes indicated by the second row
respectively. The related dataset is accessible at: http://www.ece.ust.
hk/~eelium/dfki_parkinglot_map.bag.tar.gz (46 MB)

Fig. 11 Fusion of pruned regions applied to the sample map. a Raw
decomposition, b After pruning

the example shown in Fig. 11a, corridors are frequently sub-
ject to undesired fragmentation. Therefore, post-processing
of the segmentation is necessary.

6 Post-processing of a Voronoi segmentation

The following section analyzes the possibilities of reduc-
ing the complexity and increasing the quality of the Voronoi
decomposition by fusing regions of high similarity. We

present and discuss two different methods that we succes-
sively use.

6.1 Fusion of pruned regions

By fusing redundant topological nodes in the graph, a coarse
refinement can be achieved. If a topological node has exactly
two adjacent neighbors, it should be fused with one of the
neighboring regions. We use a similar approach as the one
described by Thrun (1998). Figure 11 depicts an instance of
the fusion result, where two regions are fused if and only if
each of them only has one or two neighbors.

6.2 Spectral clustering

Clustering is a way to further enhance the sparseness of topo-
logical maps. In this section, we introduce the application of
spectral clustering using Voronoi decomposition results as
basic structures. Spectral clustering is one of the most com-
mon algorithms for graph clustering. It is extremely flexible
to different types of data structures, as the definition of the
adjacency matrix S : {si j } is open. For typical adjacency
matrices, a distance metric si j needs to be defined between
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adjacent sites i and j . The standard spectral clustering is
introduced in Algorithm 1.

6.3 Distance metrics

The construction of the adjacency matrix is the essence of
spectral clustering, which is build on the distance measure-
ment between each pair of elements in the graph. In our case,
the distance can also be considered as the similarity of two
regions. For standard spectral clustering approaches, please
refer to Luxburg (2006). We define and evaluate four different
distances for Voronoi graphs as follows, where di, j denotes
the Euclidean distance between the centers of cells i and j .

6.3.1 Distance between region centers

Using the Euclidean distance between the centers of two
regions is the most intuitive way:

si, j = K · exp

(
−d2

i, j

σ

)

with K and σ weighting parameters. The results are not
always satisfactory since two regions with close centers may
not be well connected and small regions have a higher prob-
ability to be fused than bigger ones. Furthermore, this mea-
sure is sensitive to the choice of σ (Nadler and Galun 2007;
Zelnik-Manor and Perona 2004). Usually σ is chosen in a
way that the local cells in the range of σ are able to hold
the footprint dimension of the robot. Such that, the criteria
in Eq. (2) can be optimized.

6.3.2 Maximum distance between regions

To solve the shortcoming of two loosely connected regions,
we use the maximum distance between two regions:

si, j = K · exp

(
−d2

i, j,max

σ

)

As Voronoi decomposition yields convex shapes, loosely
connected regions are unlikely to have a small measure in
this case. However, long and narrow regions may not be fused
and this measure again depends on the choice of σ .

6.3.3 Average distance between regions

The average distance between the cells of the two regions is
defined as follows.

si, j = K · exp −
(

1
N1·N2

· ∑N1
i=1

∑N2
j=1 ci, j

)2

σ
,

where ci, j is the distance between the i’th and the j’th cells
of the two regions; N1 and N2 represent the number of cells
in each region, respectively. This measure relates the com-
pactness of the two regions to their similarity factors. Two
compact regions have a small average distance between their
cells.

6.3.4 Connection ratio

Another approach is to use the ratio between the length of
the critical line and regional extents as their similarity:

si, j = K ·
(

lc
A1

+ lc
A2

)
,

where lc is the length of the critical line, A1 and A2 denote the
areas of the two regions. This metric reflects that the internal
connections of the regions have to be maximized whereas the
external connections are minimized. The larger the connec-
tion ratio, the better the accessibility of the regions amongst
each other. Using the area or the contour length of the regions
for normalization produces similar results. This criterion is
the most effective metric to merge region by spectral cluster-
ing, but it is also with highest computational complexity.

6.4 Quantitative clustering results

Recall algorithm 1, the number of regions k is defined by
the number of strictly positive eigenvalues of the Laplacian
matrix, as discussed in Sect. 7.2. The various distance matri-
ces lead to visually rational grouping results. One example
using the “Connection Ratio” criterion is shown in Fig. 1b.
However, we can still compare the quality measures and other
aspects as shown in Table 1. The Connection Ratio is the best
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Table 1 Quality factor and region validity ratio

Methods Quality Valid ratio Time #Region

Raw segmentation 0.657 0.831 N/A 62

Pruned region fusion 0.672 0.821 N/A 54

Center distance 1.640 0.830 0.04 s 36

Average distance 1.607 0.946 0.04 s 35

Maximum distance 1.650 0.919 0.03 s 35

Connection ratio 1.659 0.944 0.05 s 37

candidate considering quality of the segmentation and com-
putational complexity for this data-set. The defined ratio is
independent of the map scale and does not depend on the
extension of the regions. Furthermore, it doesn’t depend on
parameter adjustment either, e.g. σ in Average Distance crite-
ria cannot easily be tuned for arbitrary semi-structured envi-
ronments.

During the spectral clustering of the GVG decomposi-
tion results, small and mostly insignificant regions are fused
with larger regions. Hence, the ratio of valid regions increases
greatly. Additionally, observing the ratio of valid regions (i.e.
usable for navigation) in the third column of Table 1, we infer
that spectral clustering fuses invalid small regions into valid
regions.

7 Discussions

In this section, we discuss several key features of the algo-
rithm. Regarding the known shortcoming of spectral cluster-
ing, which requires the knowledge of clusters k, we explain
how we deal with k selection problem. As one of the main
targets, we will now present the analysis of the algorithm
consistency, as well as the test of the algorithm in a typical
semi-structured environment (Fig. 12).

7.1 Discussion on decomposition size

The proposed algorithm updates the Voronoi diagram in
an incremental manner. Therefore, the performance heav-
ily depends on the amount of data related to affected regions.
The computation times for four selected incremental steps
are presented in Fig. 13. It shows a high dependence on
the decomposition cells size, which defines the amount of
cells that need to be considered for a given updated map.
The change from a cell size of 0.25 to 0.1 m, which cor-
responds to an augmentation from 39,000 to 245,000 cells,
increases the required computation time by a factor of about
20. With similar segmentation results, the graph addition-
ally shows that the incremental approach outperforms the

Fig. 12 Pictures of the tunnel accident environment. Upper row: left
entrance of the tunnel, right in the middle of the environment with
barrels, pallets, and damaged vehicles. Lower row: left the robot used
for the tests, right a live screen during one test

Fig. 13 Performance of the Voronoi decomposition

(a) (b)

Fig. 14 Incremental Voronoi segmentation before and after applying
spectral clustering using “Connection Ratio” as distance. q indicates
the overall quality of the segmentation result using (2). a Before (q =
0.672), b after (q = 1.659)

123



156 Auton Robot (2015) 38:143–160

2tcejbuS1tcejbuS

4tcejbuS3tcejbuS

6tcejbuS5tcejbuS

6htaP5htaP

Fig. 15 Topological segmentation at the end of each subject’s trial
and examples of different paths performed by subjects 5 and 6. Map
size is in average 53 × 23 m2. Please refer to Table 2 for statistical

results. A sample dataset of the incremental mapping process is accessi-
ble at: http://www.ece.ust.hk/~eelium/mapping_bag_tunnel_subject1.
bag (117 MB)

non-incremental approach, independently of the required
updates.

7.2 Discussion on the number of regions k

The selection of number of regions k is a key problem in
nowadays clustering algorithms. It has been denoted as a
major drawback of the spectral clustering algorithms as well.
We propose that the number of clusters k is approximated by
the number of strictly positive eigenvalues. The results of the
segmentation are shown in Fig. 14.

7.3 Experiments for consistency analysis

One of the important properties of an incremental algorithm
is the consistency of the decomposition, which means that the
diversity among the results of different runs at the same envi-
ronment should be minimized. A too diverse decomposition
would probably indicate that the method is too ambiguous to
be used with human operators. In order to test this property
of the proposed algorithm, we implemented a set of exper-
iments in a tunnel environment as shown in Fig. 12. This
set of experiments was carried out by 6 untrained users who
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Table 2 Number of topological regions and connections extracted for
each subject

Subject Number of regions Number of connections

1 32 50

2 39 66

3 33 47

4 35 56

5 39 69

6 36 69

drove the robot manually. Therefore, the routes by which
each subject drove the robot were arbitrary. Global 2d met-
ric maps were created incrementally using karto3 package.
Figure 15 depicts the result of each subject’s trial. Coloring
is randomized, only geometry matters. It can be seen that,
in each case, the global structures of the environment were
extracted, which have similar topological statistical features
among trials, as shown in Table 2. This similarity results in
similar cost in planning and environment modeling. The main
differences appear on the boundary of explored space, left or
right or on the inaccessible sidewalks. Also the large central
region for subjects 1, 3, and 6 can also be split for subjects
2, 4, and 5. This is due to the way the car is perceived with
respect to the barrel opposite. The regions tighten slightly
but it is not obvious that they should be split.

A major difficulty to assess the quality of stability is
that the ground truth is hard to be defined. It means that
generic metrics using terms such as “false positive ratio” are
invalid, e.g. V-measure (Rosenberg and Hirschberg 2007).
More important, comparing to traditional clustering problem,
the configuration space varies with each subject. Instead, we
use the number of extracted regions and connections for each
subject as measures. The results are shown in Table 2. All
numbers are within a few units of each others. This difference
can be accounted for by the sidewalks and tunnel extremities.

7.4 Extended results of indoor environment

Considering that most existing work (Thrun 1998; Choset
and Nagatani 2001) deal with structured environment, we
also want to compare the proposed algorithm with others in
the same context. We show the result from an environment
which is similar to the test environments in related works.
Please notice the obstacles in open areas, which are usually
not considered in Thrun (1998), Choi et al. (2009a). They
are usually hard to manage with GVG extraction. In this
test, we only apply the algorithm to the final map once. Fig-
ure 16a shows the final metric map of a structured environ-
ment which covers an area of size 57 × 35.5 m2. Figure 16b

3 http://kartorobotics.com.

(a)

(b)

(c)

(d)

Fig. 16 Typical results for a structured environment. The incremental
process of mapping data and other Supplementary Data are accessible
at: http://www.ece.ust.hk/~eelium/ETH_HG_G_center_mapping.bag.
tar.gz (912 MB). a Raw map. Map resolution is 0.025 m, b Decom-
posed map. Resolution is 0.25 m, c GVG by the proposed algorithm, d
Final segmentation result. 50 regions

gives the decomposition results of the raw map. Cray (light)
tracks in Fig. 16b depict the GVG extracted from (a), and red
(dark) dots mark the raw critical points. The final segmen-
tation result is shown in 16(d). The overall calculation takes
only 7.84 s on a Duo-Core 2.8 GHz laptop.

Extended results for a typical indoor environment are
shown in Fig. 17.4 Figure17a–c show that the proposed

4 Considering the limited space, we only show the final result of the
segmentation here.
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(a)

(b)

(c)

Fig. 17 Results in an typical indoor environment. q indicates the over-
all quality of the segmentation result using (2). a Raw metric map, b
Voronoi decomposition (50 regions, q = 2.30), c After clustering (25
regions, q = 3.15)

method can reflect the ground truth segmentation in terms
of traditional concepts such as “room” and “corridor”. At the
same time, the result in (c) indicates there are only half the
number of regions after clustering. This sparseness leads to
more compact representation of the same environment and
facilitates the planning task. It implies two conclusions from
these results: the proposed method is able to extract the topo-
logical regions from structured metric maps correctly, with
an incremental manner; Spectral clustering results in a sparse
representation with minimized sufficient number of topolog-
ical nodes.

8 Conclusion

In this paper, we proposed a novel approach to online incre-
mental topological segmentation for metric maps of semi-
structured environments. We also provided a set of general
criteria to justify the quality of topological segmentation,
which can potentially be used as a benchmark to evaluate
related methods. Spectral clustering was used to refine the

raw segmentation result from an incrementally generated
Voronoi diagram, leading to a more simplified representation.
The results carried out by experiment on data-sets, repetitive
tests and extended tests for structured environments specifi-
cally show the simplicity, robustness and consistency of the
proposed method.

Readers interested in the application of the proposed topo-
logical graph in planning, navigation and environment mod-
eling, are invited to refer to our previous report (Kruijff et al.
2012b; Gianni et al. 2011). Topological localization and nav-
igation in 2D and 2.5D for search and rescue robots are the
next steps of our research. Preliminary results can be found
by our recent report (Song and Liu 2013).
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