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Abstract This article presents a probabilistic algorithm
for representing and learning complex manipulation activ-
ities performed by humans in everyday life. The work
builds on the multi-level Hierarchical Hidden Markov Model
(HHMM) framework which allows decomposition of longer-
term complex manipulation activities into layers of abstrac-
tion whereby the building blocks can be represented by
simpler action modules called action primitives. This way,
human task knowledge can be synthesised in a compact,
effective representation suitable, for instance, to be subse-
quently transferred to a robot for imitation. The main con-
tribution is the use of a robust framework capable of deal-
ing with the uncertainty or incomplete data inherent to these
activities, and the ability to represent behaviours at multiple
levels of abstraction for enhanced task generalisation. Activ-
ity data from 3D video sequencing of human manipulation of
different objects handled in everyday life is used for evalu-
ation. A comparison with a mixed generative-discriminative
hybrid model HHMM/SVM (support vector machine) is also
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presented to add rigour in highlighting the benefit of the
proposed approach against comparable state of the art tech-
niques.

Keywords Hierarchical Hidden Markov Model (HHMM) ·
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daily activities

1 Introduction and motivation

Human behaviours are inherently complex and extracting a
representation from raw sensory data is a challenging under-
taking. One of the most desired objectives in the field of
human-robot interaction is to endow robots with the capabil-
ity of learning human activities through simple observation—
imitation learning being one of the most common approaches
explored (Schaal et al. 2003).

For the specific case of learning object grasping and
manipulation activities there has been a growing interest in
expressing these as a combination of Action Primitives (APs)
(Krüger et al. 2010). Research on human motion and other
biological movements postulates that movement behaviour
consists of simple APs: atomic movements that can be com-
bined and sequenced to form complex behaviours (Newtson
et al. 1977; Schaal et al. 2003; Kulic et al. 2011). For exam-
ple, as shown in Fig 1 the activity of pouring water from a
mug could be decomposed into a sequence of actions that can
be regarded as atomic in that given the observed data these
cannot be decomposed further, e.g. approach-grasp-lift-tilt-
untilt-place_back-release-retreat. Arguments raised in the
field of neuroscience (Rizzolatti et al. 2001) reinforces the
concept that human actions are composed of APs in a similar
way to human speech, where utterances of words are broken
down into phonemes. Hence the use of a grammar based on
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Fig. 1 Activity of Pouring water from mug subdivided into action primitives. Each image depicts the output of hand-object tracking algorithm

APs appears an attractive proposition to represent activities,
in that they allow for a “symbolic” description of more com-
plex actions. This is also in accordance with the concept, in
a humanoid robotic context, that the process of recognising
human tasks may be regarded as understanding sequential
human behaviours which, in turn, consists of interpreting a
sequence of action primitives (Jenkins and Mataric 2004).
Along with the advantage of a top-down approach (com-
plex activities decomposed into APs), the framework also
enables a bottom-up approach whereby APs can be shared to
construct different activities—an attractive proposition e.g.
for robotic arms to be able to generalise their learning from
human teachings.

2 Proposition

In this paper we exploit a temporal probabilistic net-
work embodied in a Hierarchical Hidden Markov Model
(HHMM), and show how it can be used for learning and rep-
resenting object grasping and manipulation activities. Given
the inherent level of uncertainty, noise, and ambiguity in
the sensor signals used to perceive human tasks, modelling
human manipulative actions in a deterministic manner is a
challenging premise. Thus, stochastic or probabilistic models
are commonly employed.

The proposed model builds upon alphabets of APs, which
are combined to describe complex human activities. The hier-
archical nature of the framework allows decomposition of a
typical activity into different levels of action representation.
Moreover, the algorithm is robust to uncertain or incomplete

data to infer user’s long-term intent. In the manipulative space
hereby presented APs are learned and inferred by observ-
ing hand-object interactions and their motion in the Carte-
sian space, whereas the higher level activities are inferred by
learning the time-sequence of APs. The framework proves
to be a strong tool for learning and synthesizing complex
activities as it enables the robot to not only learn activities
through imitation, but also to reproduce the learned activ-
ities by combining APs in different sequences to perform
higher level activities. To this end, for the robot to efficiently
imitate or perform tasks similar to those performed by their
human counterpart, the string of APs generated by decom-
posing activities are such that they can map directly across
to actions (i.e. movements of the arm), which a robot can
then perform sequentially to complete a “human-like” activ-
ity. For instance a humanoid robot would learn to pour water
with the right arm, as taught by a right-handed human teacher,
but would be able to generalise these movements to perform a
similar action with the left arm, or as part of a similar activity
such as adding ingredients during cooking.

For completeness, the proposed HHMM framework is also
compared with a HHMM/SVM (support vector machine)
hybrid model, motivated by the exceptional performance
of discriminative models in general in relevant state-of-the-
art literature. Generative-discriminative hybrid frameworks
have been successfully explored by the research community
in areas such as automatic speech recognition, facial/gesture
expression and more (Abou-Moustafa et al. 2004). The
HHMM/SVM hybrid framework uses the strong kernel pro-
jection characteristics of the SVM classifier, which are then
combined with the HHMM model to exploit temporal rela-
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tionships. Results highlight not only the inherent superior
generalization capabilities of the proposed technique, but
also their practicality given their unsupervised nature, and
better suitability for novelty detection so as to be able to
incorporate new relevant data into the models.

3 Related work

Probabilistic models have been used extensively by the AI
community in particular to represent complex systems with
prominent uncertainty (Jensen 1996). These models have
found its applicability in the field of robotics given their inher-
ent ability to handle sensor noise and data ambiguity, thus
capturing both spatial and temporal variability in their move-
ments and perception of their surroundings. Models such as
Hidden Markov Model (HMM), Dynamic Bayesian Network
(DBN) and HHMM are popular techniques used for human
motion modelling and a wide variety of other applications.
The list includes aviation monitoring (Heinze 2003), sign
language and gesture modelling (Iba et al. 2005), assistive
robotics (Patel et al. 2012), skills transfer (Dillmann et al.
1999), robot assisted surgery (Kragic et al. 2005) and many
more.

Learning by imitation is an approach that has been used
by roboticists for bootstrapping learning of robot activities
based on human observation, a relevant context for this work.
Preliminary work done by Ijspreet and his colleagues used a
Control Policy (CPs) based approach to represent complex
dynamical systems based on human movements (Ijspeert et
al. 2002). These CPs, which represent various human like
movement plans, are derived based on ease of representa-
tion, compactness, robustness against changes in the dynamic
environment, re-usability and overall simplicity in learn-
ing different human movement trajectories. This dynamic
motion primitive (DMP) based framework was later on illus-
trated in a number of application related to humanoid robotics
which involved planning, movement recognition, perception-
action coupling, imitation and general reinforcement learn-
ing (Schaal et al. 2004). (Khansari-Zadeh and Billard 2010)
proposed the Stable Estimator of Dynamical Systems (SEDS),
a method for learning the parameters of a time invariant
dynamical system to ensure that all motions closely fol-
low the demonstrations while ultimately reaching and stop-
ping at the target. The activities learned by the SEDS were
simple tasks such as moving an object from point-to-point.
(Dindo and Schillaci 2010) proposed a Growing Hierarchi-
cal Dynamic Bayesian Network (GHDBN) to recognise the
skills being observed and to reproduce them by exploiting the
generative characteristics of the model. The model learned
and reproduced three actions i.e. dislocate, approach and
hit. (Pastor et al. 2009) used a Dynamic Movement Prim-
itive (DMP) framework in which the recorded movements

were represented using non-linear differential equations. The
movement library consisted of actions such as grasping,
placing and releasing. (Aksoy et al. 2011) used a Semantic
Event Chain (SEC) based approach to represent the relations
between objects and hand at decisive time points during a
manipulation activity. The time points defined using SEC
were descriptive enough for distinguishing different manip-
ulation activity. In their recent work, (Nemec and Ude 2012)
also used a DMP based system to represent primitive move-
ments. The DMP library used in their experiment consisted
of activities like reaching, pouring, wiping, shaking, cutting
and power grasps.

Kruger et al. proposed a Parametric Hidden Markov
Model (PHMM) to represent various action primitives (Krüger
et al. 2010). The framework was trained in an unsupervised
manner and synthesized movement trajectories as a func-
tion of their desired effect on the object (e.g. approach,
grasp, push forward, push side, move side, rotate, remove).
Song et al. used structure learning to exploit the dependen-
cies between hand and object to generate the structure of a
Bayesian Network (BN) (Song et al. 2011a,b). The evolved
structure was used to predict the activity performed by the
user based on the type of action, and the object being manip-
ulated. However, the prediction of these activities was done
based on grasp instances, and did not exploit features from
the entire trajectory as followed by the arm to perform a given
activity.

Our work suggests the use of a HHMM to better exploit
temporal constraints for grasp and manipulation activities.
The HHMM theoretical framework hereby proposed has
been applied in several application areas. (Nguyen et al.
2005) used a HHMM framework to model and recog-
nise complex human activities. The model exploited both
the natural hierarchical decomposition and shared seman-
tics embedded in the movement trajectories. The activities
inferred were based on location semantics. (Kawanaka et al.
2005) used a HHMM model for recognising human activi-
ties as a series of actions from image sequences. Each target
activity had its own individual model which was clubbed as
sub-model within the HHMM framework. In the area of ubiq-
uitous computing, (Liao 2006) used a HHMM framework to
infer user’s mode of transportation, destination location and
predict both short and long term movements. The framework
was also able to infer if the user was deviating from his nor-
mal activities as an indication to provide guidance cues. In
work related to assistive robotic walkers (Patel et al. 2012),
a HHMM framework was deployed to infer navigational and
non-navigational intentions of a walker user. The hierarchical
nature of the framework allowed learning of typical activities
of daily living such as stand up or going to kitchen.

HMM-SVM hybrid models have also been widely used in
areas such as automatic speech recognition (Stadermann and
Rigoll 2004), tele-operation (Castellani et al. 2004) or mod-
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elling of facial action temporal dynamics (Valstar and Pan-
tic 2007). Stadermann used a SVM/HMM hybrid model for
speech recognition which combines the strong classification
capabilities of SVM with the time varying modelling capa-
bility of HMM model (Stadermann and Rigoll 2004). Val-
ster and Pantic also exploited the capabilities of SVM/HMM
hybrid model for facial action recognition. In this applica-
tion the SVM classified the distinction between the tem-
poral (facial expression) phases at a single point in time
which were then combined over a time period by the HMM
model to predict the temporal dynamics (Valstar and Pantic
2007). A similar technique was used by Castellani and col-
leagues for analysing and segmenting various tele-operation
activities (Castellani et al. 2004). In all these approaches
the strong characteristics of SVM to handle non-linear data
through kernel induced feature maps was exploited to dis-
criminate segments, which were in turn utilised by the
HMM to model the temporal relationship between data
points.

Our work proposes the use of a probabilistic framework
capable of representing an entire grasping and manipulation
task by decomposing it into clusters of APs. The approach
is novel in that firstly, the entire activity sequence is clus-
tered into a pool of different APs and secondly, the uni-
fied probabilistic framework exploits spatial relationships to
learn both, APs and time dependent relationship between
them, to accurately predict the complex manipulation activ-
ities at the highest level of abstraction. Clustering activities
into different APs becomes an important criteria as the time
taken by any user to perform a given activity will vary (even
for the same user), which implies a high variability in users
remaining within a given (action primitive) state. For that,
the use of hierarchical models with specific conditions to
model the end of sub-processes is an important proposition.
Considering a unique user state at each time instance makes
it computationally intractable as the state space would grow
unbounded.

4 Hierarchical Hidden Markov Model (HHMM)

The proposed HHMM framework is capable of structur-
ing stochastic processes at multiple levels. The HHMM is
an extension of the traditional HMM model, designed to
model domains with hierarchical structure including such
with dependencies at multiple length/time scales (Fine et al.
1998). In a HHMM, the states of the stochastic automaton
can emit single observations or strings of observations. Those
that emit single observations are called “production states”,
and those that emit strings are termed “abstract states” (Mur-
phy 2002).

The example shown in Fig 2 provides an intuitive descrip-
tion of the process. The states at the highest level corre-

Fig. 2 Example of a three level HHMM model where solid arcs repre-
sent horizontal transitions between states, and dashed arcs represent ver-
tical transitions, i.e., connections between sub-HMMs. Double-ringed
states represents end states (at least one per sub-HMM), where control
flow is returned to the parent (calling) state. Each node at level 3 emits
a single state based on the distribution over the observation space

spond to the abstract states, are themselves governed by sub-
HHMMs, entering into states Q2. Since a state at level 2 is
abstract, it enters its child HMM via its subsequence states
Q3. The horizontal transition in each child HMM (at level
3) emits unique state w.r.t the observations perceived by the
model and is hence referred to as production state. Once the
sub-HMM reaches the end state, the control is returned to
the higher level, from wherever the sub-HMM sequence was
called from. This is done recursively till the time the control
is returned to the highest abstract state (level 1). The abstract
state can transit to the next possible state only after all the
sub-HMM at lower level are terminated (Murphy 2002).

The hierarchical nature allows decomposition of the prob-
lem at different levels of abstraction thereby facilitating
exploration (long term planning/activities) and exploita-
tion (short term planning/action primitives) within the same
framework. In the paradigm of learning long term task/
activities from APs, the high-level activities call the more
refined low-level activities according to some distribution. A
low-level activity will in turn call another lower-level activ-
ity, and this process continues until the most primitive pos-
sible activity is performed. When the lower level activity
terminates—in some state—the parent behaviour may also
terminate as long as the current state is in the set of destination
states of the parent node.

4.1 Representation

A HHMM framework can be formally represented as a Hier-
archical Dynamic Bayesian Network (H-DBN) as shown
in Fig 3. Its structure comprises of three types of nodes,
Qd

t , Ot , Fd
t where d is the depth of the hierarchy (d = 2

in our case). Edges between nodes represent their dependen-
cies on each other. The detail of each node is specified as
follows:
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Fig. 3 HDBN representation of the HHMM Model used to infer action primitives and long term user activities using hand and object features
(described in Table 2)

– Qd
t represents the state of the system at time t and level

d. Note that at any given time the system will be prob-
abilistically represented by the state belief at all levels,
and so will be the user goal state at the top level.

– As the true state of the user is hidden, observation nodes
Ot are required that provide user/environment informa-
tion. These are modelled either as a mixture of Gaussian
(μ,�) or as discrete P(Ot |Qd

t ) node.
– Fd

t is the terminating state which specifies the natural
completion of a sub-HMM and returns the control back
to the higher level/parent states.

Given the parameters (Qd
t , Ot , Fd

t ), the H-DBN defines
the joint distribution over the set of variables that repre-
sents the evolution of the stochastic process over time. These
distributions are in the form of prior distributions (initial
probabilities), the transition probabilities and the observa-
tion probabilities. The prior and the transition probabilities
are defined at every level (d). Once defined these probabil-
ities are further optimised from data using the Expectation-
Maximisation (EM) algorithm.

4.2 Prior model

The prior provides the initial probabilities of the most likely
initial state of the user. The initial probabilities at both the
levels are defined by

P(Q2
1) = π2( j)

P(Q1
1) = π1

k ( j) (1)

where π2 represent the initial probabilities at level 2 and π1
k

represents the same at level 1, given the state at level 2 is k.

4.3 Transition model

Each node in the HHMM represents a conditional probability
distribution (CPD) or table (CPT). The state of the highest
level (level 2 in Fig. 3) at time t , depends upon the previous
state at the same level and the termination flag at time t − 1.
Probabilities at the highest level are defined by:

P(Q2
t = j |Q2

t−1 = i, F2
t−1 = f )=

{
A2(i, j) if F2

t−1 = 0

π2( j) if F2
t−1 = 1

(2)

Similarly, the states at the intermediate level (level 1 in
Fig. 3) at time t , depends upon the previous state at the same
level and the termination flag at time step t − 1 and the state
at the higher level in the same time step t , the probabilities
of which are defined as,

P(Q1
t = j |Q1

t−1 = i, F2
t−1 = f, Q2

t = k)

=
{

A1
k(i, j) if F2

t−1 = 0

π1
k ( j) if F2

t−1 = 1
(3)

In (2), A2 represents the transition probabilities from state
i to j at level 2 whereas in (3), A1

k corresponds to transition
probabilities at level 1 given the state at level 2 is k.

4.4 Termination model

The termination state F at time t depends upon the level 2
state and level 1 state in the same time step t . The distribution
of the termination state is defined as:

P(F2
t = 1|Q2

t = k, Q1
t = i) = A2

k(i, end) (4)
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4.5 Observation model

The observation model signifies the probability of a specific
observation conditioned on a discrete hidden state. For our
application, observations are modelled as both Gaussian and
discrete. The CPDs for Gaussian and discrete nodes are given
by:

P(Ot |Q1
t = i) = N (μi , �i )

P(Ot |Q1
t = i) = C(i) (5)

4.6 Learning and inference

Different techniques can be used for learning the HHMM
model, both supervised and unsupervised. Expectation Max-
imisation (EM) (Blimes 1998) and its variants are some of
the most popular statistical techniques used for unsupervised
learning. In realistic circumstances it is difficult to obtain
labelled data, hence an unsupervised mode of learning is
preferable. We used EM for learning the model and maxi-
mum likelihood estimator to predict user activities. The EM
algorithm iterates between an Expectation step (E-step) and
Maximization step (M-step). In each E-Step it estimates the
expectations (distributions) over the latent variables using the
observations along with the conditional probability density
(CPD) of the model. Then in the M-step the model parame-
ters (i.e. the CPDs) are updated using the expectations of the
hidden variables obtained in the E-step. Each iteration would
continue to improve the estimates of the hidden variables and
will eventually converge to a local optimum.

5 Problem specific HHMM framework

The HHMM framework used to test our proposition is shown
in Fig. 3. User state/activities are inferred at the top level
whereas the intermediate level represents the APs (shown in
Fig. 3) while the lowest level corresponds to the features of
object-hand interaction in the Cartesian space. In everyday
life a single object can be used to perform many activities
(e.g. a mug can be used for drinking, pouring or handing it
over to another person), hence it is difficult to predict the user
activity when he/she is approaching to grasp the object, but
it becomes more apparent after the object has been grasped.
Similarly, after accomplishing the desired activity, the action
of retreating the hand after releasing the object cannot be
described as part of the activity sequence. Hence such action
primitives, e.g. approaching to grasp an object (APPRH),
and retreating after the object is released (RETRT) are not
defined as a part of any long term activity listed in Table 1,
but are described as APs independent of any activity. In our
framework, such independent APs are inferred at both levels

Table 1 Users’ everyday activities

Activities Abbrev. Description

Pour POUR Activity of pouring from a mug or
bottle

Handover HNDOVR Activity of handing over an object
to another person

Tool use (Hammer) TLUSE Hammering a nail

Spray SPRAY Spraying from a spray bottle

Dish wash DSHWSH Loading an object like a mug in a
dishwasher

Drink DRINK Drink from a mug or bottle

Shift SHIFT Shift object for a one location to
another

Sprinkle salt SPRINKLE Sprinkle salt using a salt sprinkler

Fig. 4 Objects used to perform manipulation activities

of hierarchy. To better illustrate this concept, consider the
example in Fig. 1. The user first approaches to grasp the mug,
which has the same AP defined at both levels. This means
that the specific activity cannot be inferred without the object
being grasped. Once the object is grasped, the activity can be
inferred based on the type of grasp and the object. Hence, the
HHMM model will infer activities at the higher level (2) and
the action primitives at the lower level (1). After releasing
the object the AP of retreating being independent from any
activity sequence will be thus inferred at both levels.

At the observation level, features are extracted using a
hand-object tracking algorithm (details are given in Sect. 6).
It represents the interaction between the hand and object and
its movement in Cartesian space.

6 Data acquisition

In order to validate our proposed approach, we collected
data using an RGB-D kinect sensor while the human sub-
ject demonstrated the grasping and manipulation activities.
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Table 2 Hand and object features used by the HHMM framework

Feature Dim. Description

hnd Mot 3 Hand motion in Cartesian space

hnd Ori 4 Hand orientation (quaternion)

f gr Jnt0_P 1 Pitch of knuckle joint for index,
ring and middle finger

f gr Jnt0_Y 1 Yaw of knuckle joint for index,
ring and middle finger

f gr Jnt1_P 1 Pitch of first finger joint for index,
ring and middle finger

f gr Jnt2_P 1 Pitch of second finger joint for
index, ring and middle finger

obj Mot 3 Object motion in Cartesian space

obj Ori 4 Object orientation (quaternion)

Obcl 6 Object class

The parameters that describe the configuration of the users’
hand and the configuration of the object while performing
the activities need to be extracted from the 3D video stream
data. The extracted features which involves the interaction
between the hand and object should be such that they can be
mapped to the motion of a robotic arm for activity synthe-
sis/imitation. In order to extract such information we com-
bined the methods presented in (Oikonomidis et al. 2011b)
and (Oikonomidis et al. 2011a) towards a system that can
track both the hand and object while they are interacting (in

Cartesian space). Tracking of the hand is performed using
the technique described in (Oikonomidis et al. 2011a), which
optimizes the objective function that quantifies the discrep-
ancy between a hypothesis over the scene state and the actual
observations. The tracking algorithm also accommodated the
tracking of the object and its motion in Cartesian space. At
each new frame a new tracking optimization is performed that
is initialized in the vicinity of the solution for the previous
frame. The reference 3D coordinate system is conveniently
defined to reside on the demonstration table seen in Fig. 1),
which becomes a chess-board calibration pattern. All objects
used in the manipulative activities were painted blue, as per
Fig. 4, so as to rely upon a single, uniform appearance model
for tracking, thus facilitating the overall set-up.

To initialise the hand and object position we employed a
similar technique to the one specified in (Oikonomidis et al.
2011b,a) and (Papazov and Burschka 2011). To successfully
track the hand, the tracking algorithm expects the hand to be
at a given initial position in the space. To initialise the pose
of the object, we integrated the tracking algorithm with the
RGB-D based registration method used by Papazov (Papazov
and Burschka 2011).

The features extracted in the experimental results to val-
idate the proposed work are listed in Table 2. They con-
sist of the 3D motion (translation and rotation) of the hand
and the object being manipulated. The features in the data
also include a selection of the rotational joint movements of
three of the fingers, index, middle and ring. The derived tra-

Table 3 Action primitives to perform various activities

Action primitive Abbreviations Description

Approach APPRH Approach to grasp objects in a given space

Approach with twisted hand APTWH Approach to grasp objects with inverted hand

Retreat RETRT Retreat hand into original position

Putback PUTBK Place back the grasped object

Grasp from top GRTOP Grasp object from top

Grasp from handle GRHDL Grasp object from handle (if any)

Grasp from middle GRMID Grasp object from middle

Grasp from tool use end GRTUE Grasp object from tool use end

Lift object LIFT Lift grasped object

Tilt object TILT Tilt grasped object

Un-tilt object UNTLT Un-tilt grasped object

Lower object (tool) LWRTL Lower object for usage

Raise object (tool) RAITL Raise object for usage

Move object towards you MVTOU Move object towards you

Release RELSE Release the grasped object

Grasp from bottom GRBOT Grasp object from bottom

Invert object INVRT Invert the grasped object by 180◦

Press and release trigger PERLTGR Press and release trigger of spray bottle

Shake salt sprinkler SHAKE Shake salt sprinkler to sprinkle salt
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Fig. 5 Time taken by each action primitive (APs) to perform the activity of shifting objects. Note that the time taken for shifting the same object
and the time spend within each AP varies between same and different objects

jectory provided information about the motion of the hand
and object, whereas the rotational motion (yaw, pan, tilt)
added information about their corresponding orientation in
space. Furthermore, the movement of the finger joints pro-
vided details about the grasping of the objects. All these
data features were utilised to predict the APs at the lower
level.

It is worth noting that the primary goal in this work is the
representation of human grasping and manipulation so that
these behaviours can effectively be learned from a human
teacher and ultimately transferred to a robot arm. Kinematic
models and DOFs between a human arm and a robotic manip-
ulator differ, thus the paths followed by both in exercising a
manipulation activity will diverge. However, for a capable
anthropomorphic arm the interactions between a robotic arm
and the objects in their surroundings (e.g. grasping the object
with a particular pose in order to accomplish the desired
activity) will be of similar nature—subject of course to their
differing kinematic arrangements. As such, the APs learned
by the robot (GRTOP, TILT etc.) and the sequences needed
to accomplish a given task are directly transferable to any
grasping manipulator of sufficient dexterity.

7 Results

To test the proposed methodology, we used a selection of
everyday objects from different classes. We intentionally
selected objects that can be used in the context of more than

one activity, e.g. a mug and a bottle, which can be used both
for drinking and pouring. We selected the six objects depicted
in Fig. 4 to perform the activities listed in Table 1. Data was
collected with a single user, who repeated the same activity
4 times to capture variations which might occur in perform-
ing the same activity. The user was asked to perform each
activity such that it resembles natural execution. The video
and depth data was collected at a rate of 30 frames per sec-
ond. The motion of hand and object was extracted off-line
using the hand-object tracking algorithm described in Sect. 6.
The output of the tracking algorithm provided data of hand
and object motion in the Cartesian space and its orientation.
The tracker also extracted the features for each finger joint.
Activities were decomposed into a total of 19 interpretable
APs based on visual inspection, and are collected in Table 3.
It is important to emphasize that each AP represents a fea-
ture set that consists of a cluster of continuous, time-varying
trajectories and not a single instance.

Due to the time variation in performing different activities,
the time spent in executing each AP will vary. That would be
the case even if its the same activity that is being repeated over
and over again. To illustrate this, Fig. 5 shows an example
of the time taken to perform the activity of SHIFT which
involves shifting different objects from one location to other.
It can be noted how the time taken for each AP in a given
activity varies even if it is repeated on the same object. For
example, when comparing the activity of shifting a bottle (as
shown in Fig. 5), BOTTLE 1 took significantly less time than
the other three times (BOTTLE 2, BOTTLE 3, BOTTLE 4).
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Fig. 6 Activities inference accuracy by HHMM and HHMM/SVM hybrid models

This variation in the activity directly effects the time taken
to undertake each AP.

The HHMM model (shown in Fig. 3) was trained and
tested using the hand and object motion data captured
described in Sect. 6. The data set was manually labelled for
both APs and long term activities for cross validating the
inference accuracy. We divided the data set into two equal
halves for training and testing purposes. We used the BNT
toolbox (Murphy 2002) to learn and infer APs and long term
activities using the proposed HHMM model. Expectation
Maximisation (EM) was used to learning APs and high level
activities where as Maximum Likelihood Estimator was used
for inference. The features used by the HHMM framework
and its corresponding dimension size are listed in Table 2.

The APs were inferred with an overall accuracy of 72 % at
the intermediate level (level 1) of the HHMM model whereas
the long term activities was inferred with 86 % accuracy (at
the higher level). The inference accuracy to predict each AP
and the high level activities are graphically depicted in Figs. 7
and 6 respectively.

Most of the APs were inferred with an accuracy higher
than 72 %. APs such as putback (PUTBK), tilt (TILT),
un-tilt (UNTLT), grasp object from middle (GRMID) and
lift (LIFT) are inferred with an accuracy lower than 70 %.
PUTBK is often confused with LIFT (can be seen in Fig. 8b),
this is due to the high level of confusion in the data, since both
actions follow almost the same trajectory in the Cartesian
space. A very high level of confusion is observed between
action states TILT and UNTLT. This is not surprising as in

the continuous space both these actions are performed one
after another, and hence the framework is unable to clearly
discriminate between them. Lastly, high level of confusion
exists between the state of grasping the object of middle and
bottom due to unavailability of relevant information such as
distance offset between the center of object and grasping
points.

At a higher level, apart from the activity of POUR and
DRINK, all other activities were inferred with fairly high
accuracy (refer to confusion matrix in Fig. 8a). Confusion
occurs between these two activities as there is minimal dif-
ference in the sequence of APs followed to perform both
drinking and pouring.

8 Comparison with HHMM/SVM hybrid model

We also compared the accuracy of the HHMM model with
that of a hybrid HHMM/SVM model. HMM/SVM hybrid
model has been successfully used in a number of application
(Bishop and Lasserre 2007; Castellani et al. 2004; Valstar and
Pantic 2007; Stadermann and Rigoll 2004), where the excel-
lent discrimination performance of SVM complements the
temporal modelling properties of HMM to provide a higher
inference accuracy. In this work, a SVM was used to predict
the APs at a single time instance which are then combined
in a temporal space within the HHMM model to predict high
level activities. The HHMM/SVM hybrid model used for
comparison is shown in Fig. 9. To make the comparison fair,
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Fig. 7 APs inference accuracy by HHMM and HHMM/SVM hybrid models

Fig. 8 Confusion matrix of inferring activities at the high level and APs at the intermediate level by HHMM model

we used a Hierarchical HMM framework instead of a flat
HMM model so that the self transition and inter state transi-
tion characteristics at level 1 remains the same for both the
models. The high level activities were inferred at level 2 with
an overall inference accuracy of 95 % (see Fig. 6). The APs
were inferred with an overall accuracy of 97 % at level 1 (see
Fig. 7), which corresponds to a direct mapping of the APs
classified by the SVM model. The confusion matrix of high
level activities and APs inferred by the HHMM/SVM hybrid
model are depicted in Fig. 10a and b respectively.

Most of the APs are inferred with around the same accu-
racies with both HHMM and HHMM/SVM hybrid model
except for PUTBK, GRMID, LIFT, TILT, ULTILT . The
HHMM model is less able to discriminate between these
classes as described in Sect. 7. However, SVM is able to pre-

dict these APs with high accuracy which is not surprising
as SVM possess strong capability to discriminate between
these classes with minimal difference in observation. The
HHMM/SVM hybrid model outperforms HHMM model in
inferring the high level activities given the strong classifica-
tion of APs by the SVM classifier as compared to the HHMM
model.

9 Discussion

The HHMM/SVM hybrid model appears an overall stronger
inference engine, yet that is somewhat misleading when put
into the correct context, and the authors advocate for the
benefits that a HHMM model exhibit over a HHMM/SVM
hybrid model when the appropriate criteria to model real-life
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Fig. 9 HHMM/SVM Hybrid Model used to infer action primitives and long term user activity using different hand and object features. The SVM
classifier at the lower level classifies action primitives using hand and object features which are then used by the HHMM framework to predict the
long term activities

Fig. 10 Confusion matrix of inferring activities at the high level and APs at the intermediate level by HHMM/SVM hybrid model

complex manipulation tasks are taken into consideration, as
described next.

9.1 Missing data

One of the challenges in dealing with real-time application
such as ours, is dealing with missing data. Data can be miss-
ing or inexact due to various factors such as erroneous/faulty
instrument/sensor measuring, missing attributes from one or
more sensor. The discriminative nature of the SVM classi-
fier, makes it less capable of handling missing data. On the
contrary, HHMM being a generative model is more able of
learning in the presence of missing values, and often per-
forms better when training set sizes are small (Raina et al.

2004). This is mainly due to the EM learning methodology
which optimizes the model over the whole dimensionality,
and thus models all the relationships between the variables
in a more equal manner (Le and Bengio 2002).

In order to emulate a case of missing data and smaller train-
ing data set, we conducted experiment by randomly remov-
ing data samples from the training data. We divided the entire
data set into two equal half for training and testing as we did
for the HHMM experiments specified in Sect. 7. The training
data set was down sized further by randomly sampling data
at a frequency of 1/2 Hz, 1 Hz, 3 Hz, 5 Hz & 7 Hz. By gen-
erating random data sets using this method, the information
related to a given activity or AP lost by down sampling can
be regarded as representing missing/lost data. Note that the
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Fig. 11 Comparison of inference accuracy of HHMM and HHMM/SVM Hybrid Model when training the model with varying amount of missing
data

random sampling of data is done such that there will be at
least one sample which represents an AP in any given activity
sequence, so the down sample rates are approximate. This is
done so as to maintain the representation of sequence of APs
in any given activity. Further, to quantitatively analyse the
impact of smaller and missing data on the performance of
HHMM and HHMM/SVM hybrid model, we generated 10
random training data sets for each case, i.e. 10 different data
sets for 1/2 Hz, 1 Hz etc. Each of the trained models was then
tested with a single testing data set which was sampled at 7
Hz. Note that samples used for testing are separate, and do
not overlap with any of the training data sets.

Figure 11 plots the mean and variance of the inference
accuracy of the two models. It can be seen how the per-
formance of both models decreases substantially when the
amount of missing data is around 97 % of the full train-
ing data at a sample rate of 1/2 Hz. The inference accuracy
of the HHMM/SVM hybrid model gradually increases as
more training data becomes available. Conversely, the infer-
ence accuracy of the HHMM model remains almost con-
stant despite the model being trained with varying amounts
of training data. Hence the HHMM model seems better suited
to generalise in the presence of missing data, as compared to
the HHMM/SVM hybrid model.

9.2 Testing with unseen activity sequences

To further strengthen our advocacy of HHMM model over
HHMM/SVM hybrid models, we performed an experiment
where we trained both models with 3 of the 4 sequences for
each activities, and tested it with the unseen 4th sequence. For
this experiment we used data down sampled at 7 Hz, as the
experiment in Sect. 9.1 showed no measurable improvement

at the higher rate. As can be seen in Fig. 12, the HHMM
model infers the long term activities with and accuracy of
74 % whereas the HHMM/SVM hybrid model inference
accuracy floats around 51 %. Similarly APs were inferred
with an accuracy of 63 % by the HHMM model and 60 %
by HHMM/SVM hybrid model. The HHMM model outper-
forms the HHMM/SVM hybrid model in inferring both the
long term activities and APs, which further validates the bet-
ter generalisation characteristics of the HHMM model.

9.3 Unsupervised learning

Beyond the significant advantage of using HHMM models
given their inherent generalization capabilities from smaller
data sets, their unsupervised learning nature can not be under
estimated. It significantly overcomes the rather difficult and
costly process of obtaining labelled data for training. More-
over, unsupervised learning also opens the door to incorpo-

Fig. 12 Activities and APs inferred by the HHMM and HHMM/SVM
hybrid model when tested with unseen data
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rate online learning algorithms whereby novelty in the pat-
terns of performing an activity can be accomplished within
the HHMM framework, e.g. using online-EM (Cappé and
Moulines 2009), a work currently under way. The modular
nature of the HHMM framework thereby is better equipped
for real-time addition/deletion/modification in the state space
(Dindo and Schillaci 2010), a less attractive proposition using
generative models such as SVM where full re-training might
be required.

10 Conclusions and future work

In this paper we have proposed a novel approach to infer
users’ manipulative activities using a HHMM probabilis-
tic model. The HHMM framework allows to flexibly divide
an activity into a hierarchy, where longer-term activities are
regarded as sequential combinations of more primitive build-
ing actions, or APs. The framework was tested on a set of
manipulative sequences collected for different objects used
in everyday life. The hierarchical framework proved to be
a powerful tool to divide activities both vertically for nat-
ural language description of different activities from APs,
and horizontally where the continuous observations are clus-
tered into different APs.

We also compared the inference accuracies of the HHMM
model with a HHMM/SVM hybrid model, which performs
learning in a semi-supervised manner and was in general
able to infer more accurately at both AP and higher activ-
ity level. The model takes full advantage of the temporal
characteristics of HHMM model and strong discriminating
capability of the SVM classifier to infer APs and the related
long term activities. However, it was shown to be less able
to generalise in the absence of rich datasets, a well-known
trade-off between generative and discriminative models. Cur-
rent work is investigating development of online adaptable
systems within the HHMM framework. Also, while in the
existing work we used data features extracted from the raw
observation data to be tracked, work is in progress to apply
discretisation and feature extraction techniques such as the
Gaussian Process Latent Variable Model proposed in (Song
et al. 2011b) to enhance the inference accuracy of the APs.
Finally, we also plan to release the dataset to the research
community.
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