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Abstract This paper presents a framework for autonomous
capture operation of a non-cooperative mobile target in a
3-dimensional workspace using a robotic manipulator with
visual servoing. The visual servoing with an eye-in-hand
configuration is based on motion predictive control using
Kalman filter for the on-line state and parameter estimation
of the target. A transitional decision making process is devel-
oped to guide the robotic manipulator between the different
phases of the capture operation by employing a custom metric
that translates visual misalignments between the end-effector
and the target into a guidance measurement. These phases
include the target acquisition and approach stage and the
alignment and capture phase. Experiments have been carried
out on a custom designed and built robotic manipulator with
6 degrees of freedom. The objective is to evaluate the per-
formance of the proposed motion predictive control scheme
for the autonomous capturing task and to demonstrate the
robustness of the proposed control scheme in the presence of
noise and unexpected disturbances in vision system, sensory-
motor coordination and constraints for the execution in real
environments. Experimental results of the visual servoing
control scheme integrated with the motion predictive Kalman
filter indicate the feasibility and applicability of the proposed
control scheme. It shows that when the target motion is prop-
erly predicted, the tracking and capture performance has been
improved significantly.
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1 Introduction

The capture of non-cooperative targets using autonomous
robotic manipulators as shown in Roe et al. (2004) and
Ogilvie et al. (2008) presents a set of unique and interest-
ing challenges as described in Edan (1995), Fumagall et
al. (2012), Slaughter et al. (2008), not the least of which
is the autonomy problem described in great detail in Liu
and Chopra (2011), Liang and Ma (2011). Mobile robot-
ics brings together the fusion of sensing, decision making,
and acting in Chung et al. (2011). In autonomous robotic
tracking and capturing of a non-cooperative target, computer
vision is exclusively used as the primary feedback sensor in
these tasks to control the pose of end-effector with respect
to the target, seen in Cretual and Chaumetter (2001), Fang et
al. (2012) and Wong et al. (1996). Among all vision-based
control schemes, the position-based visual servoing with an
eye-in-hand camera configuration has the advantages of pre-
cise view of a target and the natural relationship of the end-
effector’s pose with respect to the target in the workspace.
However, the pose estimation in this configuration is prone to
camera calibration errors, target model inaccuracies, image
noise, and unexpected disturbances. Therefore, the focus of
this study will be on the impact of pose estimation in visual
servoing where the relative pose between a camera and a tar-
get is used for real-time control of robot motion, seen with
limited success in Fang et al. (2011), Zhang et al. (2012) and
Ghadyok et al. (2012). Furthermore, autonomous grasping
is a critical task, as shown in Wang and Xie (2009), Hsiao
et al. (2011) and Ignakov et al. (2012), in robotic capture
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Fig. 1 Annotated robotic
manipulator

operation and presents a change in the system kinematic and
dynamic behavior without precise knowledge. To achieve the
objective, an improved control scheme has been developed to
obtain reliable pose and velocity estimates of a moving target
from noisy image data using photogrammetry and Kalman
filtering. The latter not only enhances the pose and velocity
estimation from the noisy image data but more importantly
provides smooth pose and rate estimates for the robotic con-
trol system when the vision system loses its tracking of the
target momentarily. Once the target’s pose and velocity are
determined, the robotic trajectory to intercept the target at
a rendezvous point will be planned and executed. The tra-
jectory planning will be subjected to the constraints such
as the maximum allowed velocity of the end-effector and the
physical limits of the workspace and the joint ranges. A deci-
sion making metric has been developed and examined for a
robotic manipulator attempting to approach and capture a
non-cooperative target, where five critical alignment offsets
are identified based on geometric character of the target and
the existing work (two rotational offsets) as shown in Rek-
leitis et al. (2007). These offsets are then combined into a
composite alignment index by a weighted summation for the
total alignment measurement of the end-effector with respect
to the the grasping point of a target. Individual weights are
given depending on the stages of the capture operation in
order to allow for a rapid approach, a high level of colli-
sion avoidance, and an increased rate of successful captures.
The developed control scheme has been validated experi-
mentally using a custom built robotic manipulator to lock
on, track, approach and capture a moving target. The experi-
mental results demonstrate a successful captures of a moving
non-cooperative target with the proposed control scheme.

2 Kinematics of robotic manipulator

Consider an eye-in-hand (as defined in Fang et al. 2002),
Pieper (see McKerrow 1991 for description) configured

robotic manipulator as shown in Fig. 1. The actuators con-
sist of three stepper motors attached to the first three links
to control the torso (θ1), shoulder (θ2), and elbow (θ3) joints,
similar to the work of Schutter (1987). The orientation of the
end-effector are controlled by two wrist joints actuated by
two servo motors, namely, wrist rotation (θ4) and wrist angle
(θ5) joints. The last joint is a translational joint that con-
trols the gripper. Since the gripper will be activated after the
end-effector is aligned with the grasping point of the target,
we can consider only the degrees of freedom (DOF) of the
first five joints that affect the pose of the end-effector in the
robotic controller development, as shown in Kurniawati et al.
(2012) and Klein and Huang (1983). The visual sensor in this
work is a digital camera mounted next to the end-effector to
monitor the target motion in a 3-dimensional (3D) workspace
similar to Lippiello et al. (2008). The camera is assumed cal-
ibrated and the intrinsic and extrinsic parameters, such as the
focal length, the physical size and resolution of image sensor,
the transformation matrix between the camera and the end-
effector, are known. However, the target can move in the 3D
workspace and its pose and velocity are unknown in advance.
Therefore, the robotic control problem can be defined as the
following two tasks:

Task 1: Given a desired pose of the target in the workspace
statically or dynamically, design a proper set of joint trajecto-
ries for the manipulator such that the end-effector can move
to the desired grasp position and orientation smoothly with
the minimum time.

Task 2: Once the end-effector is in the vicinity of the target,
design a proper set of joint input for the manipulator to grasp
the stationary or dynamic target without collision.

Let
{

Xg
}

and {Xe} ∈ �3 be the end-effector position
vectors defined in the global and local coordinate systems
in the 3D workspace and {θ} = {θ1, θ2, . . . , θ5}T ∈ �5

be the vector of corresponding joint angles defined in the
joint space. The kinematics of a robotic manipulator defines
the relationship between the joint positions and the corre-
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Fig. 2 Photogrammetric
frames of reference

sponding position of the end-effector in the workspace, such
that,
{

Xg
} = [Tge(θ1, θ2, θ3, θ4, θ5)]

{
Xe

}
(1)

where [Tge] is the transformation matrix from local to global
coordinate systems.

Similarly, the transformation from the camera frame {Xc}
to the global stationary frame {Xg} can be expressed as,
{

Xg
} = [Tgc(θ1, θ2, θ3, Xc, Yc, Zc)]

{
Xc

}
(2)

where (Xc, Yc, Zc) are the coordinates of origin of the camera
frame in the frame {Xe}.

Then, the velocity of the end-effector can be found by
taking the first order time derivation of (1),

{Ẋg} = [J ]{θ̇} (3)

where [J ] is the Jacobian matrix of the robotic manipulator.
For the manipulator path planning, the inverse kinematics

gives the joint angle velocity {θ̇} in terms of the end-effector
velocity,

{θ̇} = [ J̃−1]{Ẋg} (4)

where [ J̃−1] is the pseudo-inverse of the Jacobian matrix in
(3) if the matrix is non-square,

[ J̃−1] = ([J ]T [J ])−1[J ]T

3 Pose estimation

The pose information of the target in a 3D workspace is
extracted from a 2D image space by photogrammetry (Fang et
al. 2002; Mittal and Paragios 2004) based on the collinearity
equations and a least squares solution. As shown in Fig. 2, the
image coordinates of markers on the target can be established
by collinearity equations, such as,

xc = − f
Xtc

Ytc
, zc = − f

Ztc

Ytc
(5)

where (xc, zc) are the coordinates of a projected point on the
camera’s image plane containing only a 2D measurement,
(Xtc, Ytc, Ztc) are the spatial coordinates of the marker with
respect to the camera coordinate system, and f is the focal
length of the camera. Here, it is implied that the focal length
is much less than the distance between the marker and the
camera.

The target point (Xtc, Ytc, Ztc) can be further decomposed
into two parts:

⎧
⎨

⎩

Xtc

Ytc

Ztc

⎫
⎬

⎭
= [

Ttc
]
⎧
⎨

⎩

Xt

Yt

Zt

⎫
⎬

⎭
+

⎧
⎨

⎩

XT 0

YT 0

ZT 0

⎫
⎬

⎭
(6)

where [Ttc] is the rotational matrix from the coordinate sys-
tem attached to the target to the camera coordinate system,
(Xt , Yt , Zt ) is the coordinates of the marker in the local target
coordinate system and (XT 0, YT 0, ZT 0) is the coordinates of
origin of the local target coordinate system in the camera
coordinate system.

Substituting (6) into (5), we obtain:

{
xc

zc

}
=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

− f
r11 Xt + r12Yt + r13 Zt + XT 0

r21 Xt + r22Yt + r23 Zt + YT 0

− f
r31 Xt + r32Yt + r33 Zt + ZT 0

r21 Xt + r22Yt + r23 Zt + YT 0

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(7)

where ri j are the functions of the Euler (roll–pitch–yaw)
angles (Ω , Φ, Θ) of the target with respect to the cam-
era’s image plane. These equations are highly non-linear and
involve six unknowns: the three rotational angles (Ω , Φ, Θ)
and the three Cartesian coordinates (XT 0, YT 0, ZT 0). They
are the orientation and position of the target relative to the
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Table 1 Test results of photogrammetry algorithm

Vision Accuracy (%) Error (%) Precision (%) Error (%)

X axis 93.12 ±0.23 99.16 ±0.05

Y axis 87.32 ±0.75 97.01 ±0.04

Z axis 94.50 ±0.31 99.87 ±0.05

Roll 99.45 ±0.44 99.45 ±0.08

Pitch 88.20 ±0.80 88.45 ±0.09

Yaw 88.13 ±0.80 89.21 ±0.08

camera coordinate system. In order to solve (7) mathemati-
cally, a minimum of three markers are required. In this work,
four markers are used to (i) avoid the solution ambiguity and
(ii) provide system redundancy so that the loss of one target
point can be tolerated during the tracking process. The result-
ing equation is solved by the least-square method iteratively
until the residual errors of the measurement satisfy a pre-set
convergence criterion.

The photogrammetry algorithm is implemented together
with the Open-sourced Computer Vision (OpenCV) library.
The program outputs the coordinates of the markers on the
image plane into the photogrammetry algorithm to calculate
the 6 DOF of the target with respect to the camera. In order
to improve the stability of the vision system, a Kalman fil-
ter embedded in the OpenCV is running in parallel with the
photogrammetry algorithm to predict subsequent positions
of the markers in concurrent images for the photogramme-
try algorithm in case the vision system loses tracking of the
markers, see Bradski and Kaehler (2008). Testing of the pho-
togrammetry algorithm proceeded with a web cam of one
mega-pixel resolution and the testing results are shown in
Table 1. The accuracy of the algorithm is very high with the
lowest value reading 87.32 %, a value which translates at the
capture distance to less than 0.9 cm in the Y axis of camera
frame. Once the pose of the target in the camera coordinate
system is determined, it must be transformed into the global
coordinate system (Xg) by (2) as input to the robot controller.

4 Kalman filter enhanced target tracking

In the eye-in-hand visual servoing, the pose estimated by the
photogrammetry is noisy and prone to the residual vibrations
of linkages of the manipulator due to the inherent mechanical
flexibility and unexpected disturbances. To avoid the instabil-
ity of robot control, the output of photogrammetry is treated
by a Kalman filter to obtain the best stable and/or smooth
pose estimation with the knowledge of the system that we
have. In order to accomplish this, an unscented Kalman filter
is employed with the state space shown in Table 2.

Let the {x} be the state vector of the target by including
the pose and its velocity and acceleration with respect to the
camera coordinate system:

Table 2 Kalman filter state space

Symbol Kalman filter symbol Variable

X X1 X position

Ẋ X2 X velocity

Ẍ X3 X acceleration

Y X4 Y position

Ẏ X5 Y velocity

Ÿ X6 Y acceleration

Z X7 Y position

Ż X8 Y velocity

Z̈ X9 Y acceleration

Θ X10 Roll angle

Θ̇ X11 Roll velocity

Θ̈ X12 Roll acceleration

Φ X13 Pitch angle

Φ̇ X14 Pitch velocity

Φ̈ X15 Pitch acceleration

Ω X16 Yaw angle

Ω̇ X17 Yaw velocity

Ω̈ X18 Yaw acceleration

{x} = {Tx , Ṫx , T̈x , Ty, Ṫy, T̈y, Tz, Ṫz, T̈z,Θ, Θ̇,

Θ̈,Φ, Φ̇, Φ̈,Ω, Ω̇, Ω̈} (8)

Then, the Kalman filter model of the target in a discrete
time form can be defined as follows

{x}k+1 = [A]{x}k + [B]{w}k (9)

where the subscript (k+1) denotes the states at time step k+1,
[A] is the state transition matrix, and [B] is the disturbance
transition matrix associated with the process noise vector
{w}k .

The 18 × 18 transition matrix [A] is constructed by six
3×3 block diagonal sub-matrices, such as,

[a] =
⎡

⎣
1 dt dt2/2
0 1 dt
0 0 1

⎤

⎦

while the disturbance transition matrix [B] is an 18×6 sparse
matrix with the following non-zero elements:

B3(i−1)+1,i = dt3

6
, B3(i−1)+2,i = dt2

2
, B3(i−1)+3,i = dt

Here, dt is the sampling period and i = 1, 2, . . . , 6. The
process noise vector {w}k contains the jerks of the target and
is assumed to obey a zero-mean white Gaussian distribution
with its covariance, [Q]k ,

{w}k = { ...
T x ,

...
T y,

...
T z,

...
�,

...
�,

...
�}T ∼ N (0, [Q]k) (10)
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Generally, the process noise covariance matrix [Q] is dif-
ficult to determine in advance because of the non-cooperative
nature of the target and unknown motion of the camera. In the
current work, it is found that the following constant process
noise covariance matrix works well after tuning the Kalman
filter in experiments,

[Q] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

5 0 0 0 0 0
0 5 0 0 0 0
0 0 5 0 0 0
0 0 0 5 0 0
0 0 0 0 5 0
0 0 0 0 0 5

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

× 10−6

The measurement model of the Kalman filter is defined as

{z}k+1 = [H ]{x}k + {v}k (11)

where {z}k+1 = {Tz, Ty, Tz,Θ,Φ,Ω}T is the measurement
vector defined in Table 3. It is the output from the photogram-
metry module. The matrix [H ] is a 6×18 sparse matrix with
the following non-zero elements:

H1,1 = H2,4 = H3,7 = H4,10 = H5,13 = H6,16 = 1 (12)

while the 6×1 vector {v}k is the measurement noise and
obeys a zero-mean Gaussian distribution with its covariance
[R]k ,

{v}k ∼ N (0, [R]k) (13)

The measurement noise covariance matrices [R]k is deter-
mined by tuning with real data of residual errors of the mea-
surement from the photogrammetry algorithm in experiments
using a non-linear regression analysis. For the given mark-
ers’ pattern on the target and the vision configuration in the
current study, it is found the following constant matrix is a
good starting point for the Kalman filter,

[R] =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

4 0 0 0 0 0
0 2 0 0 0 0
0 0 4 0 0 0
0 0 0 3 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

× 10−6

After the vision system starts, the [R] matrix can be updated
based on the output of the photogrammetry algorithm if
needed.

The Kalman filter defined in this way is decoupled from
the photogrammetry process to facilitate an easy implemen-
tation. Following a standard procedure, the Kalman filter
recursively runs in two major steps as follow

(1) Time update

{x̂}k+1,1 = [A]{x̂}k,k (14)

[P]k+1,k = [A][P]k,k[A]T + [Q]k (15)

Table 3 Kalman filter measurement space

Symbol Kalman filter symbol Variable

X Y1 X position

Y Y4 Y position

Z Y7 Y position

Θ Y10 Roll angle

Φ Y13 Pitch angle

Ω Y16 Yaw angle

(2) Measurement update

{x̂}k+1,k+1 = {x̂}k+1,k + [Kg]k+1({z}k+1 − [H ] {x̂}k+1,k)

(16)

[P]k+1,k+1 = [P]k+1,k − [Kg]k+1[H ][P]k+1,k (17)

where the matrix [Kg] is the Kalman gain at the time step
k + 1:

[Kg]k+1 = [P]k+1,k [H ]T
k+1([H ]k+1[P]k+1,k [H ]T

k+1 + [R]k+1)
−1

5 Motion predictive control in autonomous robotic
capture

The motion predictive control in autonomous robotic capture
can be generally divided into two phases: (i) the tracking and
approaching, and (ii) the capture.

5.1 Tracking and approaching

The target tracking and approaching involves identifying,
locking on, and following a static or dynamic target in the
3D workspace by controlling the joint positions in the joint
space. This includes the planning of the trajectory for the
robot joint positions, the wrist position and the orientation
of the end- effector to optimize capture potential. Assum-
ing there is no obstacles between the end- effector and the
target, a direct path is planned in the joint space, instead of
workspace, in order to minimize the time taken for the end-
effector to approach and align with the target. It should note
that this may result in a curved trajectory of the wrist in the
workspace.

Let us define the state errors in the position-based visual
servoing by the relative position error of the wrist, {e}, and
the orientation error, {�} of the gripper, such that,

{e} = {Xg} − {Xd
g } =

⎧
⎨

⎩

Xg

Yg

Zg

⎫
⎬

⎭
−

⎧
⎨

⎩

Xd
g

Y d
g

Zd
g

⎫
⎬

⎭
(18)
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{�} = {αe} − {αd
e } =

⎧
⎨

⎩

αe

αe

αe

⎫
⎬

⎭
−

⎧
⎨

⎩

αd
e

αd
e

αd
e

⎫
⎬

⎭
(19)

where {Xg} and {Xd
g } are the current and desired wrist posi-

tions in the global frame, {αg} and {αd
g } are the current and

desired gripper orientations in the local coordinate system
{Xe}.

Correspondingly, the state velocity state errors can be writ-
ten as

{ė} = {Ẋg} − {Ẋd
g }; {�̇} = {α̇e} − {α̇d

e } (20)

The desired wrist pose is obtained by the vision system
via the photogrammetry algorithm and the Kalman filter.

For the dynamic tracking and approaching, the desired
pose has to be modified so that the end-effector will approach
the intercept position with proper orientation instead of the
current position and orientation. This can be achieved by
replacing the desired pose in (18) and (19) with the following,

{X̃d
g } = {Xd

g } + {Ẋd
g }(
T + t0) (21)

{α̃d
e } = {αd

e } + {α̇d
e }(
T + t0) (22)

where t0 is the time interval between two updates of the
computer vision system and 
T = ‖{e}‖/‖{Ẋmax

g }‖ is the
nominal shortest remaining time from the current position
to the target position, {Ẋmax

g } is the maximum velocity limit
imposed on the end-effector, and the velocities of the desired
position {Ẋd

g } and orientation {α̇d
e } are estimated by the

Kalman filter. As the end-effector approaches the target, the

T will become smaller and the estimation of the intercept
pose will be more accurate.

Thus, the error in the joint space consists of two parts,
resulting from the position and orientation errors,


{θ} ≈ [ J̃−1]{e}+[Tφ]{�}; 
{θ̇} ≈ [ J̃−1]{ė}+[Tφ]{�}
(23)

where [T�] is the transformation matrix taking the angular
misalignments from the local coordinate system {Xe} to the
joint space.

The path tracking of the end-effector will be achieved by
a proportional and derivative controller due to its simplicity
and reliability, such that,


{θc} = K p
{θ} + Kd
{θ̇} (24)

where (K p, Kd ) are the gains of proportional and derivative
control, subject to the constraint of the maximum velocity of
the end-effector,

{θ̇} ≈ [ J̃−1]{Ẋd
g } + [T�]{�̇} ≤ [ J̃−1]{Ẋmax

g } (25)

5.2 Capture

Once the end-effector is close to the target and prepares for
a capture, a metric is defined to take into account misalign-
ments and distances between the gripper and the grasping
point in order to transition between phases as well as to decide
when to effect a capture. These were modularized in order
to scale their weightings throughout the individual phases of
the operation. They are as follows:

M1 =
√


X2
e + 
Y 2

e + 
Z2
e (26)

M2 =
√


Y 2
e (27)

M3 =
√

(αx − αd
x )2 + (αy − αd

y )2 + (αz − αd
z )2 (28)

M4 = Yetan(αx − αd
x ) + Ze (29)

M5 = Yetan(αz − αd
z ) + Xe (30)

where M1 represents the misalignment in the non-critical
total distance, M2 the critical horizontal distance, M3 the
total orientation misalignment, M4 and M5 the horizontal
and vertical orientations of the end-effector, respectively.

These five offsets are then combined into a composite
alignment index for the total alignment measurement of the
end-effector by a weighted sum,

h =
5∑

i=0

wi Mi (31)

where wi are the weights that are tuned in the experiment.
The index is further conditioned by a sliding average to

define a threshold logic function (TL) to control the capture
action, such that,

T L =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

j < 100 Initialization Approach

j ≥ 100

⎧
⎪⎪⎨

⎪⎪⎩

500 < h Approach

85 < h ≤ 500 Approach and Alignment

h ≤ 85 Grasp

(32)

where j is the number of vision measurements. Once the
approach and alignment (85 < h ≤ 500) of the end-effector
is initiated, the weight for M2 is increased to ensure a colli-
sion with the target does not occur.

6 Experimental validation

6.1 Experimental set-up

The experimental validation was carried out with the use
of a custom designed, constructed, and programmed robotic
manipulator as shown in Fig. 3. The experimental set up
employed a visually low-noise target shown in Fig. 4 with
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Fig. 3 Robotic manipulator

Fig. 4 Close up of target and pattern

four non-collinear markers in a pattern known and hard-
coded into the photogrammetry algorithm. The pattern do
not require any specific shape or position, only a high con-
trast.

The motion of the target is generated through the use of a
single motor (referred as target motor in the following) that
can run at different velocities. In addition, a pendulum anchor
point can be moved, generating a modifiable arc motion for
the target. An example of this motion is shown in Fig. 5 along
with the robotic manipulator in the foreground. By varying
the anchor points and keeping the knowledge of the path sepa-
rate from the manipulator controller, we can generate several
distinct capture scenarios for testing. Two testing scenarios
were tested in this work, determined by the target velocity at
capture as low and high velocity captures respectively. The
upper limit for the low velocity capture was determined by
increasing the velocity of the target motor until the point
where, without motion prediction, the robotic manipulator
was unable to track and capture the target. This velocity was
established as 0.27 cm/s. The high velocity capture was per-
formed at twice this velocity, namely, 0.54 cm/s.

Fig. 5 Experimental set-up for validation

The capture follows several phases that are defined as fol-
lows.

1. Target acquisition

(a) Markers finding
(b) Target locking on and tracking

2. Approach

(a) High speed approach to the vicinity of target
(b) Collision avoidance approach before capture

3. Capture

(a) Verify misalignments
(b) Verify weighted summation
(c) Activate capture

The transitions between the phases is a critical component
of the operation and requires an autonomous solution capable
of sensing the distance, the position, and the misalignment
actively and deciding when the optimal transitions would
occur. This will be illustrated in the following section.

6.2 Results and discussion

The experimental results of autonomous captures of a non-
cooperative target will be presented in here to illustrate the
desired and current joint positions of the torso (Θ1), the
shoulder (Θ2), and the elbow (Θ3). The capture operation
will be examined in detail where the target is acquired in
phase 1 and the predictive algorithm begins to output desired
values for the joint angles. Phase 2 denotes the beginning of
the tracking and the introduction of the actual joint positions.
Phase 2a is the fast approach marked by the rapid changes in
joint positions and large oscillations in the motion. Phase 2b
is the near stage approach that is characterized by the slow
changes in joint position and small oscillations in the motion
due to an increased care in collision avoidance. Phase 3 is
activated once the metric of misalignments denoted in Sect.
5.2 drops below the threshold value.
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Fig. 6 Typical low velocity capture operation with the phases outlined
and identified. Without Kalman filter

Fig. 7 Typical low velocity capture operation with the phases outlined
and identified. With Kalman filter

6.2.1 Low velocity captures

Low velocity captures refer to the capture operation without
predicting target motion by (21) and (22) in the controller.
The target was moving at a linear velocity of 0.27 cm/s.
Two cases were conducted to compare the impact of Kalman
filter on the capture performance and the results are shown
in Figs. 6 and 7. The differentiating factor between the two
operations is that the Kalman filter was employed only in
the second operation, in Fig. 7 and resulted in a much faster
capture operation with smaller errors and fewer overshoots in
joint positions. In terms of phase transitions, both operations
perform similarly.

As shown in Figs. 6 and 7, Phase 1 was dominated with the
vision system establishing a lock on the target and resolving
the inverse kinematics. Obviously, the Kalman filter reduced
the time required to perform this phase task significantly.
Phase 2a emphasized the approaching speed, which resulted
in a rapid motion in the end-effector of robotic manipulator.
This can be best seen in the high velocity captures in the fol-
lowing section. Phase 2b started at the close proximity to the
target and was executed at a slower end-effector velocity by
emphasizing collision avoidance between the end-effector
and the target. Of particular importance in this phase is to
avoid any perturbations to the target by the end-effector. This

Table 4 Low velocity capture synopsis

Phase Start time (s) End time (s) Elapsed time (s)

Without Kalman filter

Phase 1 0 22.5 22.5

Phase 2a 22.5 48 25.5

Phase 2b 48 76.5 28.5

Phase 3 76.5 … …

With Kalman filter

Phase 1 0 4.2 4.2

Phase 2a 4.2 11.8 7.6

Phase 2b 11.8 31.9 20.1

Phase 3 31.9 … …

is due to the fact that at the close proximity, the markers
employed to locate the target in the 3D workspace take up
a large percentage of the field of view of the camera and
a quick acceleration of the target may result in the loss of
lock to the markers and necessitate an abortion from the cap-
ture operation. Phase 3 is significant only in the sense that
it marks the capture of the target and beginning of a new
control regime aimed at decelerating the target, which will
be a separate research subject. Table 4 provides a synopsis
of the times where these events occur for the low velocity
capture operations. Obviously, the Kalman filter enhanced
significantly the capture performance in terms of shortening
the operating time for a fast capture operation.

6.2.2 High velocity captures

The high velocity captures were executed when the target
moved at a higher velocity of 0.54 cm/s. The target motion
prediction in (21) and (22) must be considered in the con-
troller in this case. In addition, the higher velocity leads to
new challenges including a reduced time window to effect a
capture operation due to the limited time the target spends
within the operational field of robotic manipulator. Further-
more, high velocities incur higher errors in pose estimation
and higher chances for collisions due to the system delay.
Again, the comparisons between the cases with and without
Kalman filter were performed.

Figure 8 shows the capture operation without using the
Kalman filter and exhibits fairly similar trends to the low
velocity captures from the previous section. The velocity
slopes are steeper due to the faster joint speeds as would
be expected.

To closely examine the behavior of the autonomous con-
troller, we are going to take a look at a separate high velocity
capture with the Kalman filter shown in Fig. 9 and its compan-
ion graph displaying the errors shown in Fig. 10. The errors
of joint angles shown in Fig. 10 make it easy to distinguish
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Fig. 8 Capture operation: Typical high velocity capture operation with
the phases outlined and identified. Without Kalman filter

Fig. 9 Typical high velocity capture operation with the phases outlined
and identified. With Kalman filter

Fig. 10 Typical tracking errors in high velocity capture with the phases
outlined and identified. With Kalman filter

the thresholds that trigger the different phases of the capture
operation. The Phase 1 shows the vision system identifies
and locks on the target only. No joint actuation is activated.
The Phase 2a is characterized by the sharp reduction in joint
angle errors, which corresponds to the fast approach of the
end-effector to the target. Once in the close proximity to the
target, the joint angle errors are reduced significantly and the
Phase 2b starts until a successful capture is performed.

The lines in Fig. 10 represent the joint errors. In particu-
lar, the Θ1 behaviour perfectly illustrates the separate behav-
iour profile between phase 2a and phase 2b. In phase 2a,
the motion is jagged and indicates rapid changes in joint

Table 5 High vlocity cpture snopsis

Phase Start time (s) End time (s) Elapsed time (s)

Without prediction

Phase 1 0 22.5 22.5

Phase 2a 22.5 67.0 44.5

Phase 2b 67.0 102.3 35.3

Phase 3 102.3 … …

With prediction

Phase 1 0 11.0 11.0

Phase 2a 11.0 29.3 18.3

Phase 2b 29.3 58.1 28.8

Phase 3 58.1 … …

positions that correlate to a rapid motion of the end-effector
of robotic manipulator. Once the error value crosses into
the near range operation mode, phase 2b, a much smoother
curve emerges which signifies close proximity operations.
This type of smooth phase transition provides an intuitive
and bio-mimetic style capture that increases capture reliabil-
ity while reducing collisions and jarring events. Table 5 pro-
vides a synopsis of the transitional times for the high velocity
captures.

7 Conclusion

This paper investigated the autonomous capture of a non-
cooperative target by a robotic manipulator using visual ser-
voing and Kalman filter enhanced motion predictive con-
trol. The Kalman filter is used to enhance the real-time state
and pose estimation of the target from the noisy image date
and the trajectory planning for the dynamic capture of a
non-cooperative target. The control of capture process has
been divided into different phases and a transitional decision
making process is developed to guide the robotic manipu-
lator between the different phases of the capture operation
using a custom metric that translates visual misalignments
between the end-effector and the target into a guidance mea-
surement. A custom 6 DOFs Pieper type robotic manipula-
tor with eye-in-hand configuration is constructed to test and
validate the performance of the proposed visual servoing,
Kalman filter enhanced motion predictive control scheme for
the autonomous capturing task and to demonstrate the robust-
ness of the proposed control scheme in the presence of noise
and unexpected disturbances in vision system and constraints
for the manipulator operation in real environments. Experi-
mental results demonstrated a successful phase transitioning
strategy and capture operation. It also demonstrates the fea-
sibility and applicability of the proposed control scheme in
this paper.
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