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Abstract In this paper we present an architecture for
autonomous manipulation. Our approach is based on the
belief that contact interactions during manipulation should
be exploited to improve dexterity and that optimizing motion
plans is useful to create more robust and repeatable manipu-
lation behaviors. We therefore propose an architecture where
state of the art force/torque control and optimization-based
motion planning are the core components of the system. We
give a detailed description of the modules that constitute the
complete system and discuss the challenges inherent to creat-
ing such a system. We present experimental results for several
grasping and manipulation tasks to demonstrate the perfor-
mance and robustness of our approach.
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1 Introduction

Autonomous robotic manipulation remains an open and very
difficult problem. Among other reasons, this problem is dif-
ficult because it encompasses multiple areas of research,
including computer vision or more generally perception to
recognize the environment, higher order reasoning to synthe-
size sequences of actions to efficiently solve a complex task,
motion planning to generate desired movements, control to
execute these movements, machine learning to automatically
acquire new skills and improve them, and automatic calibra-
tion to ensure precision. To add to the difficulty, we argue that
is it not sufficient to address each research domain indepen-
dently as each of these elements need to constantly interact
with each other as they are integrated into a single system.
Therefore the design of a complete system, where these dif-
ferent elements can efficiently work together, is another chal-
lenging aspect of the problem.

Autonomous robotic manipulation is by definition a prob-
lem that involves constant interaction with objects. Robots
are supposed to frequently touch the world which creates
new challenges for traditional approaches such as collision
free motion planning. From that point of view, it seems nat-
ural to develop algorithms that will inherently be in phase
with the nature of manipulation: controlling the contact inter-
actions with objects. Moreover, it seems desirable to adopt
approaches that can optimize arbitrary additional objectives
such as trajectory smoothness, obstacle clearance, torque
minimization and manipulability. The resulting motion plans
will improve task performance, robustness and repeatabil-
ity while providing a meaningful way to exploit kinematic
redundancy.

In this contribution, we report our recent effort in develop-
ing a complete system for grasping and manipulation. Two
important concepts lie at the core of our approach: (1) we
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make extensive use of torque and force controllers that pro-
vide very high performance while greatly simplifying the
interaction with the environment, (2) we rely on optimization
methods for motion planning in order to optimize important
objectives associated with manipulation tasks. Our approach
results in a robot that can safely and efficiently interact with
the environment during manipulation tasks by explicitly con-
trolling interactions forces. For example, when grasping an
object on the table, contact with the table can be exploited
to create robust grasps. Grasping an object is achieved by
controlling interaction forces between the object and the
fingers, ensuring that the fingers adapt to the shape of the
object. Simple grasp planning that does not require precise
grasp point computations can then be used to grasp a wide
range of objects. The controller also allows to adapt the stiff-
ness of the robot in directions relevant to the task, allowing
precise positioning when necessary (e.g. to put a key in a
lock). Optimized motions lead to more repeatable and robust
behaviors that guarantee the execution of long and compli-
cated manipulation tasks such as drilling. And collision-free
motion planning is then only used outside of the manipula-
tion area. Building on these ideas, we propose a complete
manipulation architecture. We also describe the challenges
faced in integrating our different modules into a coherent
system. Experimental results with several different grasping
and manipulation tasks are shown in order to validate the
approach. Experiments were conducted by an independent
test team during the first phase of the DARPA Autonomous
Robotic Manipulation (ARM) program. These experiments
therefore offer an objective evaluation of our approach since
we did not have any control over the evaluation. Moreover,
it allows to compare our approach with the different archi-
tectures that were developed by the other teams participating
in the program and that are briefly described in the next sec-
tion. Finally, we discuss the benefits and shortcomings of our
approach. Based on this discussion, we sketch what could be
a partial research program towards truly autonomous robotic
manipulation.

In the following, we first situate our work with respect to
the current literature and in the context of the ARM project
(Sect. 2). Then, in Sect. 3 we give an overview of the gen-
eral system architecture and describe in detail the important
components of the architecture. Experimental results are pre-
sented in Sect. 4, followed by a discussion about the strengths
and weaknesses of our approach and future research direc-
tions to improve our system (Sect. 5).

2 Background

In the following we describe previous work and explain how
it relates or differs from our approach. Then we describe the
ARM project in which our research took place and briefly

describe the robot we used to develop our manipulation
system.

2.1 Related work

This section will cover related work in the areas of calibra-
tion, force control, grasping and manipulation, and integrated
systems. Our focus will be on related work that has been eval-
uated on real systems in similar settings.
Calibration: A lot of research has been conducted to calibrate
the kinematic parameters of robotic manipulators, see Holler-
bach et al. (2008) for an overview. Fast and robust ways of cal-
ibrating for kinematic quantities are presented in Pradeep et
al. (2010) and Hubert et al. (2012). The approach in Pradeep
et al. (2010) is inspired by the bundle adjustment approach,
and generalized to estimate robot system parameters by
including measurements from various types of sensors. The
approach presented in Hubert et al. (2012) can make use of
prior knowledge of the system. To also achieve high accuracy
even in the presence of non-geometric errors, e.g. due to gear
transmission, friction, temperature, and compliance, research
has been conducted towards also modeling these quantities
and also optimizing those parameters, see Majarena et al.
(2010) for an overview. However, accurate modeling of the
non-linearities present in the ARM-S robot, for example due
to cable stretch, is tedious and potentially unfeasible. An
approach to account for such non-linearities on the ARM-
S robot is presented in Axelrod and Huang (2012). The
approach computes a position offset for the arm using k-
nearest neighbors for different parts of the workspace. Ori-
entation corrections are only computed for horizontal and
vertical endeffector orientations. Furthermore, the approach
cannot account for errors due to cable stretch given that two
similar end-effector poses can have two very different pose
errors depending on the configuration of the arm, the partic-
ular reaching trajectory as well as its execution speed.
Force control: Force control has been thoroughly investigated
these past three decades. Typically two types of approaches
are distinguished. Impedance control, as originally proposed
in Hogan (1985), aims to control the mechanical impedance
of the end-effector during contact interactions. It is a gener-
alization of approaches that merely try to control the stiff-
ness of the robot. Another approach, called hybrid control
(Raibert and Craig 1981) aims at directly controlling forces
in the direction of the interaction while controlling position
in the other directions. Several extensions and generaliza-
tions of these methods have been proposed (see for example
Yoshikawa (2000) for a review and Chiaverini et al. (1999) for
experimental comparisons). Recent work on creating com-
pliant motions for manipulation have focused on joint tra-
jectory generation (Kazemi et al. 2012) to achieve desired
contact forces, which is similar to admittance control (Whit-
ney 1977). The approach has inherently a slow bandwidth
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and requires explicit algorithms to modify trajectories with
condition loops and thresholds. In contrast, our approach is
essentially based on a hybrid approach, where the dynam-
ics of the robot is compensated for using inverse dynamics
and where a feedback control scheme similar to the par-
allel approach of Chiaverini and Sciavicco (1993) is used.
A task-frame formalism using ideas similar to Bruyninckx
and Schutter (1996) is implemented to specify which direc-
tions need to be position or force controlled and gains are
scheduled in order to vary control directions and associated
stiffness. It results in simple controllers with few parameters
and very high control bandwidth allowing fast motion and
reactivity.
Grasping: There has been a lot of research on planning good
grasps, see for example Bicchi et al. (2000) and Bohg et al.
(2013) for reviews. Several approaches are based on finding
good grasp points (i.e. precise hand pose and locations of
the fingers on the object) such as Miller and Allen (2004)
and more recently model-free algorithms were able to gen-
erate good grasps for unknown objects (Herzog et al. 2013;
Hsiao et al. 2010). These are in close relation to data driven
approaches that have also been proposed to infer grasps from
real-world data (Bohg and Kragic 2010; Li and Pollard 2005).
In our approach, we rely on object models and build a data-
base of grasp poses through human demonstration that we use
to find good grasp poses. In contrast with approaches based
on grasp points, we do not compute exact finger configura-
tions for the grasp. We do not base our controllers on force-
closure arguments (Bicchi 1995) either. It appears that the use
of force control is sufficient to grasp most objects as the fin-
gers can naturally adapt to the shape of the object. A model-
free grasp planning algorithm based on human demonstra-
tions and using our architecture as been successfully used
in Herzog et al. (2012, 2013) to grasp a large number of
unknown objects. It shows that our approach is not limited
by the use of object models. It has been recently shown in Bal-
asubramanian et al. (2012) that using human demonstrations
to plan grasps can lead to more robust grasps than using state
of the art grasp planning algorithms based on force closure
arguments. It must be noted though that the use of force con-
trol and adaptation of finger stiffness might not be sufficient
when grasping more complicated objects (e.g. a needle) and
in this case the use of force closure arguments might become
useful. The idea of using force controllers in the context of
grasping is not new (Bicchi et al. 2000) but to the best of our
knowledge it has not yet been widely used on experimental
platforms.
Motion planning for manipulation: Sampling-based motion
planning algorithms have proven extremely successful in
addressing manipulation problems (Berenson et al. 2009;
Diankov et al. 2008; Rusu et al. 2009). They are very effi-
cient at finding collision-free paths in a high-dimensional
state space. While they can quickly find feasible motion

plans, they are often lacking in the quality of paths produced.
Smoothing and post-processing is typically required before
executing these plans on a robot (Hauser and Ng-Thow-Hing
2010), which can significantly add to the required computa-
tion time. Trajectory optimization techniques have recently
been applied to motion planning for manipulation (Ratliff
et al. 2009; Kalakrishnan et al. 2011). These techniques
plan collision-free motions by minimizing a cost function
over trajectories. Such approaches allow the user to include
additional desirable objectives, such as trajectory smooth-
ness, obstacle clearance, torque minimization, and constraint
satisfaction. The use of optimization resolves the inherent
redundancy in finding collision-free configurations and tra-
jectories, making the robot behave in a more predictable and
repeatable fashion.
System integration: The challenges when dealing with com-
putational and physical limitations of fully autonomous sys-
tems are often underestimated. Integrating perception, plan-
ning, and control into a single platform is a major engineer-
ing effort. Impressive integration efforts have been demon-
strated by Asfour et al. (2006), Srinivasa et al. (2010) and
Chitta et al. (2012). These systems are capable of navigating
in kitchen environments and successfully performing tasks
such as pick and place as well as opening doors. Similarly,
in Beetz et al. (2011), the authors present an integrated system
that is capable of making pancakes. Nevertheless, the con-
sidered grasping and manipulation tasks are usually carefully
selected according to the physical limitations of the robot and
often require further modification of the environment. Such
shortcuts are usually not allowed in competitive settings. A
successful architecture in a recent competition has been pre-
sented in Stückler et al. (2013), a competition where each
team participated with their own robot. The differences to
our competition (besides the considered tasks) were (1) we
had no influence on the design of the robot, (2) we were not
provided access to the robot before each test, (3) our code was
tested independently on a copy of our robot, which required
teams to provide turn-key solutions that were robust to slight
mechanical differences. Two of our competitors have pub-
lished their approaches in Hudson et al. (2012) and Bagnell
et al. (2012). The authors of Hudson et al. (2012) based their
approach on continuous estimation of the entire system state
from many different sensor modalities. This enabled the team
to accurately track the arm which turned out to be crucial for
many of the considered tasks. The authors of Bagnell et al.
(2012) present a system focusing on automatic behavior gen-
eration that can recover from certain failures. Furthermore,
their approach emphasizes on accurate object pose estimation
including visual arm tracking. Their approach to trajectory
optimization (see Kalakrishnan et al. (2011) for a in-depth
comparison) and optimal inverse kinematics (IK) computa-
tion is similar to ours. However, in contrast to all mentioned
contributions, our approach deals with uncertainty through
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compliant and force control rather than relying on precise
perception and accurate task execution. We were the only
team to estimate the (real) dynamics of the manipulator (see
Sect. 3.2.2) enabling us to compute accurate feedforward
torque commands using inverse dynamics. This enabled us
to significantly lower the PD feedback gains to achieve very
compliant behavior while maintaining good tracking perfor-
mance (see Sect. 3.4).

2.2 The ARM project

The research presented in this paper was developed in the
context of the DARPA ARM project. The first phase of the
project involved six teams across the United States and ran
from August 2010 to November 2011. Each team was pro-
vided the same robotic platform (described in Sect. 2.3) and
asked to compete in a series of grasping and manipulation
challenges. In particular, each team was asked to develop
software that enables the robot to autonomously perceive and
grasp a total of 12 objects1, and to perform six manipulation
tasks. Each individual grasping and manipulation task was
tested five times by placing the objects involved in differ-
ent (unknown) locations and poses. The primary metric for
evaluation was task success followed by speed. Tests were
performed on a copy of the robot setup in an independent
testing facility. This required each team to create software
that is robust to changes in the environment (e.g. lighting
conditions) and variations in the robot itself (e.g. sensor off-
sets). Furthermore, the teams were not provided with remote
access to the robot during the final test. Thus, the teams were
required to provide end-to-end solutions, both for calibration
and task execution. The results presented in this paper were
obtained through independent testing, i.e. the teams had no
control on the outcome of the tests. We believe that it pro-
vides an appreciable degree of objectivity in the results and
minimum bias during the experiments.

2.3 The ARM-S robot

The ARM-S robot consists of a Barrett WAM robot, which is
a 7-DOF manipulator with a Barrett 6 axis Force/Torque sen-
sor attached at its wrist and a three-finger Barrett Hand (BH8-
280), (see Fig. 1). Each finger has one actuated DOF that
moves a finger with two articulations. The spread between
the left and right finger is actuated and can move these two
fingers 180 ◦ around the palm. These fingers move in a sym-
metric way. Each finger knuckle contains a strain gage that
measures the applied torque. Both the WAM and the hand can
be torque controlled. Nonetheless, there is no direct torque

1 A detailed 3-D scan of nine of these objects was provided to each
team and for the remaining three objects each team was only informed
about the class of object.

Fig. 1 The ARM-S robot holding a drill. The Barrett WAM robot arm
is equipped with a force/torque sensor at the wrist and a three-finger
hand. The neck is composed of two pan/tilt units mounted on top of
each other. The sensor head is equipped with a high resolution camera,
a stereo camera pair, and a 3D TOF camera

sensing on the seven joints of the WAM robot and therefore
it is not possible to implement a low-level torque feedback
controller. We therefore assume that torque is proportional
to the motor current. Another issue is that the WAM has
position encoders mounted on the motors but no encoders
on the joints. Therefore, due to variable stretch of the cables
depending on the robot pose and its previous motions it is
not possible to get an accurate position of the joints for fine
manipulation. Internal testing using a VICON motion cap-
ture system confirmed a difference of up to 4 cm between the
real position of the endeffector and the position computed
using joint sensing and forward kinematics.

The neck is composed of two pan/tilt units from Direct-
edPerception mounted on top of each other, providing a total
of four DOFs. The pan-tilt units are actuated with stepper
motors. The visual sensors on the head are an Allied Vision
Technologies Prosilica GC2450C for high resolution images,
a Point Grey Bumblebee2 for stereo vision and a Mesa Imag-
ing SwissRanger SR4000 for range sensing.

3 Autonomous manipulation system

In this section, we describe the overall architecture of our
system, and highlight the different components that are criti-
cal to our approach. An overview of our system architecture
is depicted in Fig. 2 and described in its caption. Details
about each of the components of the system is described in
the following subsections.
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Fig. 2 Overview of the proposed system architecture for grasping and
manipulation tasks: The behavior and task progress monitor (cyan) are
specific to the particular manipulation tasks and have been designed
accordingly. The tasks are selected by the human operator (yellow), the
corresponding behavior then starts and ensures the proper coordina-
tion of the other modules. The perception module makes use of prior
knowledge about the object shape (green) to estimate object poses. The
object database (green) was trained with a set of corresponding object-
relative pre-manipulation poses. Given this set of poses, we compute

optimal joint configurations using our optimization based inverse kine-
matics (blue). Desired trajectories are either generated using optimal
motion planning or by employing a sequence of contact-reactive motion
primitives (blue). Finally, the joint space and Cartesian position/force
controllers (pink) compute and send the torques to the robot that are
required to fulfill the task. The offline calibration routines are executed
once before running the grasping and manipulation tasks (Color figure
online)

3.1 Software architecture

The entire system runs on a single computer with eight cores.
It runs the Linux operating system patched with Xenomai
(http://www.xenomai.org/) for real-time capabilities. Real-
time control is very important when implementing fast con-
trol loops that directly access the robot hardware to ensure
that sensors and control commands are processed in a timely
manner. All the control software runs in real-time, guaran-
teeing good control performance with the robot. We use our
custom made SL control environment (Schaal 2009). The rest
of the software is not real-time (calibration, motion planning,
vision) and is implemented using ROS (Quigley et al. 2009).

3.2 Calibration

Precise calibration of the sensors and the kinematic and
dynamics models the robot is very important to ensure good
performance during manipulation tasks. Moreover, due to
the testing procedure of the ARM project, we had to provide
automatic and robust calibration procedures that could be run

by the independent test team. We describe in the following
these calibration procedures.

3.2.1 Kinematic calibration

Precise kinematic forward models are important for robots
to successfully perform dexterous grasping and manipulation
tasks, especially when visual servoing is rendered unfeasible
due to occlusions. Unfortunately, there are non-linearities in
the kinematic chains of the ARM-S robot (shown in Fig. 2)
resulting in significantly different errors for different parts
of the state space. The non-linearities in the arm kinematic
chain are due to cable stretch and motor-side encoders (see
Sect. 2.3) and the head kinematic chain has non-linearities
due to a counter balancing spring. A lot of research has been
conducted to estimate geometric and non-geometric parame-
ters of kinematic chains to minimize reconstruction errors,
see Hollerbach et al. (2008) for an overview. However most
approaches either do not consider such non-linearities, or
consider chains that are simple enough to carefully engineer
a model and estimate their non-geometric parameters. We
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propose a data-driven approach that learns (local) task error
models that account for such unmodeled non-linearities. We
argue that in the context of grasping and manipulation, it is
sufficient to achieve high accuracy in the task relevant state
space. Therefore, our system is developed to generate subse-
quent task executions that remain similar to previous ones.
That is, we enforce subsequent arm postures and reaching
trajectories to be similar to those during training by employ-
ing optimization techniques when computing inverse kine-
matics solutions (see Sect. 3.5.1) and movement plans (see
Sect. 3.5.2). It is very important to note, that this is not a lim-
itation of the proposed approach, since the task error model
considers the state space that is relevant for the task. We do
not see any advantage of trying to achieve an accurate for-
ward model for the entire state space.

The objective of calibrating the head kinematic chain, i.e.
the two pan/tilt units, first is to enable our system to accurately
merge 3-D point clouds of perceived objects from different
view angles (see Sect. 3.3). The objective of calibrating the
arm kinematic chains is to get an accurate object pose esti-
mate in the hand frame necessary for dexterous manipula-
tion. For both these calibration tasks we employ the same
two staged approach. First, we optimize for the best transfor-
mation that minimizes the systematic pose error between the
forward model and the visually perceived 6-D marker poses.
Second, we learn a local non-linear correction term �x that
absorbs the remaining task error as a function of the current
joint angle configuration θ .

Accounting for non-linearities in the head kinematic chain
The training phase involves the robot moving its pan/tilt
units into 60 commonly used configurations while record-
ing perceived 6-D marker poses of the fiducials arranged
in the calibration target which is lying flat on the table
(see Fig. 3). Then we optimize for the 6-DOF transform
between the top of the head’s pan-tilt mechanism and the
stereo camera that minimizes reconstruction error. Finally,
we compute the remaining error and learn six Gaussian
Process (GP) Regression models to predict the six cor-
rection terms, i.e. translation in x, y, z and corresponding
rotations φroll, φpitch, φyaw. Thus, the GP model provides
us with a joint configuration dependent 6-DOF pose cor-
rection which we apply to the previously estimated fixed
pose.

Accounting for non-linearities in the arm kinematic chain
To determine the relevant task space when calibrating for
non-linearities in the arm kinematic chain we process all
previously stored pre-grasp and pre-manipulation poses and
compute 150 IK solutions, i.e. joint configurations, for the
most prominent ones. The training phase again consists of
having the robot reach and retreat to each of these arm
postures while recording the visually perceived 6-D marker
poses of the fiducials on the cube like calibration target
mounted at the endeffector of the WAM robot arm (see

Fig. 3 Sketch of the calibration procedures of the kinematic chains.
The non-linearities in the forward model of the head kinematic chain is
introduced by the spring (left). The non-linearities in the forward model
of the arm is introduced due to cable stretch and motor-side encoders
(right)

Fig. 3). To account for systematic error in the mounting of
the Barrett arm with respect to the base frame, we again opti-
mized a full 6-D transform to minimize reconstruction error.
The remaining 6-D pose error is computed using this fixed
offset and again approximated as a function of the arm joint
configuration using six separate GP models.

A video showing the kinematic calibration procedure can
be seen at http://youtu.be/QKKViNGhWWQ. Please refer
to Pastor et al. (2013) for a more detailed description of the
method as well as experimental evaluations.

3.2.2 Dynamic parameter estimation

In order to use a model based torque control approach, we
need an accurate model of the dynamics for the arm. Given
the little inertia of the fingers we do not model their dynamics.
We do not model the dynamics of the head either since it
cannot be torque controlled.

The model of the dynamics given by the CAD model of the
WAM was not sufficient for good tracking performance while
keeping low PD gains. Therefore we estimated the dynamic
parameters of the robot using standard inertial parameter esti-
mation algorithms (An et al. 1985). The mapping between
joint torques τ and the inertial parameters m of a manipulator
is a linear function that depends nonlinearly on the position,
velocity and acceleration of its joints

H(q, q̇, q̈)m = τ (1)

We use a linear regression algorithm to estimate the inertial
parameters that best match the torques and observed joints
motion. In order to properly observe the inertial parameters
we designed trajectories composed of superimposed sines
with incommensurate frequencies in order to excite most
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modes of the dynamics. Our model estimates the mass, the
position of the center of mass multiplied by the mass, the
inertial tensor of each link as well as viscous friction (linear
in joint velocity) and a Coulomb friction term (correspond-
ing to a constant term opposite to joint velocity when the
velocity is not zero).

3.2.3 Force sensor calibration

When the robot is powered on, it is necessary to compute the
offsets of the six axis force sensor at the wrist. The offsets are
computed knowing the initial pose of the robot and the mass
of the hand (i.e. we compute the theoretical force applied by
the hand on the endeffector).

During our experiments, it turned out that the force sen-
sor had a significant level of hysteresis and the sensor val-
ues would drift significantly when the robot was moving.
This effect was systematically observed on the several Barrett
force sensors we used. Therefore, the procedure of zeroing
the force sensor had to be repeated each time before a force
controlled sequence (i.e. before interacting with objects). The
hysteresis of the force sensor was a major problem, since only
short force control sequences could be done before zeroing
the sensor making our approach slower. Moreover, it did not
allow us to perform online estimation of the inertial properties
of objects grasped by the robot with enough accuracy (Atke-
son et al. 1985).

3.2.4 Strain gage calibration

We calibrate the strain gages by fitting a linear model that
maps sensor readings into physically consistent values (i.e.
into Nm). In order to automatically do that, we use the force
information at the wrist to infer the forces in each finger.
At the beginning of the calibration process the hand of the
robot goes above the table and the fingers are moved into
an equilateral triangle configuration (for equal force distri-
bution). Papers with low friction are placed under each fin-
ger. The robot then presses against the table with the fingers
with several different vertical forces. Theoretical forces in
the knuckle are computed from the vertical forces (which is
direct because the fingers are in a equilateral triangle config-
uration). A linear regression between strain gage sensor read-
ings and theoretical forces is used to get the sensor model.
This calibration procedure was very useful to get consistent
force readings across fingers and hands. The automatic pro-
cedure could be reliably run by the independent testing team.

3.3 Perception

For perception, we primarily use the Bumblebee2 stereo cam-
era on the head of the robot. Because we know which objects
will be present for each task, we develop unique strategies for

each object. The basic strategies which we find most useful
are:

– Iterative closest point (ICP) based template matching of
templates to rigid object models.

– Template matching of 2D depth templates against the
depth image

– Template matching of visual templates against color
image data

For objects with enough texture to provide good depth
data, we find simple ICP to work surprisingly well. To make
the ICP step more robust, for each object we find the (rel-
atively small) set of poses in which the object can rest on
the table. This allows us to restrict the problem to solving for
the two-dimensional translation and rotation which aligns the
object model in a stable pose to the observed point cloud.

For this approach, we first cluster 3D points which are
close together. We then match each 3D object template
against each cluster of points using ICP, and use a combi-
nations of number and percentage of inliers to choose the
best match. When recognizing a scene with M models of
objects expected to be in the scene and N observed clusters,
we first perform an ICP registration of each model to each
cluster. This requires running ICP M×N times. We then use
brute force search to choose the correspondence between
models and clusters. Although this second step requires try-
ing a combinatorial number of possibilities, we do not need
to re-execute ICP for each one, and so the running time is
relatively low.

For objects with enough texture to provide depth data from
the stereo cameras but with shapes that did not work well with
ICP (because of local minima), we search for a 2D depth
template. For this approach, a multi-level search is executed
over a grid of possible x, y, and angle possibilities. First the
best match is found using a course grid of possible poses;
then the poses around that match are searched at a higher
grid resolution to improve the pose estimate.

For some objects (such as a plain white telephone shown
in Fig. 8f), there is not enough texture to give good stereo
depth data. For such objects, we match visual templates to
find the object. Depending on the object, we use either an
RGB template, an HSV template, or a simple binary template
to match the shape of the object to pixels in a background
subtracted image.

For all of the template matching methods, we found it
convenient to first construct a stitched together orthographic
image of the table surface. Because the stereo cameras pro-
vide 3D points on the surface of the table, it is relatively
easy to fit a plane to these points and project multiple camera
images onto the table surface. By scaling this image such that
each pixel represents a known sized patch on the surface of
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the table, we avoid needing to search over all possible scales
of the object in the image.

One challenge we faced when trying to find objects with a
known appearance in color images is that the perceived colors
vary quite a bit depending on the current lighting conditions.
We mitigate this using two different approaches. First, we
calibrate the white balance of the stereo cameras using the
color of a known object in the scene—in this case the table.
Second, we train a support vector machine (SVM) classifier
for colors which we need to detect often. One example of this
is finding a piece of paper. We collected examples of the per-
ceived color of the paper under different lighting conditions,
and then trained a kernel SVM.

3.4 Control system

One key element in our manipulation architecture is the
use of force and torque controllers wherever possible. Our
requirements for the control architecture are: high tracking
performance in joint space and in Cartesian space (i.e. end-
effector), variable stiffness and end-effector force control.
The control is split into three independent parts: the head,
the arm and the hand.

3.4.1 Head control

The head is simply controlled using the position control inter-
face for the stepper motors.

3.4.2 Hand control

The fingers of the Barrett Hand are naturally very stiff due
to the worm gear. We implemented active force controllers
using the strain gages in the knuckle of the fingers in order
to have more compliant fingers (e.g. when controlling zero
force) and to be able to actively regulate the forces at the
finger tips. We send torque commands to the fingers; the
command is composed of a PD term for position and a P
term for force control. The control law is

τ f inger = K p
(
qdes − q f inger

)+ Kd
(
q̇des − q̇ f inger

)

+L p
(
Fdes − F f inger

)
(2)

where q f inger and qdes are the current and desired position of
a finger, F f inger and Fdes are the current and desired torque at
the knuckle of the finger, K p, Kd and L p are positive gains.
With such a setup it is possible to change the stiffness of
the fingers by changing the gains of the force control (when
commanding zero force). For example canceling these gains
will lead to normal position control with very high stiffness,
while having these gains set to their maximum will lead to an
extremely compliant behavior where the position control will
just act as spring and damper term. Moreover it is possible to

Fig. 4 Control architecture for the hand

precisely regulate the forces at the finger tips during grasping.
The control architecture is summarized in Fig. 4.

3.4.3 Arm control

There are two modes of control for the arm, which share
the same core components: joint space control and Carte-
sian space control (e.g. the control of the position and ori-
entation of the hand or an object in hand like the drill bit
during drilling). Both control architectures are shown in
Fig. 5.

Inverse dynamics The two modes of control share an
inverse dynamics controller with low gain PD control for
each joint. The inverse dynamics controller is used to can-
cel the dynamics of the robot (i.e. feedback linearize the
system) and usually accounts for more than 90 % of the
torques. PD control at the joint level ensures appropriate dis-
turbance rejection and correction of small modeling errors.
The PD controllers have low gains to ensure a certain level
of compliance. They are tuned to have approximately 200–
300 ms rise time with a bit more than critical damping. The
inverse dynamics and joint feedback torques are evaluated as
follows:

τ id =M(q)q̈des + h(q, q̇) (3)

τ f b = KP (qdes − q)+KD (q̇des − q̇) (4)

where q is the vector of joint positions, M is the inertia matrix
and h are the modeled forces including gravitational, Corio-
lis, centrifugal forces, viscous and Coulomb friction as mod-
eled in Sect. 3.2.2. KP and KD are diagonal matrices that
define the PD gains. We use the Featherstone (1987) formu-
lation of the Newton–Euler algorithm to compute the inverse
dynamics. We note that we never need to explicitly compute
the inertia matrix or the force vector h.
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Fig. 5 Control architectures for
the arm. On the left, the
architecture for joint space
control is shown. On the right,
the Cartesian space controller is
shown. A detailed explanation
of the components of the
architecture is given in the text

(a) (b)

Joint space control The joint space controller only uses the
inverse dynamics block, where desired position and veloci-
ties are sent to the PD controller and the desired acceleration
is used to compute the inverse dynamics torques. Very high
performance tracking is realized even when moving at high
speeds while the robot remains compliant.

Cartesian control Cartesian control is used when the robot
is manipulating an object, therefore it is desirable to precisely
control the position in certain task directions, while also regu-
lating force interactions at contact. A simple example of such
a setup arises when the robot is drilling. The drill bit needs to
be placed precisely above the drilling target which requires
very stiff control of the position in the horizontal plane while
it is necessary to apply a large force in the vertical direction
to drill.

We decided to use a mixture of joint space control (for
rough positioning and cancellation of the robot dynamics)
and hybrid position and force control at the end-effector (for
precise control of the dynamics at the end-effector).

The desired Cartesian positions and velocities are con-
verted into desired joint velocities using a differential IK
algorithm. We compute the IK using the pseudo-inverse of
the end-effector Jacobian computed with a singular value
decomposition (SVD). Singularities are dealt with by damp-
ing directly the singular values that become too close to zero
(Chiaverini 1997). Desired positions are computed by inte-
grating the desired velocities, and the desired accelerations
are computed through differentiation.

In order to control both stiff positions and forces in dif-
ferent directions, we use a hybrid force/position control
approach Chiaverini and Sciavicco (1993) and Yoshikawa
(2000) where two PI controllers for both position and force
control are mapped into joint torques

τ f orce = JT

⎛

⎝KF P (Fdes − F)+KF I

∫

�T

(Fdes − F)dt

⎞

⎠

τ pose = JT

⎛

⎝KP P (xdes − x)+KP I

∫

�T

(xdes − x)dt

⎞

⎠

where F is the force at the endeffector, x is the Cartesian posi-
tion and Ki are gain matrices. �T is the time window during
which errors are integrated. We schedule the gains, such that
directions that are controlled in position or force are var-
ied according to the task. In practice the scheduling is often
limited to turning on or off the control directions. Although
not perfect from the theoretical point of view (Yoshikawa
2000) this hybrid feedback control approach mixing posi-
tions and forces worked very well in practice. Several poten-
tial problems due to the manipulator dynamics are avoided
due to the cancellation of this dynamics with the inverse
dynamics.

Task frame For different tasks it is desirable to perform
Cartesian control in different frames. For example, when
drilling it is useful to directly set the frame of control at the tip
of the drill bit so we can regulate the force parallel to the drill
bit while having good control of the positions orthogonal to it
for drilling at the right position. Therefore, Cartesian control
is implemented in a configurable task-frame that allows to
change the coordinate system in which the control is to be
done relative to the endeffector. It is then possible to align the
directions of control with directions relevant for the task and
set control gains accordingly. During drilling, for example,
this frame is set automatically after perceiving the position
of the drill bit relative to the hand.
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Object mass compensation Grasped objects can signifi-
cantly influence the dynamics of the robot and the control
performance. We therefore add to the overall joint torques
a feedforward object mass compensation command to can-
cel the forces and moments exerted at the endeffector by the
grasped object

τ obj = JT
(

mobj g
xobj × mobj g

)
(5)

where mobj is the mass of the object, xobj the position of its
center of mass relative to the endeffector and g is the gravity
vector. Note that we treat the object as a point mass and not as
a rigid body (i.e. we do not consider its moment of inertia).
We use the mass of the object given by the object model
and do not estimate the object mass online. Such estimation
would be straightforward (Atkeson et al. 1985) if the force
sensor did not have strong hysteresis problems as explained
in Sect. 3.2.

Design choices due to robot limitations The control system
runs at 300 Hz despite the fact that the WAM can theoretically
be controlled at 500 Hz. The communication to the arm and
hand is done on a single CAN bus. The bandwidth of the CAN
bus proved to be the limiting factor when trying to access all
the sensors and control the joints of the WAM and the hand
at a high rate (i.e. in our case the full CAN capacity is used).
All sensors are read at 300 Hz except for the touch sensors
which are updated and thus read only at 25 Hz.

This control bandwidth limitation was problematic when
trying to directly implement resolved acceleration con-
trollers (Nakanishi et al. 2008), where feedback control is
directly done in Cartesian space using Jacobian pseudo-
inverses. Due to sensor noise and limited bandwidth it was
not possible to sufficiently increase the control gains to obtain
satisfactory performance without going unstable (the system
could not be damped enough). This is the reason we imple-
mented IK with joint space control. Feedback control of the
end-effector is then done using a hybrid force/position con-
troller using the Jacobian transpose (Yoshikawa 2000). An
advantage of this controller is that it seems to have a more
“natural” or human-friendly response to disturbances and
was extremely stable to external perturbations. The result-
ing controller led to satisfactory performance for Cartesian
position and force tracking.

3.5 Planning and motion primitives

In the following we detail the trajectory generation level.
We used two approaches to move the robot: planned joint
trajectories to move across the workspace (e.g. to move the
arm close to an object or to transport an object to a target
position) and sequences of motion primitives in task space
to grasp and manipulate objects.

We chose to use joint space motions to move across the
workspace because there exist several kinematic singularities
across the workspace and it is therefore not possible to have
local Cartesian motion using differential kinematics that can
move in straight lines between any two arm configurations.
As opposed to simply planning collision-free configurations
or motion plans using randomized planners, we use optimiza-
tion methods to generate smooth and predictable trajectories.
Such methods allow us to define a set of desirable charac-
teristics for configurations or trajectories, and optimize over
them. The redundancy in planning collision-free motions is
resolved by optimizing an objective function, which results in
repeatable and predictable trajectories. This is especially use-
ful in the case of the cable-driven Barrett WAM arm, because
the kinematic calibration errors are not only configuration-
dependent, but also path-dependent (see Sect. 3.2.1).

The choice of Cartesian motion in the region of manipu-
lation was because it provides a simple and natural way to
create motions of the hand relative to an object that includes
force control in the frame of the task of interest. By opti-
mizing an objective function that includes the manipulabil-
ity measure and joint limits when finding the IK solution,
we ensure that the robot has an optimal range of motion in
Cartesian space during the manipulation task.

3.5.1 Optimal inverse kinematics

In order to move the arm in joint space towards an object or
a specific target, we need to find the joint configuration of
the end point. We solve this problem using differential IK
similar to the one used at the control level. We generate 100
random joint configurations, and then iterate the following
update on each of them until convergence:

q← q+ J† (xdes − f (q))− (I− J†J)
∂C(q)

∂q
(6)

where q is the joint configuration, xdes represents the desired
Cartesian pose, f (q) is the non-linear forward kinematics
function of the tool control point (TCP), J(q) is the geomet-
ric Jacobian matrix containing partial derivatives of the TCP
w.r.t the joints, and J† refers to the Moore–Penrose pseudoin-
verse of J. Note that the forward kinematics function f (q)

also includes the non-parametric hand-eye calibration model
(as described in Sect. 3.2.1). In some cases, the desired pose
xdes is not fully specified in order to allow for more flexibil-
ity in the solutions. For example, when grasping a cylindrical
object, due to the symmetry along the long axis, the orien-
tation of the hand can be rotated around this axis and thus
we do not specify it in the pose xdes . By dropping the rel-
evant row from the term (xdes − f (q)) and the Jacobian J,
we get one more degree of freedom in the null space of the
task. These redundancies in the joint angles are resolved by
minimizing the cost function C(q) in the null space of the
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task constraints. The cost function is a weighted linear com-
bination of the following features:

– Obstacle clearance: the arm must be kept a certain mini-
mum distance away from the table and other obstacles.

– Joint limit avoidance: the joints must be kept away from
their limits in order to increase manipulability in the
workspace.

– Manipulability measure: for efficient Cartesian motion,
the arm must be kept away from singular configura-
tions, which can be evaluated using the manipulabil-
ity measure (Sciavicco and Siciliano 2000): Cmm(q) =√

det(JJt)

– Occlusions: for tasks that include visual feedback, (e.g.
drilling, Sect. 4.3.2), configurations that provide a direct
line of sight between the cameras and the tool being
manipulated are preferred.

– Similarity to demonstrations: in order to improve the
repeatability of IK solutions, we minimize the
configuration-space distance to a preferred kinematic
configuration.

The weights on each of these cost terms was tuned by
hand in this work, although we have since shown that these
weights can be learnt from demonstrations (Kalakrishnan et
al. 2013). Since Eq. 6 converges to a local minimum for each
of the 100 random joint configurations, we pick the one that
satisfies all task constraints and achieves the lowest cost.

Some tasks involve moving between two distinct parts of
the workspace, e.g. grasping and transporting an object to a
different location, or picking up a drill and drilling a hole
on a red dot. In such cases, we compute both IK solutions
jointly, with an additional cost on the configuration space
distance between the two solutions. This ensures that both
configurations are similar to each other, simplifies motion
planning between the two states, and minimizes extraneous
motion of the arm while the object is in the hand.

3.5.2 Stochastic trajectory optimizer

In order to plan joint-space trajectories across the workspace,
we use the STOMP algorithm (Kalakrishnan et al. 2011). We
initialize STOMP with a straight-line trajectory in configu-
ration space. The algorithm proceeds by iteratively sampling
trajectories around the current optimum, and combining them
to produce a trajectory of lower cost. This procedure does not
require access to gradients of the cost function, which may
not exist or may be expensive to compute. The exploration
and update rules ensure that the trajectory is smooth after
every iteration. No smoothing or post-processing is required
before executing the trajectory on the robot. The cost function
is designed as a weighted linear combination of the following
features:

– Obstacle clearance: keeps the arm away from the table
and obstacles. This can be computed efficiently by using
the signed Euclidean Distance Transform (Ye 1988) of
the 3-D obstacle voxel grid.

– Joint accelerations, jerk: ensures that trajectories are
smooth in joint-space.

– End-effector velocities: ensures that the distance traveled
by the endeffector is minimized. Minimizing the angu-
lar velocity component prevents unnecessary rotation or
tilting of objects in the hand.

Similar to the IK objective function, the weights for the
above cost terms may be learnt from demonstrations (Kalakr-
ishnan et al. 2013), although they were tuned by hand for the
purpose of this work.

3.5.3 Motion primitives

In addition to joint space motion planning, we used a library
of motion primitives. These primitives consist of simple para-
metrizable motions that are sequenced to create more com-
plex manipulation skills. The motion primitives that we used
are:

– Cartesian motion. Generates a motion of the endeffector
in Cartesian space. It is used to move the hand, or an
object in hand in a specific direction or orientation.

– Cartesian force. Generates a desired force trajectory. It is
used to apply a desired force in a certain direction.

– Poke. A motion that moves the hand in a specific direction
until it touches an obstacle. It is usually used before a
Cartesian force primitive.

– Finger motion and force. Generates a desired finger
motion with a desired force trajectory. This primitive is
used to grasp objects.

– Gain scheduling. Creates both position and force gain
profiles in different directions of control. It is used in
conjunction with the motion and force primitives.

– Change task frame. Changes the orientation of the end-
effector frame, in order to align the directions of control
with directions relevant for the task (e.g. the direction
corresponding to an object in hand).

– Force grasp. Generates a stereotypical grasping motion
with desired contact forces.

3.6 Grasp planning and execution

Our approach to grasping objects in general greatly differs
from usual approaches, in the sense that we do not com-
pute grasp points or precise finger locations on the object
but we rely on force control to achieve a desired grasp. For
the objects with known models, we first demonstrate a set
of pre-grasp poses by kinesthetically moving the hand to
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the desired locations relative to the object. The pre-grasp
pose is stored as the 6-DOF pose of the hand relative to the
object pose. During execution, we check the feasibility of
each object-relative pre-grasp pose given the detected object
location, and select the first one. Each of these pre-grasp
poses is associated with a set of motion primitives that when
executed achieve the desired grasp. In most cases, the prim-
itives involve moving the hand forward until it touches the
object (or table), followed by closing the fingers by con-
trolling the desired force at each finger. Such an approach
allows to create compliant grasps but also to adapt the finger
stiffness when required (e.g. when grasping heavy objects).
This simple approach to grasping turned out to be very effi-
cient and robust. The exact finger positions do not need to
be specified and therefore they can adapt to arbitrary shapes.
Also, if the object moves in the hand, the fingers automat-
ically adapt their position to maintain contact with it. We
note that we do not use any force closure arguments in our
experiments as the complexity of such algorithms is usually
very high. When grasping objects such as a screwdriver or
a hammer lying flat on the table, we first touch the table
from above, and then use force control in the vertical direc-
tion to servo a downward force. This ensures that the fin-
gers maintain contact with the table while closing around the
object.

When dealing with objects in a known class but with-
out a model, we simply used the model we had of the
object in that class, both for perception and for grasp
planning. The strategy of controlling forces in the fingers
and the wrist provided sufficient robustness to the pre-
sented variations in size and shape of the object. Although
not applied to the experiments presented in this paper,
we have since developed a model-free grasp planning
approach which does not require models, and improves
its own performance through trial and error (Herzog et al.
2012, 2013). The experiments in the cited paper were con-
ducted using an identical control architecture, with just the
grasp planning module substituted with the model-free ver-
sion.

3.7 Failure and success detection

In order to increase the robustness of the tasks, it is necessary
to constantly assess the success or failure of the executed sub-
task, in order to decide if the action needs to be re-executed
or if it is possible to execute the next action. For example,
during stapling, the robot ensures that the paper was correctly
stapled by monitoring its force sensor. A force peak that was
characteristic of successful stapling could then be detected.
In case stapling was not detected, the robot would re-execute
the stapling task. Another example, that was generic for all
grasping tasks was to detect that the object was in the hand of
the robot, by detecting the mass of the object if it was heavy

enough to be detected, and by detecting the position of the
fingers. Since the fingers were force controlled, completely
closed fingers would mean that the object was not in hand
(when the object was large enough). Detection that the drill
was turned on was done by looking at the frequency spec-
trum of the force sensor at the wrist, where a characteristic
frequency would appear when the drill was on. Such fail-
ure detection and appropriate recovery behavior helped to
significantly increase the task performance. However, most
detection routines were engineered for each task and not auto-
matically deduced according to the task. Further research on
a more automatic approach to failure detection has been pur-
sued in Pastor et al. (2011).

4 Experimental results

In the following, we present the grasping and manipulation
tasks that were achieved using the proposed architecture as
well as the experimental setup and the results in the context
of the ARM project.

4.1 Independent testing

The proposed system was tested by an independent external
team in the context of the ARM project. It means that all the
grasping and manipulation tasks we describe in the follow-
ing were tested by the official test team of the project. We
uploaded our software and after running the calibration pro-
cedure and basic sanity checks to make sure the system was
behaving correctly, the test team ran our software on each
grasping and manipulation tasks. We had no control on the
way the tests were conducted (i.e. objects are placed in new
arbitrary poses and locations for each trial and we could not
optimize anything based on experimental bias). We did not
attend the official tests. All tests were run five times and the
best four runs were taken into account.

4.2 Experimental setup

All tasks were executed with the same setup. Objects of inter-
est would lie on the table and a 3-D model of the object would
be available (expect for some grasping tasks). The objects
could be placed in arbitrary positions on the table and for
some grasping tasks they were also held balanced with an
invisible wire, such that their pose could be arbitrary. The
robot then had 5 min to execute the task and stop when it
was done. No human intervention was possible during the
execution of the task.
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Fig. 6 The figure illustrates the objects grasped during the evaluation
together with the types of grasps executed. Note that the lower pic-
tures with the screwdriver and the rock were unknown objects (different
from the object models). We notice in these pictures that the robot often
touches the table, which is possible thanks to force control. It allows
the robot to naturally align its hand with the table to ensure that all

fingers touch the table (as in the radio picture), and to execute grasps
that collision-free motion planners could not plan (such as the grasp of
the ball where the wrist is lying on the table). The same grasp strategy
is used for both rocks: controlling the force at each finger results in
natural adaptation to their very different shapes

4.3 Grasping and manipulation challenges

The system was tested on 12 different grasping and six
manipulation tasks. We describe these tasks below.

4.3.1 Grasping tasks

The objects to be grasped were: a screwdriver, a radio, a
rock, a ball, a flashlight, a hammer, a case, a floodlight and a
shovel (see Fig. 6). For all these objects we had a 3-D model
of the objects that were used with our perception module.
In addition, to demonstrate the generalization capabilities of
our system, three unknown objects of known type were to be
grasped: a screwdriver, a hammer and a rock. We did not have
models for these objects and therefore, for the perception
and grasp selection part, we used the models of the already
known object of the same class. It thus demonstrates that our
algorithms do not rely too much on precise object models.

4.3.2 Manipulation tasks

Figure 8 shows an example of each of the manipulation tasks.
For each task, we created a high level state machine using a
sequence of motion primitives, failure detectors and recovery
primitives in order to achieve the task with a high probability
of success. An example of the control flow for one of the

tasks is shown in Fig. 7. The tasks and our approaches to
solving them are briefly described below:

– Stapling: the robot had to staple a stack of paper. The
papers were already placed in the stapler. After moving
the hand above the stapler, we touch the sides of the sta-
pler with the fingers to realign the hand with the stapler.
We then apply a desired force to push the stapler down
until success, which is detected by looking for a spike in
the force sensor.

– Turn on flashlight: the robot had to turn on a flashlight
by triggering its button. A sequence of motion primitives
was used to close two fingers around the flashlight and
push the button with the third.

– Open door: the robot had to open a door using the door
handle. A few “poke” motion primitives were used to
touch the door and the top and inside of the door handle,
ensuring a proper grasp of the handle. The motion to turn
the handle and open the door was previously recorded
from a kinesthetic demonstration and replayed in Carte-
sian space relative to the pose of the hand after grasping.

– Unlocking a door: A key was initially placed in the hand
of the robot and it had to unlock the door lock. Similar
to the previous task, a set of “poke” motion primitives
were used to touch the front, top and side of the handle
with the key, in order to accurately localize the hand.
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Fig. 7 A simplified control flow diagram for the stapling task

The actual key insertion was achieved by maintaining a
forward force with the key on the handle and sliding it
down until it slipped into the hole.

– Drilling: The robot had to pick up a drill and drill a hole
in a designated red spot on a piece of wood. The piece
of wood could be lying on the table or be vertical. After
grasping the drill and turning it on, we detect whether it
was on by analyzing the frequency spectrum of the force
sensor. We estimate the pose of the drill tip by fitting a line
to the 3-D points in the appropriate region of the stereo
camera view. This allowed use to re-estimate the position
of the drill in the hand, and provided the required accu-
racy for moving the drill tip to the red dot. Drilling was
achieved by first touching the red dot with a “poke” prim-
itive, followed by applying increasing downward forces
until the desired drill depth was achieved.

– Hangup phone: The robot had to pick up a phone and
place it on its cradle to hang it up. The cradle could be

placed anywhere on the table or on the side of the door. We
first touch the sides of the phone and the cradle to reorient
and accurately localize the phone in the frame of the
hand. After picking up the phone, we use 2-D template-
matching on the dial pad to determine the orientation of
the phone in the hand, and then move it in front of the
cradle with the right orientation. Finally, a set of force-
controlled motion primitives were executed that touch
the cradle with the phone and allow it to slip into place.

4.4 Results

Results of the experiments done at the test facility are
shown in Table 1. A compilation of the considered grasp-
ing and manipulation tasks can be seen at http://youtu.be/
VgKoX3RuvB0 and in the video supplement.

For comparison purposes we also show the results of the
five other teams against which we were competing. We can
see in the table that our approach led to the best success rate
(ex-aequo with Team A), with a comparable average time
performance.

In the grasping tasks, our approach failed only once out
of 48 trials which demonstrate the robustness of the grasping
approach. The manipulation results have slightly lower per-
formance, as there were four failures. Two failures occurred
during drilling (when the robot was not able to hit the red
spot), and the other two occurred while hanging up the phone
on the vertical cradle (when the phone would slip out of the
cradle because it was misplaced). All the other manipulation
tasks were successful for all trials. It is worth mentioning
that the manipulation tasks were far from trivial as several
competing teams had low success rates on them.

It is important to take these results carefully because sev-
eral uncontrollable reasons can have an impact on them, for
example unexpected behaviors of the system during the com-
petition or unseen bugs. Therefore, it is not really possible
to conclude that the approaches of the other teams were in
theory less good. However, we believe that these results offer
a strong argument in favor of our system architecture since
it was competitive with other state of the art approaches.

We only presented here the official results from the ARM
tests, but it is worth noting that we had very similar perfor-
mance when doing tests on our own platform. This demon-
strates the robustness of our approach as well as the repro-
ducibility of the results.

5 Discussion

In the following we discuss the advantages and drawbacks of
our approach. Then we discuss important research directions
to significantly improve the autonomy of our manipulation
architecture.
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(a) (b) (c)

(d) (e) (f)

Fig. 8 The figure depicts the six manipulation tasks executed during the evaluations. Videos of these tasks may be found in the attached multimedia
extension

Table 1 Results from testing conducted by an independent test team

Team Successes
(out of 72)

Grasping
(out of 48)

Manipulation
(out of 24)

Average
time (s)

Team A 67 47 20 75.4

USC 67 47 20 80.6

Team B 64 46 18 77.5

Team C 58 47 11 125.7

Team D 58 41 17 170.7

Team E 49 42 7 151.8

Average (SD) 60.5 (6.95) 45 (2.76) 15.5 (5.32) 113.6 (41.76)

Our approach (labeled USC) is compared with approaches by the five
other teams (teams A–E). Best performance from each category is
shown in bold. The last line of the table shows the average performance
across teams and the SD

5.1 Limitations of the approach

The first and most important lesson we learned in this project
is that we are nowhere close to truly autonomous manipula-
tion. While we developed modules that work very well in
practice, our approach still relies too much on models of the
objects to be grasped or manipulated. It is worth mention-
ing, however, that model-free grasp selection has recently
been successfully implemented on our system in Herzog et
al. (2013). In addition, we do not have a systematic method
to derive a state machine for a particular task. Instead, the

control flow of each manipulation task had to be engineered
by hand. This means that unexpected situations which were
not accounted for in the design cannot be handled. For exam-
ple, when trying to turn on a flashlight lying on its side, it
would first need to be placed upright before turning it on.
Such situations could be handled by incorporating a higher
level task planner that can automatically produce the right
sequence of motion primitives to execute (for example Kael-
bling and Lozano-Pérez 2011). Another missing feature of
our approach is that we do not exploit the full richness of
the sensory information available. For example, we made lit-
tle use of the touch sensors of the fingers and all the other
sensors are mainly used at the control level or for perceiving
objects but are rarely used to create very reactive behaviors
(i.e. to quickly re-plan when something goes wrong). Switch-
ing controllers is another aspect that we did not address com-
pletely, approaches such as Kröger and Wahl (2010) could
be used to improve this aspect. Possible improvements that
are related to the platform include having torque sensing at
the joint level and a higher control bandwidth to implement
more sophisticated controllers.

5.2 Advantages of the approach

The great advantage of our approach is the intrinsic variable
compliance of the robot. The robot is not just compliant to
be compliant but its stiffness was constantly varied accord-
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ing to the task, in order to guarantee precision when needed.
Another strength of our approach is that we exploit the force
sensors available to directly regulate contact interaction with
objects or the environment. With this approach, it was pos-
sible to create robust grasps without ever computing grasp
points but merely a rough grasp pose. The fingers of the hand
would automatically adapt to the shape of the object and it
would still be possible to increase their stiffness when it was
necessary. We do not claim that computing grasp points is
never necessary but we think that using compliant approaches
allow to significantly reduce the necessity for precision when
grasping a wide range of objects.

Another interesting aspect of our approach is the use of
optimization tools for motion planning and cost functions
to generate motion plan that would be more convenient to
execute a given task. Using such approaches guaranteed that
motions were very similar between experiments and that we
would find solutions that were locally optimal for the task to
be executed (e.g. maximum manipulability).

The use of motion primitives was also very useful, as
it was possible to quickly design manipulation tasks by
combining these primitives together. We will argue that
such an approach would also be interesting for higher-
order reasoning to automatically synthesize manipulation
tasks.

5.3 Future research directions

In the following we try to describe several on-going and
future research directions we believe are key to the develop-
ment of really autonomous manipulation. They all constitute
complements to the proposed approach.

Automatic acquisition of motion primitives Primitives of
motion have been very useful in our approach. However,
their acquisition needs to be fully automated with as lit-
tle engineering required as possible. Noticable progress has
been achieved on learning movement primitives from demon-
stration (e.g. Ijspeert et al. 2003; Calinon et al. 2007) as
well as on further refinining learned movements with rein-
forcement learning (e.g. Peters and Schaal 2008; Kalakr-
ishnan et al. 2011). However, many open research ques-
tions remain: For example, it remains unclear how to auto-
matically and robustly sequence several movement primi-
tives to accomplish more complex manipulation tasks. A
promising first step towards incrementally creating more
complex behaviors has been proposed in Niekum et al.
(2013). Nevertheless, especially in the context of manip-
ulation, sensor feedback (e.g. haptic and visual) should
not be neglected and remembered along with executed
movements (Pastor et al. 2013, 2012). Therefore, how a
library of movement primitives should be maintained and
updated is a question of particular interest. Finally, previ-

ous work oftentimes used a rather small set of movement
primitives (e.g. Pastor et al. 2012) to generate a partic-
ular manipulation behavior. Thus, applicability to a more
general setting and generating manipulation behaviors from
motion libraries of a significant size has yet to be demon-
strated.

Truly reactive behaviors One major frustration when
doing manipulation tasks is that the robot behavior lacks
real reactive capabilities. Indeed, compliance and active force
control can improve the robustness of the task in face of unex-
pected disturbances but such features can only deal with short
term disturbances that do not deviate the execution of the task
too far from the planned one. In other words, they can only
deal with disturbances on a short time scale. On the other
hand, motion planning can in principle tackle any type of
disturbance by fully replanning a desired motion when an
event occur. However, despite being able to generate rela-
tively impressive motions these planners can be very slow
(Hauser et al. 2008; Lengagne et al. 2010), or have never
been used on real robots (Mordatch et al. 2012) and usu-
ally do not take into account the richness of the information
created by the available sensors. We can think of such plan-
ners as operating on a slow time scale. In our view, we need
reactive behavior capabilities such that each motion primitive
is attached with local reactive capabilities that use the rich-
ness of the sensory information available to adapt online the
motion plan as unexpected events occur. We demonstrated
in Pastor et al. (2011) preliminary results along these lines
where the reactive motion plays a role at a time scale in
between the feedback controllers and the motion planners.
Model predictive control could also be a way to solve such
problems, however the complexity and high-dimensionality
of the tasks usually make such approaches intractable. In
general, we believe that the exploitation of the richness of
sensory information available on robots is a crucial element
for autonomous manipulation. It seems that even with the
sparse sensor data available on current robots there are very
few, if any, algorithms able to exploit this information to con-
trol motion. The arrival of denser sensor information (e.g.
tactile sensors, artificial skin) makes this issue even more
important.

Coupling and feedback between modules The approach
we proposed is still very sequential, in the sense that we still
have a sense-plan-act paradigm, which is coordinated by a
state machine. Moreover, all the different modules essen-
tially function in isolation from each other. We will argue
that a purely sequential approach (i.e. a pipeline), while
being conceptually simpler to design, is not the right path
to autonomous manipulation or to complex behaviors in
general. Parallel approaches where the robot constantly per-
ceives, plans and controls on multiple time-scales are more
promising. In addition, we need more communication and
coupling between modules. A natural first step that we are
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currently implementing in our system is to have visual servo-
ing capabilities, where the hand and the object to manipulate
are constantly tracked by the visual system and their relative
positions are used as a feedback term for our controllers. A
tighter integration of perception (from various sensor modal-
ities) with the control systems is a promising future research
direction. It would also be desirable to increase the commu-
nication between planning and control up to the point where
the boundary between both becomes blurred. Such a view is
closely related to the idea of reactive behaviors that we dis-
cussed in the previous section and seems very much in line
with current theories in complex systems.

Model free As we mentioned earlier, our approach still
relies too much on hand crafted models. The use of models
in our case was strongly motivated by the structure of the
ARM project. Its competitive nature, the need for robust per-
formance and the availability of models were the reasons we
choose to rely so much on models. However, it seems reason-
able to think that in a completely autonomous setting, it is not
possible to rely on such knowledge and that both model-free
approaches and approaches that automatically build models
are to be researched more carefully. There have been several
contributions that have demonstrated grasp planning without
object models (Bohg and Kragic 2010; Hsiao et al. 2010; Li
and Pollard 2005). One of particular interest was success-
fully implemented in our system (Herzog et al. 2013, 2012),
where the conjunction of our force controlled grasping and
the model-free selection of grasp poses led to very high grasp-
ing performance.

Automatic high-level sequencing of actions The last direc-
tion of research is methods to automatically sequence actions
to be taken in order to achieve a desired manipulation task.
It is a particularly difficult task, as it requires a lot of abstract
knowledge on the type of task to be achieved, its goals
and how success can be measured for each of its subtask.
Approaches such as Kaelbling and Lozano-Pérez (2011) or
Toussaint et al. (2010) are examples of research toward this
goal. We conjecture that the use of motion primitives and
their associated success measures can help tremendously in
this direction, for both selecting the next action and to sim-
plify the whole high-level planning problem. Encouraging
preliminary results in this direction, using our architecture,
have been demonstrated in Pastor et al. (2012).

6 Conclusion

In this paper we proposed a system architecture for robotic
grasping and manipulation. At the core of the approach is
the use of advanced force/torque controllers and optimiza-
tion methods for motion planning. Though not ideal yet, our
system has demonstrated robust performance in a wide vari-
ety of manipulation tasks and has proven competitive against

other high quality approaches. Based on the lessons learned
from our system, we have sketched a potential research pro-
gram that we believe could lead us towards truly autonomous
manipulation.
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Rusu, R. B., Şucan, I. A., Gerkey, B., Chitta, S., Beetz, M., & Kavraki,
L. E. (2009). Real-time perception guided motion planning for a

123

http://dx.doi.org/10.1007/s10514-013-9366-8
http://dx.doi.org/10.1007/s10514-013-9366-8


Auton Robot (2014) 36:11–30 29

personal robot. In IEEE/RSJ International Conference on Intelligent
Robots and Systems.

Schaal, S., (2009). The SL simulation and real-time control software
package. Technical Report. University of Southern California. http://
www-clmc.usc.edu/publications/S/schaal-TRSL.pdf

Sciavicco, L., & Siciliano, B. (2000). Modelling and control of robot
manipulators. Berlin: Springer-Verlag.

Srinivasa, S., Ferguson, D., Helfrich, C., Berenson, D., Romea, A. C.,
Diankov, R., et al. (2010). HERB: A home exploring robotic butler.
Autonomous Robots, 28(1), 5–20.

Stückler, J., Badami, I., Droeschel, D., Gräve, K., Holz, D., McElhone,
M., Nieuwenhuisen, M., Schreiber, M., Schwarz, M., Behnke, S.,
(2013). Nimbro@home: Winning team of the robocup@home com-
petition 2012. RoboCup 2012, Robot Soccer World Cup XVI.

Toussaint, M., Plath, N., Lang, T., Jetchev, N., (2010). Integrated motor
control, planning, grasping and high-level reasoning in a blocks
world using probabilistic inference. In IEEE International Confer-
ence on Robotics and Automation (pp. 385–391).

Whitney, D. E. (1977). Force feedback control of manipulator fine
motions. Journal of Dynamic Systems, Measurement, and Control
(Transactions of the ASME), 99(2), 91.

Ye, Q. (1988). The signed Euclidean distance transform and its appli-
cations. In International Conference on Pattern Recognition (pp.
495–499).

Yoshikawa, T. (2000). Force control of robot manipulators. In IEEE
International Conference on Robotics and Automation (pp. 220–
226).

Ludovic Righetti is a group
leader at the Max-Planck Insti-
tute for Intelligent Systems (Tub-
ingen, Germany) and has been a
postdoctoral fellow at the Com-
putational Learning and Motor
Control Lab (University of
Southern California) between
March 2009 and August 2012.
He studied at the Ecole Poly-
technique Federale de Lausanne
where he received a Diploma in
Computer Science (eq. MSc) in
2004 and a Doctorate in Science
in 2008. His doctoral thesis was

awarded the 2010 Georges Giralt Ph.D. Award given by the European
Robotics Research Network (EURON) for the best robotics thesis in
Europe. His research focuses on the generation and control of move-
ments for autonomous robots, with a special emphasis on legged loco-
motion and manipulation.

Mrinal Kalakrishnan received
his M.S. in Computer Sci-
ence in 2008 from the Uni-
versity of Southern California,
where he is also currently a
Ph.D. candidate. His research
focuses on the development of
machine learning techniques to
improve the performance of
motion planners for autonomous
robots in challenging domains
such as rough terrain locomotion
and autonomous grasping and
manipulation. He is also inter-
ested in designing and learning

controllers that use sensory and visual feedback loops to achieve com-
pliant yet robust behavior.

Peter Pastor is currently fin-
ishing his Ph.D. at the Com-
putational Learning and Motor
Control Lab at the University of
Southern California (USC). He
received his Diploma in Com-
puter Science from the Karlsruhe
Institute of Technology in 2008.
He also received a M.Sc. in Com-
puter Science from USC in 2010.
His research interests include
robotic grasping and manipula-
tion as well as machine learning.

Jonathan Binney receieved a
B.S in Computer Science from
the University of California, Los
Angeles in 2006 and a Ph.D.
in Computer Science from the
University of Southern Califor-
nia in 2012. He is currently a
research engineer working on
planning and perception at Wil-
low Garage.

Jonathan Kelly is an Assis-
tant Professor at the University of
Toronto Institute for Aerospace
Studies. During 2011, he was
a postdoctoral researcher in the
Computer Science Department at
the University of Southern Cali-
fornia, working on the DARPA
ARM Project. He received his
M.S. in 2005 and his Ph.D. in
2011, both from the University
of Southern California. At USC,
he was an Annenberg Fellow. His
research interests include robot
navigation, mapping, and multi-

modal sensor fusion. He is a member of the IEEE.

Randolph C. Voorhies is a
Ph.D. student in Computer Sci-
ence at the University of South-
ern California where he also
earned a Bachelors degree in
Computer Science, and a Masters
degree in Computer Science and
Intelligent Robotics. His main
interests are computer vision for
mobile robotics as well as point
cloud processing for localization
and navigation.

123

http://www-clmc.usc.edu/publications/S/schaal-TRSL.pdf
http://www-clmc.usc.edu/publications/S/schaal-TRSL.pdf


30 Auton Robot (2014) 36:11–30

Gaurav S. Sukhatme is Pro-
fessor and Chairman of Com-
puter Science (joint appoint-
ment in Electrical Engineering)
at the University of Southern Cal-
ifornia (USC). He received his
undergraduate education at IIT
Bombay in Computer Science
and Engineering, and M.S. and
Ph.D. degrees in Computer Sci-
ence from USC. He is the direc-
tor of the USC Robotic Embed-
ded Systems Laboratory which
he founded in 2000. His research
interests are in robot networks,

embedded networks, aquatic robots, and robot perception. He has pub-
lished extensively in these and related areas. Sukhatme has served as
PI on numerous NSF, DARPA and NASA grants. He is a Co-PI on the
Center for Embedded Networked Sensing (CENS), an NSF Science and
Technology Center. He is a fellow of the IEEE and a recipient of the
NSF CAREER award and the Okawa foundation research award.

Stefan Schaal is Professor
of Computer Science, Neuro-
science, and Biomedical Engi-
neering at the University of
Southern California, and a
Founding Director of the Max-
Planck-Institute for Intelligent
Systems in Tuebingen, Germany.
Before joining USC, Dr. Schaal
was a postdoctoral fellow at the
Department of Brain and Cogni-
tive Sciences and the Artificial
Intelligence Laboratory at MIT,
and an Adjunct Assistant Pro-
fessor at the Georgia Institute of

Technology and at the Department of Kinesiology of the Pennsylva-
nia State University. He was also an Invited Researcher at the ATR
Computational Neuroscience Laboratory in Japan, where he held an
appointment as Head of the Computational Learning Group during
an international ERATO Project, the Kawato Dynamic Brain Project
(ERATO/JST). Dr. Schaal’s research interests include topics of statisti-
cal and machine learning, neural networks, computational neuroscience,
functional brain imaging, nonlinear dynamics, nonlinear control theory,
and biomimetic robotics. He applies his research to problems of arti-
ficial and biological motor control and motor learning, focusing on
both theoretical investigations and experiments with human subjects
and anthropomorphic robot equipment.

123


	An autonomous manipulation system based on force control  and optimization
	Abstract 
	1 Introduction
	2 Background
	2.1 Related work
	2.2 The ARM project
	2.3 The ARM-S robot

	3 Autonomous manipulation system
	3.1 Software architecture
	3.2 Calibration
	3.2.1 Kinematic calibration
	3.2.2 Dynamic parameter estimation
	3.2.3 Force sensor calibration
	3.2.4 Strain gage calibration

	3.3 Perception
	3.4 Control system
	3.4.1 Head control
	3.4.2 Hand control
	3.4.3 Arm control

	3.5 Planning and motion primitives
	3.5.1 Optimal inverse kinematics
	3.5.2 Stochastic trajectory optimizer
	3.5.3 Motion primitives

	3.6 Grasp planning and execution
	3.7 Failure and success detection

	4 Experimental results
	4.1 Independent testing
	4.2 Experimental setup
	4.3 Grasping and manipulation challenges
	4.3.1 Grasping tasks
	4.3.2 Manipulation tasks

	4.4 Results

	5 Discussion
	5.1 Limitations of the approach
	5.2 Advantages of the approach
	5.3 Future research directions

	6 Conclusion
	Acknowledgments
	References


