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Abstract Nowadays, there is an increasing number of
robotic applications that need to act in real three-dimensional
(3D) scenarios. In this paper we present a new mobile robot-
ics orientated 3D registration method that improves previous
Iterative Closest Points based solutions both in speed and
accuracy. As an initial step, we perform a low cost com-
putational method to obtain descriptions for 3D scenes pla-
nar surfaces. Then, from these descriptions we apply a force
system in order to compute accurately and efficiently a six
degrees of freedom egomotion. We describe the basis of our
approach and demonstrate its validity with several experi-
ments using different kinds of 3D sensors and different 3D
real environments.

Keywords 6DoF pose registration · 3D mapping ·
Mobile robots · Scene modeling

1 Introduction

This paper is focused on studying the movement performed
by a mobile robot just using the environment information col-
lected by this robot with a 3D sensor device such as a 3D laser,
a stereo or a time-of-flight camera. The trajectory followed
by the robot can be reconstructed from the observations at
each pose and thus a 3D map of the robot environment can be
built. The problem of automatic map building has been chal-
lenging mobile robotics researchers during the last years. The
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main contribution of this paper is a new method for comput-
ing accurately the movement performed by a mobile robot in
6DoF just using the 3D data collected from two consecutive
poses, independently of the 3D sensor used.

The actual movement performed by a robot between two
consecutive poses for a given action command is one of the
main issues that has to be known in order to perform any
mobile robotic task. This information can be obtained by
several means, depending on the accuracy needed for a given
system. The least accurate approach consists in assuming that
the robot has performed exactly the movement corresponding
to the received action command. In practice, however, this
assumption is far away from the real movement.

Measuring the movement of the robot with its internal
sensors is a more accurate solution. This information called
odometry is the most widely used solution to estimate robot’s
movement. However, odometry is not error free. Wheel slip-
ping or bouncing, rough terrains or even mechanical wear
may produce errors in the odometry data.

Moreover, for many mobile robotic applications odome-
try is not enough as more accurate movement information is
required. In these cases the approach known as egomotion
or pose registration can be used (Agrawal 2006; Koch and
Teller 2007; Goecke et al. 2007). These methods compute the
robot’s movement from the differences between two consec-
utive observations. In this paper we describe a new method
that uses three dimensional (3D) information in order to com-
pute the movement performed by a robot. Since our method
uses 3D data, it can register a six degrees of freedom (6DoF)
movement. We show how this method can be used to build
a 3D map. In addition, we designed our approach to work
regardless of the hardware used and therefore our method
can be applied on different robots and 3D sensors. The input
for our method consists in two sets of 3D points from which
the 6DoF transformation that best aligns them is obtained.
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Fig. 1 Input 3D point scenes. The scene on the left was captured indoors by a stereo camera. A SR4000 infrared camera was used to capture the
image shown in the middle. Finally, the right one comes from an outdoors environment captured by a 3D range laser

Figure 1 shows a couple of 3D scenes captured by different
3D sensors. The one on the left is captured by a stereo cam-
era, an infrared time-of-flight camera was used to obtain the
scene in the middle, while the right one corresponds to a 3D
range laser scanner.

The process of computing the robot movement from two
consecutive 3D observations can be seen as a particular case
of the most general data range registration problem. This
problem is faced in many areas such as industrial parts mod-
eling, topography or photogrammetry. The Iterative Closest
Point (ICP) methodology is widely used for registering two
sets of 3D range data. Usually, these sets are called the scene
that we are observing and the model represented by the previ-
ous observation respectively. ICP was first proposed in Chen
and Medioni (1991) and Besl and McKay (1992), and has
become the most successful method for aligning 3D range
data. Summarizing, ICP is an iterative method that is divided
in two main steps. In the first one, the relationship between
the two sets of input data is obtained by searching for the
closest points. This search gives a list of matched points.
The second step consists in computing the transformation
that best aligns the two sets from the matches found in the
previous step. This transformation is used to transform the
input sets before the first step of the next iteration. The algo-
rithm iterates until some convergence parameter is reached.
The method presented in this paper represents an ICP mod-
ification. However, its main contribution is that it improves
the time and the accuracy of ICP and makes it suitable for
use in a wide variety of mobile robotic applications.

ICP method needs an initial approximate transformation
between the two sets before computing its alignment. In
mobile robotics, this initial transformation can be obtained
from the odometry or by applying some method in order to
obtain a coarse alignment (Brunnstrom and Stoddart 1996;
Chung et al. 1998; Chen et al. 1999; Johnson and Hebert
1997; Kim et al. 2003) before applying ICP. Some of these
approaches, like Brunnstrom and Stoddart (1996), take too
much time to obtain the result in order to be used in a mobile
robotic task. On the other hand, other methods, like those
based on PCA (Chung et al. 1998; Kim et al. 2003), can

obtain a result in a short time but with less accuracy. The
approach described in this paper does not require an initial
coarse transformation in order to compute the 3D registra-
tion. This is possible because we use the information of the
planar surfaces present in the scenes. The extraction of the
descriptions for these surfaces in a 3D scene gives us not only
the information about the position of objects in the scene but
also information about its orientation. This extra informa-
tion can be used both to find the correct alignment for two
3D scenes without an initial approximate transformation and
to reduce the size of the input data and therefore the time
needed to obtain the result.

In the literature there are several proposals for improv-
ing the original ICP method both in speed and accuracy. In
Turk and Levoy (1994), Masuda et al. (1996), Weik (1997),
and Rusinkiewicz and Levoy (2001) different approaches are
shown to reduce the size of the input data by selecting just a
subset of points for the matching step. However, the amount
of information discarded by these techniques is quite impor-
tant and may affect the accuracy of the results. The addition
of some constraints, such as color similarity (Godin et al.
1994; Pulli 1997) or surface normal vectors (Pulli 1999),
in the matching step can improve the consistency of the
matched pairs and thus the final alignment computed by the
ICP. The main problem in these methods is that these con-
straints depend on the kind of sensor used. Once the matches
have been established, outliers should be detected in order to
improve the results. We use a similar approach like the ones
used in Godin et al. (1994), Pulli (1999), and Rusinkiewicz
and Levoy (2001) in which each match is weighed by the
inverse of the distance between the points involved in the
match, but in the present paper, both object position and ori-
entation are used to compute this distance. Other approaches
used to reject invalid matches based on some compatibil-
ity test (Turk and Levoy 1994; Masuda et al. 1996; Dorai
et al. 1998) also depend on the 3D sensor used. In Salvi
et al. (2007) a deeper study comparing different solutions for
ICP in terms of speed and accuracy is performed. Nowadays,
more ICP variations are still appearing (Du et al. 2007a,b;
Nuchter et al. 2007; Censi 2008; Armesto et al. 2010).
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Here we propose a new mobile robotics oriented 3D regis-
tration method that improves previous ICP solutions both in
speed and accuracy. The successful reconstruction is based
in the use of three-dimensional features extracted from 3D
scenes. Thus we can reduce the number of iterations required
as well as improve the response to outliers and enhance the
independence of the initial situation of the data sets. Our work
began with Viejo and Cazorla (2007) where we proposed a
planar patches based method for pose registration limited to
3DoF. Here we present a generalization of this method for a
robot movement in 6DoF. Also, we include a comprehensive
testing, both quantitative and qualitative, demonstrating the
functionality of the method. Although starting from isolated
research, the proposals here are similar to those in Segal et al.
(2009).

The rest of the paper is organized as follows. Preliminary
computations to obtain both scene modelization and rota-
tion matrix for aligning two sets of planar patches, together
with a description of the mapping problem, are covered in
Sect. 2. Then, our 3D planar patches alignment method is
described in Sect. 3. After that, in Sect. 4 the results for sev-
eral experiments are shown. Finally in Sect. 5 we will discuss
our conclusions.

2 Preliminaries

Our goal is to construct a 3D map from a set of observations
D = {dt }, t = 1 . . . T taken from any 3D measurement
device (from now, 3D device). The 3D device, placed on
the top of a robot or other platform, is moving around the
environment (in Fig. 2 the different robots and 3D devices
used in this paper are shown).

Our method can process 3D data coming from different
devices, each of them having different errors and features.
First, we use a stereo camera Digiclops from Point Grey.
It has a range of 8 m and is ideal for indoor environments.
It can provide up to 24 images per second with gray level
information for each point. However, it suffers from the lack
of texture: areas in the environment without texture, can not
provide 3D data. Moreover, it has a measurement error of
10 %. For outdoor environments we use a 3D sweeping laser
unit, a LMS-200 Sick laser mounted on a sweeping unit.
It does not suffer from the lack of texture and its range is
80 m with a measurement accuracy of ±15 mm. The main
disadvantage of this unit is the data capturing time: it takes
it more than one minute to take a shot. Also, it does not
provide color information. In addition, we test a SR4000
camera, which is a time-of-flight camera, based on infrared
light. It also does not suffer from the lack of texture, but its
range is limited up to 10 m, providing gray level color from
the infrared spectrum. Finally, we use a data set (Borrmann
and Nüchter 2012) from a Riegl VZ400 3D range laser. It

Fig. 2 Two robots used in this paper together with different 3D devices:
from left to right, a stereo camera, a 3D sweeping laser and a SR4000
camera

has a very fast capturing time (up to 300 measurements per
second), a high measurement range (up to 600 m) and a high
accuracy (15 mm).

At each time t , an observation, i.e. 3D data, is collected,
dt = {d1, d2, . . . , dn}, where di = (X, Y, Z). However this
data can contain more information (gray or color information,
etc.). The mapping (or registration) problem can be summa-
rized as:

m∗ = arg max
m

P(m|D, U ) (1)

finding the best map which fits the observations D and the
movements of the robot U = {u1, u2, . . . , ut }. In our case,
instead of using the robot movements, we propose the use of
observations for both mapping and pose estimation from two
consecutive frames.

Thus, we estimate each robot movement ui using the
observations from the previous and posterior poses of that
movement. Once the movements have been estimated, a clas-
sical method to build an incremental map, using the calcu-
lated movements, is applied.

2.1 3D scene modelization

Our 3D registration method exploits geometrical and spatial
relationships between scenes surfaces. This extra information
can be obtained by performing a model of the input raw data.
Furthermore, the amount of information gathered in each raw
3D scene is usually so huge that the time needed to perform
pairwise registration can increase dramatically. This model
is also useful for reducing the input data complexity without
reducing the amount of information in the scene. In a previous
work (Viejo and Cazorla 2008), we described a method with
which we can obtain a model for the planar surfaces in a 3D
scene using planar patches. Furthermore, this process can be
obtained in a logarithmic time.

Summarizing, our method for extracting planar patches
from a 3D point set is done in two steps. In the first one, we
select a subset of points by means of classical computer vision
seed selection methods (Fan et al. 2005; Shih and Cheng
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2005). Seeds are spread along the surfaces of the scene. In
the second step, for each 3D point selected, we check whether
its neighbourhood corresponds to a planar surface or not. The
basic idea consists in analyzing each point in the local neigh-
bourhood by means of a robust estimator. A singular value
decomposition (SVD) based estimator is used to obtain sur-
face normal vectors. Using this method, when the underly-
ing surface is a plane, the minimum singular value σ3 is quite
smaller than the other two singular values (σ1 and σ2), and the
singular vector related to the minimum singular value is the
normal vector of the surface at this point. Following singular
values we can compute a thickness angle (Martin Nevado et
al. 2004) that measures the dispersion angle for the points in
the planar patch neighbourhood.

γ = arctan

(
2√
3

· σ3√
σ1σ2

)
(2)

Thickness angle gives us an idea about how 3D points
in a neighbourhood fit to a planar surface. We use it to dis-
card patches with a thickness angle greater than 0.05◦. In this
way we achieve the highest accuracy for our planar patches
extraction method. Figure 3 shows the result of computing
3D planar patches model for two different 3D scenes. Pla-
nar patches are represented with blue circles. The radius of
these circles depends on the size of the neighbourhood used
to test planarity. This method is proved to work with 3D
scenes captured from different kinds of 3D sensors and it
can be applied to other applications, like Munyoz-Salinas
et al. (2008) or Katz et al. (2010).

3 3D scene planar patch based alignment

The main problem for all ICP solutions is that they need an
initial approximate transformation in order to obtain an accu-
rate solution. The method described in this section resolves
this problem computing the best alignment for the input data
without this initial approximation. This becomes possible

by using the efficient scene model described in the previous
section. In this way, the need for an initial transformation
is replaced by the 3D scene geometry information extracted
during the modeling step. Furthermore, the use of a 3D model
makes possible the improvement of the accuracy in the same
way as the use of surface tangents proposed in Zhang (1994).
For our method this means that, in contrast to the 3D points
based ICP solutions, it is not necessary to find exactly the
same planar patches in the two scenes in order to match them.
It is enough to find planar patches that belong to the same
surface. Scene geometry resolves the problem of identifying
the different surfaces since it is invariant to changes of the
robot pose in 6DoF. In the same way, we use scene geometry
in order to detect and remove outliers.

We want to find the 6DoF movement done by the robot
between two consecutive poses, from the data taken in those
poses, di and di+1. In the general case, we need to find a
6DoF transformation which minimizes:

(R∗, T∗) = arg min
(R,T)

= 1

Ns

Ns∑
i=1

||nm
i − (Rns

i + T)||2 (3)

where nm
i and ns

i are the matched points from the two
consecutive poses.

Instead of calculating rotation and translation iteratively,
we propose to decouple them. As planar patches provide use-
ful orientation information, we first calculate the rotation and
then, with this rotation applied to the model set, we calculate
the translation. In the next subsections we describe how to
calculate both.

3.1 Distance between planar patches

Here, we define a new distance function between two planar
patches in order to compute the alignment of two sets of
3D planar patches. This new function allows us to search
the closest patches between the two input sets. From now
we define a planar patch by a point belonging to the patch

Fig. 3 3D scene model. Blue circles represent the 3D planar patches
extracted from the input raw scenes. The scene shown on the left was
captured indoors by a stereo camera. For the middle one, a 3D range

laser was used outdoors. Finally, a SR4000 infrared camera was used
to capture the one on the right (Color figure online)
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(usually its center) and its normal vector π = {p, n}. Let
da(n1, n2) be the angle between two vectors n1 and n2. Then
the distance from a plane πi to another π j can be expressed
as

d(πi , π j ) = da(ni , n j ) + ξd(pi , p j ) (4)

where ξ is a factor used to convert euclidean distances
between the centers of the patches into the range of normal
vector angles.

Once we have a way to compare two planar patches, we
can obtain a list of the patches from the scene set closest to
the model. Then we have to deal with the outliers. In order to
avoid the influence of outliers, we test each match to be con-
sistent with the others. The concept of consistency is based
on the kind of transformation we are looking for. Since this
is an affine rigid transformation, we can assume that the dis-
tance between the patches in a non-outlier pair is similar. In
contrast, we set a pair as an outlier when its distance is far
away from the mean of distances of all the pair in the matches
list. In this way, we compute the weight for the ith pair with
the following expression

wi = e−(d(πi ,π j )−μk )
2/σ 2

k (5)

where μk and σk are the mean and the standard deviation
for the distribution of the distances between matched planar
patches in the kth iteration. In this way, we give a weight
close to 1 to those matches whose distances are close to the
mean and thus, the further the pair distance from the mean
is, the lower its weight is set.

3.2 Rotation alignment

From the description of planar patches extracted from two 3D
scenes, we can compute the best rotation for the alignment of
the two scenes. This can be done by applying a well known
method based on the singular value decomposition (SVD).
Let us briefly review how to compute this SVD based rota-
tion alignment. Let S be the scene set of Ns planar patches
and M be the model set of Nm planar patches. We first find
the correspondences between both sets, using the distance
in Eq. 4. So each planar patch π s

i ∈ S is matched with one
πm

j ∈ M . Let R be a 3 × 3 rotation matrix, then we have to
find a matrix R∗ which minimizes the following function:

R∗ = arg min
R

fa(R) = 1

Ns

Ns∑
i=1

(da(nm
i , Rns

i ))
2. (6)

fa is the mean square error for the angular distance
between matched planar patches. Note that we only use da ,
the angular distance between two planar patches. In order to
minimize fa , we compute the cross-covariance 3 × 3 matrix

�sm for planar patches normal vector with the expression

�sm =
Ns∑

i=1

wi ns
i (n

m
i )t , (7)

where wi is the weight of the ith match (see Eq. 5). This
weight is used for outliers rejection. The matrix �sm can be
decomposed as �sm = V �U T , where � is a diagonal matrix
whose elements are the singular values of �sm . The rotation
matrix that best aligns the two set of planar patches is then
computed as

R = V

⎛
⎝ 1 0 0

0 1 0
0 0 δ

⎞
⎠ U T (8)

where δ = 1 when det (V U T ) ≥ 0 and δ = −1 if
det (V U T ) < 0. The result of this procedure is a rotation
matrix that best aligns the two input planar patches sets. Fur-
ther information about this method can be found in Kanatani
(1993) and Trucco and Verri (1998).

3.3 Translation alignment

Once the rotation has been obtained, we have to compute the
transformation that minimizes the quadratic mean error for
the alignment of the input planar patches. Original ICP uses
a closed-form solution based on the use of quaternions to
resolv the least square problem (Eq. 3) that gives the rotation
matrix for the solution. From this rotation transformation,
translation is simply computed as the vector that joins the
center of mass of the two input sets of points. Nevertheless,
the final transformation obtained is inaccurate due to outliers.
As we mentioned before, a lot of methods to avoid the error
produced by outliers have been proposed. These methods rely
on a good initialization in order to obtain accurate results.
Our contribution here consists in a new method that is less
sensitive to the initial approximation of the input data sets by
exploiting the extra information given by planar patches in
order to obtain more accurate results.

Let us suppose that the rotation needed to align the input
sets has already been computed and applied following the
method described in the previous section. Then the problem is
how to obtain the best estimation for the translation. The solu-
tion that we propose consists in considering that the matches
list represents a force system that can be used to compute the
correct solution. For the ith match, we set the force vector fi

in the direction of the normal from the model’s patch in the
match and with the magnitude of the distance between the
planes defined by the patches. The resultant translation for a
force system created from N matches is a vector computed
by the following expression:

T =
∑N

i fi

N
(9)
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Furthermore, local minima can be avoided more success-
fully if we consider the main directions of the scene. These
can be calculated from the Singular Value Decomposition of
the cross-covariance matrix of all the force vectors. Let us
call D1, D2, D3 the three main direction vectors. The Eq. 4
can be rewritten to represent how much each pair of planar
patches contributes to a specific main direction

dk(πi , π j )=(da(ni , n j )+ξd(pi , p j ))·cos(da(ni , Dk))

(10)

At this point, da(ni , n j ) should be close to zero as rotation
alignment has been solved. Using 10 we can obtain the mean
and standard deviation for the distances along each main
direction. In this way, Eq. 5 is redefined as follows.

wd
i = e−(d(πi ,π j )−μk,d )2/σ 2

k,d (11)

Accordingly to Eqs. 10 and 11, Eq. 9 is then transformed
to take into account the main directions.

t1 = τ

N∑
i=1

(fi · D1)w
1
i

t2 = τ

N∑
i=1

(fi · D2)w
2
i

t3 = τ

N∑
i=1

(fi · D3)w
3
i (12)

where fi is the force vector from the ith match, N is the
size of the matches list and τ is a normalizing factor. Then,
the transformation that reduces the forces system’s energy is

T j = t1 + t2 + t3 (13)

This computation is included in an ICP-like loop, in which
matches are recomputed after each iteration, in order to reach
a minimum energy state for the system. Using this approach
we can reduce the number of iterations and we can achieve
registration with greater independence from the initializa-
tion. This method achieves the alignment of the two input
segment sets with a significantly smaller error in comparison
to other methods, like ICP.

3.4 Complete algorithm

The method described in this section can be used for com-
puting the transformation that best aligns two sets of 3D pla-
nar patches. The complete method for computing the planar
patches based 3D egomotion is divided into two main ICP-
like loops. The first one is used to compute the best rotation
alignment for the normal vector of the 3D planar patches.
Once the normal vectors of the planar patches are aligned,
the second loop is used to compute the minimum energy
force system that represents the best translation alignment.

The resulting algorithm is shown in Algorithm 1. A complete
example on how this method works is shown in Fig. 4. Input
data was taken by a robot in a real scenario. In this case, the
movement performed was a turn. The sequence goes from
left to right and from top to bottom. The scenes are shown
from the top, looking towards the floor. The picture in the
upper-left corner shows the initial state in which two sets
of 3D points have been recovered by a 3D range laser. The
next picture shows the planar patches extracted from the two
input sets. They are represented in green and blue. After that,
different steps of our alignment algorithm are shown in the
next pictures in which matches are represented by red seg-
ments. The resulting 3D registration for the two set of 3D
planar patches is shown in the bottom-right corner picture.
Since the input data was taken from a real scenario, there are
also outliers. It can be observed in the last picture where a lot
of planar patches from one set do not have a corresponding
patch in the other set and vice versa.

Algorithm 1 Plane_Based_Pose_Registration (M , S: 3DPla-
nar_Patch_set))

R = I3
repeat

SR = ApplyRotation(S, R)
Pt = FindClosests(M , SR)
Wt = ComputeWeights(Pt )
R = UpdateRotation(M , S, Pt , Wt )

until convergence
SR = ApplyRotation(S, R)
T = [0, 0, 0]t

repeat
ST = ApplyTranslation(SR , T )
Pt = FindClosests(M , ST )
{D1, D2, D3} = FindMainDirections(Pt )
Wt = ComputeWeights(Pt , {D1, D2, D3})
T = UpdateTranslation(M , S, Pt , Wt , {D1, D2, D3})

until convergence
return [R | T]

4 Results

In this section we show our results from different experi-
ments using the method presented in this paper for align-
ing 3D planar patch sets. First, we study the advantages we
get by using our method in comparison to the ICP algo-
rithm. This ICP algorithm incorporates the outlier rejection
approach proposed in Dalley and Flynn (2002). KD-tree and
point subsampling techniques are also included for reducing
computational time as described in Rusinkiewicz and Levoy
(2001). We analyze the performance and the accuracy of the
results. After that we show different results on automatic map
building using this approach.

The first experiment consists in testing the accuracy of
the computed registration. We test both the incidence of the
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Fig. 4 Overview of the
working method. From the two
input 3D point sets (upper-left
corner) planar patches are
extracted (upper-right corner).
Using the planar patches, the
best alignment transformation is
computed with our modified
ICP-like approach. After a few
steps, the resulting
transformation is obtained
(bottom-right corner). The 3D
planar patches that do not have a
corresponding one in the other
set are outliers

outliers present in the scene and the influence of different
initial scene alignments. For the first test, we have chosen a
3D scene captured by our robot in a real environment to be
the model set for the alignment. The scene set is obtained by
applying a transformation to the model. Since this transfor-
mation is known, it represents a ground truth for computing
the error for the alignment. Outliers are simulated by remov-
ing areas from the scene set. This test is performed on a large
set of three-dimensional scenes to obtain a robust estimation
of the errors. A comparison between the improved ICP and
our approach for different outliers rate can be observed in
Fig. 5. However, our proposal always obtains better results
than ICP. This is because we do not require an initial approx-
imate transformation and because of the amount of outliers.
It has been described that ICP does not reach a global mini-
mum for a given outlier rate. In contrast, we can obtain the
correct alignment even for an outlier rate of 40–50 %.

For the second test we have used a rotating unit from
PowerCube that allows us to rotate a 3D sensor along Y axis
at different known orientations. The experiment consists in
performing a complete turn of the sensor around itself getting
3D data sets at regular intervals. The experiment is performed
several times using different angular rotations at regular

intervals of 4◦. The objective of this experiment consists in
testing the response of the method for different initializa-
tions. Again, we compare our method with the above men-
tioned ICP version. The results can be observed in Fig. 6. As
expected, ICP depends on the initialization and for changes
of more than 10◦ the algorithm always ends in a local mini-
mum. On the other hand, our approach significantly improves
this behavior and allows us to obtain accurate results for dis-
placements of up to 40◦. Below 45◦ the symmetries of the
environment can not be resolved and make our method end
in a local minimum.

We also compare the time needed to compute the transfor-
mation with ICP and using our method. Both methods have
been implemented using Java and have been executed on the
1.6 version of the Java Virtual Machine running on a Intel
T5600 1.83 GHz and 2 Gb of RAM memory. While ICP
needs more than 40 s, our algorithm can find the solution in
less than 5 s. Here we have to add the time needed to extract
the planar patches for each 3D scene. Nevertheless, this is a
computational low cost algorithm that usually takes less than
one second to modelling a 3D scene.

For the next experiments, our method has been used to
perform incremental 3D map building. As the robot moves
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Fig. 5 Mean error and standard deviation for different rates of out-
liers using our approach and an improved ICP algorithm. Results are
separated for translation, in the top, and rotation, in the bottom

Fig. 6 Alignment error for different initializations. Planar patched
based egomotion is less affected by initial displacement of input data
sets

collecting 3D data with its sensor, the transformation between
each two consecutive poses is obtained. This transformation
is used to hold all the captured 3D points in a reference frame.

A global rectification is not performed, so the errors accu-
mulate as the map is being built. The proposed method is
so accurate that these errors do not affect the results too
much. In order to fuse the 3D points that come from the
same object, an occupancy grid has been used. At the time
these experiments were performed, we did not have the equip-
ment necessary to obtain a ground truth in order to com-
pute a trajectory error estimation. For this reason, in most
of the experiments the trajectory was chosen to be a loop
in order to compare the position in the map for re-observed
objects.

4.1 Indoors stereo data set

For the first experiment on map building we have used a Digi-
clops stereo camera as 3D sensor device. The experiment was
performed indoors. It is well known that stereo systems do
not work correctly when scene’s surfaces have a flat texture.
Moreover, the maximum range for our stereo camera is too
short (up to 5–6 m). Our method needs planar surfaces in
three orthogonal directions. If this requirement is not ful-
filled, our method will fail to compute the robot movement
correctly. The lower information is obtained by the sensor,
the fewer planar descriptions are found and thus the method
accuracy is decreased. The resulting 3D reconstruction for
a four consecutive 3D scenes alignment can be observed in
Fig. 7. This experiment shows how our method can deal with
an inaccurate 3D sensor like a stereo camera.

Fig. 7 Indoor map building experiment using a stereo camera: result-
ing 3D reconstruction
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Fig. 8 Indoor map building experiment using a SR4000 camera:
zenithal view of the resulting 3D reconstruction. The red line shows
the path follow by the robot (Color figure online)

4.2 Indoors SR4000 data set

In this experiment we used a SR4000 infrared camera. It
provides an interesting advantage against a stereo camera:
it obtains information independently of the scene’s surface
texture. The maximum range of this camera is 10 m, which
is quite enough for an indoor environment. Figure 8 shows a
360 frames sequence in an indoor environment.

4.3 Polytechnic college data set

Our next experiment was performed outdoors in a square
between the buildings of the Polytechnic College at the Uni-
versity of Alicante. This time the 3D sensor used was a
sweeping range laser. 30 3D scenes were captured during
the 45 m long almost-closed loop trajectory. In Fig. 9 the
reconstructed map can be observed from a zenithal view. It
is superimposed to a real aerial picture from the environment.
The points that come from the floor have been removed for a
better visualization. Furthermore, it can be noticed that there
are many points that were captured in the open space. These
points come from people that were moving freely around the
robot during the experiment. Our registration method is not

Fig. 9 Zenithal view of the resulting map of the Polytechnic College
data set experiment using a 3D laser. Map points are superimposed to a
real aerial picture. The red line represents the computed robot trajectory
(Color figure online)

Fig. 10 3D map view of the experiment performed in the Polytechnic
College. Some objects in the environment such as trees, street-lamps
and buildings can be observed

affected by dynamic objects since it uses planar surfaces that
remain mostly still. Those planar surfaces that may change
its position, like doors, are detected by the outliers rejection
step. The computed trajectory for this experiment is repre-
sented by a red line. The resulting map appears to be quite
accurate as the estimated final pose error is around 15 cm.

Figure 10 shows a free view of the Polytechnic College
data set experiment reconstructed 3D map. The computed
3D trajectory is also represented. Building facades, street
lamps, trees and other objects can be recognized. Double
representation for some objects is produced by accumulated
errors.
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Fig. 11 Reconstructed map from the experiment performed in the
Faculty of Science. Data come again from a 3D range laser. The com-
puted trajectory is represented by the red line (Color figure online)

4.4 Faculty of science data set

Our next experiment represents the longest trajectory per-
formed by the robot. It corresponds to the surroundings of
the Faculty of Science at the University of Alicante. This is a
low structured environment with lots of trees, hedges, street-
lamps, etc. The reconstructed 3D map can be observed from
a zenithal view in Fig. 11. This time, the map is built from
117 3D scenes along a 130 m trajectory. This time the error, it
is said, the difference between objects observed at the begin-
ning and at the end of the trajectory is about 30 cm. 3D map
from a free view can be observed in Fig. 12 where environ-
ment details can be appreciated.

4.5 University of Alicante’s Museum data set

Since our previous experiments were performed in environ-
ments in which the floor was almost plane, for our next
experiment we looked for a place in which the movement
performed by the robot was clearly a 6DoF one. For this rea-
son, we chose the entrance of the University of Alicante’s
Museum. This place is a covered passageway with differ-
ent slopes. In this place, the movements performed by the
robot are more complex since we chose the robot to turn in
the middle of the slopes. Figure 13 shows the resulting 3D
map for this experiment and gives a clear idea of the trajec-
tory performed by the robot. In the upper picture the zenithal
view can be observed while the bottom picture shows a lat-
eral view in which slopes can be observed. The map was built
from 71 3D scenes captured by a 3D range laser in a 35 m
long trajectory. The difference between the first and the last
pose is about 20 cm.

Fig. 12 Free view of the 3D map reconstructed for the Faculty of
Science data set experiment. Objects such as buildings, different kind
of trees, street-lamps, hedges, etc. can be distinguished

Fig. 13 3D map built from the data obtained in the University of
Alicante’s Museum. The upper image shows a zenithal view in which
the trajectory represented by a red line can be appreciated. The bottom
image shows a lateral view for the reconstructed 3D map. The slopes
present in the environment can be observed here (Color figure online)

4.6 Bremen data set

For our last experiment we use a data set recorded by Dorit
Borrmann and Andreas Nüchter from Jacobs University
Bremen gGmbH, Germany, as part of the ThermalMapper
project, and it is available to download for free (Borrmann
and Nüchter 2012). This data set was recorded using a Riegl
VZ-400 and a Optris PI IR camera. It contains several 3D
scans taken in the city center of Bremen, Germany. The data
set consists of data collected at 11 different poses. The points
from the laser scans are attributed with the thermal informa-
tion from the camera. Approximately, each two consecutive
poses are separated by 40 m. For this experiment, a ground
truth is available as it includes pose files calculated using
6D SLAM (Andreas Nüchter and Surmann 2007). Compar-
ing the trajectory obtained using the method presented in
this paper with the ground truth, we get a root mean square
(RMS) error of 0.89 m in translation and 1.271◦ in rotation.
Even though huge movement was performed between poses,
no odometry information was needed for most of the poses.
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Fig. 14 Reconstructed map from Bremen data set. In this case, data
come from a Riegl VZ-400. Thermal information is used to color the
points. The computed trajectory is represented by the red line (Color
figure online)

Fig. 15 Free view of the 3D map reconstructed for Bremen data set
experiment. The reconstruction of the movement in such a big environ-
ment can be achieved using our approach

Just in three of them, whose rotations are bigger than 45◦,
odometry was used to obtain the correct transformation (Figs.
14, 15).

Finally, in Table 1 we present several statistics recovered
during these experiments. The first column shows the number
of 3D scenes registered. The mean number of 3D points per
scene and the mean number of 3D planar patches are shown
in the second and third column. The last two columns show
the mean time needed to extract the planar patches and to
apply the 3D registration. All our data sets are public and
available to download (Viejo and Cazorla 2013).

5 Conclusion

This paper covers the problem of finding the movement per-
formed by a robot using the information collected by its 3D

Table 1 Statistical data recovered during 3D map building experiments

Set Scenes Points
(mean)

Patches
(mean)

Patch
(mean)

Registration
(mean)

Stereo 4 134, 662 54 1.042 s 0.065 s

SR4000 360 19, 371 106 0.098 s 0.567 s

P. College 30 67, 611 640 0.984 s 2.022 s

F. of
Science

117 56, 674 657 0.600 s 2.413 s

Museum 71 75, 859 941 0.674 s 5.917 s

Bremen 11 7037, 852 2, 208 1.617 s 54.813 s

For each data set number of scenes, mean number of points per scene,
mean number of planar patches extracted per scene, mean time for
extracting planar patches and mean time for computing the transforma-
tion between two consecutive scenes are shown

sensor. This process is called 3D pose registration and can
be used for automatic map building. Our method is designed
to obtain accurate results even when the scenes present a
big amount of outliers. This makes unnecessary the use of
an initial rough transformation between each pair of scenes.
Furthermore, since our method is designed to work with 3D
data it can obtain the registration of a 6◦ of freedom move-
ment. This makes it highly suitable for those robotics appli-
cations in which odometry information is not available or is
not accurate enough such as aerial or underwater robots.

Another important feature of our method is that it works
with raw 3D data, it is said, unorganized 3D points sets. In
contrast to other previous works on 6D mapping like Bor-
rmann et al. (2008), Kümmerle et al. (2008), Censi (2008),
and Armesto et al. (2010), this feature makes our method
independent of the 3D sensor used to obtain the data. In this
way, applying our method for different robots equipped with
different sensors does not require a big programming effort.
The first step for our algorithm is the modeling of the input
data. This step gives us three advantages. The first one is the
reduction of the data size without a significant reduction of
the amount of information present in the original scene. This
highly decreases the time needed by the algorithm to obtain
the results. The second advantage consists in the extraction
of important structural relations for the data that are exploited
in our algorithm in order to improve the results. Finally, the
third advantage we get using planar surfaces description is
that it makes easier to obviate dynamic objects, such as peo-
ple, while computing the registration.

The ICP algorithm is an unstable method that not always
reaches an optimal solution. Usually, small changes in the
input data make the ICP finish in a local minimum. Although
there are many approaches that represent an improvement in
the reduction of outliers effects, ICP can still not obtain good
results when the amount of outliers is quite representative.
For mobile robotics, we consider outliers all the data that
can be observed from a pose but not from the previous one
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and vice versa. As a robot moves, the maximum range of
the robot sensors and the movement itself introduce outliers
in the data. The amount of outliers depends on the distance
travelled by the robot between two consecutive poses. The
better the aligning method for detecting and avoiding outliers
is, the bigger distance the robot can move and be registered.
In contrast to most of the methods that can be found in the
literature for improving the consistency of matched points
and for reducing the influence of the outliers, our method
does not use the internal data representation from the sensor
and in this way our method is independent of the sensor used
to collect the data.

The proper functioning of the proposed method has been
demonstrated with several experiments. The first experiment
was designed to study the influence of outliers in the result-
ing transformation. As it was demonstrated, our method can
handle up to 40 % of outliers in the data, that is quite better
than the amount of outliers tolerated by ICP (less than 15 %).
This is an important result for mobile robotics since outliers
are introduced into the data mainly by the robot movement.
In order to appreciate the accuracy of the proposed method,
several experiments for 3D automatic map building were car-
ried out. Several scenarios were chosen, both outdoors and
indoors. We also test the use of different 3D sensors such as a
stereo camera, a time-of-flight camera and two different 3D
range lasers. In all the experiments the map was built from
the alignment of every two consecutive 3D images without
any kind of global rectification. This means that the errors
produced during the alignment of two images are propagated
to the next poses of the robot’s trajectory. Although this error
propagation may highly affect the results, the accuracy of
the proposed method makes possible the reconstruction of
the 3D maps. In our first outdoor experiments, carried out
with a common SICK 3D laser, we obtain very good map-
ping results. The RMS error for these experiments is about
2 cm for a typical displacement of 1 m and 1.25◦ for a turn of
25◦. A similar error is obtained in the experiment carried out
with thermal mapper data set. Each scene in this data set is
obtained in a semi-structured environment from a 360◦ scan,
and sensor used features are high accuray and long range.
Under these conditions we achieve a RMS of 0.89 m and
1.27◦ for displacement and turn, but in this case, the move-
ment between each pose is bigger than 40 m. In the case
of using sensors with low accuracy, as in our indoor experi-
ments, the RMS error is about 1 cm for a 10 cm displacement
and 1◦ for a turn of 3◦. The main problem for the indoor
experiments is the short range of the 3D sensor used. This
problem may lead to some situations in which the robot can
obtain almost no information about its environment. Under
this kind of circumstances, our method fails to find planar
descriptions for the scene’s surfaces and so, the robot move-
ment estimation is incorrect. Our data sets are public and
available to download (Viejo and Cazorla 2013). As future

work, we are working on the extraction of other 3D surface
features such as corners. We intend to improve the robustness
of our method by including these new 3D features.

Another similar proposal was made by Weingarten et al.
(2004), Weingarten and Siegwart (2005). He maintains an
extended Kalman filter (EKF) on every plane extracted from
each 3D scene. EKF are then used to compute a global recti-
fication for the trajectory performed by the robot. The main
difference is that Weingarten uses planes as landmarks and
robot odometry in order to update the EKF information.
Then, when a loop is detected, a robot pose error reduction is
back-propagated. Our proposal is mainly focused on replac-
ing the odometry information. In fact, both methods can be
used together, ours for obtaining the robot movement estima-
tion and Weingarten’s for computing a global rectification.
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