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Abstract Flocking motions have been the subject of hun-
dreds of studies over the past six decades. The vast majority
of models have nearly identical aims: bottom-up demonstra-
tion of basic emergent flocking motions. Despite a significant
fraction of the literature providing algorithmic descriptions
of models, incompleteness and imprecision are also read-
ily identifiable in flocking algorithms, algorithmic input, and
validation of the models. To address this issue, this meta-
study introduces a data-flow template, which unifies many
of the existing approaches. Additionally, there are small dif-
ferences and ambiguities in the flocking scenarios being stud-
ied by different researchers; unfortunately, these differences
are of considerable significance. For example, much sub-
tlety is needed to specify sensory requirements exactly and
minor modifications may critically alter a flock’s exhibited
motions. We introduce two taxonomies that minimize both
incompleteness and imprecision, and enable us to highlight
those publications that study flocking motions under com-
parable assumptions. Furthermore, we aggregate and trans-
late the publications into a consolidated notation. The com-
mon notation along with the data-flow template and the two
taxonomies constitute a collection of tools, that together,
facilitates complete and precise flocking motion models, and
enables much of the work to be unified. To conclude, we make
recommendations for more diverse research directions and
propose criteria for rigorous problem definitions and descrip-
tions of future flocking motion models.
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1 Introduction

Flocking behaviors by groups of individuals has been exten-
sively studied for the past six decades in multiple research
communities, including biology (Aoki 1984; Hildenbrandt
et al. 2010; Vine 1971), physics (Vicsek et al. 1995; Szabó
et al. 2008; Czirók et al. 1997), and robotics (Arkin and Balch
1999; Gazi and Passino 2005; Ferrante et al. 2012). Although
many works have expressed confidence in our comprehen-
sion of this phenomenon (Goldstone and Janssen 2005),
understanding of the flocking phenomenon remains incom-
plete (Giardina 2008; Parrish et al. 2002; Vicsek and Zafeiris
2012; Lopez et al. 2012; Hildenbrandt et al. 2010). While
several candidate models are available (e.g., Wood and Ack-
land 2007; Warburton and Lazarus 1991; Rauch et al. 1995;
Okubo 1986; Moussaïd et al. 2009; James et al. 2004; Hel-
bing et al. 2000; Hauert et al. 2011), there is no consensus
on the precise details of the motions needed to produce rich
flocking motions under realistic sensing models, actuation,
and dynamics constraints. This stems, we believe, partly from
a poor definition of what constitutes a flocking behavior.

Although diverse research communities study different
varieties of the problem and questions surrounding the phe-
nomenon (Clark and Evans 1954; Dingle and Drake 2007;
Emlen 1952; Partridge 1982; Pitcher et al. 1976; Rands et al.
2004; Viscido and Wethey 2002; Whitfield 2003; Simons
2004; Parrish and Edelstein-Keshet 1999; Parrish 1989;
Miki and Nakamura 2006; Hutto 1988; Edelstein-Keshet
2001; Bender and Fenton 1970), the vast majority of the
flocking literature aims at bottom-up production of flocking
motion (Goldstone and Janssen 2005; Parrish et al. 2002).
Generally, studies are reported without explicitly detailing
the sensing capabilities, limiting assumptions, and/or com-
putation capabilities of the individual flock members. Addi-
tionally, there is currently no common or accepted method for
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the design, validation, and/or presentation of flocking motion
models (Parrish et al. 2002; Vicsek and Zafeiris 2012), which
makes it difficult to determine the current state of the litera-
ture and to compare existing motion models.

We have reviewed over one-hundred publications from
various communities and have selected a subset of thirty-
two to conduct a detailed meta-study. These publications
were carefully chosen to maximize coverage of the common
design choices and assumptions found throughout the litera-
ture and to be a representative cross-section of the literature
as a whole. We have chosen to included one of our recent
publications (Fine and Shell 2011) that was developed with
the conclusions of this work in mind. In Sect. 6 we will use
that study as a case-study to highlight the use of the tools
presented here.

Our study reveals that the current presentation of proposed
motion models lack either completeness, precision, or both,
which significantly hinders repeatability. Additionally, there
are small, sometimes subtle, implicit and/or explicit assump-
tions that are currently overlooked [examples we have teased
out include: member-based detection (Fine and Shell 2011,
2012), lack of occlusions (Fine and Shell 2011), perfect sens-
ing (Fine and Shell 2011)], which may impact the produced
motions. Furthermore, even models that are completely and
precisely presented are not always realized exactly when val-
idated (e.g., a motion model designed for local sensing might
be validated using global sensing). Therefore, it is difficult
to know the degree to which a particular motion model is
actually capable of producing flocking motion in a realistic
scenario or if the model’s assumptions are realistic. To clar-
ify, we use the following terms when referring to flocking
motion models:

• Completeness refers to how many of the key aspects of
the flocking model (Sect. 2) are presented.

• Precision (or lack thereof) is the quality of the specifi-
cation/presentation of the various aspects of the flocking
motion model.

To better understand all aspects involved in the genera-
tion of flocking motions, we introduce a series of analyti-
cal tools that help reduce incompleteness and imprecision
in the design and presentation of these models. Together,
these three distinct tools use three different approaches for the
understanding of the flocking phenomena; (1) organizational,
(2) categorical, and (3) structural. To gain a complete and pre-
cise understanding of a given model, we must use all three
tools, as they highlight different aspects of the model.

The first tool, the data-flow template (DT), identifies and
addresses the key aspects for the production of flocking
motions and how these aspects relate. Together, the five
aspects, or stages, of the DT (see Sect. 2) give an organiza-
tional description for the production of flocking motions that

can be used for understanding what information is required
and what stage(s) utilize it. Additionally, the DT can be
a useful blueprint for the design of new flocking motion
models.

Moving beyond the organization of each particular motion
model, we sought to chart the relationships across existing
models with our second tool; the objective is to categorize
existing work concisely while retaining sufficient precision
to allow a practitioner to resolve implementation questions.
We developed a taxonomy to detail the computation, sens-
ing, and motion capabilities of the individual flock members.
Additionally, we introduce a second taxonomy that aids in
the classification of validation methods used for a particu-
lar flocking motion model. When using the two taxonomies
together, one may gain insight into which assumptions or
capabilities may be infeasible or impractical for a robotic or
biological flock member. Using the two taxonomies together
also affords the ability to identify which motion model design
choices have been fully validated (e.g., local sensing versus
global sensing).

Flocking motion models that appear to be similar at both
the organizational and categorical levels may actually dif-
fer significantly in the structure of the motion computation.
The third tool used for gaining a fuller understanding of the
model is a consolidated notation and formalization which
focuses on the motion computation of a given motion model
(i.e., the motion rule). The motion rule is a combination of
the neighbor selection and the motion computation stages
and can be considered the algorithm of the motion model.
Formalization of the current motion rules facilitates under-
standing the implementation differences between the various
motion models. Even though many of the motion models have
the same aim, the formalization and notation shows that the
implementation of the models are typically quite different,
which can lead to different modeling assumptions.

1.1 Scope

Of the publications reviewed for this study, we only consid-
ered literature which uses a microscopic motion model for
investigating flocking motions. Microscopic flocking motion
models have been the primary focus of the many diverse
research communities, thus resulting in several reviews and
surveys of the literature (Vicsek and Zafeiris 2012; Blomqvist
et al. 2012; Goldstone and Janssen 2005; Giardina 2008;
Parrish et al. 2002). These models typically focus on the
motion rule used to produce the motions of the individual
flock members. Such models have been used to explore why
flocks exist (Hamilton 1971; Partridge 1982; Viscido et al.
2002; Viscido and Wethey 2002; Bazazi et al. 2008; Bar-
bosa 1995), what is required for the production of flocking
motions (Reynolds 1987; Pitcher et al. 1976; Fine and Shell
2011, 2012), how much influence individuals have on the
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group (Couzin et al. 2005; Conradt et al. 2009; Warburton and
Lazarus 1991), what special/unique properties might exist in
a flock (Vicsek et al. 1995), and how can we apply these
motions to robots (Turgut et al. 2008; Arkin and Balch 1999;
Ferrante et al. 2012).

In addition to investigating flocking motion using micro-
scopic models, some work uses macroscopic models
(Vaughan et al. 2000; Mogilner and Edelstein-Keshet 1999;
Babak et al. 2004). Instead of studying the individual flock
members, macroscopic models typically focus on group-
level motions. In some of the literature, macroscopic models
are used as a tool for the validation of microscopic models
and are not used as a stand alone model (Albi and Pareschi
2012; Cavagna et al. 2012). Such work is considered outside
the scope of this paper.

1.2 Notation

To improve precision in understanding the literature, we use
the notation presented in Table 1. The chosen notation repre-
sents something of a unified superset of notation seen in the
selected publications. This notation allows for unambigu-
ous formalization of the selected publications and is used
throughout this meta-study.

2 Data-flow template

The data-flow template (DT) aids in designing and present-
ing complete microscopic flocking motion models. Each of
the five stages (sensing, flock member detection, neighbor
selection, motion computation, and physical motion) of the
DT represent the key aspects for the generation of flocking
motions. The five stages of the DT are connected by the
information that is passed between them. With an explicit
understanding of the five stages and the relative connections,
one gains an complete understanding of the motion model
and it facilitates repeatability among researchers. The DT
differs from the other tools presented in this work, in that the
DT defines microscopic motion models at the logical level.
In this way, the DT is a blueprint for flocking motion mod-
els, as it details the major building blocks and how they fit
together.

In addition to serving as a blueprint for the creation of
flocking motion models, the DT is a useful tool for under-
standing the complexity of a given model. Complexity, here,
refers to how much computation, in the motion computa-
tion stage, is required to execute a given model. Therefore,
a motion model that uses all of the detected flock mem-
bers is less complex than a model that only uses a subset of
the detected flock members, since this model performs extra
computation to produce the subset. The DT used in this way
can be useful for gaining a better understanding for which

stages can be executed at the hardware level, thus making the
model less complex. Figure 1 shows a generic view of the
DT along with the connections between the various stages.

2.1 The five stages: definitions

2.1.1 Sensing

The sensing stage translates the visible environment (from
the individual sensors reference frame∗ into usable input for
the later stages (e.g., a laser range-finder converts the visible
environment into a list of ranges). A flock member’s inter-
nal representation of the visible environment is based on the
sensors used, therefore the design of the following stages is
directly affected by this stage. For example, if a flock mem-
ber is equipped with a laser range-finder the flock member
detection stage may use shape (based on the type of raw sen-
sor data) to detect other flock members in the environment.
Although there is no formal input to the sensing stage, the DT
in Fig. 1 shows input to the sensing stage from the physical
motion stage because the resulting motion of that stage may
affect the visible environment.

2.1.2 Flock member detection

The flock member detection stage uses the raw sensor infor-
mation provided by the sensing stage and outputs the set
of all detected flock members (Di (t)). The set Di (t) is a
subset of all possible flock members, represented by the set
A(t), that are within the visible sensing region (R[α, β]). In
other words, if the senors defined in the sensing stage only
senses information within a 2 m radius (R[0, 2 m]), then the
set Di (t) will only contain flock members that are within a
2 m radius. Additionally, each flock member in the set Di (t)
encompasses all of the required information (e.g., position
and velocity) and we assume the type of information used
for the description of a flock member has no effect on the
DT. Therefore, if the model requires position and orientation
information, then for each flock member in Di (t), there will
be a corresponding r j (t) and θ j (t).

2.1.3 Neighbor selection

The neighbor selection stage takes the set Di (t) provided by
the flock member detection stage and outputs at least one
subset of the set Di (t). The set(s) generated by the neigh-
bor selection stage only contain flock members which will
be used in the motion computation stage. Therefore, if the

∗ Typically the sensor’s reference frame will be that of the flock mem-
ber, but when the model uses global sensors (e.g., overhead camera) the
two reference frames will differ.
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Table 1 Definitions and style guidelines for the formalization and unification of the motion models presented in this meta-study

Notation and definitions

Bold capital roman letter Denotes a set (e.g., A(t)).

Bold lowercase roman letter Denotes a vector (e.g., vi (t)).

=̇ Definition (i.e., x =̇ y should be read as “x is defined as y”).

∗ Denotes a preference (e.g., di∗(t)=̇ the direction vector from agent i to location ∗ at time t).

x̂i (t) Denotes the normalized form of xi (t).

xi x (t) Denotes the x component of xi (t) (We only use this notation for the first three components; x, y, and z).

⊥ (xi (t)) Denotes the vector perpendicular to xi (t).
� (xi (t)) Denotes the argument of the vector xi (t) (i.e., the angle describing the direction of a vector).

A(t) The set of all flock members at time t .

Di (t) The set of all flock members detected by the i th flock member at time t (i.e., Di (t) ⊆ A(t)).

Ii (t) The set of all flock members selected by the perception function (i.e., Ii (t) ⊆ Di (t)).

ri (t) The position of the i th flock member at time t .

di j (t) The direction vector from the i th flock member to the j th flock member at time t .

vi (t) The velocity of the i th flock member at time t .

ui (t) The speed of the i th flock member at time t .

θi (t) The orientation of the i th flock member at time t (w.r.t. some true/global direction).

R[α,β] The set of all valid distances (i.e., any flock member which has a distance d ∈ R[α,β] would exists in R[α,β]).
L2(ri , r j ) The Euclidean norm between ri (t) and r j (t) (i.e., || · ||2).

wi
k The kth gain/constant for the i th flock member (if the superscript is omitted then it is a global gain/constant).

Fig. 1 A diagrammatic representation of the proposed DT for micro-
scopic flocking motion models. It details the main aspects for the gen-
eration of flocking motions via the five boxes (stages). The connections
between the stages encode the data that propagates between them. In
particular, the connections between the sensing stage and flock mem-
ber detection stage represents the raw sensor information from each

sensor (e.g., laser range-finder, camera, GPS). The connection between
the flock member detection and neighbor selection stage is the set of
detected flock members (Di (t)). The neighbor selection stage passes
at least one set of selected flock members (Ii (t)) to the motion com-
putation stage which passes the next computed motion to the physical
motion stage.

motion computation stage only uses the nearest neighbor†

(in distance) to compute the next motion, then the neighbor
selection stage will only output a set that contains the nearest
neighbor.

To reduce the set Di (t) to the desired output, the neighbor
selection stage uses a set of perception functions (see Table 2
for a list of perception function definitions). The neighbor
selection function can use any number and combination of
these functions in order to reduce the set Di (t) into usable
input for the motion computation stage. The perception func-
tions could be used in succession (e.g., union of the output
of two perception functions) or in parallel (i.e., the neighbor
selection stage would output more than one set). For example,
if the motion computation stage may require two sets as input
(e.g., attraction and repulsion sets), the neighbor selection
stage will output two sets; the set of ‘attraction-zone’ flock

† In this paper, flock member X calls member Y a neighbor if and only
if Y can be sensed by X .

members and the set of ‘repulsion-zone’ flock members. One
possible representation of the neighbor selection function
that considers the attraction-repulsion zones, using the nota-
tion in Table 1, is

(
IRepulsion(t) ∩ IAttraction(t)

) ⊆ Di (t).

2.1.4 Motion computation

The motion computation stage uses the set(s) generated by
the neighbor selection stage to calculate the next motion of
the flock member (e.g. this stage can update any combination
of ri (t), θi (t), ui (t), or vi (t)). It is important to note that this
stage only describes the internal representation of the next
motion and does not describe how the internal representa-
tion is translated into low-level control commands for the
flock member. In the case of the attraction/repulsion zone
example, the motion computation stage may compute two
different motion vectors that are then summed together to
produce the next motion. Table 4 describes most of the neigh-
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Table 2 Descriptions of perception functions found in the selected literature

All() = { j ∈ A : j} = A All flock members are selected

FixedSeti () = { j ∈ Si ⊆ Di :
j} = Si

Each flock member is given a fixed set of
flock members Si (e.g., flock members
are nodes in a graph with fixed
connectivity)

Distancebasedi (d(·), R[dmin , dmax ]) =
{ j ∈ Di : dmin ≤ d(i, j) <

dmax }

All flock members within some
distance from the sensing flock
member are selected

Nearesti (d(·)) = k ∈ Di where k ∈
t(argmin

j ∈ Di

d(i, j))
Only the nearest flock member

from the sensing flock member is
selected

Voronoibasedi () = { j ∈ Vi ⊆ A :
j} = Vi

The voronoi neighbors, represented
by the set Vi (t), of the sensing
flock member are selected

k-Nearesti (d(·)) = { j ∈ Di : k-argmin
j ∈ Di

d(i, j)} A generalized form of the nearest neighbor
perception function which selects the k-nearest
flock members from the sensing flock member

Boundingboxi (u1, u2) = { j ∈ Di :
(u1x ≤ r j x ≤ u2x ) ∧ (u1y ≤
r j y ≤ u2y )}

All flock members within a defined
bounding box are selected (this
function is designed for a 2D
plane but it is trivial to extend to
higher dimensions)

Anglei (α) = { j ∈ Di :
arccos(r̂ j · ρ̂i ) < α}

All flock members that are within a
specified field of view are
selected

We suggest that the majority of neighbor selection stages could be created using a combination of the functions listed here, but these may not be
the only possible functions

sensed agent selected agent acting agent

bor selection and motion computation stages in the selected
publications.

2.1.5 Physical motion

The physical motion stage takes the computed motion from
the motion computation stage and translates it into a form that
can be realized in either a simulated or physical robot (e.g., a

kinematic motion model or left and right motor speeds for a
two wheeled robot). Similar to the sensing stage, there is no
formal output given by the physical motion stage; however,
the resulting motions have an impact on the visible environ-
ment used by the sensing stage [(e.g. physical motion could
affect which flock members belong to Di (t + �t)]. There-
fore, we have connected the sensing stage and the physical
motion stage in Fig. 1.
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2.2 The five stages: selected literature

By applying the DT to the selected literature we can (1) show
the five stages are indeed key aspects for the generation of
flocking motions, (2) gain a better understanding of the cur-
rent microscopic flocking motion models, and (3) determine
which aspects of flocking motion generation have not been
fully studied. This section highlights specific examples found
in the literature that have various levels of completeness in
regards to specific DT stages. Figure 2 gives examples of spe-
cific data-flows seen in the literature between the five stages
of the DT.

2.2.1 Sensing

Surveying the literature using the DT shows that different
research communities tend to only focus on particular aspects
of flocking motion generation. Biology and physics models
simplify both the sensing and physical motion stages, where
control literature models simplify the sensing stage but intro-
duce motion constraints and various types of noise. There
are few works which investigate the sensing stage in great
detail, with one example being Kelly and Keating (1996). The
treatment of the sensing stage in Kelly and Keating (1996)
describes all of the sensors used and the various properties
associated with those specific sensors. Additionally, Kelly
and Keating (1996) give a detailed description of the physi-
cal flock member, which could have an impact on the sensing,
flock member detection, and neighbor selection stages. The
data-flow between the sensing and flock member detection
stages for the model presented by Kelly and Keating (1996)
can be seen in Fig. 2a.

Although the level of detail given in Kelly and Keating
(1996) is desirable, it is not always feasible to describe all
five stages in a detailed manner due to space limitations.
In contrast to the verbose description in Kelly and Keating
(1996), Gazi and Passino (2005) gives a brief, yet complete
description of the sensing capabilities of the flock members.
Even though the sensing capabilities for the flock members
rely on strong assumptions (instantaneous and perfect sens-
ing with an infinite range), the treatment of the sensing stage
does not allow for ambiguities in the understanding of the
presented approach.

The vast majority of the literature either does not discuss
or present a complete description of the sensing stage. An
example of a publication that does not treat the sensing stage
can be seen in Tanner et al. (2003a). Tanner et al. (2003a)
simply state that there are n flock members moving in a plane
that contain a position (ri (t)) and a velocity (vi (t)). There is
no discussion of how the positions and velocities are sensed
and/or calculated. Only from the context could we infer that
the model in Tanner et al. (2003a) uses an oracle to maintain
the information of the flock members.

For the publications that have a partial treatment of the
sensing stage (Vicsek et al. 1995; Viscido et al. 2002; Czirók
et al. 1997), it is typical to see the following style of descrip-
tion: “The flock member can detect all members within a
radius of r”. From this description the reader cannot disam-
biguate between the case where the sensing radius is a simu-
lation of a sensor limitation or if the sensing radius is a part
of the motion model. We know from the biology literature
that some species only use a limited/specific number of flock
members to calculate their next motion, thus the distinction
of what the sensing radius actually represents is important
for the understanding of the overall model.

2.2.2 Flock member detection

The flock member detection stage is one of the least com-
pletely treated and discussed aspects of flocking motion gen-
eration. The vast majority of the literature does not consider
flock member detection and makes the assumption that all of
the flock members within the sensing range are included in
the set Di (t). Additionally, the flock member detection stage
is also responsible for the detection of the required informa-
tion. If in the sensing stage a velocity sensor is not specified
and the motion model requires the flock member’s veloc-
ity, then the flock member detection stage should detail how
the velocity information is calculated (e.g., the velocity is
inferred from the displacement of ri (t) and ri (t + 1)).

A couple of good treatments of the flock member detection
stage can be seen in Turgut et al. (2008), Kelly and Keating
(1996), Arkin and Balch (1999). Turgut et al. (2008) give
an adequate description through describing how all of the
required information is sensed (e.g., velocity, identification,
orientation, etc.) by the flock members. However, Turgut et al.
(2008) does not discuss if any noise or detection error exist
in the flock member detection stage. A common data-flow
between the flock member detection and neighbor selection
stage can be seen in Fig. 2b.

To this point, we have only considered a flock mem-
ber detection stage that detects real flock members (i.e.,
Di (t) ⊂ Ai (t)). Another possible role of the flock mem-
ber detection stage is the detection/creation of virtual flock
members. Virtual flock members can be used to avoid obsta-
cles (Olfati-Saber 2006) and/or to assist in maintaining a
desired flock structure (Lindhé et al. 2005). A virtual flock
member is created from the sensed information. The informa-
tion typically used for the creation of virtual flock members
is encoded in the set Ai (t) and any detected obstacles. In
our notation, a virtual flock member is a flock member that
exist in the set Di (t) but does not exist in the set Ai (t). It is
important to note that a virtual flock member in the set Di (t)
cannot be distinguished from a non-virtual flock member in
the same set.
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(a) (b)

(c) (d)

Fig. 2 Specific examples of data-flow between the various stages in the DM. Note that the examples listed here are from a combination of various
publications. There is no known example of a publication that unambiguously describes the data-flow between all stages.

2.2.3 Neighbor selection

The neighbor selection stage is treated in almost all of the
literature and is the only stage that is generally completely
described. One of the most complete treatments can be found
in Viscido et al. (2002). For each of the perception func-
tions, Viscido et al. (2002) explicitly states which flock mem-
bers will be selected and passed to the motion computation
stage. The data-flow for one of the models presented by Vis-
cido et al. (2002) between the neighbor selection and motion
computation stage can be seen in Fig. 2c. In addition to which
flock members are to be selected, Viscido et al. (2002) gives
brief explanations for the selection decisions. The one excep-
tion to this is in their treatment of the local crowded horizon
(LCH) motion model. Viscido et al. (2002) do not clarify if
all of the detected flock members are selected or if only the
members apart of the ‘most crowded horizon’ are selected.

In contrast to Viscido et al. (2002) fairly complete treat-
ment of the neighbor selection stage, Mikhailov and Zanette
(1999) do not explicitly treat this stage at all. With that said,
it is clear from the context that Mikhailov and Zanette (1999)
are using a perception function that selects all of the flock
members in the set Di (t) (see the perception function All() in
Table 2).

The majority of the literature typically uses one percep-
tion function in the neighbor selection stage; however, there
are some works which use a combination of perception func-
tions. Using the perception functions in Table 2 we see that

the motion model proposed by Gueron et al. (1996) uses over
six perception functions. This is because the motion compu-
tation stage for Gueron et al. (1996) has a large number of
conditions which affect the computation output (similar to
the “attraction/repulsion” zone example used earlier). For a
more detailed treatment of this work please see Sect. 4.1.1.

Topological flocking models In recent years, microscopic
flocking motion literature has been using the term ‘topolog-
ical’ to describe a particular set of flocking motion mod-
els (Tanner et al. 2003a,b; Ballerini et al. 2008; Ginelli and
Chaté 2010; Niizato and Gunji 2011; Bode et al. 2011; Cav-
agna et al. 2010). Topological motion models only differ from
‘metric’ motion models in the neighbor selection stage of the
DT, however, this distinction is not clear in the majority of the
topological literature. Niizato and Gunji (2011) does a good
job in teasing out the difference between topological and met-
ric flocking motion models. Additionally, Niizato and Gunji
(2011) presents a motion model that utilizes both a metric
and topological neighbor selection function.

2.2.4 Motion computation

Even though the motion computation stage is always treated,
the description of this stage is typically incomplete, which
causes ambiguities when attempting to formalize or imple-
ment a motion model. One reason for the lack of complete-
ness is from not explicitly addressing all of the outputs gener-
ated by the neighbor selection stage. For example, the simple
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nearest neighbor motion model (Viscido et al. 2002) does not
detail the flock members computed motions when there are
no neighbors. In other words, if the set Di (t) is empty, the
motion computation stage is undefined.

Another cause for the lack of incompleteness in the motion
computation stage is from the use of vague terminology such
as“back-up” and “turn left”. As we discuss later in this work
(see Sect. 4.1.3) we see that the use of vague terminology
prevents us from formalizing such models, and thus it pre-
vents us from implementing a model as it was intended to
be implemented. A third reason for incompleteness of the
motion computation stage can be seen in Viscido et al. (2002).
Within the same publication there are two possible interpre-
tations of the LCH motion model, but the authors never dis-
tinguish between the two of them. The first prose description
of the LCH motion model and the implemented version of the
model are similar but not exactly the same. We have imple-
mented both of these interpretations on a physical system
and, fortunately, found that the generated motions only dif-
fer slightly (Fine and Shell 2012). However, the assumptions
made by the two different interpretations do have an impact
of the complexity of the motion model.

2.2.5 Physical motion

The physical motion stage is rarely treated in the flocking
literature (Ferrante et al. 2012). A common input to this stage
can be seen in Fig. 2d, where the motion computation stage
takes a computed position (ri (t)) and translates it into low-
level motor commands for the flock member.

3 Current microscopic models

In this section we analyze the high-level design choices for
the selected microscopic motion models. Table 3 is a cate-
gorical view of the sensing and computational requirements
of individual flock members as well as the composition of the
entire flock (i.e., is the flock heterogeneous or homogeneous).
The eight attributes (flock composition, flock member mobil-
ity, continuous/discrete time, collision avoidance, neighbor
identification, neighbor’s position, neighbor’s velocity, and
neighbor’s orientation) highlighted in Table 3, together, give
an adequate description of the model’s required information.
Additionally, Table 3 allows one to gain a better understand-
ing for if a particular model is biologically feasible, or how
easily the model may be to implement on a physical sys-
tem. For example, if a motion model requires idealize/perfect
motion, then the resulting motions of this rule implemented
on a physical (i.e., noisy) system may not be equivalent to the
desired motions. In general, Table 3 can be used to answer
three questions; (1) what is the composition of the flock, (2)
how realistic are the constraints, and (3) what sensing infor-
mation is required?

3.1 Definitions of Table 3 attributes

3.1.1 Flock composition

Several flocking motion studies investigate the possibility of
differences (sometimes subtle, sometime significant) in the
flock members. Apart from physical differences (e.g., in sens-
ing capability, size, appearance), there can be differences in
the underlying control law; more precisely, the motion com-
putation stage in the DT may vary between flock members. A
flock’s composition can either be homogeneous (�), where
all flock members have identical motion computation stages,
or heterogeneous (�), where at least one flock member has
a different motion computation stage.

This definition of group composition only considers the
motion computation stage when determining if a flock is
homogeneous or not, and does not consider the motions
exhibited by individual flock members. For example, if
all flock members have an identical probabilistic motion
model (Viscido et al. 2002; Shimoyama et al. 1996), then the
flock is considered homogeneous even though the motions of
the individual flock members given identical input may not
be the same. However, if the model has parameters which
are unique to a subset of flock members (Conradt et al. 2009;
Couzin et al. 2005), we consider the flock to be heterogeneous
because the unique parameters can drastically affect the flock
member’s motion. In the case of Couzin et al. (2005) there
are two types of flock members (informed and uninformed),
thus Ai (t) can be partitioned into two distinct subsets of flock
members, and therefore considered to be heterogeneous.

For this publication, we do not consider either the sensor
configuration or the physical appearance of the flock mem-
bers in regards to the flock’s composition, since we are only
interested in the chosen motion model. However, a variation
of flock composition could consider the sensor configuration
of the flock members. Knowing the particular sensor con-
figuration may reveal implementation details that may affect
the design of the model. Even though we do not consider
this here, the sensor configuration should be discussed when
presenting the sensing stage. Studies have also investigated
the effects of heterogeneous flock members (in appearance)
on the human perception of a flock (Ip et al. 2006). We do
not consider heterogeneous flocks (in appearance) because
we assume that the physical appearance of the flock mem-
bers (for the selected literature) does not affect the exhibited
flocking motions.

3.1.2 Mobility

The mobility of the flock details the physical motion indi-
vidual flock members can perform and we assume that all
of the flock members have the same mobility (i.e., the flock
is homogeneous in regards to mobility). A flock member’s
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Table 3 A categorical review of the information and flock member requirements for each of the selected motion models

Paper Flock compo-
sition

Mobility Continuous/
discrete

Collision
avoidance

Identification Position Velocity Orientation

Viscido et al. (2002)(SNN/HA/LCH) � © � – –
√

– –

Conradt et al. (2009) � © � Member –
√ √

–

Gueron et al. (1996) � © � Member –
√

– –

Couzin et al. (2005) � © � Member –
√ √

–

Lopez et al. (2012) � © � – –
√

– –

Hamilton (1971) � © � – –
√

– –

Vicsek et al. (1995) � © � – –
√

–
√

Dong (2012) � © � – –
√ √

–

Smith and Martin (2009) � © � – –
√

–
√

Shimoyama et al. (1996) � © � Member –
√ √ √

Czirók et al. (1997) � © � – –
√

–
√

Szabó et al. (2008) � © � – –
√ √ √

Szabó et al. (2009) � © � – –
√ √ √

Levine et al. (2000) � © � Member –
√

– –

Toner and Tu (1998) � © � – –
√

–
√

Grégoire et al. (2003) � © � Member –
√

–
√

Camperi et al. (2012) � © � Member –
√ √

–

Helbing et al. (2005) � © � All –
√ √

–

Matarić (1993) � � � All –
√

– –

Reynolds (1987) � � � All –
√ √ √

Kelly and Keating (1996) � � � All
√ √ √ √

Turgut et al. (2008) � � � All –
√ √

–

Gökçe and Şahin (2009) � � � All –
√ √ √

Tanner et al. (2003a) � © � Member
√a √ √ √

Tanner et al. (2003b) � © � Member –
√ √ √

Jadbabaie et al. (2002) � © � – –
√

–
√

Gazi and Passino (2005) � © � –
√ √

– –

Gazi and Passino (2003) � © � Member –
√ √ √

Olfati-Saber (2006) � © � All –
√

–
√

Arkin and Balch (1999) � � � All
√ √

– –

Fine and Shell (2011) � � � – –
√

– –

Hauert et al. (2011) � � � Member –
√ √

–

This table can be used as a first pass to identify which models could be useful when designing a new model or when identifying models that
may benefit from additional investigations. Entries marked with a (

√
) signifies that the particular attribute is utilized. For the collision avoidance

attribute, (Member) signifies that the model only considers member to member collision avoidance, while (All) signifies that the model considers
both member and environment collision avoidance
�Homogeneous � Heterogeneous © Idealized �Constrained � Continuous �Discrete
a identification is only used in the perception function.

mobility can either be idealized (©), where the flock mem-
ber can immediately and perfectly perform the computed
motion, or constrained (�), where the flock member has a
restricted set of possible motions (e.g., grid-based motion)
or imperfect (noisy) motion. For example, if a flock member
that has idealized motion executes a model that calculates

the next position (ri (t + 1)) at time t , we know that the flock
member will arrive at ri (t + 1) (with no error). Conversely,
if that same flock member now has constrained motion, there
could be a difference between the calculated and observed
ri (t + 1) (i.e., the flock member is not guaranteed to arrive
at ri (t + 1)).

123



204 Auton Robot (2013) 35:195–219

3.1.3 Discrete/continuous

Flock members can execute the given model in either discrete
time (�) or in continuous time (�). Flock members operat-
ing in discrete time only sense, compute, and act (move) in
distinct time intervals (i.e., a flock member may only sense,
compute, and act every 0.1 seconds, regardless of the sensors
sensing frequency). Conversely, flock members that execute
the given model in continuous time will sense, compute, and
act at the frequency of the given sensors and the time it
takes to preform the computations. The important distinc-
tion between the two time choices is that in discrete time, the
flock members may ignore information if the time interval
is too large, where in continuous time, no information will
be ignored (assuming all sensors have the same frequency).
However, if the information from the sensors is noisy and
the flock member is operating in continuous time, the result-
ing motion may be sporadic and may not exhibit the desired
motions.

3.1.4 Collision avoidance

The collision avoidance of the flock details the individual
flock member’s ability to avoid various types of collisions.
The two types of collisions studied in the literature are
member-member collisions (a flock member collides with
another flock member) and member-environment collisions
(a flock member collides with an object in the environment
that is not another flock member). Flock members can avoid
collisions with other flock members (Member), the environ-
ment (Environmental), both flock member and environmental
obstacles (All), or flock members have no collision avoidance
capabilities (–).

3.1.5 Identification

Motion models that utilize identification assume that each
flock member has a unique label (ID) (e.g., ‘leader’ or ‘flock
member 42’). Furthermore, these models assume that each
flock member has the ability to ‘detect’ other flock member’s
ID at any time. Identification can be used to assist in member-
to-member communication as well as allowing ‘follower’
flock members to identify the ‘leader’ flock member(s).

It is important to note, if a flock member has the ability to
identify other members, this does not imply that the member
has the ability to associate information between sensing steps
(for the definition of association see Sect. 6). Furthermore,
we must note that the index of the flock members in the sets
Ai (t) and Di (t) cannot be used for identification (i.e., the
flock member j ∈ Di (t) is not guaranteed to be member j ∈
Di (t +1)). Therefore, if identification is required, there must
be an identification attribute associated with each member,
just as all other attributes (e.g., position, velocity).

3.1.6 Position, velocity, and orientation

The position, velocity, and orientation columns identify
whether or not a model utilizes that particular type of infor-
mation. These three columns do not distinguish how the
information is sensed or computed (e.g., global versus local
reference frame), rather they simple state what information
is required. In other words, these columns identify the min-
imum informational requirements the motion model must
have in order to compute the next motion for the flock mem-
ber.

3.2 Observations from Table 3

3.2.1 Group composition

Observing Table 3, we see that six of the investigations
consider heterogeneous flock members. Even though we
have a limited definition of heterogeneity, all of the stud-
ies which consider homogeneous flock members, use truly
homogeneous members (i.e., all aspects of the flock mem-
bers are identical). For the publications which do consider
heterogeneous flocks, the studies typically investigate how
informed members or leaders can affect the motions of the
flock (Couzin et al. 2005; Conradt et al. 2009). These inves-
tigations have parameters which differ according to the flock
member’s classification (e.g., leader or follower). In Gueron
et al. (1996), heterogeneity represents strong and weak flock
members, where strong flock members move faster then weak
members. We do not consider this to be heterogeneity with
respect to mobility because the feasible motions of the flock
members are still the same, one type of flock member sim-
ply performs the motion faster than the other (i.e., a different
gain in the motion computation stage).

3.2.2 Mobility

We observed eight publications which consider constrained
motion, which all exist in the robotics and control literature.
The majority of the literature assumes that if a flock member
computes it’s next position as r, then at time t + 1 the flock
member will be at r (with no error). Of the literature that does
consider constrained motion, none of the models explicitly
handle the motion constraints in any of the DT stages. We
must note that we chose to classify (Vicsek et al. 1995) as
using idealized motion. Even though this model is probabilis-
tic in regards to the motion noise, the noise is added in the
motion computation stage. When the flock member moves
to the calculated position in the physical motion stage, there
is no error; thus, the Vicsek et al. (1995) model is consider
to use idealized motion.
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3.2.3 Continuous/discrete time

Table 3 shows a divide among research groups with respect
to the use of continuous or discrete time models. Almost
all of the selected literature from the biology and physics
communities use discrete time, where the robotics and con-
trol groups predominately use continuous time. One possible
cause for this dichotomy are the chosen forms of valida-
tion; see Table 6 (e.g., computer simulation versus physical
implementation).

Continuous time models are typically more complete (in
the specific sense outlined in the Introduction) than discrete
time models, although, there are some exceptions. Gueron et
al. (1996) is an example of a discrete time motion model that
is completely described. As we see in Gueron et al. (1996),
the authors took great care to present what motion output
would occur given any possible input. Another example of
a completely described discrete time model can be found
in Conradt et al. (2009), where the authors detail what flock
members do in the absence of neighbors (i.e., the neighbor
selection stage outputs an empty list).

3.2.4 Collision avoidance

Eight of the publications consider both environmental and
flock member collision avoidance, with nine other publica-
tions considering member-member collision avoidance. The
flock members in the Olfati-Saber (2006) study perform col-
lision avoidance with both the environment and other flock
members; however, the motion computation stage does not
handle any environmental obstacles. Flock members gener-
ate virtual flock members (see Sect. 6) which travel along the
boundary of the detected obstacles, thus the motion computa-
tion stage only considers flock member avoidance. Addition-
ally, none of the investigations explicitly describe, with the
exception of Reynolds (1987), how the obstacle avoidance is
performed.

3.2.5 Position/velocity/orientation

When considering the complexity of a given motion model,
we only consider if the model requires position, velocity,
and/or orientation information. There does not appear to be a
difference in the design of the motion computation stage with
respect to the way in which the information in sensed (e.g.,
global, local, or inferred). However, there is a difference in
how the sensed information is used.

The majority of the motion models use the information in
the motion computation stage, but some models (Vicsek et
al. 1995; Jadbabaie et al. 2002) use some of the information
in the neighbor selection stage. In Viscido et al. (2002) the
motion computation stage only requires the velocities (v j (t))
of the selected flock members; however, position information

(ri (t)) is used to select a subset of flock members from Ai (t).
In Table 3 we do not make a distinction on where the infor-
mation is used.

With exception of the prose description of the LCH motion
rule in Hamilton (1971), all of the selected models require
position information. In the proposed, but not validated,
description of the LCH motion rule each flock member moves
towards the center of the highest density of detected flock
members. With respect to velocity and orientation informa-
tion, there does not seem to be any major trends seen in the
literature.

4 Specification of motion rules

To aid in the comparison of various flocking motion mod-
els and to assist in the understanding of the current state of
the literature, we translated the selected models into a com-
mon notation and formalized stages 3 and 4, which together
create the motion rule. Table 4 shows the formalization of
the neighbor selection stage and motion computation stage
for each of the selected models. Observing Table 4 reveals
that even though each of these models have the same aim,
there are many ways in which the flocking problem can be
solved.

4.1 Literature omitted from Table 4

Not all of the models from the selected literature can be easily
formalized in our proposed framework (Matarić 1993; Kelly
and Keating 1996; Reynolds 1987; Arkin and Balch 1999;
Gueron et al. 1996), which have been labeled as “See Sect.
4.X.Y” in Table 4. The most common reason (found in all
omitted works except for Gueron et al. (1996)) for omission
is ambiguity in the details of the low-level control law used to
produce the flocking motions. Gueron et al. (1996) is a unique
case in which the motion rule is completely and precisely
described, but the model is so complex, it does not lend it
self to being formalized.

4.1.1 The dynamics of herds: from individuals
to aggregations (Gueron et al. 1996)

In Gueron et al. (1996), the authors presented the motion
rule in enough detail where formalization is possible, but the
rule is extremely verbose, which made it impractical to com-
pletely formalize the model in Table 4. Table 4 shows the
formalization of one of the four spatial regions (e.g., attrac-
tion, repulsion) which affects the flock member’s motion. As
shown in Table 4, the high number of discrete conditions in
the motion computation stage requires a high number of per-
ception functions in the neighbor selection stage. This sug-
gests some care should be taken when designing the neighbor
selection and motion computation stages.
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Table 4 The translation of the neighbor selection and motion computation stages from the selected flocking motion models

Paper Neighbor selection Motion computation

Viscido et al. (2002)(SNN) k =Nearesti (L2) ri (t + �t) =
{

ri (t) + d̂ik(t) if L2(ri (t), rk(t)) > rρ,

ri (t) otherwise.

Viscido et al. (2002) (HA) k =Nearesti (L2) ri (t + �t) =
{

ri (t) + ê(t) if L2(ri (t), rk(t)) > rρ,

⊥ (ri (t) + ê(t)) otherwise.
l =Nearestk(L2) e(t) = (d̂lk(t) + rl(t)) − ri (t)

Viscido et al. (2002) (LCH)a Ii =All() ri (t + �t) = ri (t) + ê

e =
∑

j∈Ii

di j

1 + w1 L2(ri (t), r j (t))

where w1 has units of 1
distance

Conradt et al. (2009) Iiα =
Distancebasedi (L2, R[0, α])

di (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− 1
|Iiα |

∑

j∈Iia

r j (t) − ri (t)

L2(ri (t), r j (t))
if |Iiα | �= 0,

= 1
4|Iiβ |

∑

j∈Iiβ

r j (t) − ri (t)

L2(r j (t), ri (t))
+ 1

4|Iiβ |

×
∑

j∈Iiβ

v̂ j (t) + wi
1

r∗(t) − ri (t)

2L2(r∗(t), ri (t))
if |Iiβ | �= 0,

r∗(t)−ri (t)|r∗(t)−ri (t)| otherwise.
Iiβ =Distancebasedi (L2, R[α, β])

Gueron et al. (1996) IS =Boundingboxi ((ri x −
w1, ri x +w1), (ri y −w2, ri y +w2))

θi (t + �t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

θi (t)
if (F ∧ ¬LF ∧ ¬RF ∧ ¬LB ∧ ¬RB)∨
(¬F ∧ LF ∧ RF ∧ ¬LB ∧ ¬RB)∨
(¬F ∧ ¬LF ∧ ¬RF ∧ LB ∧ RB),

θi (t) − 90◦ if (¬F ∧ LF ∧ ¬RF ∧ ¬LB ∧ ¬RB)∨
(¬F ∧ ¬LF ∧ ¬RF ∧ LB ∧ ¬RB),

θi (t) + 90◦ if (¬F ∧ ¬LF ∧ RF ∧ ¬LB ∧ ¬RB)∨
(¬F ∧ ¬LF ∧ ¬RF ∧ ¬LB ∧ RB).

F =Anglei () ∩ IS

LF =Anglei () ∩ IS

RF =Anglei () ∩ IS ui (t + �t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ui (t)
1
wi

if (F ∧ ¬LF ∧ ¬RF ∧ ¬LB ∧ ¬RB),

ui (t)

if (¬F ∧ LF ∧ ¬RF ∧ ¬LB ∧ ¬RB)∨
(¬F ∧ ¬LF ∧ ¬RF ∧ LB ∧ ¬RB)∨
(¬F ∧ ¬LF ∧ RF ∧ ¬LB ∧ ¬RB)∨
(¬F ∧ ¬LF ∧ ¬RF ∧ ¬LB ∧ RB),

0 if (¬F ∧ LF ∧ RF ∧ ¬LB ∧ ¬RB),

ui (t)wi if (¬F ∧ ¬LF ∧ ¬RF ∧ LB ∧ RB).

LB =Anglei () ∩ IS

RB =Anglei () ∩ IS

See Sect. 4.1.1

Couzin et al. (2005)
I =Distancebasedi (L2,

R[0,β])
di (t + �t) = ê+w1di∗(t)

|ê+w1di∗(t)|

e =
∑

j∈I

r j (t) − ri (t)

|r j (t) − ri (t)| +
∑

j∈I

v j (t)

|v j (t)|
Lopez et al. (2012) I =Distancebasedi (L2,

R[0,β])
ri (t + �t) = ri (t) + w1�t ∗ θi (t + �t)

θi (t + �t) = 1
|I|

∑

j∈I

w2(|r j (t) − ri (t)|)θ j (t)

+ 1
|I|

∑

j∈I

w3(|r j (t) − ri (t)|) r j (t) − r j (t)

|r j (t) − r j (t)| + ηi (t)

where ηi (t) =̇ a stochastic component
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Table 4 continued

Paper Neighbor selection Motion computation

Hamilton (1971) (1D) I =Voronoibasedi () ri (t + �t)

⎧
⎪⎪⎨

⎪⎪⎩

ri (t) if L2(rI0 (t), rI1 (t)) < min(L2(rl (t),
ri (t)), L2(rk(t), ri (t))),

rl (t)−ri (t)
2 if L2(rl(t), ri (t)) < L2(rk(t), ri (t)),

rk (t)−ri (t)
2 otherwise.

k =VoronoibasedI1 ()\i

l =VoronoibasedI2 ()\i

Hamilton (1971) (2D) k =Nearesti (L2, R[0, β]) ri (t + �t) =
{

ri (t) + d̂ik(t) if L2(ri (t), rk(t)) > rρ,

ri (t) otherwise.
Vicsek et al. (1995); Czirók et al.

(1997); Smith and Martin
(2009)b

I =Distancebasedi (L2, R[0, β]) ri (t + �t) = ri (t) + vi (t)�t

θi (t + �t) =
∑

j∈I

arctan

(
sin θ j (t)

cos θ j (t)

)
+ �θ

where �θ ∈ U(− η
2 ,

η
2 )

Dong (2012) I =Distancebasedi (L2, R[0, β]) ri (t + �t) = ri (t) + vi (t)�t

vi (t + �t) =
∑

j∈I

�tai j (L2(ri (t), r j (t)))(v j (t) − vi (t)) + vi (t)

ai j (x) =
{

1 if x ≤ w1,

0 otherwise.
where w1 > 0

Shimoyama et al. (1996) I =Distancebasedi (L2, R[0, β]) v̇i (t) = 1
m (−w1vi (t) + w2ni (t) +

∑

j∈I

αi j (t)fi j (t) + gi (t))

(Also based
on Sugawara
2012)

ṅi (t) = 1
τ
(ni (t) × v̂i (t) × ni (t))

αi j (t) = 1 + d
[
ni (t) · r j (t)−ri (t)

|r j (t)−ri (t)|
]

fi j (t) = −w3

[( |r j (t)−ri (t)|
w4

)−3 −
( |r j (t)−ri (t)|

w4

)−2
]

×
(

r j (t)−ri (t)
w4

)
exp

(−|r j (t)−ri (t)|
w4

)

gi (t) = w5

(
ei (t)−ri (t)|I||ei (t)−ri (t)|

)

ei (t) =
∑

j∈I r j (t)
|I|

where m
.= agent’s mass, τ

.= rotational relaxation time, and
(0 ≤ d ≤ 1) for αi j (t).

Szabó et al. (2008); Szabó et al.
(2009)

I =Distancebasedi (L2, R[0, β]) ei (t + �t) = ν · M(γ, ξ) · N (s ·
∑

j∈I v j (t)
|I| + (1 − s) · a(t)� t)

ri (t + �t) = ri (t) + ei (t)�t

where ν
.= |v|, M(e, ξ)

.= rational tensor representing random
perturbation with γ := random unit vector chosen uniformly

vectors ⊥ N (

∑
j∈I v j (t)
|I | ) and

ξ ∈ U(−ηπ, ηπ), N (e) = e
|e| , s ∈ (0, 1], a(t) = v(t)−v(t−�t)

�t

Levine et al. (2000) I =Distancebasedi (L2, R[0, β]) v̂i (t) = 1
m

(
w1 f̂i (t) − w2vi (t) − ∇Ui (t)

)

f̂i (t) =
∑

j∈I

v̂ j (t) exp

(
−|ri (t) − r j (t)|

w3

)

Ui (t) =
∑

j∈I

w4 exp

(
−|ri (t) − r j (t)|

w5

)

−
∑

j∈I

w6 exp

(
−|ri (t) − r j (t)|

w7

)
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Table 4 continued

Paper Neighbor selection Motion computation

Toner and Tu (1998) I =Distancebasedi (L2, R[0, β]) θi (t + �t) =
∑

j∈I

θ j (t) + ηi (t)

ri (t + �t) = ri (t) + e where e = [cos θi (t + �t), sin θi (t + �t)]

Grégoire et al. (2003) I =Distancebasedi (L2, R[0, β]) Model 1: θi (t + �t) = arg

⎡

⎣w1

∑

j∈I

v j (t) + w2

∑

j∈I

fi j

⎤

⎦ + ηξi (t)

Model 2: θi (t + �t) = arg

⎡

⎣w1

∑

j∈I

v j (t) + w2

∑

j∈I

fi j + |I|ηei (t)

⎤

⎦

fi j = r j (t)−ri (t)
L2(r j (t)−ri (t))

⎧
⎪⎨

⎪⎩

−∞ if L2(r j (t) − ri (t) < w3),

1
4

L2(r j (t)−Ri (t))−w4
w5−w4

if w3 < L2(r j (t)−ri (t))<w5,

1 otherwise.
Camperi et al. (2012) I =Distancebasedi (L2, R[0, β]) vi (t + �t) = v0ê

e = w1

∑

j∈I

v j (t) + w2

∑

j∈I

fi j + |I|ηei (t)

fi j = r j (t)−ri (t)
L2(r j (t)−ri (t))

⎧
⎪⎨

⎪⎩

−∞ if L2(r j (t) − ri (t) < w3),

1
4

L2(r j (t)−Ri (t))−w4
w5−w4

if w3 < L2(r j (t)−ri (t))<w5,

1 otherwise.
v0 =̇ constant speed of member

Helbing et al. (2005) See Sect. 4.1.2

Matarić (1993) See Sect. 4.1.3

Reynolds (1987) See Sect. 4.1.4

Kelly and Keating (1996) See Sect. 4.1.5

Turgut et al. (2008) I = Distancebased(L2,R[0, β]) di (t + �t) = ê

e =
∑

j∈I(t)

eθ̃ j (t) + w1
1

8

8∑

k=1

fke
4
π

k

fk =
⎧
⎨

⎩
− (L2(ri (t)−rOk (t))−rρ )2

w2
if L2(ri (t) − rOk (t)) ≥ rρ,

(L2(ri (t)−rOk (t))−rρ )2

w2
otherwise.

where θ̃ j (t) = �
(

e(θi (t)−θ j (t)+ π
2 ) + w3eη

)
, and

η = N
⎛

⎝
∑

j∈Ii (t)

(
θi (t) − θ j (t) + π

2

)
, σ

⎞

⎠

Gökçe and Şahin (2009) I = Distancebased(L2, R[0, β]) di (t + �t) = ê

e =
∑

j∈I(t)

eθ̃ j (t) + w1
1

8

8∑

k=1

fke
4
π

k + w2(di∗(t) − di (t))

fk =
⎧
⎨

⎩
− (L2(ri (t)−rOk (t))−rρ )2

w3
ifL2(ri (t) − rOk (t)) ≥ rρ,

(L2(ri (t)−rOk (t))−rρ )2

w3
otherwise.

where θ̃ j (t)=θi (t) − θ j (t)+ π
2 and rOk (t) =̇ the pose of the kth obstacle.

Tanner et al. (2003a) I = FixedSeti() ṙi = Vi (t)

V̇i = ui (t)

ui (t) =
∑

j∈I

(vi (t) − v j (t)) −
∑

j∈I

∇ri (t)Ui j

Ui j =
{

i 1
(L2)2+log (L2)2 L2 < rρ

w1 L2 ≥ rρ
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Table 4 continued

Paper Neighbor selection Motion computation

Tanner et al. (2003b) I = Distancebased(L2, R[0, β]) ṙi = Vi (t)

V̇i = ui (t)

ui (t) =
∑

j∈I

(vi (t) − v j (t)) −
∑

j∈I

∇ri (t)Ui j

Ui j =
{

i 1
(L2)2+log (L2)2 L2 < rρ

w1 L2 ≥ rρ

Jadbabaie et al.
(2002) (Leaderless)

I = Distancebased(L2,
R[0, β])

θi (t + �t) = 1
w1

(|I|θi (t) +
∑

j∈I

θ j (t))

where w1 > |I|
Jadbabaie et al. (2002)

(LeaderFollower)
If = Distancebased(L2, R[0, β]) θi (t + �t) = 1

1+|I f ∩Il | (θi (t) +
∑

j∈I f ∩Il

θ j (t))

Il =FixedSet ()

Gazi and Passino (2003) I =All() ri (t + �t) =
∑

j∈I

f (L2(ri (t), r j (t)) where f (x) = −x(w1 − w2

exp(
√

x�x
2

w3
)) with w2 > w1

Gazi and Passino (2005) I =Voronoibasedi () xi (t + �t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xi (0) if i = 1,

max

⎛

⎜
⎜⎜
⎜
⎝

xi−1(t) + w1,

min

⎛

⎜
⎜⎜
⎝

xi (t)
−g (xi (t)

− xi−1(τi−1)+xi+1(τi+1)
2

)
,

xi−1(t) − w1

⎞

⎟
⎟⎟
⎠

⎞

⎟
⎟⎟
⎟
⎠

if i �= 1, N ,

max

⎛

⎝
xN−1(t) + w1,

xN (t) − g(xN (t)
−xN−1(τN−1) − r)

⎞

⎠ if i = N .

k =VoronoibasedI1 ()\i

l =VoronoibasedI2 ()\i

where g(·) .=a scaling function and τi
.=the time when xi was last

sensed.

Olfati-Saber
(2006)

I = Distancebased(L2,
R[0, β])

vi (t + �t) =
∑

j∈I

φα(||r j (t)−ri (t)||σ )ni j

+
∑

j∈I

ai j (v j (t)−vi (t))+ f γ

i

φα(x) = ph
(

x
||r ||σ

)
1
2

[
(w1 + w2)

(
x +w3√

1+(x+w3)2

)
+ (w1 − w2)

]

||x ||σ = 1
ε

[√
1 + ε||x ||2 − 1

]

ni j = r j (t)−ri (t)√
1+ε||r j (t)−ri (t)||2

ai j = ph
( ||r j (t)−ri (t)||σ

||r ||σ
)

in [0, 1]

ph(x) =

⎧
⎪⎨

⎪⎩

1 x ∈ [0, h)
1
2

[
1 + cos

(
π x−h

1−h

)]
x ∈ [h, 1]

0 otherwise.
f γ

i = −w4 (ri (t) − r∗(t)) − w5 (vi (t) − v∗(t))
where w4, w5 > 0, h ∈ (0, 1)

4.1.2 Self-organized pedestrian crowd dynamics:
experiments, simulations, and design solutions
(Helbing et al. 2005)

Helbing et al. (2005) presents a motion model based on
the social force model presented in Helbing and Mol-
nár (1995). This model, along with other similar models

(Moussaïd et al. 2009), could be formalized into the pre-
sented notation if a complete and precise description of
all of the forces were given. Specifically in Helbing et al.
(2005), the authors present the force fαi (rα, ri , t) but only
define the force as “attraction effects”. Furthermore, the term
ξα(t) is defined to be a “fluctuation term [that] reflects ran-
dom behavioral variations”. ξα(t) is clearly a noise term but
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Table 4 continued

Paper Neighbor selection Motion computation

Arkin and Balch (1999) See Sect. 4.1.6

Fine and Shell
(2011)

I =Distancebasedi (L2,
R[0, β])

ri (t + �t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ri (t) + ê(t − �t) if |I| = 0
ri (t) + d̂iI0 (t) if |I| = 1 and L2(ri (t), rI0 (t)) > rρ

ri (t) if |I| = 1 and L2(ri (t), rI0 (t)) ≤ rρ

ri (t) i f � ∃ k ∈ I where L2(ri (t), rIk (t)) > w1

ri (t) + ê(t) if L2(ri (t), ra1(t)) > rρ

⊥ (ri (t) + ê(t)) otherwise.
e(t) = (d̂a2a1(t) + ra2(t)) − ri (t)

a1 = min(∀ k ∈ I, L2(ri (t), rk(t)))

a2 = min(∀ k ∈ I, L2(ra1(t), rk(t)))
Hauert et al.

(2011)c
I = DistanceBase(L2, R[0, β]) θi (t + �t) = θi (t) − w1 ŝi (t) + w2âi (t) + w3ĉi (t) + w4di∗(t)

si (t) =

∑

j∈I

1

ri (t) − r j (t)

|I|

ai (t) =

∑

j∈I

v j (t)

|I|

ci (t) =

∑

j∈I

r j (t)

|I|

Together, these two stages constitute the motion rule, which is the primary focus of the vast majority of the literature. The motion rules presented in
this table have be translated into the common notation (Table 1) presented earlier in this study. The neighbor selection column details the required
perception functions (Table 2) along with what set(s) of neighbors will be considered. The motion computation column details the low-level control
law, or algorithm, which computes the next motion of the flock member
a this is the formalization of the LCH motion rule that was validated in Viscido et al. (2002). The other version of the motion rule is discussed in
more detail through out this meta-study (see Sect. 3.2.5).
b uses a common absolute velocity.
c uses a fixed velocity.

the authors do not sufficiently define the properties of this
term.

4.1.3 Designing emergent behaviors: from local
interactions to collective intelligence (Matarić 1993)

In Matarić (1993), the flocking motions are created from
multiple behaviors, such as Follow, Avoid, Aggregate, and
Disperse. Within the descriptions of each behavior there are
ambiguities which make it difficult to formalize the behav-
iors. For example, the avoidance behavior in Matarić (1993)
is composed of two types of avoidance; environmental and
member. Within the environmental avoidance computation,
there are ambiguous phrases such as “backup and turn”, “turn
right, go.”, and “if an [obstacle] is on the right”. It is difficult
to translate these phrases into our proposed framework and
notation without making certain decisions which could skew
the original model design.

Another difficulty with the formalization of the avoidance
behavior is the dynamics between the two types of avoid-
ance. Both avoidance methods have the similar statement of
“If an [obstacle/flock member] is on right...”. If an obsta-

cle is on the left and a flock member is on the right, it is
unclear what the resulting behavior should be according to
the description given in (Matarić 1993). Similar ambiguities
can be found in the other behaviors and the dynamics between
them.

Even without these ambiguities, it would be difficult to
recreate the motion model presented in Matarić (1993). The
presentation of the behaviors uses phrases such as “backup”
and “turn right”. If we where to formalize these behaviors,
the majority of the terms would be parameters and not calcu-
lations based on input. This is not a problem when it comes to
validating the model which produces flocking motions, but it
does make it difficult to reproduce the work for further study
and comparisons.

4.1.4 Flocks, herds and schools: a distributed behavioral
model (Reynolds 1987)

As in the previous studies discussed, Reynolds (1987) is dif-
ficult to formalize without introducing bias. Even though the
three rules for flocking presented in Reynolds (1987) are
highly cited in the robotics literature, the details of the three
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rules are ambiguous. Again, the problem lies in the details of
the low-level behaviors and vague descriptions of the various
parameters needed.

Table 5 shows two possible formalizations of the flocking
motion model in Reynolds (1987). Both Reynolds (2004)
and Kline (1996) were formalized using actual software
implementations of Reynolds proposed model. Even though
these formalizations are similar and produce similar flocking
motions, there are a few key differences.

First, Kline (1996) only considers the closest flock mem-
ber within a given radius when computing ai (t) and si (t)
where Reynolds (2004) considers all flock members within
the sensing radius. The computational differences between
these two approaches have a direct affect on the neighbor
selection function. Please note that in the formalization of
the neighbor selection function in Kline (1996), we had to
include the union of Distancebased(·) ∩ Nearest() in order
to select the nearest neighbor, which is explicitly used in the
motion computation stage.

4.1.5 On flocking by the fusion of sonar and active infrared
sensors (Kelly and Keating 1996)

Similar to Matarić (1993), Kelly and Keating (1996) has
ambiguous behavior descriptions, which makes it difficult to
formalize into our unifying framework. In Kelly and Keating
(1996) the authors present the dynamics between the differ-
ent behaviors as a hierarchy but does not fully present the
underling behaviors. The authors use phrases such as “try
to maintain position” and “speed up”, which are difficult
to formalize without making assumptions on the author’s
intent.

4.1.6 Behavior-based formation control for multi-robot
teams (Arkin and Balch 1999)

This work is a prime example of how researchers should
report all of the various parameters and gains used in the
validation process. In addition to there being no ambiguities
in respect to the parameters and gains, the authors list the
actual values used, thus allowing for repeatability. However,
we were unable to formalize this work due to some ambi-
guity in the presentation of the primitive schemas used. For
example, the Move-to-goal schema states “Attract to goal
with variable gain. Set high when heading for goal.” Even
though, it seems straight forward to formulate this schema,
we do not attempt to formalize this work for the same reasons
as in Sect. 4.1.5.

5 Validation methods

In this section we analyze the various methods of motion
model validation found in the selected literature. Table 6 is
a review of the validation choices (e.g., synchronous ver-
sus asynchronous flock members) and the various valida-
tion methods (e.g., computer simulations versus physical
implementations). The six attributes (validation method, syn-
chrony, neighbor’s position, neighbor’s velocity, neighbor’s
orientation, flock’s environment) highlighted in Table 6 give
an adequate description of how current models are being val-
idated. The information provided in Table 6 also affords us
the ability to gain insight into which models may be more
effective in a real world situation. In other words, if a motion
model is only validated using global information in an obsta-
cle free environment, this model may not produce flocking
motions when introduced in a more realistic environment.
Additionally, Table 6 can be used to cross-check the assump-
tions made in the design of a given model (e.g., a model
design for local information should be validated with local
information).

5.1 Definitions of attributes for Table 6

5.1.1 Validation method

The validation method attribute details what combination
of the possible methods where used to validate the motion
model and characteristics of the flocking motion produced
by the model. The methods seen in the selected literature are
mathematical verification (M) of flocking motion character-
istics (e.g., flock stability), computer simulation (S), and the
use of physical implementations (P). Both computer sim-
ulations and physical implementations rely on implement-
ing the motion model and studying the exhibited motions
of the flock. Literature that use mathematical methods typ-
ically prove the existence of various group-level character-
istics (e.g., does the flock converge to a stable formation or
does a phase shift occur). The difference between valida-
tion (computer simulations and physical implementations)
and verification (mathematical) lies in the scope of the cho-
sen method. Validation methods consider the overall motions
produced by the flock, where verification methods consider
particular aspects of the flocking motions (e.g., convergence
and flock stability).

5.1.2 Synchrony

Synchrony defines whether or not flock members sense, com-
pute, and act in unison. If one flock member executes any of
the five stages at a different time or frequency, validation is
said to be asynchronous. The key distinction between syn-
chronous and asynchronous validation is that if the model
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Table 5 Both entries in this table are possible implementations of the motion model in Reynolds (1987)

Version Neighbor selection Motion computation

Reynolds (2004)
I =
Distancebase(L2,
R[0, β])

vi (t) = w1 ŝi (t) + w2âi (t) + w3ĉi (t)

si (t) =

∑

j∈I

ri (t) − r j (t)

−δ2(ri (t), r j (t))2

|I|

ai (t) =

∑

j∈I

θ j (t)

|I| − θi (t)

ci (t) =

∑

j∈I

r j (t)

|I| − ri (t)

Kline (1996)
I = Distancebase(L2,

R[0, β])
vi (t) = w1 ŝi (t) + w2âi (t) + w3ĉi (t)

si (t) =
{

0 if k = ∅,

δ2(ri (t), r j (t)) otherwise.

I = Distancebase(L2, R[0, α]) ∩
Nearest()

ai (t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 if k = ∅,

ai x (t) =
{

ai x (t) − w5 if (rk(t) − ri (t))x < w4,

ai x (t) + w6 otherwise.

ai y (t) =
{

ai y (t) − w5 if (rk(t) − ri (t))y < w4,

ai y (t) + w6 otherwise.

ai z (t) =
{

ai z (t) − w5 if (rk(t) − ri (t))z < w4,

ai z (t) + w6 otherwise.

otherwise.

ci (t) =

∑

j∈I

r j (t)

|I| − ri (t)

The two implementations only vary slightly, however, the differences have effects on the complexity of the flock members and the underlying causes
of flocking motions

is asynchronous, then we cannot assume the sets Ai (t) and
A j (t) are identical because the sensing of the flock members
could have been executed at different times.

5.1.3 Position/velocity/orientation

The position, velocity, and orientation attributes describe the
way in which the required information (see Table 3) is actu-
ally sensed. The three sensing methods found in the litera-
ture are global (Global), local (Local), or inferred from other
information (Inferred). In the selected publications global
information is either sensed by an overhead sensor or by
an oracle that maintains the required information. Local
information is gathered by the flock member via sensors
or member-to-member communication. Inferred information
can be gathered in two ways, (1) by using two distinct types of
information (e.g., speed and orientation can yield velocity)
or (2) by associating data from multiple sensing iterations
(e.g., displacement of position over time can yield velocity).

5.1.4 Environment

The environment attribute describes the type of environment
considered in the validation of the proposed model. The envi-

ronment can be any combination of bounded, unbounded, or
periodic space, with or without obstacles. For all of the liter-
ature reviewed in this study, all of the models where designed
with regards to a particular environment. There are no cases
in the selected literature where a motion model was tested in
an environment it was not designed for.

5.2 Observations from Table 6

5.2.1 Validation methods

The most commonly seen form of validation is the use of
computer simulations which is then followed by physical
implementations. It is important to note there are various
degrees of simulation validation (e.g., physics-based, sensor-
based, etc.), which are not covered in this meta-study. Math-
ematical verifications are typically used to show that certain
known flock properties hold given a particular model. In Tan-
ner et al. (2003a,b), the authors uses graph theory to show the
flock members maintain a stable flock (i.e., all flock mem-
bers maintain common velocities and avoid collisions with
other flock members). However, mathematical verifications
are also used to explore certain properties of the flock, such
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Table 6 Details the validation methods chosen for the selected motion models

Paper Validation Method Synchrony Position Velocity Orientation Environment

Viscido et al. (2002)(SNN/HA/LCH) S √
Global – – Bounded free space

Warburton and Lazarus (1991) S √
Global Global Global Unbounded free space

Conradt et al. (2009) S √
Global Global Global Unbounded free space

Codling et al. (2007) S √
Global Global Global Unbounded free space

Gueron et al. (1996) S √
Local Global Global Unbounded free space

Couzin et al. (2005) S √
Global Global Global Unbounded free space

Lopez et al. (2012) S √
Global Global Global Unbounded free space

Huth and Wissel (1992) S √
Global Global Global Unbounded free space

Hamilton (1971) S √
Global – – Unbounded free space

Vicsek et al. (1995) S √
Global Constant Global Periodic free space

Dong (2012) M √
Global Global – Unbounded free space

Smith and Martin (2009) S √
Global Constant Global Periodic free space

Shimoyama et al. (1996) S √
Global Global Global Unbounded free space

Czirók et al. (1997) S √
Global Global Global Periodic free space

Szabó et al. (2008) S √
Global Global Global Periodic free space

Szabó et al. (2009) S √
Global Global Global Periodic free space

Levine et al. (2000) S – Global Constant Global Periodic free space

Toner and Tu (1998) M √
Global Constant Global Bounded free space

Grégoire et al. (2003) S √
Global Constant Global Periodic free space

Camperi et al. (2012) S √
Global Global – Unbounded free space

Helbing et al. (2000) SP∗∗ – Global Global – Bounded obstacles

Matarić (1993) P – Local – Local Bounded free space

Reynolds (1987) S √
Global Global Global Unbounded obstacles

Kelly and Keating (1996) P – Local Inferred Inferred Bounded free space

Turgut et al. (2008) SP – Global – Local Bounded free space

Gökçe and Şahin (2009) SP – Global – Local Bounded free space

Tanner et al. (2003a) MS √
Global Global Global Bounded free space

Tanner et al. (2003b) MS √
Global Global Global Unbounded free space

Jadbabaie et al. (2002) M √
Global Constant Global –

Gazi and Passino (2005) MS – Global Global Global Unbounded free space

Gazi and Passino (2003) M √
Global – – –

Olfati-Saber (2006) MS √
Global Global Global Unbounded obstacles

Arkin and Balch (1999) SP – Global – – Unbounded obstacles

Fine and Shell (2011) P – Local – – Bounded free space

Hauert et al. (2011) S P – Local Local – Unbounded free space

The form of validation employed varies significantly within the publications
Mmathematical S simulation P physical
∗∗ The physical agent were human participants

as phase shifts in Mikhailov and Zanette (1999)‡. The most
complete validation treatment of a proposed microscopic
model found in the selected literature was done in Lindhé
et al. (2005). This work uses all three methods of validation
covered in this meta-study.

‡ Phase shifts refer to the moments in time when a flock becomes or
discontinues being a flock.

5.2.2 Synchrony

From Table 6 we observe that ten of the publications con-
sider asynchronous flock members. Additionally, we noticed
that all of the publications that consider asynchronous flock
members are from the control and robotics literature. The
low number of asynchronous flocks is surprising because we
know from Şamiloǧlu et al. (2006) that asynchronism can
have negative impacts on the exhibited flocking motions.
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5.2.3 Position/velocity/orientation

All of the motion models from the selected literature only
require local information (see formalization of motion rules
in Table 4); however, many of the studies use global informa-
tion for the validation. This disconnect between design and
validation leaves room for subtle assumptions which could
affect the flock’s overall motion; such as the effects of occlu-
sions. Physical flock members using local sensing may not
be able to detect the same set of neighbors as a global sen-
sor due to occlusions from flock members and environmental
obstacles (i.e. the set Di (t) using a global sensor may differ
from the same set sensed via a local sensor). For example,
if there are three collinear flock members, a member on the
end of that line may only be able to detect one neighbor
using local sensing rather than both neighbors. This issue
becomes apparent when considering the Hamiltonian (HA)
motion rule from Viscido et al. (2002).

If the motion computation stage presented in Viscido
et al. (2002) uses local information, the motion computa-
tion stage becomes undefined in some cases. Since the HA
motion model was validated using global information (with
the absence of occlusions), the motion computation stage
does not treat cases where only one neighbor is detected;
thus presenting a potential problem when local informa-
tion is used. For a more detailed treatment of the HA
motion rule please see Viscido et al. (2002) and Fine and
Shell (2011). There is not an instance in the selected litera-
ture where the effects of occlusions are properly treated or
studied.

Velocity information is, arguably, the most complex type
of information used in the literature; being a combination of
a member’s speed and orientation. Typically, flock members
need to employ extra strategies and information in order to
attain the velocity of its neighbors; either through communi-
cation and identification, or data association. There are only a
few works in the selected literature (Kelly and Keating 1996;
Vicsek et al. 1995; Czirók et al. 1997) which describe how
the velocity information is attained. The other literature sim-
ply states that the motion computation stage uses velocity
information.

5.2.4 Environment

The environment used for physical and simulated validation
is an important aspect to consider when planning to imple-
ment a particular approach on a physical system. None of the
selected literature has investigated the effects that the envi-
ronment has on the motions of the flock, with very few studies
considering environmental obstacles (Reynolds 1987; Olfati-
Saber 2006; Lindhé et al. 2005; Arkin and Balch 1999).
Investigations which do consider environmental obstacles
typically select environments with few obstacles which are

widely spaced from each other. Olfati-Saber (2006) is one of
the more complete treatments with respect to the effects the
environment has on the flock’s motions.

6 Discussion

This meta-study presented three types of tools (data-flow
model, two taxonomies, and a notation/formalization) to
assist in the reduction of incompleteness and imprecision in
microscopic flocking motion models. The proposed DT along
with the two taxonomies and the notation/formalization allow
for better understanding and comparison of the current lit-
erature on flocking motion models; however, there do exist
some cases and investigations in which the current tool-set
does not work as well as it could. Through the exploration
of these outlying cases, we have highlighted future avenues
of research that could prove beneficial to the overall under-
standing of the flocking phenomenon.

Case-study: Fine and Shell (2011) The flocking motion
model presented in Fine and Shell (2011) is the Hamiltonian
(HA) motion model first presented in Viscido et al. (2002).
In Fine and Shell (2011) we present the HA motion model
using the tool-set presented in this meta-study in-mind. By
translating the HA motion model from Viscido et al. (2002)
into the notation presented here, we showed the existence of
subtle inconsistencies and unrealistic assumptions. Table 4
shows the difference in completeness for both the motion
models presented in Viscido et al. (2002) and Fine and Shell
(2011). Furthermore, by applying the DT to the model in Vis-
cido et al. (2002), we were able to show that the exhibited
motions of any motion model are independent of the percep-
tion function used (under certain parameter constraints).

Collision avoidance in the data-flow template Although
our model is general, it imposes enough constraints to serve
as a constructive guide toward consistent, complete, and pre-
cise descriptions of flocking motion models. One consid-
eration not covered in the current DT is the motion com-
putation stage’s ability to handle collisions. The major-
ity of the literature states that flock members avoid col-
lisions with the environment, but the publications rarely
describe the process/computations required to perform such
motions (e.g., how does the flock member detect the envi-
ronment, which parts (objects) are used in the compu-
tation stage, and/or how do the avoidance computations
affect the motion computations). To allow for a better
understanding of the collision avoidance capabilities, we
must modify the DT as presented in Fig. 1; which only
defines the motion model when there are no obstacles in the
environment.

To address collision avoidance in the DT we introduced
the modified DT in Fig. 3, which shows the addition of
a sixth and seventh stage (obstacle detection and obstacle
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Fig. 3 The modified DT that includes the obstacle detection and obsta-
cle selection stages. These two stages allow for the addition of obstacle
avoidance behaviors and the generation of virtual flock members. The

connection at 1© can be treated as a place holder for adding a method
that generates the required virtual flock members, as in Olfati-Saber
(2006).

selection). These two additional stages are executed in par-
allel with the flock member detection and neighbor selection
stages, respectively. The obstacle detection stage takes the
same input as the flock member detection stage (input from
the flock member’s sensors) and produces a set of obstacles.
This set can be passed to the obstacle selection stage, which
outputs a subset of detected obstacles for the motion compu-
tation stage, or the set can be paired with the flock members
in the set Di (t) to generate virtual flock members (see 1© in
Fig. 3).

Another aspect of flock member collisions, either with
other members or the environment, not covered in the current
body of the flocking literature is the ability to use collisions as
input to the motion model. There have been studies in biology
that have suggested that certain ants use information form
ant-to-ant collisions in order to adjust their behaviors. Even
though these studies focus on task switching, it is plausible to
assume certain flocking motion models may use collisions as
input to the motion computation stage (e.g., flock members
using collisions to navigate the environment). It would be
interesting to see if it is possible to create flocking motions
with only using information sensed from direct contact and
how that might affect the common assumptions made in the
flocking motion literature.

Implicit assumptions in flock member detection The vast
majority of the flocking literature to date has made the
implicit assumption of agent-based detection. A flock mem-
ber detection stage that uses agent-based detection takes all
of the sensed information from a single flock member and
reduces it to a single description of that particular flock mem-
ber. For example, if a model requires the position of the
k neighbors, then the flock member detection stage would
output (to the neighbor selection stage) k position values.
This would be the case even if the sensor took multiple read-
ings from the same neighbor (e.g., a neighbor could take-
up multiple laser-range finder readings due to its physical
size). Fine and Shell (2011) show that the implicit assump-
tion of agent-based detection is not necessary for the pro-
duction of flocking motions and introduces flocking motion
through the use of sensor-based detection, which does not
reduce the sensor information to a single description. Sim-
ilarly, Fine and Shell (2012) show that flocking motions
can be produced by simply detecting groups of flock mem-

bers, instead of detecting the individual members. The work
done in Fine and Shell (2011) and Fine and Shell (2012)
show that implicit assumptions in the flock member detection
stage can have negative affects on both the exhibited flock-
ing motion and on the completeness of the flocking motion
model; thus care must be taken when determining the model’s
assumptions.

Neighbor identification In theory, identification can prove
useful for maintaining the flock’s structure and determining
a flock member’s membership within the flock (e.g., is the
flock member a leader or follower). Unfortunately, obtaining
identification information in practice (on a physical imple-
mentation) is difficult and error prone. On a physical system
there are three common ways to obtain the required iden-
tification information; (1) member-to-member communica-
tion, (2) direct sensing (e.g., flock members can identify the
‘color’ of its neighbor), and/or (3) association. To date, it is
not clear if biological flock members utilize identification,
but Occam’s razor would suggest that identification would
not be required since flocking motions can be produced with-
out it. Clearly, further investigations are needed in order to
understand the role, if any, identification plays in the produc-
tion of flocking motion.

Association Association is the ability for a flock mem-
ber to pair sensor information from two consecutive sensor
readings. Association can be used in three ways, (1) as a
standalone part of a given model (i.e., using prior informa-
tion as input to the motion model), (2) inferring informa-
tion from multiple readings (e.g., using a flock member’s
position displacement to determine that member’s velocity),
and/or (3) using association to aid in identification (e.g., if
the flock member knows the starting positions of its neigh-
bors, the flock member could use association to keep track
of its neighbors’ IDs). It is important to note, association and
identification are distinct attributes that are independent of
each other (i.e., it is possible to use any combination of these
attributes). We have omitted the association column from
Table 3 due to the lack of proper presentation in the selected
literature.

Data-centric approach to determining parameter values
As we see in Kline (1996), Olfati-Saber (2006), Gökçe and
Şahin (2009), Shimoyama et al. (1996) many publications
present motion models that contain many different parame-
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ters or gains. Very few works, if any, describe how the para-
meters for the motion model’s validation where selected,
where some works (Vicsek et al. 1995) validate the model
over a range of parameter settings. Even in the investiga-
tions that study a range of parameter values, the justifica-
tion of the chosen values remains unclear. The majority of
the time the values are artificially ‘tuned’ until the desired
flocking motions are produced from the given model. Use-
ful information about the effects of parameter values may be
found if we determine the parameter values from biological
flocks (Moussaïd et al. 2009; Lopez et al. 2012; Lukeman et
al. 2010). For example, the repulsion radius of the flock mem-
bers could be determined by analyzing the average distance
maintained between the members of the biological flock.

Flocking motion is independent to information types
Observing Table 3, we can seen that almost every possible
combination of required information was used in the stud-
ied motion models. If we now only consider the information
required by the motion computation stage, the number of
combinations seen in the literature increases. From this, it
is reasonable to assume that flocking motion models do not
require a specific type of information. Further support for
this observation can be found in Fine and Shell (2012) with
the introduction of information-abstracted flocking. Fine and
Shell (2012) show the existence of a flocking motion model
that is structured in away as to allow for the use of different
combinations of information without modifying the motion
model.

Physical implementations in three dimensions The flock-
ing phenomenon is seen all throughout nature in both two-
dimensional (e.g., sheep and cattle) and three-dimensional
animals (e.g., fish and birds). With that said, the vast majority
of physical implementations of motion models only exist on
two-dimensional wheeled robotic platforms. Recently, how-
ever, there has been increased research interest in implement-
ing flocking motion on flying robots (Hauert et al. 2011).
Hauert et al. (2011) implements the motion model first pre-
sented by Reynolds (1987) on fixed-wing flying robots.

6.1 Recommendations from the tool-set

The goal of the following recommendations are to help out-
line a framework/style for the presentation and design of
future microscopic flocking motion models. All of the rec-
ommendations have resulted from applying the previously
presented tools to the selected publications. We feel that if
these recommendations are followed for future publications,
the overall understanding of the flocking problem will be
enhanced.

Data-flow template (see Sect. 2)

1. The available and type of raw sensor information in
the sensing stage affects all other aspects of the flock-

ing motion model. Therefore, the sensing stage should
explicitly list how all of the required information (e.g.,
position, velocity, identification, etc.) is sensed from the
flock member’s environment.

2. We have seen in multiple studies (Vicsek et al. 1995)
that not all required information is used in the motion
computation stage. For those works, it remains unclear
if that information is a part of the motion model, or if
that information is simulating a sensor or flock member
limitation. Therefore, the purpose and use of all required
information should be clearly described.

3. Specific sensing attributes and limitations (e.g., agent-
based detection) may affect the exhibited flocking motions
and/or the design of the motion model. Therefore, the
sensing stage and the flock member detection stage
should present any and all assumptions made.

4. As we saw in the presentation of the Viscido et al. (2002)
and Reynolds (1987) motion models, there is a pos-
sibility for multiple interpretations of a given model.
To help reduce ambiguities, algorithmic presentations
of motion computation stages should be preferred over
prose descriptions.

5. The vast majority of the flocking motion literature
treats/presents multiple stages as one stage (typically
the neighbor selection and motion computation stages),
which could lead to incompleteness and/or imprecision.
Therefore, we recommend that all five DT stages should
be logically separated and should also be treated/presented
separately.

Design and validation taxonomies (see Sects. 3 and 5
respectively)

1. Ambiguities and/or omissions of important information
in the current motion models make it difficult to compare
works across the literature. Therefore, future publication
should explicitly state what attributes and assumptions
the motion model requires and utilizes, respectively.

2. To better accommodate the implementation of flocking
motion models on physical systems (robotic or biolog-
ical), continuous time models should be preferred over
discrete time models.

3. In some of the literature, the motion model was design
for local information, but when the model was validated
the flock members had access to global information. This
inconsistency in the motion model validation could lead
to models which are difficult to implement on a physi-
cal system. Therefore, the method in which the required
information is sensed should reflect the type of informa-
tion required by motion computation stage (i.e., globally
versus locally sensed).
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4. To better simulate real-world situations, future motion
models should be validated using asynchronous flock
members (when applicable).

5. The phenomenon of flocking is created through the inter-
action of many distributed individual flock members.
Therefore, motion models should only use locally sensed
information when investigating the flocking phenom-
enon.

6. Due to flocks existing and operating in real-world envi-
ronments, future investigations should validate motion
models in obstacle filled environments (similar to envi-
ronments biological flocks may encounter) or detail the
assumptions that make this unnecessary or potentially
detrimental to the model.

7 Conclusion

In this meta-study we have explored the current state of flock-
ing motion literature that focuses on microscopic flocking
motion models. Using the three presented tools (data-flow
template, two taxonomies, and a formalization/notation) we
have identified and detailed the commonly seen designs and
assumptions in the current motion models. Through the use
of our DT we have identified that there are at least five critical
aspects of the flocking problem. We have shown that failure
to properly treat all of the five stages of the DT could lead to
incompleteness and/or imprecision in the presentation of the
motion model. To demonstrate this, we have detailed exam-
ples were adhering to the DT, leads to a more complete and
precise understanding of the model (Sect. 2.2). Additionally,
through analysis of the selected publications using the two
taxonomies (Tables 3 and 6), we have identified the common
assumptions made in the literature, and have shown that the
majority of the investigations of microscopic motion models
have the same underlying aim. Therefore, in an attempt to
increase the breadth of flocking motion research, we make
the following recommendations for future research investi-
gations.

7.1 Directions for future investigations

1. The vast majority of the literature uses agent-based
flock member detection, therefore we suggest that future
robotic investigations explore other detection methods,
such as sensor-based detection.

2. As mentioned in Sect. 3, there are other possible defi-
nitions of group composition; thus, future studies could
consider the effects the various definitions have on the
motion model and the exhibited motions of the flock.

3. Future investigations could explore what flocking motio-
ns are afforded by using collisions as input to the motion
computation stage.

4. The vast majority of the flocking motion models require
position information from the flock member’s neighbors.
Therefore, future investigations could explore the pro-
duction of flocking motions without the use of position
information.

5. It is reasonable to assume that the output of the motion
computation stage will affect the input of the sensing
stage (as seen in Fig. 1). Future investigations could
explore this connection in depth and study various aspects
of a physical flock, such as occlusions.
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