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Abstract Trajectory planning and optimization is a fun-
damental problem in articulated robotics. Algorithms used
typically for this problem compute optimal trajectories from
scratch in a new situation. In effect, extensive data is accu-
mulated containing situations together with the respective
optimized trajectories—but this data is in practice hardly
exploited. This article describes a novel method to learn
from such data and speed up motion generation, a method we
denote tajectory pediction. The main idea is to use demon-
strated optimal motions to quickly predict appropriate tra-
jectories for novel situations. These can be used to initialize
and thereby drastically speed-up subsequent optimization of
robotic movements. Our approach has two essential ingredi-
ents. First, to generalize from previous situations to new ones
we need a situation descriptor—we construct features for
such descriptors and use a sparse regularized feature selec-
tion approach to improve generalization. Second, the transfer
of previously optimized trajectories to a new situation should
not be made in joint angle space—we propose a more efficient
task space transfer. We present extensive results in simulation
to illustrate the benefits of the new method, and demonstrate
it also with real robot hardware. Our experiments in diverse
tasks show that we can predict good motion trajectories in
new situations for which the refinement is much faster than
an optimization from scratch.
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1 Introduction

This article describes a method that can speed up motion plan-
ning by improving the initialization used in stochastic opti-
mal control planners. This is a sensitive aspect of such local
planners: they can fall in multiple local optima and a good
solution is not guaranteed. Using the structure of encoun-
tered environments can provide hints about movements that
are likely to be good in a given world configuration.

The animal and human ability to generate trajectories
quickly is amazing. In typical every-day situations humans
do not seem to require time for motion planning but exe-
cute complex trajectories instantly. This suggests that there
exists a “reactive trajectory policy” which maps “the situa-
tion” (or at least motion relevant features of the situation) to
the whole trajectory.1 Such a mapping (if optimal) is utterly
complex: the output is not a single current control signal
but a whole trajectory which, traditionally, would be the out-
come of a computationally expensive trajectory optimization
process accounting for collision avoidance, smoothness and
other criteria. The input is the current situation, in particular
the position of relevant objects, for which it is unclear which
representation and coordinate systems to use as a descriptor.

The goal of the current work is to learn such an (approx-
imate) mapping from data of previously optimized trajecto-
ries in old situations to good trajectories in new situations.
We coin this problem trajectory prediction (TP). The current
journal article represents an expanded version of our previ-
ous work (Jetchev and Toussaint 2009, 2010; Jetchev 2012).

1 This is not to be confused with a reactive controller which maps the
current sensor state to the current control signal—such a (temporally
local) reactive controller could not explain trajectories which efficiently
circumvent obstacles in an anticipatory way, as humans naturally do in
complex situations.
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In Sect. 2 we will examine the basics of motion planning as
optimization, and then present TP and how it is coupled with
planning. In Sect. 3 we will discuss connections between TP
and imitation learning. Finally, in the experimental Sect. 4
we will show our results for several simulated robot motion
planning scenarios.

These are the main contributions:

– the TP method for speeding up planning by learning a
predictive model of motions appropriate to be transferred
to a new situation,

– the definition of representations that allow accurate map-
ping of situation to movement and generalization to new
situations,

– the notion of IK transfer in task space, allowing robust
adaptation of the predicted movements to different situ-
ations,

– quantitative results in three different motion planning
tasks.

We finish the current introduction with an overview of
related methods.

1.1 Related motion and trajectory generation methods

Our method TP builds on classical motion generation meth-
ods from the rich toolbox of robotics. Here is a small overview
of these methods.

1.1.1 Local planning methods

Movement generation, one of the most basic robotic tasks, is
often viewed as an optimization problem that aims to mini-
mize a cost function. There are many different methods for
local trajectory optimization that minimize this cost. Popu-
lar approaches use spline-based representation and gradient
descent (Zhang and Knoll 1995), covariant gradient descent
(Ratliff et al. 2009), Differential Dynamic Programming
(Dyer and McReynolds 1970; Atkeson 1993), the related
iterated Linear Quadratic Gaussian (iLQG) (Todorov and Li
2005), and Bayesian inference (Toussaint 2009). Such meth-
ods are usually fast and can obtain movements of good qual-
ity, suitable for control of complex robots with many DoF.
However, these local methods can get stuck in local optima.
TP aims to predict directly good trajectories such that local
planners only need to refine them.

1.1.2 Rapidly-exploring random trees (RRTs) and other
sampling methods

Another approach for finding good movement trajectories is
sampling to find obstacle free paths in the configuration and

workspace of the robot, i.e. finding an appropriate initializa-
tion of the movement plan. Popular methods for planning
feasible paths without collisions are RRTs (LaValle 2006)
which use random sampling to build networks of feasible
configuration nodes. These methods are powerful and can
find difficult solutions for motion puzzles, but also have the
disadvantage to be too slow for high-dimensional manipula-
tion problems. Building an RRT takes some time, and a path
to the target in such a network often requires additional opti-
mization to derive an optimal robot trajectory. In contrast, TP
is much faster in providing an initial motion, and is designed
also to work well in conjunction with a motion planner for
refinement.

1.2 Previous use of machine learning techniques to speed
up planning

Our approach TP works by fusing the classical planning
methods with machine learning. The idea to utilize data for
motion generation has a long history. Here we give a short
overview of related works, and in Sect. 3 we will discuss
further how TP is different than some of these methods.

1.2.1 Transfer in reinforcement learning

Concerning our problem of learning from previous optimiza-
tion data, there exist multiple branches of related work in the
literature. In the context of reinforcement learning the trans-
fer problem has been addressed, where the value function
(Konidaris and Barto 2006) or directly the policy (Peshkin
and de Jong 2002) is transferred to a new Markov decision
process. Konidaris and Barto (2006) discussed the impor-
tance of representations for the successful transfer. Although
the problem setting is similar, these methods are different in
that they do not consider a situation descriptor (or features
of the “new” MDP) as an input to a mapping which directly
predicts the new policy.

1.2.2 Robot motion databases and learning from
demonstration

Related work with respect to exploiting databases of previ-
ous trajectories has been proposed in the context of RRTs.
Branicky et al. (2008) constructed a compact database of
collision free paths that can be reused in future situations to
speed up planning. Bruce and Veloso (2002) work on fast
replanning with RRTs in fixed environments. Martin et al.
(2007), Zucker et al. (2008) bias RRTs such that after plan-
ning in a set of initial environments, the obstacles can be
rearranged and previous knowledge will be used for faster
replanning in the new scene; an environment prior is used
to speed up planning and use less tree nodes to achieve the
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final goal. In both cases, the notion of our situation descrip-
tor and the direct mapping to an appropriate new trajectory
is missing.

Jiang and Kallmann (2007) exploit information from pre-
vious RRT paths by using attractors to bias sampling. A sim-
ple notion of situation similarity is used, but it uses only a
small set of specified features; there is no notion of feature
selection as in our work.

Another interesting way to exploit a database of previous
motions is to learn a “capability map”, i.e., a representation of
a robot’s workspace that can be reached easily, see Zacharias
et al. (2007). While this allows to decide whether a certain
task position can be reached quickly, it does not encode a
prediction of a trajectory in our sense.

Stolle and Atkeson (2007) predict robot locomotion move-
ments for navigation in new situations using databases of
state-action pairs to make small steps ahead. In a sense, such
use of a database presents action primitives extracted from
data similar to TP. However, this method is adapted specif-
ically to the locomotion navigation domain by combining
local step planning with global graph-based search. It does
not learn data-driven situation feature representations and
does not attempt to generalize to different tasks, unlike our
approach TP.

The field of imitation learning (Argall et al. 2009) encom-
passes many approaches that use demonstrated motions to
learn behaviors, usually policies that map from situations to
actions. The focus is usually to extract motions from human
demonstration of different tasks which can be later repeated
“exactly” by robots, see Calinon and Billard (2005), Shon
et al. (2007). The demonstrations, often complex gestures or
manipulations, are to be repeated accurately, possibly with
some robustness to perturbation. Ude et al. (2010) work
on making such imitation more adaptable. In contrast, our
method TP is designed to work for motion planning tasks
with a known cost function, a scenario different than imita-
tion learning.

Kober et al (2010) worked on learning parameters of the
planner to improve planning with experience and maximize
expected rewards. Lampariello et al. (2011) takes a similar
approach for real-time robot motion planning. Both these
works differ from our TP method in that they make strong
assumptions about a small set of relevant features. They have
analogies to our approach: a predicted trajectory is a kind
of “meta-parameter” for the motion planner. However, the
trajectories need IK transfer to be adapted between situations,
unlike planner parameters that can be directly reused.

2 The TP method

We assume that the desired behavior of the robot is to gen-
erate a motion trajectory good for some specified task. As

mentioned in the introduction, such a trajectory can be cal-
culated by a planner module minimizing a cost function. One
can think of the behavior of the planner (and some heuristic
for initialization) as a policy mapping a situation x to a joint
trajectory q. We propose to use experience in the form of
demonstrated optimal trajectories in different situations as
initialization for local planners, resulting in a better move-
ment policy. This section will proceed by first describing the
planning by cost function motion model, then formalizing
TP, and finally discussing the components of the algorithm,
namely the situation descriptor, the task space transfer and
the motion-to-situation mapping.

2.1 Robot motion planning: a basic model

Let us describe the robot configuration as q ∈ R
N , the joint

posture vector. A motion trajectory q(t), t ∈ R describes the
joints in time. For simplicity we assume a time discretization
(t0, . . . , tT ) for T time steps is given. We write a trajectory
formally as

q = (q0, . . . .., qT ) = (q (t0) , . . . , q (tT )) ∈ R
N×T . (1)

In a given situation x, i.e., for a given initial posture q0

and the positions of obstacle and target objects in this prob-
lem instance (we will formally define descriptors for x in
Sect. 2.3), a typical motion planning problem is to com-
pute a trajectory which fulfills different constraints, e.g. an
energy efficient movement not colliding with obstacles. We
formulate this as an optimization problem by defining a cost
function

C(x, q) =
T∑

t=1

gt (qt )+ ht (qt , qt−1) . (2)

This cost characterizes the quality of the joint trajectory in
the given situation and task constraints. We will specify such
a cost function explicitly in our Sect. 4. Generally, g will
account for task targets and collision avoidance, and h for
control costs.

A trajectory optimization algorithm essentially tries to
map a situation x to a trajectory q which is optimal,

x �→ q∗ = argmin
q

C(x, q). (3)

For this we assume to have access to C(x, q) and local (linear
or quadratic) approximations of C(x, q) as provided by a
simulator, i.e., we can numerically evaluate C(x, q) for given
x and q but we have no analytic model. To arrive at the optimal
trajectory q∗ (or one with a very low cost C), most local
optimizers start from an initial trajectory q̃ and then improve
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it. We call O the local optimizer operator and write q∗ =
Ox (q̃) when we optimize for a specific situation x .

Optimizing C is a challenging high-dimensional nonlinear
problem. Many of the movement optimization methods are
sensitive to initial conditions and their performance depends
crucially on it. For example, initial paths going straight
through multiple obstacles are quite difficult to improve on,
since the collision gradients provide confusing information
and try to jump out of collision in different conflicting direc-
tions, see Ratliff et al. (2009). RRT can be used for finding
good initial paths, but has the drawback of a higher com-
putational burden: construction of tree with collision free
steps.

2.2 TP overview

In this section we first define the TP problem in general terms
and outline how we break down the problem in three steps:
(i) finding appropriate task space descriptors, (ii) transfer
of motion prototypes to new situations, and (iii) learning a
predictive model of which motion prototype is appropriate
to be transferred to a new situation.

The goal of TP is to learn an approximate model of the
mapping (3) from a dataset of previously optimized trajec-
tories. The dataset D comprises pairs of situations and opti-
mized trajectories,

D =
{(

xi , qi

)d
i=1

}
, qi ≈ argmin

q
C (xi , q) . (4)

Figure 1 and Algorithm 1 summarize the idea of TP and
the steps involved in training and testing it. The full sequence
involved in predicting a trajectory for a new situation is

x → î → Txxî
qî → OxTxî x qî = q∗. (5)

TP takes as input an appropriately represented situation
descriptor x, see Sect. 2.3. We then predict the index î of
a motion from D to be executed and transfer it with the oper-
ator T from situation xî to x, described in Sect. 2.4. We can
view the subsequence

f : x → Txî x qî , (6)

as the policy mapping situation to motion, and will explain
it in Sect. 2.5. Finally, the above TP sequence ends with
applying the planning operator Ox . Prediction without any
subsequent optimization would correspond to pure imitation,
and our method is not designed with such aim. TP is inher-
ently coupled with a planner that minimizes the cost function
C, so the prediction policy is designed to speed-up such a
planner.

As an aside, this problem setup generally reminds of
structured output regression. However, in a structured out-
put scenario one learns a discriminative function C(x, q) for

Fig. 1 A diagram illustrating TP: we gather trajectory data from mul-
tiple runs of the motion planners; this data can then be used to predict
a smarter initialization speeding-up planner performance in a novel
situation

Algorithm 1 Trajectory Prediction (TP): steps required for
training on data and generating new motion.
1: define a task cost C
2: define a situation descriptor x as in Section 2.3
3: define a task space mapping φ as in Section 2.4
4: supply an IK operator φ−1 and planner operator O
5: create data D and D′ as in Section 2.5.1
6: train a mapping f as in Section 2.5
7: for a new situation x generate motion as in Equation (5)

which argmin
q

C(x, q) can efficiently be computed, e.g. by

inference methods. Our problem is quite the opposite: we
assume argmin

q
C(x, q) is very expensive to evaluate and

thus learn from a dataset of previously optimized solutions.
A possibility to bring both problems together is to devise
approximate, efficiently computable structured models of tra-
jectories and learn the approximate mapping in a structured
regression framework. But this is left to future research.

2.3 Situation representations and descriptor

A typical scenario for articulated motion generation is a
workspace filled with objects and a robot. A situation (or
problem instance) is fully specified by the initial robot
posture q0 and the positions of obstacles and targets in this
problem instance. There are a lot of possible features we
can construct to capture relevant situation information. For
instance, positions of obstacles could be given relative to
some coordinate system in the frame of some other object in
the scene. We should expect that our ability to generalize to
new situations crucially depends on the representations we
use to describe situations. We present in this section two dif-
ferent approaches for modeling x, appropriate for scenarios
with different assumptions.
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2.3.1 General geometric descriptor

Our first approach is to define a very high-dimensional and
redundant situation descriptor which includes distances and
relative positions wrt many different frames of reference.
Training the predictive function then includes selecting the
relevant features. Assume we have a set of b different three-
dimensional (3D) objects (i.e. landmarks) in the scene which
might be relevant for motion generation A = (a1, . . . , ab)

with each a j ∈ R
3. We create features by examining the

geometric relations between pairs of such objects. For b
such landmarks we have b̂ = b(b − 1) such pairs. For
each pair i = (i1, i2) ∈ {1, . . . , b̂} we measure the 3D
relative difference between landmarks in A in the frame
of ai2 as pi = (px

i , py
i , pz

i ) and its norm di = ‖pi‖.
We also define the azimuths of the three axes as ψi =
{arccos(px

i /di ), arccos(py
i /di ), arccos(pz

i /di ).} We gather
this basic geometric information in the 7D vector φi =
(pi , di , ψi ). The final descriptor x comprises all these local
pairwise vectors

x = (
φ1, . . . , φb̂

) ∈ R
7b̂. (7)

Given such a descriptor we can use a feature selection tech-
nique to infer from the data which of these dimensions are
best for TP in new situations. In the experimental Sect. 4 we
will show how extracting a sparse representation from this
redundant description provides an interesting explanation of
the important factors in a situation.

2.3.2 Voxel descriptor

The approach to model directly the distances between object
centers is appropriate for situations with few obstacles with
simple geometries, but it can have issues with scaling when
more objects are present. We also present an extension appro-
priate for cluttered scenes where obstacles are modeled from
point clouds of 3D sensor data, which can handle multiple
objects easily. We call this a sensor driven approach to TP.
Since modeling each of these as an object with coordinates
in the descriptor x is impractical, we can use instead voxel
information for the descriptor x .

We assume that a sensor (LIDAR or stereovision) is avail-
able that provides information in the form of a point cloud
from detected objects, which can be then converted to a voxel
representation of a scene, see Elfes (1989), Nakhaei and
Lamiraux (2008). This information representing the obsta-
cles is crucial for the correct task execution, an assump-
tion appropriate for cluttered scenes and navigation. Given
a set of laser cloud points P = {pi }, we construct a
3D grid system V = {vi } of voxels. Each voxel is iden-
tified with its coordinates and its occupancy probability
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Fig. 2 The first four PCA components, visualized in the square plane
of size 15 × 15 voxels from a slice 7 cm above the center of the grid.
Red areas are more likely to be occupied, and blue areas are probably
free (Color figure online)

p(vi ) ∈ [0, 1]. The procedure for calculating p(v) is
straightforward:

(1) Loop through all available measurements pi

(2) Loop through all voxels v j

(3) If pi ⊂ v j set p(v j ) = 1 − 0.9 ∗ (1 − p(v j ))

The idea is that for every measurement point within some
voxel bounds the occupied space probability of the voxel
increases.

To better explain the voxel descriptor, we will describe
how it will look concretely in our experiments. We define two
such voxel grids, 15 voxels across each dimension, where
each voxel is a cube with side 7 cm. The first grid is cen-
tered at the center of the workspace, the second on the target
location. Each voxel grid V has can be described as a vec-
tor of dimension 153 = 3, 375 containing the values of all
its cells p(vi ).We can compress a voxel grid using standard
Principal Component Analysis (PCA) to the 200 most signif-
icant dimensions, and thus have the following grid descriptor
V̂ ∈ R

200. In Fig. 2 we show the column vectors of the PCA
projection matrix, interpreted as characteristic terrains of the
voxel grid. Larger values indicate larger probability that a ter-
rain is occupied. Note that the PCA decomposition for voxel
data is useful to discriminate between world configurations
and represent general notions like whether the left or right
side of the workspace is free. A lot of the detailed voxel infor-
mation about the world is lost by PCA, but the compressed
representation is good for distinguishing between different
motions types.
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The final situation descriptor is then

x =
{

d, V̂1, V̂2

}
∈ R

413. (8)

The entries V̂1, V̂2 are the two PCA compressed voxel grid
descriptors, and d ∈ R

13 contains additional scene informa-
tion, the initial 7D robot arm joint position, the 3D endeffec-
tor position and target position.

2.4 Task space trajectory IK transfer

In this section we will describe the exact way in which we
repeat and adapt a motion from the database to a random new
situation.

2.4.1 Motion representation for output trajectory task space

As we mentioned in Sect. 2 we will motion trajectories trans-
ferred via some task space. The projection y of a trajectory
q into task space is defined as y = φx (q), where φx is a
kinematic mapping (depending on the situation x) applied to
each time slice, with a task space for output.

Some obvious choices of task spaces are the joint angle
space Q (mapped by identity) and Y, the space of world
coordinates of robot hand endeffector (mapped by the hand
kinematics). However, these have the drawback of not gener-
alizing well—a simple change in a world situation like trans-
lation of some object would make a movement prototype in
such space unfeasible for the changed situation. A reasonable
choice of task space can ensure at least some degree of gen-
eralizing ability in a new situation. For example, we would
also consider the task space Ytarget of coordinates starting in
a world frame centered on the target, and Yobst , a world frame
starting in the center of the largest obstacle in the scenes we
examined.

Our current approach to task space selection is to test
empirically task spaces that seem reasonable, and to select
the space that allows good planner initialization, similar to
Muehlig et al. (2009).

The question of what are suitable representations of a
physical configuration, in particular suitable coordinate sys-
tems, has previously been considered in a number of works.
Wagner et al. (2004) discussed the advantages of egocen-
tric versus allocentric coordinate systems for robot control,
and Hiraki et al. (1998) talked about such coordinates in the
context of robot and human learning.

2.4.2 The transfer operator

Suppose we want to transfer the joint motion q′ which was
optimal for situation x ′. A task space trajectory y = φx ′(q′)
needs to be transformed back to a joint space trajectory q

in order to initialize the local motion planner in a new sit-
uation x, see the sequence of Eq. (5). Simply repeating the
old motion with IK is likely to be problematic, e.g. motion
targets and obstacles change between situations. Therefore
we use IK with multiple task variables (cost terms from the
planning cost function from Eq. (2)) to transfer motions and
adapt to new situations.

The next-step cost C I K is defined as

C I K (
x, q, qt−1, q ′

t

) = g(q)︸︷︷︸
task cost

+ h (q, qt−1)︸ ︷︷ ︸
small step

(9)

+ ‖φx (q)− φx ′
(
q ′

t

)‖2

︸ ︷︷ ︸
follow φx ′ (q′)

, (10)

where q ′
t is a step from the motion q′ that is being transferred.

The terms of C I K are chosen so that making steps with low
C I K fulfill different criteria important for motion adaptation.
The terms h and g influence the motion steps to have a low
cost with respect to the terms of the (task-specific) cost func-
tion from Eq. (2). Usually the term h(q, qt−1) = ‖q−qt−1‖2

is used to force smooth, energy efficient motions. The term
g(q) stays for additional criteria for good motions, e.g. avoid-
ing collisions. The term ‖φx (q)− φx ′(q ′

t )‖2 is for following
the task space trajectory.

We generate a motion for each time slice t = 1, . . . , T by
using IK control

qt = φ−1
x

(
qt−1, q ′

t

) ≈ argmin
q

C I K (
x, q, qt−1, q ′

t

)
.

(11)

The mapping φ−1
x : (y, q0) �→ q projects the whole task

space trajectory back to a joint space trajectory in situation
x, applying the IK operator φ−1

x to minimize next-step cost
C I K iteratively for each time step t, starting from q0.

The transfer operator is then the function composition

Txx ′q′ = φ−1
x ◦ φx ′(q′). (12)

Such a transfer gives our method better generalization ability,
since a motion which by itself is not optimal for the motion
task can still be followed in the new situation will be followed
and adapted with IK, and can still lead to a good initialization.

2.5 Mapping situation to motion

Once we have defined appropriate situation descriptors and
the IK transfer method of adapting motions from one situ-
ation to another, we can proceed to describe the mapping
f predicting “situation-appropriate” movements that lead to
quick motion planner convergence.
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2.5.1 Gathering data demonstrating behavior

The first step toward learning f is the recording the output
of a planner of optimal trajectories in different random sit-
uations, as formalized in Eq. (4). Afterwards we can gather
data D′ for the quality of the initialization using the new
actions in different situations. What we are really interested
in is how much additional refinement a certain initialization
would need from the planner. We measure this “refinement
cost” as

F(x, q) = C
(

x, O j
x q

)
. (13)

Here O j
x q is the trajectory vector found by the optimizer after

j iterations, starting from initialization q. Such a definition
of F is a heuristic to quantify the effect of initialization
on convergence speed looking only at a limited num-
ber planner iterations, which is possible because the plan-
ners we use iteratively improve the solution making small
steps.

The cross-initialization dataset D′ is defined as

D′ = {(
x j , xi , F

(
x j , Tx j xi qi

))}
,

x j ∈ Dx ,
(
xi , qi

) ∈ D. (14)

That is, we evaluate the quality of initialization in situation
x j of a database movement qi transferred from xi , and this
is the data we will use to learn a good mapping f. The set
Dx has a new set of situations where we examine the cost of
transferred motions from set D.

We can examine potentially the effect on convergence
speed of every optimal movement demonstrated in the set
D, but in the Sect. 4 we will also test using smaller repre-
sentative sets of motions (e.g. by using clustering) to select
smaller subsets of D with different motion types.

A difference between the datasets D and D′ is due to
the different initializations used to create them. For the set
D we use the planners with default initialization without
experience of previous situations as a module to get opti-
mal movements for the different situations, and retain only
the successful runs. In the second dataset D′ we use examples
of good motions from set D as input to IK transfer.

Once we have gathered data in the set D′ as defined in
Eq. (14), we can use it to learn the TP mapping from Eq.
(6). This is a supervised learning problem, and the next sub-
sections describe two possible approaches to learning the
mapping f. As preprocessing for all prediction methods, we
rescale each dimension of the descriptors x in [0, 1] by sub-
tracting the minimum and rescaling, which improves perfor-
mance of prediction methods.

2.5.2 Nearest neighbor predictor

We assume we start with a descriptor vector x, which is
potentially redundant and high dimensional. We assume that
similar situations have similar optimal trajectories. However,
the usual notion of similarity as the negative Euclidean dis-
tance may not be the best for the high dimensional situation
descriptors we have defined. We want to learn a similarity
metricw in the situation descriptor feature space that selects
appropriate features. Our learning method will allow to retain
the most representative and compact dimensions, in addition
to improving the TP quality.

We define the situation similarity function as

k (x, xi ) = exp

{
−1

2
(x − xi )

T W (x − xi )

}
, (15)

W = diag
(
w2

1, . . . , w
2
s

)
.

The nearest neighbor predictor (NNOpt) f for x is

f (x) = Txxî
qî , î = argmax

i∈D
k (xi , x) . (16)

The probability to choose a specific trajectory i ∈ D with
such similarity is

P
(

f (x) = Txi x qi

) = 1

Z
k (x, xi ) , (17)

where Z = ∑
i∈D k(x, xi ) as normalizing constant.

We can define the expectation over the planner costs in
situation x when initializing with Eq. (17) as

E{F(x, f (x))} =
∑

i∈D

P
(

f (x) = Txxi qi

)
F

(
x, Txxi qi

)
.

(18)

Our goal is to find a similarity metric with low expected
motion planning costs. For this purpose we define the training
loss function L using the cross initialization data D′

L(w; D′) = 1

|Dx |
∑

x∈Dx

E{F(x, f (x))} + λ|w|1. (19)

By minimizing this loss function we do feature selection
to improve the similarity metric used for nearest neighbor
classification. The purpose of the L1 regularization is to get
sparse similarity metrics using only few situation features.

Learning a similarity metric that describes well which sit-
uations have movements suitable for transfer has an inter-
esting property: we transfer knowledge of expected costs for
yet unseen movements, an action set of potentially unlimited
size. We will examine this in the Sect. 4.
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2.5.3 TP via cost prediction

As an alternative to the above prediction scheme and for
empirical evaluation we also test a cost prediction approach to
TP. We can learn regression models fi : x �→ F(x, Txxi qi )

for the convergence costs F for each trajectory qi ∈ Dy given
some situation descriptor x . Then we can use these multiple
models to find the index of the trajectory with lowest costs.
The TP model using data D′ is

f (x) = Txxî
qî , î = argmin

i∈D
fi (x). (20)

This method allows to use any regression method to pre-
dict the convergence costs when applying a trajectory from D
in a given situation. With more complex models and enough
training data we can learn complex functions mapping situ-
ation to cost of movement initialization for each individual
movement in D. A drawback is that the set D becomes a
fixed action set and the predicted trajectories will always
come from it, so we can’t generalize for motions outside of
the set D. We also don’t learn a general notion of situation
similarity and can’t interpret the features meaningfully with
this prediction method.

3 Discussion of TP

In this section we will discuss two important aspects of TP:
why it is different than imitation learning of the observed
optimal motions, and why we predict whole trajectories at
once.

3.1 Difference to direct policy learning

The direct policy learning (DPL) approach to learning from
demonstration (Pomerleau 1991) has some analogies with
our TP method, but also numerous differences. DPL tries to
find a policy π : s �→ a that maps state to action given
observed state-action pairs (s, a). Given a parameterization
of the policy, DPL is usually a supervised classification or
regression problem. Usually the data comes from observa-
tion of an expert’s (teacher’s) behavior. No assumption of a
cost function characterizing good motions is made, and the
prediction is to be made only with the criteria to reproduce
the expert motion accurately. This is mimicry: attempting to
repeat an action without understanding its goal.

In the motion planning framework we can get large
amounts of demonstration data from simulation, and use it to
learn motion policies that can generalize to various situations.
We do not need to reproduce the demonstrated movements
perfectly with TP, since we assume there is a cost function
as in Eq. (2) and a planner. The essence of TP is to find

trajectories that can lead such a planner quickly to good local
optima of the cost function landscape. For this we need to
predict a trajectory just once, in the starting situation, and rely
that the structure in this trajectory will improve the planner
performance. This is goal emulation: attempting to attain the
goal of observed actions without caring whether the action
is duplicated accurately, see Call and Carpenter (2002). In
the case of TP the goal is to obtain low cost motion planner
output, which means usually going to a desired target config-
uration with low costs on the way. The predicted trajectory
initialization is the action coming from our prediction pol-
icy, but it is transformed by additional planner iterations. The
final planner output that the robot will follow in the world (the
action of TP in another sense) can be quite different from the
initial trajectory. This is acceptable, since only the low cost
of the final trajectory matters for motion planning purposes.
Penalizing deviation from the initialization is not a criteria
in the given cost function.

3.2 TP as a macro-action policy

Another important question is why we chose to have whole
trajectories as prediction output, a macro-action (McGovern
and Sutton 1998), instead of the micropolicy used by DPL,
namely a mapping for every time step π : xt → yt . Here
yt is the predicted movement command in some task space
and xt is the current situation descriptor, possibly changing
at each time step. By iteratively predicting a movement yt

and recalculating the situation descriptor xt after executing
the movement, one can build whole trajectories.

The mapping of a situation to such a small local move-
ment step is a challenging problem, since we have to account
for global paths and the locally shortest path to the target is
a dead end if the robot is trapped. Such reactive policy can
not anticipate and adapt for a longer time horizon. A possible
approach to remedy this would be to build networks of states
connected via local actions (Stolle and Atkeson 2007). How-
ever, this can lead to jagged movements and fail to improve
the planner behavior, as our results with RRT planners will
show. Constructing such a network and searching for a global
solution is also computationally expensive. Another reason
why micropolicies are more difficult to learn is that we would
need to make accurate predictions for the whole state space,
whereas for TP we need to learn mappings just for the smaller
subset of starting situations in our dataset.

Using trajectories as macropolicies makes sense for our
setup for several reasons. First, we use as input data the local
motion planner output: whole trajectories q of length T steps
and their costs. Second, we need to learn a predictive mapping
saying which of these trajectories are good initialization for
a given situation Third, we need to output a whole trajectory
q of length T to initialize a motion planner
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4 Experiments

We examine several simulated task setups in which our robot,
a Schunk LWA3 arm and a SDH hand, has to achieve a task by
minimizing a cost function. For all scenario setups we exam-
ined, we generate random scenario instances (situations) by
moving randomly objects around the workspace. TP learns
from a set of demonstrated situations and movements and
learns to generalize this behavior to new situations from the
same generating distribution. For all tasks we planned kine-
matically with T = 200 time steps, which is reasonable time
resolution for movements lasting a few seconds. For training
the cost prediction approach to TP we used a support vec-
tor regression (SVR) with a polynomial kernel of degree 4.
For training the similarity metrics and minimizing the loss
from Eq. (19) we used the Matlab optimization toolbox. The
training time of both TP approaches was a few minutes only,
negligible compared to the time for creating the datasets D′.
For all planning algorithms and IK we used our own C++
implementation on a Pentium 2.4 GHz computer. This sec-
tion will proceed with a description of the three tasks we
examined and the cost functions defining them. All the cost
functions were defined so that a movement with cost less than
0.5 is good.

4.1 Reaching on different table sides

The first task we examined was reaching in the presence of
an obstacle. Though basic, it represents a good benchmark
for the quality of motion planners.

4.1.1 Scenario setup

The reaching setup contains the robot arm which has to reach
a target with the finger as endeffector, around an obstacle (a
table), as shown in Fig. 3a. We controlled the 7 DoF of the
arm, and the endeffector was defined as the tip of the hand.
Different scenarios are generated by uniformly sampling the
position of the table, the target, and the initial endeffector
position. Situations with initial collisions were not allowed.
Too easy situations where the endeffector was closer than
30 cm to the target were discarded in order to avoid trivial
situations and to put a greater focus on more challenging
scenarios, where the endeffector must move on the other side
of the table to reach the target.

We used standard terms in the cost function Eq. (2) for
reaching, penalizing collisions, keeping within joint limits
and enforcing smoothness and precision at the endeffector
position. We chose the term h to enforce a trajectory of short
length with smooth transitions between the trajectory steps.
We define h as

(a)

(b)

Fig. 3 Table reaching scenario: geometric landmarks and stored tra-
jectory dataset. a The 11 landmarks used for the descriptor x: the centers
of the 11 marked objects in the scene. b Visualization of endeffector
movement trajectories from D in space Yobst , centered on table

h (qt , qt−1) = ‖qt − qt−1‖2 . (21)

The cost term g is defined as

g (qt ) = gcollision (qt )+ greach (qt )+ glimit (qt ) . (22)

The term gcollision is equal to the collision cost, namely
the sum of the pairwise penetration depths ci of colliding
objects. Minimizing it moves the robot body parts away from
obstacles.

gcollision (qt ) = 105
∑

i

c2
i . (23)

The task of reaching the target position with the endeffector
is represented in greach . We want the target to be reached at
the end of the movement, so we define this cost function with
a higher weight for the final step t = T

greach (qt ) =
{

10−2d2 t < T
102d2 t = T

. (24)

In the definition d is the Euclidean distance between the end-
effector and the target.
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The cost term glimit puts limits on the joint angles.

glimit (qt ) = 10−2
n∑

i=1

�(di − 0.1)2 . (25)

In this equation di is the angular distance (in radians) of
joint i from its limit, 0.1 is a margin, and � is the heavyside
function.

4.1.2 TP setup

Since we have only one obstacle in this table reaching sce-
nario, we used the geometric descriptor defined in Sect.
2.3.1, to see how well we can predict trajectories using high-
dimensional geometric situation information. Concretely, the
descriptor x ∈ R

770 is defined as a 770D vector compris-
ing all the information relevant for this setup. We have 11
objects for which we measure pairwise geometric informa-
tion: seven segments of the robot arm, the endeffector, the
robot immobile platform (similar to the world frame), the
largest obstacle object (a single table in our scenario) and
the reach target location, shown in Fig. 3a. This makes 110
object pair combinations.

The first demonstration set D has 64 optimal situations
and optimal movements. We also examined using smaller
subsets from D (created with K -means clustering) for the
creation of D′ as in Eq. (14). Our results on Fig. 5a, b show
that as expected more trajectories d lead to better possible
initializations. However, small numbers d provides already
a variety of initial movements and allow good initialization
with TP, so this can be tuned as necessary for different robot
tasks with different computational costs.

To learn the similarity metric and predictor f we mea-
sured the costs F of these initial movements qi in all 1,000
situations x j ∈ Dx = D, using j = 20 iterations and early
stopping as defined in Eq. (13).

To validate the results for the predictor f, we split the set
D′ by dividing Dx in 800 situations for training and 200 for
testing the predictors. This way we can reason about general-
ization to new unseen situations of our predictors, or in other
words transfer to new situations of motions evaluated on the
train set situations.

We inspected five different prediction methods, includ-
ing both trivial and trained TP predictors. NNOpt is our
name for the nearest neighbor predictor from Sect. 2.5.2, with
λ = 0.0001. NNEuclid stays for nearest neighbour predic-
tion without training, i.e. usingw = 1 the default Euclid met-
ric. Third, we denote by SVR the cost regression approach
from Sect. 2.5.3. best stays for a predictor always taking the
trajectory from set Dy with smallest cost F. Finally, we write
mean for a predictor choosing a random trajectory.

0 5 10 15 20 25 30 35
0

2

4

6

8

10

12

Feature Rank

w
ei

gh
t w

2

endEff|target|pz

target|table|ψz

m9|table|px

m4|table|px

m7|table|ψy

Fig. 4 The 25 nonzero features in the learned metric NNOpt, and the
geometric information of the top 5

Figure 5a shows three different task spaces and their
usefulness for initialization. The space Ytarget represents
movements relative to the target. The space Yobst (with best
performance in Fig. 5a)consists of endeffector coordinates
relative to the largest obstacle, see Fig. 3b. The joint space
Q had poor performance, which confirms the hypothesis that
joint space coordinates generalize poorly.

In Fig. 5b we examine the performance of the different
predictors f using data from the task space Yobst . SVR and
NNOpt have similar performance, and improve on both mean
and NNEuclid. However, they are still away from the lower
bound of performance best, which means that more complex
models for similarity or regression can improve the perfor-
mance further. The graphic also illustrates the trend that more
motions in set D lead to better initializations. The regulariza-
tion used for NNOpt also managed to compress the descriptor
quite well: from 770 to 25 dimensions, as shown in Fig. 4.
The best features are the big table obstacle, the target, and the
endeffector, which seems intuitively appealing interpretation
of the reaching around table scenario.

We also tested varying the number of train situations of
set D′, as shown in Fig. 5c, and testing on the same 200
test situations. A difference between SVR and NNOpt is
that NNOpt required significantly less training data for good
performance. With as few as 25 situations on which all 64
movements are evaluated NNOpt can reach good prediction
quality. In contrast, SVR needs at least 400 train situations
to get good prediction quality on the validation set.

4.1.3 Planning results

We present results for the average motion planning costs of
the local optimizers and initializations as time progresses.
The results presented are for 200 random test situations on
which we already validated the predictors in the previous
subsection.
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Fig. 5 Table reaching scenario: convergence costs F averaged over
200 test situations and using d motions for initialization. a The three
trajectory task spaces compared: joint space Q is worst. b Different

prediction strategies for f (x) in space Yobst : number of movements d
versus convergence costs F. c Varying the number of situations used for
training predictors f (x) in space Yobst

We tested three different initialization methods: LINEAR,
TP and RRT. LINEAR is the default option, where the start
and goal endeffector positions are connected with a straight
line path, which is followed by the robot hand using IK for
initialization. TP uses the NNOpt in the task space Yobst .Both
TP and straight line initialization require an IK operator from
the endeffector path to joint space. The time for the IK oper-
ator φ−1 was 0.07 s. The TP prediction itself is practically
instantaneous. RRT initialization uses our implementation of
a standard algorithm for sampling collision free joint states.
The creation of a RRT tree with 2,000 nodes takes 8 s, which
is already a drawback for real-time action and much slower
than the other two initializations. However, we include RRT
for performance comparison of the usefulness of such initial
paths, ignoring this huge initialization time, assuming that
some more efficient implementations of the RRT algorithm
can be faster.

The three initializations are combined with two differ-
ent planner methods: iLQG and AICO. For iLQG an ini-
tial trajectory q̃ as input is expected by the algorithm. For
AICO we had to use q̃ in a different way: only for the first
iteration we use instead of C(x, q) the cost C̃(x, q, q̃) =
C(x, q)+‖q− q̃‖2. This forces the solution to be near q̃ and
changes the belief states of AICO respectively. Both iLQG
(Todorov and Li 2005) and AICO (Toussaint 2009) are local
planners well suited for motion planning, as mentioned in the
introduction. We set the iLQG convergence rate parameter
ε = 0.8; performance was robust with respect to different
values of ε. For AICO we used instead of a fixed step para-
meter a second order Gauss–Newton method to determine
the step. One iteration of each of the planners took 0.07 s,
the bulk of which goes to collision detection and that is why
the timings are similar for different planners. We also tried
direct optimization in joint space, but the performance was
an order of magnitude worse than the other two planners, so
we did not add it to the final results.

We evaluated six different motion generation methods
by combining different initializations and planners, and
for our results we name them as “INITIALIZATION-
PLANNER”, e.g. TP–iLQG uses TP for initialization fol-
lowed by iLQG for optimization, hile TP–AICO follows
TP with AICO planning. These two methods starting with
TP are used to validate the performance of our novel
approach.

The results in Fig. 6 show the convergence behavior of
the planners for 7 s (roughly 100 planner iterations), and
they allow us to make the following observations. First, TP
is the best initialization for both planners AICO and iLQG.
TP speeds up convergence in the first initializations, and also
allows to reach solutions with lower costs overall. Some-
times a first feasible solution is reached in less than a second
for TP–iLQG, in comparison to 3 s for LINEAR–iLQG. The
reason for this superb performance is that going around the
table is a non-local behaviour. It puts the robot endeffector
first away from the target, but the longer path allows a colli-
sion free reaching motion finally. Greedily going to the target
leads LINEAR to collisions, but anticipating and predicting
a detour trajectory (as TP does, see Fig. 7b) works well. Sec-
ond, TP–AICO also benefits greatly from a TP initialization.
Note that the data D′ for prediction was gathered only with
iLQG planner data, so our predictors could transfer success-
fully to a new planner. Third, the RRT path initializations
are unexpectedly poor choices for planner initialization: they
start collision-free and with lower costs, but they are difficult
for the planners to improve (random paths are not smooth)
and after some planner iterations even LINEAR finds better
overall solutions. Fourth, AICO is potentially very sensitive
to initialization: with improper initialization (from any of the
three initialization methods we examined) it can converge to
bad solutions, which are unlikely to be improved. iLQG is
more robust in this sense: with more iterations bad solutions
can still be improved.
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Fig. 6 Performance of different methods in table reaching scenario.
The average cost C of the planners during their convergence is plotted
versus time in seconds

4.2 Reaching in cluttered scene

Once we tested performance in scenes with a single obstacle,
we proceed to test the performance of TP in scenes with
multiple obstacles that represent a greater challenge.

4.2.1 Scenario setup

In the next setup, the table (from the previous experiment) is
cluttered with four obstacles. Rectangles of various sizes and
on random positions stand in the way of a target to be reached,
as shown in Fig. 7. We controlled the 7 DoF of the arm,
and the endeffector was defined as the tip of the hand. The
obstacle positions are randomly put over the table surface,
and the target is put over the table to a place unoccupied by
obstacles. We took the reaching cost defined in Sect. 4.1.1.

4.2.2 TP setup

For such cluttered situations we decided to test the sensor
voxel descriptor x ∈ R

413 from Sect. 2.3.2, since it is a com-
pact way to represent the obstacle information. In the simu-
lations we simulated an arm-mounted laser sensor delivering
point cloud information to the scene, similar to Jetchev and
Toussaint (2010). Some of the situations required complex
avoidance paths, so the linear initialization failed often to
find any solutions. Thus for the database D of optimal move-
ments we had to use RRT initialization, otherwise the dataset
D′ was created identically as in Sect. 4.1. The datasets we
used for TP were of the same size as for the previous scenario.
We used the task space Ytarget for transfer.

In Fig. 8a we examine how many PCA components
are necessary to create voxel descriptors good enough for

(a)

(b)

Fig. 7 A visualization of different initializations for the cluttered sit-
uation reaching task. a The shortest path in a RRT tree to the target is
very inefficient as input to a planner because the jagged path is difficult
to smooth and optimize into an energy-efficient trajectory. b A smooth
movement from TP prediction (black). LINEAR (green) goes straight
to the target and has high collision costs (Color figure online)

predictive purposes. With 200 components (covering 99 %
of the variance) the SVR regression achieves the best result.
The NNOpt method can’t handle well the voxel grid PCA
components features and more components don’t help.

4.2.3 Planning results

The results presented are for 200 random test situations,
different than the train situations. We tested the same six
motion generation methods, but used instead of NNOpt the
SVR approach for the TP function in the task space Ytarget .

Each planner iteration and IK operation costs 0.15 s. This is
more than in the previous scenario due to more expensive
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Fig. 8 Costs in a cluttered table scenario. a Varying the number of
PCA components used for v = V P versus convergence costs F (with
d = 64 motions). b The average cost C of different initializations and
planners is plotted versus time in seconds

collision check operations with more objects. This was the
timing using the object models in the simulator. If we were to
use the voxel representations obtained from analysis of point
cloud data the timings would rise even more.

Figure 8b summarizes our planning experiments, and we
make two observations. First, for both AICO and iLQG plan-
ners, TP has lower costs than the RRT and LINEAR initializa-
tions. This is to be expected since LINEAR is often starting in
collisions, while TP handles the obstacles better, see Fig. 7b.
RRT is collision free, but suffers from the random nature
of the path construction, see Fig. 7a. Second, LINEAR–
AICO is prone to failure even after many iterations: the
many obstacles make for a highly nonlinear cost surface with
multiple local optima, and AICO gets stuck in suboptimal
solutions.

Fig. 9 The Schunk robot arm, the SDH hand and an arm-mounted
Hokuyo URG-04LX laser

We also tested a setup with three more obstacles, more dif-
ficult because obstacle avoidance paths become more com-
plex. TP remained the fastest initialization even with this
more cluttered setup, a transfer of useful behavior from the
training setup with four blocks. This showed that the descrip-
tors x and the predictor f can transfer knowledge to a more
diverse set of scenarios without modification, since the occu-
pancy of the workplace is represented well by the voxel
descriptor x . On the other side, when considering the poten-
tial effect of adding even more objects in the scenario (e.g.
more than 20), RRT has the best chance to solve such puzzles.
The design of the scenario has big effect on performance.

In addition to simulation, we also did hardware tests as
in Fig. 9, and had robust performance in real scenes with
different obstacles on tables.

4.3 Grasping a cylinder

We also tested TP on tasks more complex than reaching.
Grasping is one such task that requires motion of multiple
body parts (an arm and hand with fingers) in a coordinated
manner.

4.3.1 Scenario setup

The grasp setup contains a long target cylinder of radius 5 cm
that has to be grasped by the robot, see Fig. 10. For the ran-
dom situations we translated the cylinder center and rotated
it around its radial axis. We also moved the hand at ran-
dom starting position similar to the previous scenarios. We
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(a)

(b)

Fig. 10 An example grasping movement. a A grasping movement: first
approach (black line). b Finally the fingers should close on the object
surface

controlled both the arm and hand for this setup, resulting in a
14 DoF joint space q ∈ R

14. The cost function has the same
smoothness term h, but a term g defined as

g (qt ) = gcollision (qt )+ glimit (qt )+ gsur f ace (qt ) . (26)

Here the collision and joint limit terms are the same as in
Eq. (22). The new term gsur f ace measures the distance from
the target surface to some markers on the robot body and
forces the robot to move these markers on top of the surface.
We defined 12 such markers, 3 on each of the 3 robot fingers,
and 3 on the wrist. By taking a configuration of three markers
near the surface of the fingers we force the robot to also align
the fingers with the grasp target object, which leads to better
grasps. The definition of gsur f ace is:

gsur f ace (qt ) =
{

10−3 ∑18
i=1 η

2
i t < T

102 ∑18
i=1 η

2
i t = T

, (27)
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Fig. 11 Grasping task: the 17 nonzero features in the learned metric
NNOpt, and the geometric information of the top 5

where each ηi stays for distance to target cylinder surface of
each of the 18 markers.

4.3.2 TP setup

We used here the geometric descriptor from Sect. 4.1.2, but
with a slightly different object set: the seven robot arm seg-
ments, the endeffector, the target cylinder center targetC, and
a marker on top of the cylinder targetE. This results in 90
pairwise object distance descriptors and a situation descrip-
tor x ∈ R

630.

We examined two task spaces. First, the joint space Q ∈
R

14. Second, Yqhand+target ∈ R
10 consisting of the seven

hand joints and the 3D relative position of the arm in the tar-
get frame. The sizes of datasets D and D′ were as in the previ-
ous experiments, with the only different being that we needed
j = 40 planner iterations to measure cost F, which made
data gathering slower. Yqhand+target is better task space, see
Fig. 12a: the relative positions of the hand in the target frame
generalize well to target rotations and move the hand to posi-
tions which can be grasps near the cylinder surface, and the
finger joint information moves the fingers in an appropriate
pregrasp shape.

The regularization used for NNOpt also managed to com-
press the descriptor quite well: from 630 to 17 dimensions,
as shown in Fig. 11.

4.3.3 Planning results

We tested four combinations of planner and initialization:
AICO and iLQG combined with LINEAR initialization (with
target the center of the cylinder) and TP initialization. We
did not test RRT for grasping, since it would require major
modifications to the default RRT algorithm. In this scenario
the time for a single planner iteration and IK transfer was
0.15 s, and optimization to convergence required sometimes
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Fig. 12 Costs of different methods in cylinder grasping scenario in
the task space Yqhand+target . a The two trajectory task spaces Q and
Yqhand+target : number of movements d versus convergence costs F. b
The average cost C versus time in seconds for different initializations
and planners

as much as 100 iterations and was with a high failure rate, so
this problem has the potential to gain a lot from TP.

Figure 12b shows our results for this more complex task.
The combination TP–AICO finds the best solutions over-
all: 2 s planning time with the TP initialization versus 14 s
for LINEAR–AICO. TP–iLQG is similarly superior to the
default LINEAR–iLQG. A possible reason is that the grasp
database D contains structure which is useful to be reused.
Predicting a starting trajectory with correct finger closing
behaviour and a hand pose approaching the target cylinder
from a convenient angle helps the planner for the most chal-
lenging grasping aspects, namely positioning the robot fin-
gers on the target surface without colliding with it.

For the grasping task TP–AICO is better than TP–iLQG,
and also LINEAR–AICO is better than LINEAR–iLQG. Our
explanation is that for grasping the challenge is to coordi-
nate multiple body parts to do a more complex movement,
whereas for the previous two tasks the challenge was mainly
to avoid collisions. It seems that the inference algorithm
of AICO can handle complex motions better than collision
avoidance.

5 Conclusion

In this paper we proposed a novel algorithm to improve local
motion planning methods. TP can exploit data from previous
trajectory optimizations to predict reasonable trajectories in
new situations. We proposed two key aspects to solve this
problem: an appropriate situation descriptor and a task space
transfer of previously optimized trajectories to new situa-
tions. Concerning the situation descriptor, we demonstrated
that learning a (L1-regularized) metric in a high-dimensional
descriptor space significantly increases performance of the
mapping. Interestingly, this means that we can extract fea-
tures of a situation (e.g., choose from a multitude of pos-
sible coordinate systems) that generalize well wrt TP. The
extracted features allow for an intuitive explanation of the
crucial latent factors to choose one movement over another.
The task space transfer—that is, first projecting an old tra-
jectory to a task space and then projecting it back in the new
situation, allows an adaptation to the new situation implicit
in the inverse kinematics.

Speeding up local planners is crucial for fluid robot inter-
action with the world and humans. Using TP for movement
prediction is beneficial for many motion planning tasks, as
shown by our experiments. A good initialization makes the
planner converge faster. Additionally, the planners can con-
verge to potentially better solutions which are not likely to
be discovered by a naive initialization not using the experi-
ence of movement and situations incorporated by the trained
predictors.

In our current implementations, selecting the task space
for motion transfer is important for the performance of TP.
Developing data-driven methods for finding such task spaces
using the demonstrated optimal motions will be a step fur-
ther toward understanding the latent structure of motions.
Another possible direction is applying TP to more complex
and realistic scenarios, with sensor uncertainty and mov-
ing obstacles in the workspace under strict time constraints.
Speeding up motion planning in such situations can be useful,
especially if combined with parallel exploration of alterna-
tive predicted trajectories.
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