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Abstract There are many applications in motion planning
where it is important to consider and distinguish between
different topological classes of trajectories. The two impor-
tant, but related, topological concepts for classifying mani-
folds that are of importance to us are those of homotopy and
homology. In this paper we consider the problem of robot
exploration and planning in Euclidean configuration spaces
with obstaclees to (a) identify and represent different homol-
ogy classes of trajectories; (b) plan trajectories constrained
to certain homology classes or avoiding specified homol-
ogy classes; and (c) explore different homotopy classes of
trajectories in an environment and determine the least cost
trajectories in each class. We exploit theorems from com-
plex analysis and the theory of electromagnetism to solve
the problem 2-dimensional and 3-dimensional configuration
spaces respectively. Finally, we describe the extension of
these ideas to arbitrary D-dimensional configuration spaces.
We incorporate these basic concepts to develop a practical
graph-search based planning tool with theoretical guaran-
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tees by combining integration theory with search techniques,
and illustrate it with several examples.
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1 Introduction

1.1 Motivation: homotopy classes of trajectories

Homotopy classes of trajectories arise due to presence of ob-
stacles in an environment. Two trajectories connecting the
same start and goal coordinates are in the same homotopy
class if they can be smoothly deformed into one another
without intersecting any obstacle in the environment, oth-
erwise they are in different homotopy classes. In many ap-
plications, it is important to distinguish between trajectories
in different homotopy classes, as well as identify the differ-
ent homotopy classes in an environment (e.g., trajectories
that go left around a circle in two dimensions versus right).
For example, in order to deploy a group of agents to ex-
plore an environment (e.g., for eliminating potential threats,
searching for rewards/targets (Schwager et al. 2011), as well
as for updating obstacle map of a partially known environ-
ment (Bourgault et al. 2002)), an efficient strategy ought to
be able to identify the different homotopy classes and de-
ploy one robot in each homotopy class. One may also wish
to determine the least cost path for each robot constrained to
or avoiding specified homotopy classes. In many problems
the notion of visibility is linked intrinsically with homotopy
classes. In tracking of uncertain agents in an environment
with dynamic obstacles, the ability to deal with occlusions
during a certain time frame is important (Zhou et al. 2006).
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A knowledge of the possible homotopy classes of trajecto-
ries that a target can take in the environment when it is oc-
cluded can help more efficient belief propagation.

Classification of homotopy classes in two-dimensional
workspaces has been studied in the robotics literature us-
ing geometric methods (Grigoriev and Slissenko 1998;
Hershberger and Snoeyink 1991), probabilistic road-map
construction (Schmitzberger et al. 2002) techniques and
triangulation-based path planning (Demyen and Buro 2006).
In two dimensions, topological information can be extracted
using geometric methods by counting the number of times a
trajectory intersects boundaries of the obstacles or rays em-
anating from the obstacles, or informed ways of dividing the
free space into cells to keep track of the sequence in which
a trajectory visits those cells. To the best of our understand-
ing, none of these methods in literature satisfactorily extend
to configuration spaces of dimension higher than two. While
in a 2-dimensional configuration space such methods can be
used for telling whether or not two trajectories belong to the
same homotopy class, efficient planning for least cost tra-
jectories with homotopy class constraints is difficult using
such representations even in 2-dimensions. Neither is it pos-
sible to efficiently explore/find optimal trajectories in differ-
ent homotopy classes in an environment. To our knowledge,
there has been no prior research on planning trajectories
with topological constraints using search-based methods.

In this paper we propose a novel way of classifying
and representing homology classes, a close analog of ho-
motopy classes, in two and higher dimensional Euclidean
configuration spaces, which are the types of configuration
spaces we encounter most often in robot planning problems.
For the 2-dimensional case we use theorems from com-
plex analysis for developing a compact way of representing
homology classes of trajectories, while for 3-dimensional
configuration spaces we exploit theorems from electromag-
netism.1 Finally, we show that the formulae for 2 and 3
dimensional cases can in fact be extended to higher D-
dimensional Euclidean configuration spaces with obstacles
(Bhattacharya et al. 2011a). This is illustrated with examples
in a 4-dimensional configuration space.

The novelty of our work lies in the fact that our proposed
representation allows us to identify/distinguish trajectories
in different classes and compute least-cost paths in non triv-
ial configuration spaces with topological constraints using
graph search-based planning algorithms. The representation
we propose is designed to be independent of the type of the
environment, the discretization scheme or cost function. Our
proposed representation can also be used in configuration
spaces with additional degrees of freedom that do not effect

1Parts of this paper have appeared elsewhere—the 2-dimensional case
was introduced in Bhattacharya et al. (2010) and the 3-dimensional
case was analyzed in Bhattacharya et al. (2011c).

homotopy classes of the trajectories (e.g. for unicycle modes
of mobile robots, the configuration space consists of vari-
ables X, Y and θ . But the last variable, θ , does not effect the
homotopy classes of trajectories. Only the projection of the
x–y plane is enough to capture the topological information).

Using such a representation we show that topological
constraints can be seamlessly integrated with graph search
techniques for determining optimal paths subject to con-
straints. We also discuss how this method can be used to
explore multiple homotopy classes in an environment using
a single graph search.

1.2 Capturing topological information in search-based
planning

In search-based planning algorithms one typically starts by
discretizing a given environment to create a graph G =
(V , E ). Starting form an initial vertex, vs ∈ V , a typical
graph-search algorithm expands the nodes of the graph by
traversing the edges. Values are maintained and associated
with each expanded node that capture the metric informa-
tion (distance/cost) of shortest path leading to the expanded
node from vs . For example, A* search algorithm maintains
two functions g,f : V → R. g(v) is the cost of the current
path from the start node to node v, and f (v) = g(v) + h(v)

is an estimate of the total distance from start to goal go-
ing through v. The algorithm maintains an open set, the set
of nodes to be expanded. Each time it expands a node v,
it updates the values of g(v′) for each neighbor v′ of v, by
adding to g(v) the cost of the edge c(vv′) (the update hap-
pens only if the newly computed value is lower than the pre-
vious value). This process continues until a desired vertex
vg ∈ V is reached (Hart et al. 1968).

The fact that the value of g(v′) can be computed from
g(v) + c(vv′) is due to the fact that the cost function is ad-
ditive (i.e. if α and β are two curves that share a common
end point, then c(α �β) = c(α)+ c(β), where “�” indicates
the disjoint union, and represent the total curve formed by
the two curves together). This is because the metric infor-
mation about the underlying space is captured using a dif-
ferential 1-form (‘quantities’ that can be integrated over 1-
dimensional manifolds, the trajectories (Bott and Tu 1982;
Talpaert 2000)), namely the infinitesimal length/cost, dl.
The cost of an edge, e, of the graph is then computed as
an integral of the form c(e) = ∫

e
J (l)dl (with some scaling

function J ). This implies, in an arbitrary graph search algo-
rithm, during the expansion of the vertices of the graph, the
cost of the shortest path up to a vertex that is being expanded
can simply be computed by adding to that of its parent (in
terms of sequence of expansions) the cost of the edge con-
necting to it. This additive property of length/cost is key in
developing such graph search algorithms.
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While the differential 1-form, J (l) dl, yields metric in-
formation, there are other differential 1-forms that can incor-
porate other information about the underlying space and can
be used for guiding the search algorithm. The main idea in
this paper is to determine a differential 1-forms that encodes
topological information about the space and let us guide the
search accordingly.

1.3 H -signature as class invariants for trajectories

We consider a very general differential 1-form in a given
D-dimensional configuration space C . If x1, x2, . . . , xD

are the coordinate variables describing the configuration
space, a general differential 1-form can be written as dh :=
f1(x)dx1 +f2(x)dx2 +· · ·+fD(x)dxD . Thus, for any given
trajectory/curve, τ , in this configuration space, one can com-
pute H(τ ) = ∫

τ
dh. We call this the H -signature of τ . In

Sects. 3.2 and 4.2.2 we will design the differential 1-forms,
and hence the H -signature of a trajectory, for the 2- and
3-dimensional configuration spaces respectively, such that
they are invariants for homology classes of trajectories.

We want to design the 1-form dh and the H -signature
of a trajectory such that it is an invariant across trajec-
tories in the same homotopy class. However, because we
use 1-forms and their integrals along closed curves to clas-
sify trajectories, we naturally obtain invariants for homol-
ogy classes of trajectories (Hatcher 2001; Rotman 1988;
Bott and Tu 1982). But in most practical robotics problems
the notion of homology and homotopy of trajectories can
be used interchangeably, especially when finding the least
cost path. This is discussed in greater detail with examples
in Sects. 5.1 and 6.

2 Homotopy and homology classes of trajectories

Definition 1 (Homotopic trajectories) Two trajectories τ1

and τ2 connecting the same start and end coordinates, xs and
xg respectively, are homotopic iff one can be continuously
deformed into the other without intersecting any obstacle.

Formally, if τ1 : [0,1] → C and τ2 : [0,1] → C rep-
resent the two trajectories (with τ1(0) = τ2(0) = xs and
τ1(1) = τ2(1) = xg), then τ1 is homotopic to τ2 iff there
exists a continuous map η : [0,1] × [0,1] → C such that
η(α,0) = τ1(α) ∀α ∈ [0,1], η(β,1) = τ2(β) ∀β ∈ [0,1],
and η(0, γ ) = xs , η(1, γ ) = xs ∀γ ∈ [0,1]. Alternatively, in
the notation of Hatcher (2001), τ1 and τ2 are homotopic iff
τ1 � −τ2 belongs to the trivial class of the first homotopy
group of C , denoted by π1(C). That is, [τ1 � −τ2] = 0 ∈
π1(C).

Definition 2 (Homologous trajectories) Two trajectories τ1

and τ2 connecting the same start and end coordinates, xs and

Fig. 1 Illustration of homotopy and homology equivalences. In this
example τ1 and τ2 are both homotopic as well as homologous

xg respectively, are homologous iff τ1 together with τ2 (the
later with opposite orientation) forms the complete bound-
ary of a 2-dimensional manifold embedded in C not contain-
ing/intersecting any of the obstacles.

Formally, in the notation of Hatcher (2001), τ1 and τ2

are homologous iff τ1 � −τ2 belongs to the trivial class of
the first homology group of C , denoted by H1(C). That is,
[τ1 � −τ2] = 0 ∈ H1(C).

A set of homotopic trajectories form a homotopy class,
while a set of homologous trajectories form a homology
class.

At an intuitive level the above two definitions may appear
equivalent. For example, in Fig. 1(a), τ1 is homotopic to τ2

since one can be continuously deformed into the other via a
sequence of trajectories marked by the dashed curves. As a
consequence, the area swept by this continuous deformation,
A, forms a 2-dimensional region in the free configuration
space whose boundary is the closed loop τ1 � −τ2. Indeed,
the one-way implication is true as shown below.

Lemma 1 If two trajectories are homotopic, they are ho-
mologous.

Proof This follows directly from the Hurewicz theorem
(Hatcher 2001) that guarantees the existence of an ho-
momorphism from the homotopy groups to the homology
groups of an arbitrary space. �

The converse of Lemma 1 does not always hold true.
There are subtle difference between homology and homo-
topy in spite of their similar notions, and one can create ex-
amples where two trajectories are not homotopic in spite of
being homologous.
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Fig. 2 Examples where the trajectories are homologous, but not ho-
motopic

Homotopy equivalence arises naturally in many robotics
problems. On the other hand, homology is less natural. How-
ever, it is much simpler to compute homologies. One can
establish direct correspondence between homology groups
of trajectories and differential 1-forms whose integrals yield
homology class invariants for trajectories via the De Rham
theorem (Bott and Tu 1982). Since, according to the dis-
cussion of Sect. 1.2, we desire such differential forms, the
rest of the paper will be developed with homology classes
of trajectories under consideration rather than their homo-
topy classes. The assumption will be that in many of the
practical robotics problems where homotopy classes of tra-
jectories are of greater significance, homology classes of tra-
jectories will serve as a fair analog. We will justify this claim
in Sect. 5.1 and through experimental results (Sect. 6).

To clarify the distinction between homotopy equivalence
and homology equivalence of trajectories, we present two
examples where homology is not same as homotopy. The
first example is in 2-dimensions. In Fig. 2(a) we observe that
the trajectories τ1 and τ2 are not homotopic, but they are ho-
mologous (since their H -signatures, as defined in Sect. 3.2,
are equal). This is seen perhaps more easily by considering
the interior defined by the union of the areas marked by A1

and A2 which indeed forms the boundary for τ1 � −τ2. In
Fig. 2(b), one can observe that the two trajectories are not
homotopic. However, they are homotopic if we only con-
sider S1 or S2 but not both. Hence their H-signatures are the
same (i.e. they are homologous). Thus, if we were exploring
different homotopy classes in this environment using the de-
scribed method, we would be finding one trajectory for these
two homotopy classes.

3 H -signature in 2-dimensional Euclidean
configuration space

We consider a 2-dimensional subset of R
2 as the configu-

ration space. The obstacles are thus punctures or discon-
tinuities in that subset. The approach for designing a H -
signature for such a 2-dimensional configuration space is
based on theorems from Complex Analysis, specifically the
Cauchy Integral theorem and Residue theorem.

Fig. 3 Cauchi Integral Theorem and Residue Theorem

3.1 Background: complex analysis

Cauchy Integral Theorem The Cauchy Integral Theorem
states that if f : C → C is an holomorphic (analytic) func-
tion in some simply connected region R ⊂ C, and γ is a
closed oriented (i.e. directed) contour completely contained
in R, then the following holds,
∮

γ

f (z)dz = 0 (1)

Moreover, if z0 is a point inside the region enclosed by γ ,
which has an anti-clockwise (or positive) orientation, then
for the function F(z) = f (z)/(z − z0) with a simple pole at
z0, the following holds
∮

γ

f (z)dz

z − z0
= 2πif (z0) (2)

The Residue Theorem A direct consequence of the Cauchy
Integral Theorem, the Residue Theorem, states that, if F :
R → C is a function defined in some simply connected
region R ⊂ C that has simple poles at the distinct points
a1, a2, . . . , aM ∈ R, and holomorphic (analytic) everywhere
else in R, and say γ is a closed positively oriented Jor-
dan curve completely contained in R and enclosing only
the points ak1 , ak1, . . . , akm out of the poles of F , then the
following holds,

∮

γ

F (z)dz = 2πi

m∑

l=1

lim
ξ→akl

(ξ − akl
)F (ξ) (3)

The scenario is illustrated in Fig. 3(b).
It is important to note that in both the Cauchy Integral

Theorem and the Residue Theorem the value of the integrals
are independent of the exact choice of the contour γ as long
as the mentioned conditions are satisfied (see Fig. 3(a)).

3.2 Designing a H -signature

We exploit the above theorems for designing a differential 1-
form that can be used to construct a homology class invariant
for 2-dimensional configuration space.
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Fig. 4 Two trajectories in same and different homotopy classes

We start by representing the 2-dimensional configuration
space as a subset of the complex plane C. Thus a point in the
configuration space, (x, y) ∈ C , is represented as x + iy ∈ C.
The obstacles are assumed to be simply-connected regions
in C and are represented by O1, O2, . . . , ON .

Construction 1 (Representative points) We define one
“representative point” in each connected obstacle such that
it lies in the interior of the obstacle. The exact location of
the representative points is not of particular significance as
long as they each lie inside the respective obstacles. Thus we
define the points ζl ∈ Ol , ∀l = 1, . . . ,N . Figure 4(a) shows
such representative points inside three obstacles.

Definition 3 (Obstacle Marker Function) For a given set
of “representative points”, we define the “Obstacle Marker
Function” function F : C → C

N as follows,

F (z) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f1(z)
z−ζ1

f2(z)
z−ζ2

...
fN (z)
z−ζN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4)

where fl , l = 1,2, . . . ,N are analytic functions over entire
C such that fl(ζl) �= 0, ∀l. Typical examples of such fl are
polynomials in z.

Thus, F is a complex vector function, the lth component
of which has a single simple pole/singularity at ζl .

Definition 4 (H -signature in 2-dimensional configuration
space) For the given configuration space and set of obsta-
cles, we define the obstacle marker function as described
above, and hence define the H -signature of a trajectory τ

the vector function H2 : C1(C) → C
N

H2(τ ) =
∫

τ

F (z)dz

where C1(C) is the set of all curves/trajectories in C.

It is to be noted that the value of the H -signature of a
trajectory in the 2-dimensional configuration space is simply
a vector of N complex numbers.

Lemma 2 Two trajectories τ1 and τ2 connecting the same
points in the described 2-dimensional configuration space
are homologous if and only if H2(τ1) = H2(τ2).

Proof We note that by changing the orientation of a path
over which an integration is being performed, we change
the sign of the integral. If τ is a path, its oppositely oriented
path is represented as −τ . Thus, as we see from Fig. 4(a), τ1

along with −τ2 forms a positively oriented closed loop.
If τ1 and τ2 are in the same homology class, the area en-

closed by τ1 and τ2 does not contain any of the “represen-
tative points”, ζi , hence rendering the function F analytic
in that region. Hence from the Cauchy Integral Theorem we
obtain,

∫

τ1�−τ2

F (z)dz = 0

⇒
∫

τ1

F (z)dz +
∫

−τ2

F (z)dz = 0

⇒
∫

τ1

F (z)dz =
∫

τ2

F (z)dz

where the 0 in bold implies that it is a N -vector of zeros.
If τ1 and τ2 are in different homology classes, we can eas-

ily note that the closed positive contour formed by τ1 and
−τ2 will enclose one or more of the obstacles, and hence
their corresponding “representative points”. This is illus-
trated in Fig. 4(b). Let us assume that enclosed “represen-
tative points” are ζκ1, ζκ2 , . . . , ζκn . Moreover we note that at
least one component of the vector function F has a simple
pole at ζl for each l = 1,2, . . . ,N . Thus, by the Residue
Theorem and Definition 3,

∫

τ1

F (z)dz +
∫

−τ2

F (z)dz

= 2πi

n∑

u=1

lim
ξ→ζκu

(ξ − ζκu)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

f1(ξ)
ξ−ζ1

f2(ξ)
ξ−ζ2

...
fN (ξ)
ξ−ζN

⎤

⎥
⎥
⎥
⎥
⎥
⎦
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⇒
∫

τ1

F (z)dz −
∫

τ2

F (z)dz =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

· · ·
fκ1(ζκ1)

...

fκ2(ζκ2)
...

fκn(ζκn)

· · ·

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

�= 0

Hence proved. �

We have hence shown that H2 gives a homology invari-
ant for trajectories in 2-dimensional Euclidean configuration
space with obstacles.

3.3 Computation for a line segment

As discussed earlier in Sect. 1.2, and will be discussed later
in Sect. 5, we discretized the given configuration space and
create a graph out of it. In many practical implementations
we assume that every edge in the graph is a line segment.
Thus it is for those line segments that we really need to
compute the H -signatures. Thus it is important that we are
able to do so efficiently. In this section we will show how
to compute the H -signature for a small line segment in a
2-dimensional configuration space using a closed-form for-
mula.

Given a line segment e connecting points z1 and z2, we
can parametrize the segment using the variable z = (1 −
λ)z1 +λz2, where λ ∈ [0,1] is the parameter. Thus we have,

H2(e) =
∫

e

F (z)dz

=
∫ 1

0
F

(
(1 − λ)z1 + λz2

)
(z2 − z1)dλ (5)

For computing the H -signature of e = {z1 → z2} analyti-
cally, we assume that fl are chosen to be constants. Let
fl = Al (const.) for all l = 1,2, . . . ,N .

Now, a standard integration result gives for the lth com-
ponent of H2(e)

∫ 1

0

Al

(1 − λ)z1 + λz2 − ζl

(z2 − z1)dλ

= Al

(
ln(z2 − ζi) − ln(z1 − ζl)

)

However we note that the logarithm of a complex number
does not have an unique value. For any z′ ∈ C, ln(z′) =
ln(|z′|ei(arg(z′)+2kπ)) = ln(|z′|) + i(arg(z′) + 2kπ), ∀k =
0,±1,±2, . . . (where arg(x + iy) = atan2(y, x)). Hence,
following the assumption that e is a small line segment, we
choose the smallest of all the possible values over different

k’s. Thus, the lth component of H2(e) is computed as,

Al

[
ln

(|z2 − ζl |
) − ln

(|z1 − ζl |
)

+ i absmink∈Z

(
arg(z2 − ζl) − arg(z1 − ζl) + 2kπ

)]

where absmink∈Z G(k) returns the value of G(k) that has the
minimum absolute value (i.e. closest to 0) over all k ∈ Z.
Typically, we can get away with checking a few values of k

around 0 and picking the local minimum, since the value of
arg(z2 − ζl) − arg(z1 − ζl) + 2kπ is monotonic in k.

4 H -signature in 3-dimensional Euclidean
configuration space

While in the two-dimensional case, theoretically any finite
obstacle on the plane can induce multiple homotopy and ho-
mology classes for trajectories joining two points, the notion
of homotopy/homology classes in three dimensions can only
be induced by obstacles with genus2 one or more, or with
obstacles stretching to infinity. Figure 6 shows some exam-
ples of obstacles that can or cannot induce such classes for
trajectories. A sphere or a solid cube, for example, cannot
induce multiple homotopy classes in an environment.

4.1 Background: electromagnetism

Biot-Savart law Consider a single hypothetical current-
carrying curve (a current conducting wire) embedded in a
3-dimensional space carrying a steady current of unit mag-
nitude (Fig. 5(a)). There is no source for the current nor any
sink—only a steady flow persisting inside the conductor due
to absence of any dissipation. It is to be noted that such a
steady current is possible iff the curve is closed (or open,
but extending to infinity, where we close the curve using a

Fig. 5 Theorems from electromagnetism, and their application in
defining H -signature in 3-dimensions

2The genus of an obstacle refers to the number of holes or handles
(Munkres 1999).
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Fig. 6 Examples of obstacles in 3-D. (a)–(e) induce homotopy classes, (f) does not

Fig. 7 Illustration of Constructions 2 and 3

loop at infinity. See Fig. 7(a) and Construction 2). We de-
note the curve by S . Then, according to the Biot-Savart Law
(Griffiths 1998), the magnetic field B at any arbitrary point
r in the space, due to the current flow in S , is given by,

B(r) = μ0

4π

∫

S

(x − r) × dx
‖x − r‖3

(6)

where, x, the integration variable, represents the coordinate
of a point on S , and dx is an infinitesimal element on S
along the direction of the current flow.

Ampere’s law While Biot-Savart law gives a recipe for
computing the magnetic field from a given current configu-
ration, Ampere’s Law (Griffiths 1998), in a sense, gives the
inverse of it. Given the magnetic field B at every point in the
space, and a closed loop γ (Fig. 5(a)), the line integral of B
along γ gives the current enclosed by the loop γ . That is,

Ξ(C) :=
∫

γ

B(l) · dl = μ0Iencl (7)

where, l, the integration variable, represents the coordinate
of a point on γ , and dl is an infinitesimal element on C .

In Biot-Savart Law and Ampere’s Law one can conve-
niently choose the constant μ0 to be equal to 1 by proper
choice of units. Moreover, by choice, the value of the cur-
rent flowing in the conductor is unity. Thus, for any closed
loop γ , the value of Ξ(γ ) is zero iff γ does not enclose

the conductor, otherwise it is ±1 (the sign depends on the
direction of integration performed on γ ). Thus in Fig. 5(a),
Ξ(γ1) = 1 and Ξ(γ2) = 0.

Definition 5 (Simple Homotopy-Inducing Obstacle in 3-
dimensional Configuration Space) A Simple Homotopy-
Inducing Obstacle (SHIO) is a bounded obstacle of genus
1, for example a torus (Figs. 6(a), 6(b)) or a knot (Fig. 6(e)).

4.2 Designing a H -signature

For the 2-dimensional case, each obstacle on the plane
that induces the notion of multiple homotopy classes was
assigned a representative point. Analogously, for the 3-
dimensional case, we need to define a skeleton for every
SHIO. Intuitively, a skeleton of a 3-dimensional obstacle is a
1-dimensional curve that is completely contained inside the
obstacle such that the surface of the obstacle can be “shrunk”
onto the skeleton in a continuous fashion without altering
the topology of the surface of the obstacle. Formally, we de-
fine the skeleton of an obstacle in terms of homotopy equiv-
alence.

Definition 6 (Skeleton) A 1-dimensional manifold, S, is
called a skeleton of a SHIO, O, iff S is homeomorphic to
S

1 (a circle), S is completely contained inside O, and if S

and O are homotopy equivalent.

Thus, the fact that τ1 and τ2 are of the same or of different
homotopy/homology classes is not altered by replacing O
by S.

In the literature, algorithms for constructing skeletons of
solid objects is a well-studied (Blum 1967; Jain 1989). How-
ever in the present context we have a much relaxed notion
of skeleton. While we can adopt any of the different exist-
ing algorithms for automated construction of skeleton from
a 3-dimensional obstacles, this discussion is out of the scope
of the present work. Figure 6(a) demonstrates skeletons for
several genus 1 obstacles.

4.2.1 Conversion of generic obstacles into SHIOs

Given a set of obstacles in a three-dimensional environment,
we perform the following two constructions/reduction on
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the obstacles so that the only kind of obstacle we have in
the environment are Simple Homotopy-Inducing Obstacles.

Construction 2 (Closing infinite, unbounded obstacles) In
most of the problems that we are concerned with, the do-
main in which the trajectories of the robots lie is finite and
bounded. This gives us the freedom of altering/modifying
the obstacles or parts of obstacles lying outside that domain
without altering the problem. One consequence of this free-
dom is that we can close infinite and unbounded obstacles
(e.g. Fig. 6(d)) at a large distance from the domain of inter-
est (Fig. 7(a)).

Construction 3 (Decomposing obstacles with genus >1)
After closing all infinite, unbounded obstacles in an envi-
ronment according to Construction 2, if there is an obstacle
with genus k (e.g. Fig. 6(c)), we can decompose/split it into
k obstacles, possibly overlapping and touching each other,
but each with genus 1 (Fig. 7(b)). This does not change the
obstacles or the problem in any way. This construction just
changes the way we identify obstacles and construct their
skeletons. For example in Fig. 7(b) the original obstacle O
with genus 2 is realized as two obstacles O1 and O2, each
with genus 1 and overlapping each other. The decomposi-
tion of obstacles into SHIOs allows us define k skeletons
for each obstacle of genus k and simplify computations of
h-signatures of trajectories.

Note that in this paper we do both constructions manually
—the automation of these steps is beyond the scope of this
paper.

4.2.2 Skeleton of SHIOs as current carrying curves for
H -signature construction

Construction 4 (Modeling skeleton of a SHIO as a current
carrying manifold) Given m obstacles in an environment,
O1, O2, . . . , Om, with genus k1, k2, . . . , km respectively, we
can construct M = k1 + k2 + · · · + km skeletons from M

SHIOs (obtained using Constructions 2 and 3), namely
S1, S2, . . . , SM . Each Si is a closed, connected, boundary-
less 1-dimensional manifold. We model each of them as a
current-carrying conductor carrying current of unit magni-
tude (Figs. 6(a), 7(a)). The direction of the currents is not of
importance, but by convention, each is of unit magnitude.

Definition 7 (Virtual Magnetic Field due to a Skeleton)
Given Si , the skeletons of a Simple Homotopy-Inducing Ob-
stacle, we define a Virtual Magnetic Field vector at a point
r in the space due to the current in Si using Biot-Savart Law
as follows,

Bi (r) = 1

4π

∫

Si

(x − r) × dx
‖x − r‖3

(8)

where, x, the integration variable, represents the coordinates
of a point on Si , and dx is an infinitesimal element on Si

along the chosen direction of the current flow in Si .

Definition 8 (H -signature in 3-dimensional Configura-
tion Space) Given an arbitrary trajectory, τ , in the 3-
dimensional environment with M skeletons, we define the
H-signature of τ to be the function H3 : C1(R

3) → R
M ,

H3(τ ) = [
h1(τ ), h2(τ ), . . . , hM(τ)

]T (9)

where, C1(R
3) is the space of all curves/trajectories in R

3,
and

hi(τ ) =
∫

τ

Bi (l) · dl (10)

is defined in an analogous manner as the integral in Am-
pere’s Law. In defining hi , Bi is the Virtual Magnetic Field
vector due to the unit current through skeleton Si , l is the
integration variable that represents the coordinate of a point
on τ , and dl is an infinitesimal element on τ .

It is to be noted that the value of the H -signature of a
trajectory in the 3-dimensional configuration space is simply
a vector of M real numbers.

Lemma 3 Two trajectories τ1 and τ2 connecting the same
points in the described 3-dimensional configuration space
are homologous if and only if H3(τ1) = H3(τ2).

Proof Since τ1 and τ2 connect the same points, τ1 � −τ2,
i.e. τ1 and −τ2 together (where −τ indicates the same curve
as τ , but with the opposite orientation) form a closed loop
in the 3-dimensional environment (Fig. 5(b)). We replace
the obstacles O1, O2, . . . , Om in the environments with the
skeletons S1, S2, . . . , SM .

Consider the presence of just the skeleton Si . By the di-
rect consequence of Ampere’s Law and our construction in
which a unit current flows through Si , the value of

hi(τ1 � −τ2) =
∫

τ1�−τ2

Bi (l) · dl

is non-zero if and only if the closed loop formed by τ1 �−τ2

encloses the current carrying conductor Si (i.e. there does
not exist a surface not intersecting Si , the boundary of which
is τ1 �−τ2). For example, in Fig. 5(b), hp(τ1 �−τ2) = 1 and
hq(τ1 � −τ2) = 0. Now, by the definition of line integration
we have the following identity,

hi(τ1 � −τ2)

=
∫

τ1�−τ2

Bi (l) · dl
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=
∫

τ1

Bi (l) · dl −
∫

τ2

Bi (l) · dl = hi(τ1) − hi(τ2) (11)

Thus, hi(τ1) = hi(τ2) if and only if the closed loop formed
by τ1 and τ2 does not enclose Si (i.e. homologous in pres-
ence of Si ).

Now in presence of skeletons S1, S2, . . . , SM the same ar-
gument extends for each skeleton individually. Thus τ1 and
τ2 are homologous if an only if H3(τ1) = H3(τ2). �

Hence we have shown that the proposed formula for H -
signature is a homology class invariant for trajectories in
3-D.

4.3 Computation for a line segment

Once again, we are interested in efficient computation of
the H -signature for small line segments since those are
the ones that will make up edges of the graph formed
by discretization of the environment. For all practical ap-
plications we assume that a skeleton of an obstacle, Si ,
is made up of finite number (ni ) of line segments: Si =
{−→
s1
i s2

i ,
−→
s2
i s3

i , . . . ,
−−−−→
sni−1
i sni

i ,
−−→
sni

i s1
i } (Fig. 8(a)). Thus, the inte-

gration of (8) can be split into summation of ni integrations,

Bi (r) = 1

4π

ni∑

j=1

∫
−−→
sji sj

′
i

(x − r) × dx
‖x − r‖3

(12)

where j ′ ≡ 1 + (j mod ni). It is to be noted that a skeleton
of an unbounded obstacle created from Construction 2 can
be made up of finite and few line segments. The only fea-
ture of such a skeleton might be that some of the points that
make up the line segments (sj

i ) might be located at a large
distance from the domain of interest, which is used to close
the skeleton.

One advantage of this representation of skeletons is that

for the straight line segments,
−−→
sj
i sj ′

i , the integration can

Fig. 8 Closed-form, analytic computation of virtual magnetic field
vector

be computed analytically. Specifically, using a result from
(Griffiths 1998) (also, see Fig. 8(b)),
∫

−−→
sji sj

′
i

(x − r) × dx
‖x − r‖3

= 1

‖d‖
(
sin

(
α′) − sin(α)

)
n̂

= 1

‖d‖2

(
d × p′

‖p′‖ − d × p
‖p‖

)

(13)

where, d,p and p′ are functions of sj
i , sj ′

i and r (Fig. 8(b)),
and can be expressed as,

p = sj
i −r, p′ = sj ′

i −r, d = (sj ′
i − sj

i ) × (p × p′)
‖sj ′

i − sj
i ‖2

(14)

We define and write �(sj
i , sj ′

i , r) for the RHS of (13) for
notational convenience. Thus we have,

Bi (r) = 1

4π

ni∑

j=1

�
(
sj
i , sj ′

i , r
)

(15)

where, j ′ ≡ 1 + (j mod ni).
Given a small line segment, e, we can now compute the

H-signature, H(e) = [h1(e), h2(e), . . . , hM(e)]T , where,

hi(e) = 1

4π

∫

e

ni∑

j=1

�
(
sj
i , sj ′

i , l
) · dl (16)

can be computed numerically. For the numerical integration,
in all our experimental results we used the GSL (GNU Sci-
entific Library), which has a highly efficient implementa-
tion of adaptive integration algorithms with desired preci-
sion. We used a cache for storing the H -signature of edges
that has been computed in order to avoid re-computation.

4.4 ‘Looping’ and ‘non-looping’ trajectories

“Looping” of a trajectory around an obstacle (Fig. 9(a)) is
similar in essence to non-Jordan curves on two-dimensional

Fig. 9 Looping vs. non-looping trajectories
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planes. However in three dimensions their precise definition
is difficult. In fact, the notions of looping and non-looping
is imprecise when the skeleton of the obstacle is complex as
a knot (Fig. 9(b)). However, equipped with the definition of
H -signature, we propose the following definition. A more
elaborate discussion on this can be found in Bhattacharya
et al. (2011b).

Definition 9 (Non-looping trajectory w.r.t. Si ) A trajectory
τ is said to be non-looping w.r.t. Si if hi(τ ) ∈ (−1,1). The
value is in [0,1) if the trajectory goes around Si in accor-
dance with the right-hand rule with thumb pointing along
the direction of the current in Si . If the direction is opposite,
the value lies in (−1,0].

This definition, in many cases, conform to our general in-
tuition of non-looping trajectories. A natural consequence of
this definition is the notion of a trajectory that is in a “Com-
plementary Class” of a non-looping trajectory, i.e. one that
goes on the opposite side of every obstacle.

Definition 10 (Complementary Homotopy Class) Given a
trajectory τ that is non-looping w.r.t. all the skeletons in
the environment (i.e. hi(τ ) ∈ (−1,1) ∀i = 1,2, . . . ,M), we
define the Complementary Homotopy Class of the homo-
topy class of τ to be the one for which the h-signature is
H(τ ) − sign(H(τ )), where sign(·) gives the vector of signs
of the elements of its input vector.

5 H -signature augmented graph

Once we have the means of computing H-signature for each
edge (small line segments), we introduce the concept of H-
signature augmented graph. Typically, a graph G = {V , E }
is created for the purpose of graph-search based planning by
discretization of an environment, placing a vertex at each
discretized cell, and by connecting the neighboring cells
with edges (see Fig. 10 for an example in 2-dimensional
configuration space). In the following discussion we per-
form a construction without distinguishing between 2 and
3-dimensional configuration spaces explicitly, once we have
discretized the environment, and perform a general treat-
ment with the graph G . For H -signature trajectories or line
segments we use the generic function H, which we under-
stand to be H2 or H3 depending on the dimensionality of
the configuration space.

Let vs be the start coordinate in the configuration space,
and vg be the goal coordinate. By Lemma 2 or 3, any two
trajectories from vs to v that belong to the same homology
class will have the same H-signature. The H-signature can
assume different, but discrete values corresponding on the
class of the trajectory. We also write P (vs ,v) to denote the
set of all trajectories from vs to v, and ṽsv ∈ P (vs ,v) to
denote a particular trajectory in that set.

Fig. 10 Graph formed by uniform discretization of configuration
space, followed by placing nodes in the accessible cells and connect-
ing each node with its neighbors. Dark cells are the inaccessible ones
occupied by obstacles

Definition 11 (Allowed and Blocked Homology Classes)
Suppose it is required that we restrict all our search for tra-
jectories connecting vs and vg to certain homology classes,
or not allow some other. We denote the set of allowed H-
signatures of trajectories leading up to vg by the set A, and
the set of blocked H-signatures as B. A and B are essentially
complement of each other (A ∪ B = U , where the universal
set, U , is the set of the H-signatures of all the classes of tra-
jectories joining vs and vg), and B can be an empty set when
all classes are allowed.

We define the H-signature augmented graph of G as the
graph GH (G) = {VH , EH }, such that each node in this new
graph has the H-signature of a trajectory leading up to the
coordinate of the node from vs appended to it. That is, each
node in this augmented graph is given by {v, H(ṽsv)}, for
some ṽsv ∈ P (vs ,v). Thus, corresponding to a given v ∈ V ,
since there are discrete homology classes of trajectories
from vs to v, there are a discrete number of the augmented
states, {v,h} ∈ VH , where h is a M-vector of reals (M being
the number of representative points or the number of SH-
IOs depending on whether it’s a 2 or 3-dimensional config-
uration space) and assumes the values of the H-signatures
corresponding to the discrete homology classes. Thus, we
define the H-signature augmented graph of G as follows,

GH = {VH , EH }

where,

1.

VH =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

{v,h}

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

v ∈ V , and,

h = H(ṽsv) for some trajectory
ṽsv ∈ P (vs ,v), and,

h ∈ A (equivalently, h /∈ B)

when v = vg

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭
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Fig. 11 The topology of the augmented graph, GH (right), compared
against G (left), for a cylindrically discretized 2-dimensional configu-
ration space around a circular obstacle

2. An edge {{v,h} → {v′,h′}} is in EH for {v,h} ∈ VH and
{v′,h′} ∈ VH , iff
i. The edge {v → v′} ∈ E , and,

ii. h′ = h + H(v → v′), where, H(v → v′) is the H-
signature of the edge {v → v′} ∈ E .

3. The cost/weight associated with an edge {{v,h} →
{v′,h′}} is same as that associated with edge {v →
v′} ∈ E .

The consequence of point 3 in the above definition is that
an admissible heuristics for search in G will remain admis-
sible in GH . That is, if f (v,vg) was the heuristic function in
G , we define fH ({v,h}, {vg,h′}) = f (v,vg) as the heuristic
function in GH for any h′ ∈ A.

The consequence of augmenting each node of G with a
H-signature is that now nodes are distinguished not only by
their coordinates, but also the H-signature of the trajectory
followed to reach it. Typically we use graph search algo-
rithms like A* (or variants like D* or D*-lite) where nodes
in the graph GH are expanded starting from the node {vs ,0}
(where by 0 we mean a M-dimensional vector of zeros).

The topology of this augmented graph for a 2-dimensional
case is illustrated in Fig. 11. A goal state vg is the same in G
irrespective for the path (τ1 or τ2) taken to reach it. Whereas
in the H -signature augmented graph, the states are differ-
entiated by the additional value of hg . We can perform a
graph search in the augmented graph, GH , using any stan-
dard graph search algorithm starting from the state {vs ,0}.
The goal state (i.e. the state, upon expansion of which we
stop the graph search) is potentially any of the states {vg,hg}
for any hg ∈ A (or hg /∈ B if B is provided instead of A).
We can use the same heuristic that we would have used for
searching in G , i.e. fH (v,h) = f (v). It is to be noted that GH

is essentially an infinite graph, even if G is finite. However
the search algorithm needs to expand only a finite number
of states. Since for a given v, the states {v,h} can assume
some discrete values of h (corresponding to the different
homology classes). To determine if {v,h′

g} and {v,hg} are
the same states, we can simply compare the values of h′

g

and hg .

5.1 Uses of the H -signature augmented graph

There are primarily two distinct but related ways we would
like to use the H -signature augmented graph with search
algorithms:

i. Exploration of environment for different homotopy clas-
ses of trajectories connecting vs and vg: For this prob-
lem, whenever we expand a state {vg, h̃} ∈ VH , for some
h̃ /∈ B, we store the path up to that node, and con-
tinue expanding more states until the desired number of
classes are explored. Although H -signature is a homol-
ogy class invariant, and not a homotopy class invariant,
by Lemma 1, two trajectories are homotopic implies that
they are homologous. Thus, two trajectories that are ho-
motopic will be in the same homology class, and hence
their H -signatures will be the same. Thus, in such prob-
lems where we find least cost trajectories with differ-
ent H -signatures in a configuration space using the said
method, we are always guaranteed to obtain trajectories
in distinct homotopy classes as well.

ii. Planning with H -signature constraint: For searches with
H -signature constraint, we stop upon expansion of a
goal coordinate {vg, h̃} for some h̃ /∈ B (or equivalently,
h̃ ∈ A).

5.2 Theoretical analysis

Theorem 1 If P∗
H = {{v1,h1}, {v2,h2}, . . . , {vp,hp}} is an

optimal path in GH , then the path P∗ = {v1,v2, . . . ,vp} is
an optimal path in the graph G satisfying the H-signature
constraints specified by A and B.

Proof By construction of GH , the path {v1,v2, . . . ,vp} sat-
isfies the given H-signature constraints. Moreover by def-
inition, P∗

H is a minimum cost path in GH . Since the cost
function in GH is the same as the one in G and does not in-
volve hj , it follows that the projection of P∗

H on G given
by P∗ = {v1,v2, . . . ,vp} is an optimal path in the graph G
satisfying the constraints defined in GH . �

6 Results

The method described in this paper was implemented in C++
and MATLAB. In the sections below we present results in 2,
3 and 4-dimensional configuration spaces.

6.1 Two-dimensional configuration space

6.1.1 Path prediction by homotopy class exploration

Figure 12(a) shows a large 1000 × 1000 discretized envi-
ronment with circular and rectangular obstacles. We explore
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trajectories in different classes in order of their path costs
using the method ‘i.’ described in Sect. 5.1. The implemen-
tation was done in C++ running on an Intel Core 2 Duo pro-
cessor with 2.1 GHz clock-speed and 4 GB RAM. All the

Fig. 12 Exploring homotopy classes in 1000 × 1000 discretized envi-
ronments to find least cost paths in each

different trajectories in different homotopy classes were de-
termined in a single run of graph search on GH as described
earlier.

As discussed earlier, in such exploration problems, al-
though we use the H -signature as the class invariants in
the search algorithms, since non-homologous trajectories
are guaranteed to be non-homotopic, we are guaranteed to
obtain trajectories in different homotopy classes.

We also constructed 10 such environments using random
circular and rectangular obstacles. Figure 12(c) demonstrate
the efficiency of the searches. The time indicates the cu-
mulative time during the search until a shortest-path trajec-
tory in a particular homotopy class is found. This is rele-
vant to problems of tracking dynamic entities, such as peo-
ple, where one often needs to predict possible paths in order
to bias the tracker or to deal with occlusion by anticipat-
ing where the dynamic entity will appear. Since people can
choose different paths to their destinations, we need to be
able to predict least cost paths that lie in different homotopy
classes.

6.1.2 H -signature constraint: H -signature defined by
key-points

Figure 13(a) demonstrates an example where we define ho-
mology classes using a sample (suboptimal) trajectory spec-
ified by key-points. One can then compute the H -signature
for such a trajectory. It can then be used to search GH for an
optimal path in the same class (or different) as the sample
trajectory (Fig. 13(b)).

Although technically we have imposed homology class
constraint by imposing the H -signature constraint, we ob-
serve that the optimal trajectory that we obtain is in fact in
the same homotopy class as the key-point generated trajec-
tory. In fact we observe that in most robotics planning prob-
lems imposing H -signature constraints indeed impose the
corresponding homotopy class constraint as well.

Fig. 13 Homotopy class constraint determined using suboptimal key-
point generated trajectory
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6.1.3 Multiple robot visibility problem

The problem of path planning for multiple robots with visi-
bility constraints can also make use of our approach. If one
robot needs to plan its path such that it is never obstructed
from the view of another robot by some obstacle, we can ap-
ply the technique of planning with H -signature constraint to
obtain the desired trajectories. In Fig. 14(a)–(c) two robots
plan trajectories to their respective goals. The robot on the
right needs to plan a trajectory such that it is in the “visibil-
ity” of the robot on the left, whose trajectory is given. Thus,
in order to determine the H -signature of the desired homo-
topy class it first constructs a suboptimal path by connecting
its own start and goal points to the start and goal of the left

robot, such that the trajectory of the left robot is completely
contained in it (Fig. 14(b)) as key points. The H -signature of
this path gives the desired homology class, thus re-planning
with that class as the only allowed class gives the desired
optimal plan (Fig. 14(c)).

The natural constraint in this situation is that of homo-
topy. But we once again observe that even imposing the H -
signature constraint we do obtain trajectory in the desired
homotopy class.

6.1.4 Arbitrary cost functions

Our method is not limited to Euclidean length cost func-
tions. It can deal with arbitrary cost functions. For example,

Fig. 14 100 × 100 discretized
environment with 2
representative points on the
central large connected walls
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Fig. 15 Planning with
non-Euclidean length as cost as
well as homotopy class
constraint

in Fig. 15 there are two large obstacles and a communication
base to the left of the environment marked by the bold dot-
ted line, x = 0. An agent is supposed to plan its path from
the bottom to the top of the environment, while minimizing
a weighted sum of the length of the trajectory and the dis-
tance of the trajectory from the communication base. Thus,
in this case, besides the transition costs of the states in G ,
each state, z = x + iy ∈ G , is assigned a cost w · x, the
penalty on separation from the communication base. Thus
the net penalized cost of the trajectory, τ , that is being mini-
mized is of the form c = ∫

τ
ds + w

∫
τ
x(s)ds, where x is the

x-coordinate of the points on the trajectory, parametrized by
s, the length of the trajectory. The trajectories in Figs. 15(a)
and (b) with penalty weights w = 0 and w = 0.01 respec-
tively have H -signature of h0. Blocking this class, but hav-
ing a small penalty over distance from communication base
gives the trajectory in Fig. 15(d) that passes close to the com-
munication base.

6.1.5 Implementation using visibility graph

To demonstrate the versatility of the proposed algorithm we
implemented it using a Visibility Graph as the state graph,
G . Figure 16 shows the visibility graph generated in an en-
vironment with polygonal obstacles and the shortest paths
in 9 homotopy classes that we explore. Obstacles were in-
flated in order to incorporate collision safety and circular
obstacles were approximated by polygons. Representative
points were placed only on the large obstacles (i.e., relevant
obstacles that contribute towards the practical notion of ho-
motopy classes, and not, for example, ones created by sen-
sor noise—determined by threshold on diameter and marked
by blue circles in the figure) and visibility graph was con-
structed. A* search was used for searching the H -signature
augmented graph. The implementation was made in MAT-
LAB. The average run-time of the search until the 9th ho-
motopy class was explored was 0.4 seconds and about 100
states were expanded.
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Fig. 16 Exploring homotopy classes using a Visibility Graph

6.2 Three-dimensional configuration space

The first 3-dimensional domain in which we implement the
planning algorithm is the space of 3 spatial dimensions,
X,Y and Z. We also demonstrate the algorithm in the 3-
dimensional space of X, Y and time, i.e. an environment
with planar dynamic obstacles (Sect. 6.2.5).

For a problem in 3 spatial dimensions, the domain of in-
terest is bounded by upper and lower limits of the 3 coordi-
nates. The domain is then uniformly discretized into cubic
cells and a node of G is placed at the center of each cell.
Connectivity is established between a node and its 26 neigh-
bors (all cells that share at least one corner, edge or face with
it). Each edge is bi-directional and its cost is the Euclidean
length.

6.2.1 Simple environments with bounded obstacles

Figure 17(a) demonstrates a simple environment, 20 × 20 ×
18 discretized, with two torus-shaped obstacles. The skele-
ton of each obstacle is made up of line segments passing
through the central axis of the cylindrical segments. Here
we restrict search to non-looping trajectories (see Bhat-
tacharya et al. 2011b for a precise definition). That is, we
set B = {h = [h1, h2]T | |h1| > 1 or |h2| > 1}. We search for
4 homotopy classes of trajectories connecting a given start
and goal coordinate. As shown in Fig. 17(a), the algorithm
finds four such trajectories: (i) going through hoops 1 and 2;
(ii) going through hoop 1 but not through hoop 2; (iii) going
through hoop 2 but not through hoop 1; and (iv) not going
through either hoops. According to Theorem 1 each path is
the least cost one in the graph and in its respective homotopy
class.

Figure 17(b) shows the exploration of 4 homotopy
classes in and around a room with windows on each wall.
The skeletons for this obstacle are defined as loops around

Fig. 17 Exploring homotopy classes in X–Y –Z space

each window according to Construction 3. The trivial short-
est path from the given start to goal configuration goes out-
side the room (the dark violet trajectory). Trajectories in
other homotopy classes pass through the room.

6.2.2 Environment with unbounded pipes

Figure 18(a) shows a more complex environment consisting
of 7 pipes stretching to infinity. The workspace of choice is
44 × 44 × 44 discretized, with the start and goal coordinates
at two opposite corners of the discretized space. In Fig. 18(a)
we find the least cost paths in 10 different homotopy classes.

6.2.3 Planning with H -signature constraint

Figure 18(b) demonstrates a planning problem with H -
signature constraint. The darker trajectory is the global least
cost path found from a search in G for the given start and
goal coordinates. The H-signature for that trajectory was
computed, and hence we computed the signature of the com-
plementary class (i.e. the class corresponding to the trajec-
tory that passes on the other side of every SHIO—see Bhat-
tacharya et al. (2011b) for a precise definition), and put only
that in A. The lighter trajectory is the one planned with that
A as the set of allowed H-signature. This trajectory goes on



288 Auton Robot (2012) 33:273–290

Fig. 18 An environment with 7 unbounded pipes

the opposite side of each and every pipe in the environment
as compared to the darker trajectory.

We note that in this example the notion of complementary
homology class concurs with that of complementary homo-
topy class.

6.2.4 Search speed and efficiency

We now present the running time for the case in Fig. 18(a).
The environment, as described earlier, is 44 × 44 × 44 dis-
cretized, and hence G contains 85184 nodes. Due to each
node being connected to 26 of its neighbors, there are almost
13 times as many edges in G . The program was run on a Intel
Core 2 Duo processor with 2.1 GHz clock-speed and 3 GB
RAM. We first compute the values of H(e) for all edges
e ∈ E and store them in a cache, which takes about 2273 s.
Then we perform the A* search in GH , using the values from
the cache whenever required. By doing so we eliminate the
requirement of re-computing the h-signatures of the edges
every time we perform a search, even with changed start and
goal coordinates. The search for the 10 homotopy classes in
Fig. 18(a) took about 30s and expansion of 521692 nodes in
GH . Figure 19 shows the cumulative time required and the
number of nodes in GH expanded.

Fig. 19 Cumulative time taken and number of states expanded while
searching GH for 10 homotopy classes in the problem of Fig. 18(a)

6.2.5 Planning in 2-dimensional plane with moving
obstacles

The next 3-dimensional domain that we experiment with is
that of the two-dimensional plane, but with dynamic enti-
ties. Thus the variables of interest are X,Y and time. The
node set was formed by uniform discretization of the do-
main of interest. The connectivity of the graph is such that
the time variable can increase only in the positive direction
(each node connected to 9 neighboring nodes in next time
step, including the same x & y). The cost of an edge, e,
with differences in the coordinates of its end points �x,�y

and �t is computed as c(e) = √
�x2 + �y2 + ε�t2, where

ε is a small value for avoiding zero cost edges in GH . The
skeleton of the moving obstacles are the curves traced by
their centers (yellow dots on the oscillating rectangles in On-
line Resource 1) in the X–Y –Time space. The skeletons are
closed outside and far from the discretized domain (Con-
struction 2). Note that in doing so, segments of the skeleton
may point along negative time. However that does not effect
the planning since the X–Y –Time space itself can be treated
no differently from R

3.
The first supplementary video (Online Resource 1) shows

the exploration of 4 homotopy classes in X–Y –Time do-
main. The environment is 40×40 discretized in X and Y di-
rections, and have 100 discretization cells in time. There are
two dynamic rectangular obstacles, that undergo a known
oscillatory motion inside a narrow passage between other
static obstacles. The 4 different trajectories in the different
homotopy classes are marked by different colors as well as
different numbers at their current locations. The blue trajec-
tory (3) passes above both the obstacles. The red trajectory
(2) passes above the right obstacles, but not the left one. The
light blue-gray trajectory (1) passes above the obstacle on
the left, but not one on the right. The dark gray trajectory
(0) is the trivial shortest path. The trajectories in the non-
trivial homotopy classes go behind the obstacles, a region
that would otherwise not be visited by the least cost path
without any H -signature consideration.
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6.3 Four-dimensional configuration space

A natural extension of the example provided in Sect. 6.2.5
would be to explore homotopy classes of trajectories in a
3-dimensional space with moving obstacles. However that
makes the configuration space a 4-dimensional one consist-
ing of the coordinates X, Y , Z and Time. So far we have
developed representations of H -signature for 2 and 3 dimen-
sional configuration spaces. While doing so we have noticed
the similarity in the approach of both. In fact it is possible
to unify the formulae and generalize it to arbitrary dimen-
sional configuration space using certain concepts from al-
gebraic and differential topology. We discuss the derivation
of such a formula in Bhattacharya et al. (2011a), where we
use exterior calculus and the Stokes theorem (Talpaert 2000;
Flanders 1989; Svec 2001) to design differential 1-forms
in arbitrary D-dimensional configuration spaces, the inte-
gration of which serve as the desired H -signature in such
spaces. This analysis is reminiscent of a more general treat-
ment that we are currently investigating (Bhattacharya et al.
2012).

Thus we present a result in a X–Y –Z–Time configura-
tion space. The second supplementary video (Online Re-
source 2) shows the exploration of 3 homotopy classes in a
4-dimensional configuration space consisting of a dynamic
obstacle in 3-dimensions. The loop-shaped obstacle is ro-
tating about an axis. The blue axes are the X,Y and Z

axes. The apparent rotation of the axes themselves is due to
movement of the camera for viewing the trajectories from
different angles. As we observe in the video, trajectories
numbered 0 and 1 take off from the start coordinate (green
dot) and move towards the “center” of the loop. They wait
there while 2 takes a different homotopy class to reach the
center later. From there 0 and 2 head together towards the
goal (red dot), while 1 wait to take a different trajectory to
the goal. Thus the 3 trajectories are in different homotopy
classes.

7 Conclusion

In this paper we have proposed a novel and efficient way of
representing topological information of trajectories for robot
motion planning. We have shown that this representation is
well suited for use with graph search techniques for finding
least cost paths respecting given homology class constraints
as well as for exploring different homotopy classes in an en-
vironment. The method is independent of the discretization
scheme, cost function or the search algorithm used. We have
demonstrated the efficiency, applicability and versatility of
the method in our results with examples in two, three and
four dimensions.
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