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Abstract In this paper we introduce a framework to repre-
sent robot task plans based on Petri nets. Our approach en-
ables modelling a robot task, analysing its qualitative and
quantitative properties and using the Petri net representa-
tion for actual plan execution. The overall model is ob-
tained from the composition of simple models, leading to
a modular approach. Analysis is applied to a closed loop
between the robot controller and the environment Petri net
models. We focus here on the quantitative properties, cap-
tured by stochastic Petri net models. Furthermore, we in-
troduce a method to identify the environment and action
layer parameters of the stochastic Petri net models from
real data, improving the significance of the model. The
framework building blocks and a single-robot task model
are detailed. Results of a case study with simulated soccer
robots show the ability of the framework to provide a sys-
tematic modelling tool, and of determining, through well-
known analysis methods for stochastic Petri nets, relevant
properties of the task plan applied to a particular environ-
ment.
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1 Introduction

Robots are becoming part of our daily lives, and their tasks
are becoming more complex. Qualitative and quantitative
formal methods to design and analyse these tasks are needed
to ensure that relevant properties are met (Akin et al. 2008).
Robot task models not based on formal approaches tend to
be tailored to the task at hand, usually leading to task plans
with few actions. Applying formal methods to model robot
tasks provides a systematic approach to modelling, analysis
and design, scaling up to realistic applications, and enabling
analysis of formal properties, as well as design from speci-
fications.

An interesting class of formal approaches is that of Dis-
crete Event Systems, with two main formalisms being used
in the Robotics community: Finite State Automata (FSA)
(Cassandras and Lafortune 2008) and Petri nets (Petri 1966;
Murata 1989). Most FSA-based models are used for robot
tasks design and execution, although they can also be used
to perform quantitative (KoSeckd et al. 1997) and qualitative
analysis (Espiau et al. 1995), or for plan verification and
code generation (Basu et al. 2008). Petri nets have advan-
tages with respect to FSA: Petri-net marked languages are a
superset of regular languages (marked by FSA), leading to
a larger modelling power. Furthermore, one can model in-
finite state spaces with finite Petri nets and, in general, for
the same state space dimension, the size of a Petri net is
smaller than that of an FSA. Moreover, although composi-
tion of Petri nets usually leads to an exponential growth in
the state space (as for FSA), structurally the growth is lin-
ear in the size of the composed graphs given that the state is
distributed. State distribution makes the design process sim-
pler for the task designer, due to its modularity and compo-
sitional nature—complex models can be obtained from the
composition of simple models designed for the system basic
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components—and helps managing the display of the tasks
both for monitoring and design purposes.

Petri nets have been widely used to model and con-
trol Flexible Manufacturing Systems (FMS) (Viswanadham
and Narahari 1992; Zhou and Venkatesh 1999). FMS are
usually well-structured systems, even if they can be large
and complex. An FMS is composed of subsystems with
clearly defined functions, inputs and outputs, most events
are controllable, and uncontrollable events are often asso-
ciated with machine failures only (Castelnuovo et al. 2007,
Qin and Xu 2009; Viswanadham and Narahari 1992; Zhou
and Venkatesh 1999). In a recent paper Herrero-Perez and
Martinez-Barbera (2008) used Petri nets to model and con-
trol an FMS with Autonomous Guided Vehicles (AGV).
A collision-free motion of the AGV is ensured by using a
topological map and preventing more that one AGV at each
node. Although untimed Petri nets are used, the authors as-
sume that each node travelled in the topological map has an
associated time, and minimise the number of nodes travelled
to compute the task plan which minimises task time. In this
system AGVs do not interact with each other and failures are
not modelled. In contrast, non-industrial robot tasks (e.g.,
search and rescue, home assistance, soccer and other games)
require plans whose actions can have several uncertain ef-
fects, due to the occurrence of many possible uncontrollable
events, very dynamic (and even adversarial) environments,
and unpredictable causes. Therefore, though the analysis
methods may be similar, the models required are signifi-
cantly different. Marked Ordinary Petri Nets (MOPNSs) were
first used to model and control a robot task plan execu-
tion in Wang et al. (1991), ensuring qualitative properties
by construction. Performance properties were determined
through simulations. More recently, Kim and Chung (2007)
used Generalised Stochastic Petri Nets (GSPNs) to model
and analyse (both qualitatively and quantitatively) a robot
task for a tour-guide robot. However, the authors approach is
very application-oriented and has not provided a structured
framework for modelling and analysing generic robot tasks.
Furthermore, there is no clear distinction between the selec-
tion mechanisms and uncontrollable events induced by the
environment, leading to a less modular design. Multi-agent
and multi-robot system models can also benefit from the
modular nature of Petri nets. In King et al. (2003) MOPNs
are used to model and synthesise deadlock-free plans for
a multi-agent environment. However, the authors do not
model failures, and uncontrolled events are modelled using
a simplistic approach by considering that the probability of
resources availability change does not depend on the cur-
rent state. Furthermore time is not taken into account, as
all transitions are considered to be instantaneous. In Ziparo
and Iocchi (2006) Petri nets are used to design (multi-)robot
tasks plans, providing qualitative (logical) but not quantita-
tive (performance) analysis.
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This paper introduces an integrated framework based on
Petri nets for modelling, identification, analysis and execu-
tion of robot tasks, intended to overcome the shortcomings
of previous approaches:

— the framework models single and multi-robot tasks;

— MOPN and GSPN views of the model are used to retrieve

logical/qualitative and (probabilistic) performance/quan-

titative properties of the robot task plans, respectively;
controllable (e.g., decision to start an action) and uncon-
trollable (e.g., failure to track a moving object, reaching

a given location, actions of other robots) events are mod-

elled;

— the GSPN view models action effects uncertainty both as
plain transition probabilities (as in Markov Decision Pro-
cesses) and as stochastic timed transitions, where transi-
tion probabilities are indirectly modelled by the stochas-
tic time elapsed between the start of the action and its
end, due to some uncontrollable event; in the end, both
models boil down, under some light requirements, to an
equivalent Markov Decision Process, that can be solved
using existing techniques, from dynamic programming to
reinforcement learning;

— the complexity of non-industrial robot tasks is tackled by
creating a Petri net model of the environment, capturing
the complexity of the environment dynamics: this model
is then composed with the (multi-)robot controller model
to obtain a single closed-loop Petri net representing the
whole task model, i.e., the model of the (multi-)robot sys-
tem situated in its environment; furthermore, an identifi-
cation algorithm is introduced to estimate the parameters
of the environment model from real data.

The robot task model is split in several layers, all Petri
net-based, ranging from the organisation of the robot ac-
tions to the action and environment models. This structured
approach organises the model construction based on formal
definitions, starting from simple models of the (multi-)robot
controller and environment components which are then au-
tomatically composed by well-defined algorithms. The re-
sulting Petri net is used to compute qualitative and quanti-
tative properties of the task using the adequate view of the
model and available Petri net analysis algorithms.

This paper describes the single-robot part of the frame-
work, but not the multi-robot one, due to space constraints.
Nevertheless, extending the framework to the multi-robot
case consists mostly on the introduction of communica-
tion models and the use of these to synchronise robot be-
haviours, similarly to the ones introduced in Costelha and
Lima (2008), plus selection mechanisms, as further dis-
cussed in Sect. 9.

This paper is organised as follows: Sect. 2 introduces
the Petri net models used in this work (for completeness);
Sect. 3 describes the model building blocks; Sect. 4 explains
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the layered architecture and how task models can be de-
signed based on these layers; in Sect. 5 we describe how to
perform analysis of robot tasks based on our model; Sect. 6
details how environment models can be identified from real
data; Sect. 7 explains how plans are executed within this
framework; finally, Sect. 8 provides results obtained using a
realistic physics simulator of robot soccer, and Sect. 9 draws
the conclusions and future work.

2 Petri nets

Petri nets (Petri 1966) are a widely used formalism for mod-
elling Discrete Event Systems. They allow modelling im-
portant aspects such as synchronisation, resources availabil-
ity, concurrency, parallelism and decision making, provid-
ing at the same time a high degree of modularity, making
them suitable to model robot tasks. Modularity in Petri nets
is achieved since each resource can be modelled separately
and then composed with others. Although composition op-
erators exist for FSA, Petri nets can model subsystems with
input and output places, which can be connected as in a cir-
cuit.

2.1 Marked ordinary Petri nets

The simplest models we use are MOPNSs:

Definition 1 A MOPN is a five-tuple PN = (P, T, 1,
0, My), where (Murata 1989; Cassandras and Lafortune
2008):

— P={p1, p2, ..., pn}is afinite, not empty, set of places;

- T={n,t,...,t,} is a finite set of transitions;

— I = P x T represents the arc connections from places to
transitions, such that i, = 1 if, and only if, there is an arc
from p, to t,, and i,y = O otherwise;

— O =T x P represent the arc connections from transition
to places, such that o,y = 1 if, and only if, there is an arc
from 7, to ps, and o,s = 0 otherwise;

- M =[mi(j),...,m,(j)]is the state of the net, and rep-
resents the marking of the net at time j, where m,(j) =g¢q
means there are g tokens in place p, at time instant j.
M is the initial marking of the net.

The state of the net is given by the marking of the net,
which in turn is given by the number of tokens in the places.
In this class of Petri nets, all the transitions are immediate
(have zero firing time), i.e., once they are enabled, they are
fired and the new marking is instantly reached. A transition
is enabled when all its input places have at least one token.

2.2 Generalised stochastic Petri nets

MOPN:S are suited for qualitative analysis, but not for quan-
titative performance analysis. For this purpose, one uses
generalised stochastic Petri nets (GSPNs). GSPNs include
2 transition types:

— stochastic (with probabilistically distributed time) transi-
tions which, once enabled, fire only when a given time d
has elapsed. In this work, we assume exponentially dis-
tributed time, and univocally define the exponential dis-
tribution associated to each transition by its rate u;

— immediate transitions which, once enabled, fire in zero
time. However, if more than one transition is enabled in a
given marking, a probability mass function is associated
to the set of conflicting transitions, such that, when such
a marking is reached, the transition to be fired is picked
randomly according to that probabilistic distribution.

These 2 transition types enable distinct models of un-
certainty. Stochastic transitions allow modelling uncertainty
according to the different stochastic time-to-fire distribu-
tions associated to conflicting transitions. If no information
is available about time, one uses immediate transitions and
directly associate probabilities to conflicting transitions.

Definition 2 A GSPN is an eight-tuple PN = (P, T, 1, O,
Mo, R, W), where (Viswanadham and Narahari 1992;
Bause and Kritzinger 2002):

- P, T,1,0, M, are as defined in Definition 1;

— T is partitioned in two sets: T; of immediate transitions
and Tg of exponential transitions;

— R is a function from the set of transitions T to the set of
real numbers, R(7g;) =, where p; is called the firing
rate of 1E;;

— W is a function from the immediate transitions set 77 to a
set of real numbers, W(t1j) = wj, where w; is the weight
associated with immediate transition ¢; i

— For any given marking, the probability of firing an en-
abled transition ¢; € Ty is equal to w; /W, where W is the
sum of the weights of all enabled transitions for the mark-
ing; the probability of firing an enabled transition ¢tz € Tg
is equal to u; /M, where M is the sum of the firing rates
of all enabled transitions for the marking.

Consider the GSPN model depicted in Fig. 1. In this
example, fg, is an exponential timed transition (drawn as
an unfilled rectangle), while ¢/, ¢;, and t;, are immedi-
ate transitions with associated weights. Initially 7z, is en-
abled, since p; has tokens, and will fire after an exponen-
tially distributed time with rate @1 has elapsed. The token
flows from p; to py and, since #;, is an immediate transi-
tion, it will immediately flow from p» to p3, reaching mark-
ing M3 =10, 0, 1]. In this marking ¢;, and ¢, form a set of
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Fig. 1 Generalised stochastic Petri net

conflicting transitions, whereas only one will fire, according
to the following probabilities:
w3

Pe(tp) = ———— 1)

w2
Py(t) = ———, ———

w2 + w3
If #y, is fired, the marking remains the same, if 7y, is fired,
the net returns to the initial marking.

The GSPN marking is a semi-Markov process with a
discrete state space given by the reachability graph of the
net for an initial marking (Murata 1989; Viswanadham and
Narahari 1992). A Continuous Time Markov Chain (CTMC)
and/or the corresponding Embedded Markov Chain (EMC)
can be obtained from the marking process, and both the tran-
sition rate matrix (CTMC) and the transition probability ma-
trix (EMC) can be computed by using the firing rates of the
exponential timed transitions and the probabilities associ-
ated with the random switches. With these one can perform
transient and stationary analysis of the chain, thus obtain-
ing performance properties for the corresponding Petri net
model.

3 Framework building blocks

In our framework, we endow the Petri net models with some
additional building blocks and make use of the place labels
to distinguish between different types of places, such as:
predicate places, action places, task places and regular (or
memory) places. These different types of places do not intro-
duce any change regarding the Petri nets definitions given in
the previous section, but are crucial in the analysis process
explained later.

3.1 Predicate places

Predicate places are used to represent knowledge through
logic predicates, having always one or zero tokens. Al-
though Predicate Petri nets exist in the literature (Réck and
Kresman 2006), the tools available to work with this type
of Petri nets are scarce. As such, we use regular places to
represent predicates, as explained next.

Definition 3 A predicate place p,, is a place associated with
the predicate P, described by p, = P, such that:
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predicate.NOT_SeeBall @ O predicate.SeeBall

Fig. 2 Representation of predicate by a set of places

-V, P()=true & m,(j)=1,

- V;,P(j) =false & m,(j) =0,

— V;, if p; is a place associated with predicate —P then
m;i(j)+mn(j) =1,

where P(j) is the predicate P at time step j.

As an example, a Petri net model representing the pred-
icate SeeBall is depicted in Fig. 2. Note the usage of the
“predicate.” (or, alternatively, “p.”) prefix to denote that the
place is a predicate place, and the “NOT_” prefix to denote
the negated predicate.

When executing tasks in the real and simulated robots,
the marking of the predicate places is updated by monitoring
the environment conditions, using the robot sensors, while
when performing theoretical analysis it will be updated us-
ing environment Petri net models. In this paper, predicate
places will always represent information obtained from sen-
sor data although, as stated in Sect. 9, these can be used for
other purposes.

3.2 Action and action places

An action is the elementary block on the execution of a task
by a robot. The execution of an action changes the world,
depending on the current state. Action places are elementary
blocks in the Petri net models of a task plan. For execution
purposes they are an atomic element, and will not be decom-
posable. For analysis purposes they will act as macro places,
thus corresponding to a Petri net model of the action. Macro
places (Bernardinello and Cindio 1992), albeit not always
using the same definition, are used to create layered Petri
nets, leading to a higher degree of modularity. The formal
definition of action places will be given in Sect. 4.3.

3.3 Task plans and task places

A task plan is a network of actions and other task plans,
where each action/task plan is selected according to the state
of the world. In this framework task plans will be modelled
using Petri nets, with task places being also macro places.
This approach will allow to draw entire Petri net models
from lower layers as single places in higher layers, provid-
ing for modular and reusable models. The formal definition
of task places will be given in Sect. 4.3.

3.4 Memory places

All places which are not predicate, task or action places, are
regular (or memory) places, i.e., normal Petri net places with
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Fig.3 Model architecture, pointing out the 3 layers and where each of
them intervenes in the analysis, execution and identification.

no specific properties or associations. These are denoted as
memory places given that they are mainly used to store some
information on past conditions.

4 Modelling single-robot tasks using Petri nets

To achieve the desired modelling goals (modularity, design,
analysis and execution), a 3-layered Petri net model of a
robot task is introduced, as depicted in Fig. 3. Each layer,
composed of a set of Petri net models representing different
resolution levels, is described as follows:

Environment Layer Petri net models in this layer repre-
sent the environment discrete-state event-driven dynamics,
resulting from the robot and other agent (robots, humans)
actions or from physics (such as the motion of a free rolling
ball);

Action Executor Layer Petri net models in this layer rep-
resent actions, i.e., the changes in the environment caused
by these actions, and the conditions under which these
changes can occur;

Action Coordinator Layer Petri net models in this layer
represent task plans, which consist of compositions of ac-
tions.

As can be seen in Fig. 3, all models are used for analysis,
but only the 2 top layers and, partially, the Action Executor
layer models are used for execution. The Environment layer
and part of the Action Executor layer, namely regarding the
actions effects on the environment, are used for analysis.
These represent models of real or simulated robots that can
be parametrised beforehand through an identification algo-
rithm based on real or simulated data, as explained in Sect. 6.
These models are replaced by either a realistic simulation of
the robots and environments, or the actual robots and sensor
readings, when executing the Petri nets of the upper levels.

The use of discrete event system models for the envi-
ronment brings loss of accuracy and some properties that
can not be checked, due to the continuous state space nature
of the environment. Hybrid systems would be more appro-
priate to increase accuracy and model-checking capabilities
(Kress-Gazit et al. 2009). However, the complexity of their

p.BallMovingFast p-BallMovingSlow p.BallStopped

p.MOT_BallMovingFast p.MOT_BallMovingSlow p.MOT_BallStopped

Fig. 4 Petri net model of a moving ball

analysis grows substantially with the number of actions and
predicates, and many aspects of robot tasks, aside of robot
motion, intrinsically happen in discrete state space and are
event-driven.

4.1 Environment layer

The Environment layer includes models of the environment
dynamics, caused by the controlled robot, other agents, or
simply by the laws of physics.

Definition 4 An Environment Petri net model is a GSPN,
where:

1. P contains only predicate or memory places;

2. If there is an arc from place p,, associated to predicate P,
to transition #;, then there is an arc from ¢; to place p;,,
associated to predicate —P, or an arc back to p,,.

Definition 4 is very generic, only limiting the structure of
the Petri net so that it conforms with Definition 3, regard-
ing predicate places. It considers that transitions are used
either to test a predicate value (place as input and output
of the transition), or to change that predicate value from
0/1 to 1/0, keeping the consistency of predicate places as
defined in Definition 3. To better understand how the Envi-
ronment models are designed, consider a free rolling ball. In
this case, due to friction on the floor, it is expected that the
ball will stop after some time, with that time being stochas-
tic (it depends on unknown conditions such as the ball fill
pressure, floor, etc.). Figure 4 shows a possible GSPN model
of this process under our framework. To create this model,
we must first discretise the state space, such that we can
describe the process through the use of logic predicates. In
this example, we consider that the ball could be moving fast
(p.BallMovingFast), slowly (p.BallMovingSlow)
or be stopped (p.BallStopped), and that the ball will,
with time, evolve from its fastest speed to the stopped state,
by firing transition #; and later transition #;. The stochas-
tic transitions in the GSPN model allow modelling the
stochastic nature of the events. Each transition will fire
after being enabled by a stochastic amount of time, with
transition #; leading from state {p.BallMovingFast,
p.NOT_BallMovingSlow, p.NOT_ BallStopped}

@ Springer



342

Auton Robot (2012) 33:337-360

p-BallMovingFast p.BallMovingSlow p.-BallStopped

t1 t2

Fig. 5 Simplified Petri net model version of a moving ball

p.I1sSnowing

p-BallMovingFast

p-NOT_IsSnowing

Fig. 6 Petri net model of a moving ball considering the weather con-
ditions

to state {p .NOT_BallMovingFast, p.BallMoving-
Slow, p.NOT_BallStopped}, and transition f, from
that state to state {p.NOT_BallMovingFast, p.NOT_
BallMovingSlow, p.BallStopped}.

Since predicate places must follow Definition 3, there is
no need to always draw both positive and negative forms
of the predicate. In practise, the models can be drawn in a
simpler form, such that the missing nodes are added during
the analysis part (as explained in Sect. 5.2.1). For instance,
the model depicted in Fig. 4 can be drawn as shown in Fig. 5.

If, for instance, one also wanted to model the fact that
some other agent could increase the ball speed, we could
add transitions in the opposite direction, albeit with different
associated rates, considering the probability of that occur-
rence. Furthermore, it is also possible to include several tran-
sitions with different rates, associated with the same state
change, as in the example depicted in Fig. 6. In this exam-
ple, the rate at which the ball slows down depends on the
weather conditions.

4.2 Action executor layer

Each action Petri net model is a GSPN which represents how
the action impacts the environment and under which condi-
tions. In logical terms, these models use two sets of condi-
tions:

running-conditions Conditions that need to be true for the
action to be able to produce any effect;
desired-effects Conditions the action aims to make true.

Each action model consists of several places and of a set
of transitions representing the environment changes, which
can be associated with the success or failure of the action,
following the rules described in Definition 5 below. The gen-
eral model of an action is depicted in Fig. 7.

@ Springer

Definition 5 An action Petri net model is a GSPN, where:
1. P = Pg U Pp contains only predicate places, where

Pr is the effects place set;
Pr is the running-conditions place set;

2. Pg = Pgy U Pg,, where Pgg and Pg, are designated
respectively success places set and failure places set.

3. Pgy = PEs, U PESD, where PEs, and PESD are desig-
nated as intermediate effects place set and desired-effects
place set, respectively;

4. T =Ts U Tg with Ts N Tr = @, where:

Ts is the set of transitions associated with successful im-
pact of the action;

Tr is the set of transitions associated with failure impact
of the action;

5. If there is an arc from place p,, associated to predicate
‘P, to transition ¢, then there is an arc from ¢; to place
Pm, associated to predicate =P, or an arc back to p,;

6. All transitions have one input arc from each running-
condition.

A note on notation:

— all places in Pg have “r.” after the “predicate.” pre-
fix;

— all places in PESD have “e.” after the “predicate.”
prefix;

— all transitions #; in T are labelled success; or s;

— all transitions ¢; in TF are labelled failure; or ;.

The fundamental difference from traditional models (e.g.
STRIPS (Fikes and Nilsson 1971)), is that one does not
model only the desired-effects of the action, but also in-
termediary and failure effects, and taking a probabilistic
framework, through the use of stochastic transitions. Fur-
thermore, as explained before, stochastic time can be used
to model uncertainty, providing a modelling approach sup-
ported on physics-based reasoning which is not available on
well-established probabilistic domain description languages
such as PPDDL (Younes and Littman 2004).

The running-conditions are input places of all transitions
to model the fact that the action can only cause any impact
on the environment while these conditions are met. Given
that all places are predicate places, rule 5 implies that the
action model maintains the predicates according to Defini-
tion 3, resulting in a safe Petri net (a safe Petri net is one
that has at most one token per place for all markings (Mu-
rata 1989)).

As an example, consider an action named CatchBall,
where the purpose of the robot is to catch a ball. In this
case, the robot can only catch the ball if it sees it, resulting
in one running-condition, SeeBall. The desired-effects of
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Fig. 7 General action model

Success
Transitions

Failure
Transitions

this action would be catching the ball, i.e., getting the pred-
icate HasBall to true. Including desired-effects, failure-
effects and other intermediary effects, results in the Petri net
model shown in Fig. 8.

Failures were explicitly included in the CatchBall ac-
tion model. Given that this model will be composed with the
environment model, (some) failures will already be implic-
itly modelled through environment transitions (which will

p.NOT_Eff,
' Desired
Effects

p.NOT_Eff
p.NOT_S,
Intermediate

. Effects
p.NOT_S

p.S
p.S
p.NOT_S,|

p.NOT_S,

Effects
p.N O_TfFb

p.NOT_F,

p.F

p.F,

p.NOT_F,
failure

p.NOT_F,

p.FW

p.F

be enabled concurrently with action transitions). As such,
action models should only include failures explicitly when
those events are not modelled by the environment model, or
if the probability of those events occurring is much higher
when the action is being executed, as compared to the event
probability modelled by the environment model. Intermedi-
ate effects play an important role in maintaining the state of
world consistent. For instance, in the example given, it does
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SUCCess

Desired
Effects

p.NOT_HasBall p.e.HasBall

Intermediary
Effects

p.NOT_NearBall p.NearBall

Failure ilure

Effects

Running

conditions p.r.SeeBall

Fig. 8 Petri net model of action CatchBall

not make sense for the robot to gain possession of the ball
unless it gets near the ball first.

For execution purposes the Action Executor models are
currently used partially, by taking into consideration the
running-conditions to prevent enabling each action outside
of their scope. If the running-conditions of a given an ac-
tion are not enabled that action will not be executed, even if
selected by an higher layer.

4.3 Action coordinator layer

The Action Coordinator layer contains Petri net models of
robot task plans. A Petri net model of a task plan consists of
a MOPN which models predicate-based decisions.

Definition 6 A task plan model is a MOPN where

1. All places p; € P are either predicate places, memory
places, action places or task places.

2. If there is an arc from place p,, associated to predi-
cate P, to transition #;, then there is an arc from ¢; back
to place pj,.

Note that P is a generic placeholder for a predicate, be it
the negative literal or the positive literal. We will now pro-
vide the formal definition of action and task places.

Definition 7 An action place p,, labelled “action.AC-
TION” (or, alternatively, prefixed with “a.”), is a place as-
sociated with action ACTION, meaning that if place p, has
at least one token, then action ACTION is enabled.

Definition 8 A rask place p,, labelled “task.TASK” (or, al-
ternatively, prefixed with “z.”), is a place associated with task
plan TASK, meaning that if place p, has at least one token,
then task plan TASK is enabled.

Having an action enabled means the world can evolve
according to the corresponding Petri net action model, as
described in Sect. 4.2. In Definition 6, item 1 implies that
a plan can contain task places, which also correspond to
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p-IsBehindBall

a.MoveBehindBall a.CatchBall

p.SeeBall p-MOT_IsBehindBall

Fig. 9 Petri net model of the Get_Ball task plan

task plans, leading to a layered Petri net task plan model
without a predefined depth limit. Item 2 is of particular im-
portance, since environment and action models are the only
ones which model changes in the world state, while task
plans model action/task selection decisions based on those
predicates. In task plan models, transitions correspond to
predicate based decisions which trigger the execution of ac-
tions and/or other task plans. Note that action and task places
can only be used in task plan models.

To help understand these definitions, we will follow
an example of a soccer playing robot. Consider the task
Get_Ball, depictedin Fig. 9, which is used for the robot to
capture the ball. This plan corresponds to a loop between ac-
tions MoveBehindBall and CatchBall. Note that the
initial marking in the task plan models is very important,
since it determines which actions, or included tasks, should
run when the task is started.

To understand better the concept of tasks within tasks,
consider now a task plan for a full soccer-playing robot,
depicted in Fig. 10. Here, besides action Dribble2Goal
and task Shoot_For_Goal, one also uses the Get_Ball
task plan described previously.

5 Petri net expansion for analysis
5.1 Motivation for analysis

Given that all layers are modelled using Petri nets, we can
compose all these models together in a single Petri net
model. This single Petri net model represents the overall
task, which we can analyse a priori. This analysis can cover
both logical (e.g. deadlocks) and probabilistic (e.g. proba-
bility of reaching a given state) performance properties.
Furthermore, there is a number of properties that must
be met during design time, which allow for error detection
at an early stage of development. As an example consider
the boundedness of the net. Given that we are using predi-
cate places (as defined in Definition 3), these can have only
one or zero tokens. If one detects more than one token in a
predicate place at design time, or that the sum of tokens in
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Fig. 10 Petri net model of the
Score_Goal task plan

p.SeeBall

p.HasBall

p.NearOppGoal

the two places associated with a predicate is not always one,
it means that there is an error in the models. In the predi-
cate places case, this translates to a simple design rule which
states that if a given predicate p is an input place of a tran-
sition ¢, then only one of predicate places NOT _p or p can
be an output place of transition ¢. If additionally one requires
action and task places to have at most one token, it results in
a safe net requirement. If the total number of tokens in the
two places associated with a predicate is constant (equal to
one in this case) they form a place invariant (Murata 1989),
a property which can be determined from a priori analysis.

Having the modelling and analysis processes integrated
under the same framework allows for a design process based
on a continuous loop of design-analysis-design. This loop
guides the development of the tasks in a structured way,
leading to improved task plans even before gathering results
from the execution process.

Furthermore, data can also be extracted from the execu-
tion process in order to analyse the task a posteriori, and to
further improve the models.

5.2 Expansion process

The Expansion Process is based on place fusion (Girault
and Valk 2003), enabling us to obtain the single Petri net
for analysis by merging all the environment, action and task
Petri net models. The place labels play an important role in
this process, since they allow to distinguish between the dif-
ferent types of places. The current expansion algorithm was
designed to work with safe Petri nets, which is our case by
construction.

When composing the various Petri nets, there are three
basic rules which are always present in the various devel-
oped algorithms:

1. If predicate places p; and p; are associated with the same
predicate, then p; = pj, i.e., these are duplicate places;

a.Stop

p.NOT_SeeBall

p.NOT_HasBall

p.NOT_AimableZ2Score

t.Shoot_For_Goal ¥ NOT_NeasOppGosl

2. Action, task and memory places are always different
places, regardless of their label,;
3. All transitions are different, regardless of their label.

Regarding Item 1, note that identifying two places asso-
ciated with the same predicate means identifying two places
with the same label.

Given these rules, whenever two Petri nets are composed,
if there are several predicate places associated with the same
label, then these are duplicate places and can be merged.
Merging these places consists on keeping just one of the
places while maintaining all the connections of the removed
duplicate places.

The following items describe the algorithms developed to
obtain this single Petri net from the task, action and environ-
ment models. As will be described later, the main guiding
principles for the development of these algorithms, was to
guarantee that a task and/or action were always interruptible
in zero time, and that a task must always start in its initial
state (corresponding toy its initial marking).

5.2.1 Petri net complement

Recall that when designing the Petri net models one is not
forced to include the two predicate places associated with
each predicate. As such, the missing places must be added
during the expansion process (e.g., p.NOT_P when only
p . P is present), through the use of Algorithm 1, which we
denote Complement Algorithm. We will denote PN as the
Petri net model which results from complementing Petri net
PN.

As an example, applying the complement algorithm
to the Petri net model depicted in Fig. 5 results in the
model shown in Fig. 11. This is the same model as de-
picted in Fig. 4, minus the tokens in predicate places
p.NOT_BallMovingSlowandp.NOT_BallStopped
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Algorithm 1: Petri net complement algorithm

Input: Petri net model, PN.
Output: Complemented Petri net model, PN.

1 begin

2 Merge all duplicate places in PN;

3 foreach place pj in PN do

4 if p; is a predicate place then

5 If =p; does not exist yet, add it;

6 else

7 Create a complementary place of p;,
denoted —p;, with marking

#(—p) =1 —#(p)):

8 end

9 foreach input transition t; of p; that is not
an output of pj or —=p; do

10 | Add an arc from —p; to #;;

11 end

12 foreach output transition t; of p; that is not
an input of pj or —p; do

13 | Add an arc from #; to —p;;

14 end

15 end

16 end

p.BaliMovingFast p.BaliStopped

p.BaliMovingSlow

P.NOT_BaliMoving Fast

pP-NOT_BallMovingSlow

pP-.NOT_BallStopped

Fig. 11 Complemented Petri net

(the marking of the Petri net is only set during the analysis
phase, depending on the initial state of the world).

Note that the complement algorithm also introduces com-
plementary places to non-predicate places. The importance
of these complementary places will be more clear later.

5.2.2 Extended reachability graph

Before detailing the actual expansion algorithm, one needs
to introduce another auxiliary algorithm, used to compute
the Extended Reachability Graph. The extended reachability
graph will allow determining all the possible markings of a
Petri net, considering all predicate states. The reachability
graph (Murata 1989) of a Petri net with initial marking Mo,
denoted G (M), allows us to determine the reachability set,
denoted R (M), i.e., the set of all reachable markings from
the given initial marking.
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Definition 9 Given a Petri net model PN of a task plan, the
Extended Petri net model of that task plan, denoted APN,
is obtained by adding transitions to P N such that predicates
can switch values in any state. Considering an initial mark-
ing Mo, the reachability graph of APN is the Extended
Reachability Graph of PN, and is denoted AG(M). The
reachability set of APN is the Extended Reachability Set of
PN, and is denoted as AR(My).

Algorithm 2 describes how to create the extended Petri
net models, used to compute the extended reachability
graph. Note that, in line 9, all the predicates are set. This
is done in order to guarantee that the generated Petri net is
in a state were all the predicate places follow Definition 3
and all the added transitions are enabled. This will allow the
generation of the Active Reachability Set as described in the
next Section. Although we set all positive predicates to 0
and all the negative predicates to 1, we could have done the
opposite, without influencing the computation of the Active
Reachability Set (see next Section for more details).

Algorithm 2: Petri net extension algorithm

Input: Complemented Petri net model, PN.
Output: Extended Petri net model, APN.

1 begin

2 Merge all duplicate places in PN;

3 foreach place p; in PN do

4 if p; is a predicate place then

5 Add a new transition ¢’ with an arc from
pj to ¢’ and an arc from ¢’ to —p;;

6 Add a new transition " with an arc from

—pj tot” and an arc from 1" to p;;

7 end
8 end
9 Set all predicate place markings associated with

positive and negative literals, p; and —p;, to 0 and
1 respectively;

10 end

As an example, the extended Petri net model of task
Get_Ball (shown in Fig. 9) is depicted in Fig. 12.

5.2.3 Reduced and active reachability sets

Definition 10 Given a reachability set R(M) of task plan
Petri net model PN, for an initial marking My, the Re-
duced Reachability Set of PN for the given initial mark-
ing, denoted VR(My), is obtained by removing all predi-
cate places from the markings. The marking obtained by re-
moving the predicate places is called reduced marking and
is denoted as V.M.
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p.SeeBall .NOT_SeeBall

a.MoveBehindBall a.CatchBall

Fig. 12 Extended Petri net model of the Get_Ball task plan.

Note that we have not defined the Reduced Reachability
Graph, as it is not applicable. As such, although it makes
sense to determine V(AR (My)), computing A(VR(Mo))
is undefined.

Definition 11 Given a task plan Petri net model PN,
with an initial marking My, the Active Reachability Set of
PN for the given initial marking, is defined as SR(Mjg) =

V(AR(My)) with M ; representing the markings in R(Mp).

The active reachability set represents all the possible
states in terms of action and task places (hence the name ac-
tive), regardless of the predicate place markings. Obtaining
all possible states for a Petri net in terms of actions and task
places, independently of the predicate states, will allow any
task plan Petri net model to interrupt/terminate an included
task Petri net model, by including exit transitions from all
the possible states (regarding action and task places), as ex-
plained in the next section.

As an example, consider again the Get_Ball task plan
in Fig. 9. Computing the active reachability set of this
task plan, 93(My), implies that one needs to determine
the extended reachability graph of the Petri net model de-
picted in Fig. 9, which implies computing the reachabil-
ity graph of the Petri net model shown in Fig. 12, result-
ing in the graph presented in Fig. 13 (considering that the
marking place labels are given by {MoveBehindBall,
CatchBall, SeeBall, NOT_SeeBall, IsBehind-
Ball,NOT IsBehindBall}).

The extended reachability set of the Get_Ball task
plan Petri net model is given by all the markings shown
in Fig. 13. Computing the reduced reachability set of the
extended Get_Ball task plan Petri net model, where the
marking is given by {MoveBehindBall, CatchBall},
results in the following active reachability set:

Mo = {1, 0}, M =1{0, 1}
5.2.4 Petri net expansion

The actual expansion process is performed using Algo-
rithm 3. This algorithm was written considering that the

010101

Fig. 13 Extended reachability graph for the Get_Ball task plan
Petri net model

resulting Petri net model must follow these guiding princi-
ples:

1. A task should always be started in its initial reduced
marking;

2. When a task is not enabled, the associated Petri net model
reduced marking must only contain zeros;

3. All tasks and actions should be interruptible in zero time.

Basically the algorithm merges all environment, action
and task models, starting from the main top-level task model
(tNer). Transitions which lead to the termination of tasks are
replicated (one per each low-level state) allowing the lower
level tasks to terminate no matter what state they are in,
given that we consider the active reachability set.

The action places function as enabling places of all tran-
sitions on the associated models, i.e., if there is a token in
the action place, then the transitions of the associated Petri
net model are enabled (as long as the running-conditions
and remaining input predicate places are also true). As such,
expanding an action place consists of adding arcs from the
action place to all the action model transitions and back.

Task places, besides working also as enabling places for
the associated Petri net model, must guarantee that the task
is always interruptible, and that no action or lower level
task keep running when the task is disabled. This is the rea-
son one needs to create complementary places for all places
(including non-predicate places), and output transitions for
every possible reduced marking of the associated Petri net
model.

Prefixing the transitions with the model names during the
expansion algorithm enables us to determine to which model
they belong when performing the analysis of the final model.

Regarding the complexity of the expansion process, the
main bottleneck of the algorithm is in lines 19 to 27 of Al-
gorithm 3, particularly concerning the addition of transitions
for each active marking of the added task Petri net. Note
that, if the added task Petri net as n states and m output tran-
sitions, the algorithm will add m % (n — 1) transitions and
respective arcs to the expanded Petri net, resulting in a geo-
metric complexity of the algorithm. Furthermore, given the
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Algorithm 3: Single Petri net generation algorithm

Input: Environment and top-level task (¢y,;) models
Output: Single, expanded Petri net

1 begin
2 Create an empty Petri Net, denoted fy.;;
3 foreach environment model, ey ; do
4 Add engr to fner and merge duplicate places;
5 end
6 Add 7j; to fie; and merge duplicate places;
7 foreach rask place, then each action, in fn.; do
8 Compute 71 ;, the complemented Petri net
model associated with the place being expanded;
9 Prefix 711 y; transition labels with m ., name;
10 if the expanding place is an action place then
1 | Add g to fyer:
12 else
13 Compute R(M) of M yer;
14 Add g 10 fyer:
15 foreach input transition t; of the
expanding place in fy.; do
16 Add an arc from transition #; to all
places containing one token in 1;
17 Add an arc from all non-predicate
NOT_p; places to transition #;;
18 end
19 foreach output transition t,, of the
expanding place in fy; do
20 foreach M ;, with j > 0 do
21 Add a new immediate transition

t;, with the same input places and
output places as #;;

22 Add an arc from each place with

one token in 91 ; to transition z,;

23 Add an arc from transition 7, to
all non-predicate NOT _p; places;

24 end

25 Add an arc from each place containing
one token in 9 to transition 7, ;

26 Add an arc from transition #; to all
non-predicate NOT _p places;

27 end

28 if the expanding place has zero tokens

then
29 Remove the tokens from all places

with a token in 97y and add a token
to all non-predicate NOT_p; places;

30 end

31 end

32 Add an arc from the expanding place to all
transitions in 1 7 ;

33 Add an arc from all transitions in 772 y; to the
macro place;

34 Merge duplicate places;

35 Prefix the macro place label with an “e” to
denote that it has been expanded;

36 end

37 Remove the tokens from all predicate places;

38 end
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modularity of the framework, each task is expected to be
small and have a small to medium number of states. It re-
sults that the current limitation of the framework in terms
of complexity is mainly in the analysis process, as some of
the obtained properties are based on the Reachability Graph
generated from the full Petri net. The generation of the full
Petri net takes a time geometrically proportional to the num-
ber of places, but the analysis time can grow exponentially
with the number of states.

5.3 Example

In order to illustrate the application of the algorithms de-
scribed in the previous sections, we will use a simplified ex-
ample of a soccer playing robot. The process is depicted in
Fig. 14, with the environment, action and task plan models
shown in the top left corner. The expansion process follows
the algorithm described in Algorithm 3, with the various
steps illustrated in Fig. 14 and described in the following list
(the numbering used here is the same numbering used in the
arrows shown in Fig. 14, while the line numbers correspond
to the ones in Algorithm 3):

1. Create an empty model, add all environment models and

merge duplicate places (lines 2 to 5);

2. Add complemented Play_Ball task model (line 6);
3. Merge duplicate places (line 6);
4. Expand task place task.Get_Ball by:

4.1. Computing the active reachability set of the com-
plemented Get_Ball task plan model, resulting in
two active markings: marking 0, with one token in
places {eaction.FindBall and NOT_Catch-
Ball}; and marking 1, with one token in places
{NOT_FindBall, eaction.CatchBall} (li-
nes 8 to 13);

4.2. Adding complemented Get_Ball task plan model
(line 14);

4.3. Add input transition arcs, allowing task Get_Ball
to start in its initial marking when enabled through
a transition to place task.Get_Ball (lines 15 to
18);

4.4. Add output transition arcs, enabling task Get_-
Ball to be interrupted/ended when the task is in
its:

4.4.1. Active marking 1 (lines 20 to 24);
4.4.2. Active marking O (lines 25 to 26);

4.5. Add enabling arcs, so that each transition of task
Get_Ball plan model can only fire when task
place task.Get_ Ball has a token (lines 32
to 33);

4.6. Merge duplicate places (line 34) and prefix the
macro place with “e” (line 35);

5. Expand action FindBall by adding the complement-

ed action model (lines 8 to 11), enabling arcs (lines 32
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Fig. 14 Expansion example, with several steps illustrated

to 33), merging duplicate places (line 34) and prefixing
the macro place with “e” (line 35);

6. Expand remaining actions (same lines as previous item)
and remove all predicate place tokens (line 37), resulting
in the final Petri net.

After having obtained the single Petri net, one needs to
choose an initial state for the environment by setting the

number of tokens in each predicate place. This Petri net
can then be analysed using well known techniques (Mu-
rata 1989; Viswanadham and Narahari 1992; Bause and
Kritzinger 2002), for properties such as the probability that
a condition holds, the amount of time spent in each action
and/or task, or the throughput of each transition, among oth-
ers.
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6 Models identification

The environment and action models can be created manu-
ally. However, in many situations, this might prove to be a
cumbersome experience, especially if the number of actions
and/or predicates increases or if one intends to have a more
realistic model. As such, a method was developed to cre-
ate these models automatically from real data, based on the
following steps:

1. Specify alist of actions with their running-conditions and
desired-effects;

2. Specity, if needed, experiment episode start state and end
state;

3. Run data collection experiment;

4. Estimate the action and environment models.

Several techniques exist in the literature to obtain the
structure and parameters of the models in model-based tech-
niques (Dupont et al. 2005), depending on the problem. Our
method is similar to the one used with Probabilistic Deter-
ministic Finite Automata, however, instead of focusing on
the language generated by the produced events, we focus
on the states and determining the transition parameters. Al-
though, for each state, we do not know a priori the set of
reachable states, given that each state is completely defined
by the full set of predicate values, we can deterministically
identify which state the robot estimates it is in (whether the
state was correctly observed or not), having an upper bound
of the number of states which can be found. As such, and
as described in more detail later, the structure can be ob-
tained directly from the predicate values and their changes.
As stated in Dupont et al. (2005), estimating the state transi-
tions parameters can then be achieved using the appropriate
maximum likelihood estimator according to the probability
distribution. Finally, we translate the obtained models into
Petri net models in order to use them in the context of the
proposed framework. The identification is done on a per ac-
tion basis, following the modular nature of the framework,
which further allows us to easily switch between different
environment models and evaluate the performance impact
of that change.

As an example, we will consider throughout this section
a scenario with one robots and one action, CatchBall. In
this case, we start by defining action CatchBall running-
conditions, predicate SeeBall, and desired-effects, predi-
cate HasBall.

6.1 Data collection experiment
The data collection experiment is used to gather information
about the actions impact in the world in order to estimate the

action and environment models, particular which and when
transitions occur. The experiment consists on running each
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Specify start state, end state,
and actions running-conditions
and desired-effects

Y

Run new data experiment episode

}‘ Randomly place agents and ‘

objects in start state

v

Randomly select an action with
enabled running-conditions

Run selected action

yes End state
reached?

yes
action running-condition

Running yes
action desired-effects
got true?

Fig. 15 Models identification data collection experiment

action based on the actions running-conditions and desired-
effects. The experiment flowchart is depicted in Fig. 15.

The user starts by specifying predicate values that de-
scribe the start and end states, and both the running-
conditions and desired-effects for each action. The start
predicates describe the conditions that need to be met for
an experiment episode to be able to start, while the end
predicates describe the conditions that force a new exper-
iment episode to be started. Note that both can be empty,
which means that any state can be used as a starting state,
and that there is no pre-condition for an episode to end (in
this case an episode ends by user termination or by specify-
ing an amount of experiment time). When a new episode is
started, all the agents and objects in the environment are ran-
domly placed so that the start predicates are met. Then, one
action is randomly selected from the subset of actions with
running-conditions met, and started. This action runs as long
as the end state predicates are not met, the action running-
conditions are met, and the desired-effects are not met. If the
end state predicates are met, a new episode is started and, if
the running-conditions are not met, or the desired-effects are
met, a new action is selected. Note that when performing this
selection due to the current action desired-effects becoming
true, the same action can be selected again.

In our case, we also included a counter per action to
hold the number of times each action was selected during
all data collection experiment episodes. These counters are
used both to determine when the experiment should end and
to increase the selection probability of less selected actions.
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Continuing the example used in this section, the start
conditions could be an empty set, while the end conditions
could be: HasBall OR NOT_SeeBall. This means that
if one of these predicates gets true, a new episode is started,
with the ball and robot placed randomly.

6.2 Model estimation

Once the data collection is accomplished, the goal is to ob-
tain the Petri net model of each action and of the environ-
ment from the experiment data, such that the analysis can
be performed using automatically obtained realistic mod-
els. For each episode ran during the data collection exper-
iment we have all predicate values and changes, plus the
selected action over time. Every time one or more predi-
cates changes, we have a state change. Since one action is
enabled at a time, each state change can be attributed either
to the enabled action or the environment (environment tran-
sitions occur in parallel with the action transitions). Given
enough time, we will eventually capture all possible state
changes, however, given that the a priori knowledge consists
only of the available predicates list, and the actions running-
conditions and desired-effects, we cannot know if a state
change is caused by the action or the environment, or both.
As such, and since during the data collection experiment we
are associating each state change with an action, each iden-
tified action model will in fact (partially) contain the envi-
ronment model, i.e., part (or all) of the environment model
will be embedded in each action model. Details on how to
overcome this limitation will be given later, in Sect. 9.

Having processed all data we obtain a Markov chain
model for each action (plus environment), where each state
is defined by the entire set of predicate values. Each event
is defined by the set of predicates that are changed and the
set of predicates that keep their value, i.e., the event is fully
defined by the states it connects. We can create a GSPN
model containing only stochastic transitions, associated to
the events, whose marking process is equivalent to the ob-
tained Markov chain.

Continuing with the example followed throughout this
section, consider, for instance, that the experiment first
episode started in state {SeeBall, NearBall, NOT_-
HasBall} . In this case, given that the CatchBall run-
ning-conditions are verified, the action is started. Eventu-
ally, after some time, changes will occur in the world. For
instance, the robot might catch the ball (event e;), thus
switching to state {SeeBall, NearBall, HasBall}.
This state matches the end conditions, thus a new epi-
sode will be started, by repositioning the robot and ball
randomly. Considering that this new state is {SeeBall,
NOT_NearBall, NOT HasBall}, the action Catch-
Ball is once again started. Eventually, after some time,
changes will occur in the world. For instance, the robot
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Fig. 16 Hypothetical identified Petri net model

might have gotten closer to the ball (event e), yielding
state {SeeBall, NearBall, NOT_HasBall}. Contin-
uing with the action execution, the robot might stop be-
ing close to the ball (event e3), yielding state {SeeBall,
NOT_NearBall, NOT_HasBall}. This results in the
Markov chain depicted in Fig. 16, which is translated to
a Petri net by considering each event a transition, as de-
scribed earlier. As can be seen, all identified transitions have
as inputs the predicate places associated with predicates that
were true in their input state, and have as outputs predicate
places associated with all predicates which were true in the
output state.

For the GSPN model to be fully specified, one needs to
compute the transition rates. From the experiment data, we
have for each event, for each action, a set of elapsed times
corresponding to the time taken from the start state to the
reached state on every occurrence of the event. With this
information one can compute the transition rates for event
e; for a state-transition pair. Since we consider all transitions
to follow an exponential distribution, the probability of the
event e; occurring in a given state s, for a given action a, is
given by Murata (1989):

a ?)“i
P = . @
Z'j:1 §hj

where ¢ N is the number of events that can occur in state s,
in action a.

For each state, for each action, the probability of an event
occurring can be estimated based on its frequency, consider-
ing all occurrences of all events that can occur in that state:
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where ¢ At,, is a vector with the elapsed time obtained for
each occurrence of event ¢; in state s, in action a, and #
denotes vector length, i.e., the number of occurrences.

Since the time for each event to occur follows an expo-
nential distribution, and we consider all events to be inde-
pendent, the rate at which any event occurs in a given state,
in a given action, is the sum of the rates of all events oc-
curring in that state. Furthermore, the maximum likelihood
estimator of the rate parameter for an exponential distribu-
tion is given by the inverse of the mean of the elapsed times,
resulting in

¢N 1 ¢N -1
z(— szq) @
=1 Doioi # ALy 15

It results that we can estimate the rate of each event using:
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The rate associated with the event is the rate associated
with the corresponding transition.

In practise we will not have an infinite number of
episodes, which implies that one might not capture all exist-
ing transitions. Since higher probability transitions are cap-
tured with higher probability, the impact on the performance
properties should be negligible, given an enough number of
episodes. However, there can be a higher impact on logical
properties, particularly concerning reachable states. Never-
theless, most of the logical properties are still valid. For
instance, both the invariant properties over predicate places
and the safeness of the net must hold (for the states found),
even if not all transitions were identified.

Since we cannot know if we have detected all possible
transitions, currently the number of episodes is selected em-
pirically. Nevertheless we are studying measures that might
give us a run-time indication of how well our approxima-
tion is doing, enabling us to automatically determine when
an experiment should end.

7 Execution of single-robot tasks

Task plans developed using our modelling framework are
executed using a Petri net execution application, which
is part of our Multiple Robot Middleware for Intelligent
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Decision-Making (MeRMalD) (Barbosa et al. 2007). MeR-
MalD allows using the same code both in the real robots
and in the simulator, and provides monitoring algorithms
which update predicate values by processing sensor data
(e.g., whether an object is present in the image or not). Given
a Petri net based task plan model, the Petri net Executor
checks which transitions are enabled, considering the cur-
rently selected actions and true predicates, and fires them
accordingly. The token flow will eventually enable and trig-
ger the execution of new actions. An action will stop exe-
cution if it achieves its desired conditions or if any of its
running-conditions becomes false.

When a task plan is executed, time associated to transi-
tion firing will depend on the time until the desired condi-
tions become true or any of the running-conditions becomes
false. When analysing a model quantitatively, the estimated
environment models include the estimated firing rates, and
the closed-loop Petri net properties are determined based on
Markov chain equations or through simulation. Task execu-
tion can be monitored in order to log experimental results.
Those can be compared later to the theoretical results, ob-
tained from model analysis.

8 Results

In order to test the developed algorithms, several experi-
ments were performed using the WeBots (Michel 1998) sim-
ulator, comparing the results based on Markov chain based
Petri net analysis with the experimental results (obtained by
running the tasks in the simulated robots). When using real
robots one should act similarly, though the results would
then come from real and not simulated experiments. All re-
sults were obtained on a 1.86 GHz dual-core Intel Pentium
processor with 3 Gb of memory, with the test scenario con-
sisting of:

20 predicates: NearOwnGoal, MidField, NearOpp-
Goal, HasBall, IsBehindBall, NearBall, See-
Ball, BallKicked, RobotStopped, GoalOppor-
tunity, Aimable2Score, BallOwnGoal, BallN-
earOwnGoal, BallMidField, BallNearOppGoal,
BallOppGoal,BallMovingToOwnGoal,BallMov-
ingToOppGoal, BallMovingFast, BallStopped;

1 experimenting robot with 6 actions: Aim2Score,
CatchBall, Dribble2Goal, Kick2Goal, Move-
BehindBall and Stop!;

9 robots running Move2StartPosition action for ob-
stacles.

ISince we considered that the robot could always see the ball, the
Stop action is not actually used in the experiments, so we will not
include results concerning this action.
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Fig. 17 Overview of the experiment world in the WeBots simulator

An overview of the test scenario is given in Fig. 17. Since
there are no predicates concerning other robots, and since
the 9 non-experimenting robots are always trying to stay in
the same position, these can be seen as static obstacles. We
considered that the robot could always see the ball, meaning
that predicate SeeBall was always true.”

8.1 Identification results

For the data collection experiment the start state was un-
defined, and the end state was defined as having pred-
icates BallOwnGoal or BallOppGoal true. Further-
more, whenever the ball enters the goal, it stays in the
goal until a new episode is started. As such, no iden-
tified model will include transitions having simultane-
ously input predicate Bal1lOwnGoal and output predicate
NOT_BallOwnGoal, or input predicate BallOppGoal
and output predicate NOT_BallOppGoal, i.e., there will
be no identified transition modelling the removal of the ball
from the goal.

When comparing the theoretical results with the exper-
imental ones, we will consider 4 different data collection
experiments, A, B, C and D, corresponding to a data collec-
tion experiment with enough episodes to run each action at
least 10, 100, 1000 and 10 000 times respectively. Note that
experiment A data is contained in experiment B data, which
is contained in C, which is contained in D.

While running each experiment, and whenever a transi-
tion is fired, we update the total number of transitions fired
for the selected action and, if the transition was never fired
before, the number of distinct transitions found is increased.
In Figs. 18a and 18b you find the plot of the number of
distinct transitions fired versus the total number of transi-
tions fired, for experiment D. Although the ratio between the
number of distinct transitions fired and the total number of
transitions fired is decreasing with the number of episodes,
the number of new transitions found is still increasing by a
reasonable rate. This means the system contains a very large

2 Although predicate SeeBal1l was always true, we opted to keep it in
order to minimise the differences to the task plans running in the real
robots.

Table 1 Normalised number of distinct transitions fired per action (D)

Exp. A2S CB D2G K2G MBB
A 3.32 2.34 6.94 1.3 3.93
B 3.31 232 7.84 1.96 4.51
C 2.95 2.3 8.21 2.02 4.77
D 2.98 222 8.15 2.05 5.01

number of transitions and that, even after running each ac-
tion 10000 times, there are still transitions and states that
were never identified. We will see later that this has a lim-
ited impact on the task analysis results.

The larger number of transitions fired for some actions
(see Fig. 18a) is not only a result of that action enabling
an higher number of transitions, but also due to the condi-
tions associated with each action. For instance, in our test
scenario, action Move2Ball running-conditions only in-
cludes SeeBall, meaning that it could always be selected
during the data collection experiment (given that we consid-
ered predicate SeeBall to be always true), while Drib-
ble2Goal running-conditions include predicates See-
Ball and HasBall. As such, even with the weights in-
cluded to increase the selection probability of less selected
actions, some actions can only be selected in a much smaller
state space, leading to a smaller number of selection times
over time.

To get a better comparison of the number of distinct tran-
sitions per action, Table 1 shows the number of distinct tran-
sitions fired per action divided by the total number of times
that action was selected (the action names were shortened to
decrease space). These numbers give us an indication of the
relative amount of data needed per action and could eventu-
ally be used to determine which actions should need a larger
number of data collection episodes. For instance, 5.01 for
MoveBehindBall action in data set D, means that, in av-
erage, each time this action was selected it lead to the occur-
rence of 5.01 different transitions.

8.2 Stochastic performance analysis

In order to compare the theoretical results with the experi-
mental ones, we devised three different tasks based on the
task shown in Fig. 10, with slight modifications:

Score_Goal_sShoot_First Whenever the robot cap-
tures the ball (predicate HasBall is true), if the direct
path to the opponent goal is free (predicate Aimable2-
Score is true), the robot tries to score immediately;

Score_Goal_sShoot_50_50 This task is halfway be-
tween the other two tasks. Whenever the robots captures
the ball, it will randomly decide (with 0.5 probability) if it
should try to score or dribble the ball closer to the goal;
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Evolution of the number of distinct transitions vs the number of transitions fired per action (D)
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Fig. 18 Number of different fired transitions vs number of fired transitions during identification

Score_Goal_shoot_Later The robot only tries to
score if, besides having a direct path to the goal free, it
is near the opponent goal (predicate NearOppGoal true).

For each of these three manually created task plans, the
model (for analysis purposes) is automatically obtained by
the expansion process described earlier, generating a single
Petri net. In this case, the action and environment models
used are those obtained through the identification process
described in the previous section. Since the ball is not re-
moved from the goals during each episode, and given that
the purpose of these tasks is to score a goal, it is expected
that the obtained Petri net model of the overall task will con-
tain deadlocks, corresponding to a goal scored in one of the
goals.

We performed a transient analysis of the task and com-
pared it to the transient results of the experiment. In these
tests we considered the experimenting robot and ball to be
initially positioned near the robot own goal and middle field,
respectively.

8.2.1 Transient analysis

We performed the transient analysis of the probability of
scoring a goal in the opponent goal for the Petri net gen-
erated from Score_Goal_Shoot_Later, for each data
collection experiment set, obtaining the results depicted in
Fig. 19. As can be seen from the figure, the result obtained
with 1000 episodes is very similar to the one obtained with
10000 episodes, despite the number of new transitions still
being found (see Fig. 18).

For the experimental results, we ran 10000 episodes for
each task plan in the WeBots simulator, i.e., the experi-
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Theoretical transient results for BallOppGoal with task Score_Goal_Shoot_Later
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Fig. 19 Theoretical transient analysis for different number of episodes

ment ran until the robot scored 10 000 goals (including goals
scored both in its goal and the opponent goal). Each episode
consisted in placing the robot in the same initial conditions
as in the theoretical case and running the task until a goal
was scored (the same end conditions as the theoretical tran-
sient analysis). Note that in the experimental tests only task
plan models and the actions implementation on the robot are
used, i.e., no action or environment models are used.

In Fig. 20a we show the theoretical transient analysis re-
sults, obtained using the D data set, versus the experimen-
tal results. In spite of all the approximations made, the re-
sults display a small error. Furthermore, the relative transient
trends of the 3 tasks for the experimental case are similar to
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Theoretical vs Experimental transient results for BallOppGoal
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(a) Full time transient analysis results.
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(b) Initial time transient analysis results.

Fig. 20 Theoretical vs experimental transient analysis for predicate Bal10ppGoal with experiment D, zooming in the initial time period on the

right plot

those of the theoretical case. This is important because one
of the goals of the analysis is to give insight on the relative
performance of the different tasks.

Analysing each task during the initial 14 s (see Fig. 20b),
one can see that shooting earlier leads to higher probability
of scoring in the short term, but in the long term it leads to a
lower scoring probability. This is expected as when kicking
immediately the robot can score sooner, but with a higher
failure probability, as opposed to kicking only after getting
close to the goal, which takes longer time but has higher
probability of scoring. Note that there is a reasonable time
difference regarding the increase of scoring probability be-
tween the theoretical and experimental result, which is ex-
plained by the fact that we are considering that all stochastic
timed transitions follow an exponential distribution. In re-
ality, some transitions always have a minimum time which
must elapse before the transition can fire, which is not cap-
tured by our model. We are currently working on this as fu-
ture work.

These results give us insight into the task properties, al-
lowing to make decisions which can improve the task per-
formance. For instance, during a match, one could choose to
kick immediately, or only when closer to the goal, based on
the amount of time missing and the current score.

The comparison of the probability of scoring in our own
goal for the theoretical prediction versus the experimen-
tal results is depicted in Fig. 21. In all cases the proba-
bility of scoring in our own goal is very low and, in both
the Score_Goal_Shoot_50_50 and Score_Goal_-
Shoot_First tasks, no own goal was scored in 10000
episodes. Nevertheless, the maximum obtained error be-
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Fig. 21 Theoretical vs experimental transient analysis for predicate
BallOwnGoal

tween the theoretical probability and the real probability is
3.2E-04 (see Fig. 21).

An important aspect of these results, is that the sum of
the probabilities of predicates BallOwnGoal and Bal-
10ppGoal for the theoretical case when a steady-state is
reached is not 1, as shown in Table 2. This result is due to
the fact that the generated single Petri net model of the over-
all task includes deadlocks which do not correspond to a
goal scored, either due to not having performed enough data
collection episodes for the action and environment models,
or due to the fact that the task plan was actually poorly de-
signed. Knowing which of the two answers is the right one
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Table 2 Theoretical steady-state probability of scoring goals (from
transient analysis). Here, BOWG, BOPG and NG are short terms for
BallOwnGoal, BallOppGoal and “No goal”, respectively

Task Probability

BOWG BOPG NG
Shoot_First 3.209E-04 9.967E-01 2.978E-03
Shoot_50_50 2.635E-04 9.964E-01 3.359E-03
ShootLater 2.198E-04 9.958E-01 3.958E-03

can only be achieved by analysing the deadlocks found, the
path that led to those deadlocks, and the designed task. For
the given test cases, we concluded that these unexpected
deadlocks were due to not having performed enough data
collection episodes. This means that the theoretical Petri net
led the world to a state that was never visited by the selected
action during the identification process. This conclusion is
further backed up by the results shown in Fig. 18 and by the
fact that the experimental results did not include any dead-
lock other than a goal scored.

Given that the final Petri net is safe (by construction,
and confirmed by our analysis), all pairs of predicate places
form an invariant, and the set of all action places also form
an invariant, the average number of tokens per place repre-
sents the average time spent in any action, for action places,
and the average time a predicate had a given boolean value,
for predicate places (for additional performance measures
computation check, for instance, Viswanadham and Nara-
hari (1992)).

8.2.2 Steady-state analysis

Based on the above results, and in order to further study the
impact of the unexpected deadlocks described earlier, we
performed a steady-state analysis. With the three task plans
shown, and by repositioning the ball in the centre of the field
whenever a goal is scored, the robot can play indefinitely.
To model and analyse this setup under our framework, all
we need to do is add an environment model (manually de-
signed), which models the repositioning of the ball when a
goal is scored. For the action models we will use exactly the
same data as used in the results above, but will only con-
sider only the D case. The initial state consisted on placing
the robot and ball in the field centre.

With this new setup one would expect that the resulting
generated Petri net would yield no deadlocks. However, and
as explained earlier, since there were not enough data col-
lection episodes, that is not the case. Nevertheless, by per-
forming an analysis of the communication classes (Jarvis
and Shier 1999; Ocasio 2009) found, we determined that for
each task plan there was one large transient class contain-
ing around 95% of the tangible states, and all the remaining
classes contained only one absorbing state. As such, we opt
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Score_Goal_Shoot_Later time percentage per action — Theoretical vs Experimental
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Fig. 22 Theoretical vs experimental average time spent per action

Table 3 Average steady-state error of the number of tokens per place

Tasks Action places Predicate places
Shoot_First 2.155E-02 7.346E-02
Shoot_50_50 1.809E-02 7.149E-02
Shoot_Later 2.251E-02 5.128E-02

to perform the steady-state analysis of the task excluding all
absorbing states, i.e., considering only the large communi-
cation class.

For the experimental results, we let the robot play until
the computed average number of predicates per place sta-
bilised, i.e., until we reached an experimental steady-state.
For the steady-state analysis we compared the average time
spent by the robot in each action, yielding the results shown
in Fig. 22.

The steady-state average error, measured as the average
absolute difference between the experimental and predicted
number of tokens for all action places and for all predicate
places is shown in Table 3. This result further strengths the
conclusions described earlier, allowing us to use these tech-
niques to perform stationary analysis even in the presence of
deadlocks due to insufficient data collection episodes.

The steady-state analysis also gives us further insight into
the task execution. For instance, Fig. 22 shows that the robot
spends almost no time in the Dribble2Goal when kick-
ing earlier, as opposed to when kicking closer to the goal, as
expected. On the other hand, and also as expected, the robot
spends more time chasing the ball when kicking earlier.

8.3 Stochastic performance analysis (dynamic robots case)
In order to further evaluate the framework performance,

we re-ran the experiments with all the 9 non-experimen-
ting robots navigating randomly around their start posture,
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Theoretical vs Experimental transient results for BallOppGoal
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robots.

Theoretical vs Experimental transient results for BallOppGoal

——— Shoot First — Theoretical (D) |
——— Shoot 50/50 — Theoretical (D) I
——— Shoot Later — Theoretical (D) I
011 — — — Shoot First - Experimental (dyn. robots) I
— — — Shoot 50/50 — Experimental (dyn. robots) I
— — — Shoot Later - Experimental (dyn. robots) Iy

0.08

0.04 1

Probability(BallOppGoallt>t’)
o
o
[}
T

Time [s]

(b) Initial time transient analysis results.

Fig. 23 Theoretical vs experimental (with dynamic robots) transient analysis for predicate Bal1OppGoal with experiment D, zooming in the

initial time period on the right plot

with a radius of 1 m and the same reference speed as the ex-
perimenting robot. We then compared the outcome of these
experiments to the same theoretical analysis performed pre-
viously, both for the transient and stationary analysis results,
as detailed in the following sections.

8.3.1 Transient analysis

Having the other robots navigating randomly has a nega-
tive impact in the transient scoring probability, as can be
seen by the shift to the right of the experimental transient
result plots, depicted in Fig. 23. As can be seen by compar-
ing Figs. 23a to 20a, the transient results got closer to the
theoretic ones in the long run, given that the theoretic analy-
sis estimates a longer time for the same scoring probability.
The impact on the results is greater in the initial time pe-
riod. Given that the experimenting robot is starting in its own
field, and given the dynamic movement of the other robots,
it is more difficult to score when further away from the op-
ponents goal, as shown in Fig. 23b. This lead to a smaller
difference between the various tasks for this initial time pe-
riod, meaning that the advantage of shooting earlier when
time is short is not so large when the other robots are dy-
namic. In this case, the estimate is worse when compared
with the result plotted in Fig. 20b.

8.3.2 Steady-state analysis

In terms of the stationary probability the impact of consider-
ing dynamic robots was small, as can be seen by comparing
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Fig. 24 Theoretical vs experimental (with dynamic robots) average
time spent per action

Table 4 Average steady-state error of the number of tokens per place
with dynamic robots

Tasks Action places Predicate places
Shoot_First 1.111E-02 4.107E-02
Shoot_50_50 1.870E-02 4.995E-02
Shoot_Later 2.851E-02 5.851E-02

the results in Fig. 24 and Table 4 with the results shown pre-
viously in Table 3 and Fig. 22.
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Finally, although the theoretical analysis results were
based in scenarios with static robots, we can still draw the
same conclusions as in the previous experiments: shooting
first as a higher probability of scoring sooner but a lower
probability of scoring in the long run.

9 Conclusions and future work

This paper introduced an integrated framework for mod-
elling, analysis and execution of robot tasks based on Petri
nets. The framework allows modelling both controllable
events, representing decisions made by the robot, and un-
controllable events performed by other robots or that result
from the environment physics, through the inclusion of envi-
ronment, action and task models. Furthermore, these mod-
els can be created separately and later composed, leading
to an easier design of the models, and allowing at the same
time to perform analysis of the task as a single integrated
model. Petri net representation of plans has modelling capa-
bilities smaller than other richer representations, e.g., pred-
icate calculus based planners. Nevertheless, they bring the
advantage of enabling both quantitative and qualitative plan
analysis and representation of uncertainty. We plan to work
on automatic planners that use the Petri net representation
for plans. Two types of analysis can be performed: qualita-
tive (logical) and quantitative (performance), although our
emphasis was on the quantitative case. Furthermore, hav-
ing the action and environment models specified, task anal-
ysis is carried out in seconds, as opposed to running simu-
lations, or tests with real robots, which would take hours or
days.

The framework provides a design-analysis-design ap-
proach, which leads to improved task plans even before hav-
ing run the task in the real robots. The action models can
be designed manually or can be identified through an un-
manned data collection experiment. In the latter case, man-
ually designed models can be added to comply with setup
changes without having to re-run the data collection exper-
iment. Currently we are not yet capable of identifying the
action and environment models separately. We are working
on implementing that feature in the near future, either by
performing additional analysis on the data collected, or/and
by allowing human designed environment models to in-
crease our a priori knowledge of the models. We further
included results using a realistic simulator, WeBots, which
showed the applicability of the framework to realistic sce-
narios.

As part of our future work we plan to improve the data
collection algorithm by including more active exploration
techniques which could provide better decisions of which
actions data to collect more often, under which conditions,
and which stopping conditions to use. Furthermore, we plan
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to allow updating the models in real-time during execu-
tion, so as to continuously improve the estimated models.
Modelling transitions with a minimum time plus exponen-
tially distributed time, instead of only an exponentially dis-
tributed time, should also lead to improved results. We are
also working on performing experiments in the real robots.
The main issue in that case, is supervising and conducting
the experiment execution for identification. One approach
here is to obtain a small data set to start with, and keep
updating the models as the robot executes the tasks them-
selves. One can even use the simulator model as a starting
point, it if is realistic enough, and proceed with the online
update.

The task plan models of the proposed examples were
manually built, although several work exists in the literature
concerning the synthesis of Petri net based controllers from
specifications (Hickmott et al. 2007; Dideban and Alla 2008;
Mauser and Lorenz 2009). In our work, random switches
model concurrency, particularly regarding decision making.
By associating action triggering to these transitions, one
is effectively modelling a Markov Decision Process (Cas-
sandras and Lafortune 2008; Puterman 1994), whereas the
weights associated to the random switch transitions might
be computed to meet desired specifications. Here we have
the advantage that the state space has already been re-
stricted by the Petri net structure. As future work we plan
to integrate these synthesis techniques into the framework.
Furthermore, the information included regarding actions,
namely the running-conditions and desired effects, can also
be used in the automatic creation of plans.

We have already introduced some basic multi-robot mod-
elling capabilities in the framework (Costelha and Lima
2008), by using communication actions with predicates rep-
resenting the result of those communications, but yet with-
out containing selection mechanisms. Several approaches
exist for this purpose, including Petri net-based (Toktam
Ebadi and Purvis 2009), and we are currently working on
integrating them in our framework.
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