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Abstract The work contained in this paper concerns a novel
approach to the n-vehicle collision avoidance problem. The
vehicle model used here allows for three-dimensional move-
ment and represents a wide range of vehicles. The algorithm
works in conjunction with any desired controller to guaran-
tee all vehicles remain free of collisions while attempting to
follow their desired control. This algorithm is reactive and
distributed, making it well suited for real time applications,
and explicitly accounts for actuation limits. A robustness
analysis is presented which provides a means to account for
delays and unmodeled dynamics. Robustness to an adver-
sarial vehicle is also presented. Results are demonstrated in
simulation.

Keywords Collision avoidance · Deconfliction · Safety

1 Introduction

As multi-vehicle autonomous systems are studied and im-
plemented, the issue of conflict resolution becomes increas-
ingly important. From mobile robots performing a coopera-
tive search to air traffic control for unmanned aerial vehicles,
collision avoidance is of utmost importance for safety. Much
of the work so far on collision avoidance has been sponsored
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by the FAA to support a potential move to free-flight air traf-
fic control, whereby aircraft can avoid each other in a de-
centralized manner rather than relying on a land-based con-
troller. Similar concepts have been discussed regarding au-
tonomous harbor control for ships. These scenarios will be-
come more important as unmanned vehicles are introduced,
because safety will need to be guaranteed for them to be ac-
cepted by their manned counterparts.

Currently, the FAA is supporting research into Sense and
Avoid, the aim of which is to endow unmanned aerial ve-
hicles with situational awareness and prescribed maneuvers
that yield equivalent safety to a human pilot, as stated in Eu-
rocontrol (2007). While this approach makes sense in the
near term, eventually a method with provable safety may
be desired, since even human pilots occasionally (though
rarely) cause collisions. The work presented in this paper
is focused on proving safety, and thus it ignores the unpre-
dictable human element. However, noting the strengths and
weaknesses of the guarantees herein may give insight into
what parts of this problem are easily solved by a computer
and what parts may benefit from being combined with hu-
man decision making.

A wide range of methods have addressed the collision
avoidance problem, and in their survey paper, Kuchar and
Yang (2000) split those methods into three categories: pre-
scribed, optimized, and force field. In prescribed maneu-
ver approaches (Hwang 2002; Stanley 2005; Pallottino et
al. 2007), all vehicles follow a set protocol, not unlike the
rules of the road. These approaches tend to yield a discrete
event controller which, when combined with the vehicle’s
continuous dynamics, forms a hybrid system. Optimization
methods (Fiorini and Shiller 1998; Frazzoli et al. 2001;
Pallottino et al. 2002; Pongpunwattana and Rysdyk 2004;
Hill et al. 2005; Guy et al. 2009) attempt to find the best
route for all the vehicles to take to avoid each other while
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minimizing a cost function. Generally, these methods use
a look-ahead or time horizon so that the solution does not
have to be recalculated often. Force field approaches (Eby
and Kelly 1999; Lalish et al. 2006; Mastellone et al. 2008;
Wang and Schaub 2008; Roussos et al. 2008; Hoffmann and
Tomlin 2008) use continuous feedback mechanisms to com-
pute the control. Commonly, the force field between two ve-
hicles is akin to the repulsion between two like-charged par-
ticles, however, many possible alternatives are available for
feedback schemes. These approaches are generally reactive
in that the control reacts to the current state of the system,
rather than planning a trajectory ahead of time.

The collision cone concept, introduced by Chakravarthy
and Ghose (1998) and subsequently used in the deconflic-
tion literature (Fiorini and Shiller 1998; Frazzoli et al. 2001;
Carbone et al. 2006; Fasano et al. 2008), is a first order look
ahead for detecting conflicts. The collision cone (or velocity
obstacle) is a set of velocities for one vehicle that will cause
it to collide with another, assuming each of their veloci-
ties are constant. While most algorithms using the collision
cone define collision by the distance between two points (as
though each vehicle is a disk or sphere), Chakravarthy and
Ghose (1998) shows how the method can be extended to ir-
regularly shaped objects. Note that in order to handle walls,
mazes, and other cluttered environments, the collision cone
must be truncated by a finite look-ahead, as in Guy et al.
(2009). In order to make stronger safety guarantees, the ap-
proach presented here does not truncate the collision cone,
and hence applies only to unbounded environments.

An important differentiator between collision avoid-
ance algorithms is their degree of centralization. Central-
ized means that all of the information about the vehicles
is sent to a single server where the controls are calcu-
lated for each vehicle and sent back. The current air traf-
fic control system uses centralization (with human opera-
tors), as do most optimization schemes (Frazzoli et al. 2001;
Pallottino et al. 2002; Pongpunwattana and Rysdyk 2004).
The other extreme is decentralization, in which no cen-
tral server exists, and each vehicle computes its own
control based only on other vehicles within a particular
range of itself (Hill et al. 2005; Pallottino et al. 2007;
Hoffmann and Tomlin 2008). This situation is ideal from
a computational perspective because the number of vehi-
cles that can be within range at a given time is bounded, and
therefore so is the time the algorithm will take to run, regard-
less of the total number of vehicles involved. In between the
two extremes is a category called distributed, in which no
central server is used, and each vehicle computes its own
control, but a vehicle may need more than local information
to do so. In this case, computations scale with the number of
vehicles involved (n), but the scaling is at least O(n) better
than the centralized case because now n separate processors
are computing in parallel rather than one server doing all the
work.

The vehicle model used in each formulation is also of
utmost importance to the algorithm’s applicability to real
systems. First, for collision avoidance to be nontrivial, the
dynamics must be at least second order (acceleration-level
control input), and the control inputs must be bounded to
model the difficulties of overcoming inertia. Many vehicles
(cars, ships, airplanes, etc.) have nonholonomic constraints,
and as such are often modeled at a high level by unicycle
dynamics. The inputs to this model are forward acceleration
and heading rate (which is equivalent to acceleration nor-
mal to the velocity). All vehicles have a maximum speed,
but some vehicles (notably airplanes) also have a positive
minimum speed. The constant-speed unicycle is one of the
most broadly applicable vehicle models because it is the
most constrained (less constrained vehicles can still dupli-
cate its movements, but not vice-versa). Therefore an algo-
rithm does well to apply to a constant-speed unicycle, but it
is also helpful to make use of extra vehicle capabilities when
available.

Many collision avoidance algorithms are limited in the
number of vehicles for which they can guarantee avoidance.
Some work for an arbitrary number (Pallottino et al. 2002,
2007; Frazzoli et al. 2001), while others are only guaran-
teed for two (Leitmann and Skowronski 1977; Carbone et al.
2006; Wang and Schaub 2008) or three (Hoffmann and Tom-
lin 2008) vehicles. Many more do not guarantee anything
but instead provide a heuristic algorithm that attempts to de-
conflict the vehicles (Hill et al. 2005; Eby and Kelly 1999;
Lalish et al. 2006).

Another important aspect of a collision avoidance algo-
rithm is whether it works for a heterogeneous group of ve-
hicles. Heterogeneity can be due to differences in vehicle
size, dynamics, speed range, control authority, etc. Many
algorithms are developed for a homogeneous group of ve-
hicles for convenience and ease of notation, but could be
easily extended to a heterogeneous case (Hill et al. 2005;
Hoffmann and Tomlin 2008). Others, especially constant-
speed algorithms, can have difficultly generalizing from
a homogeneous state (Lalish et al. 2008; Pallottino et al.
2007). Another important consideration is that vehicle size,
maximum speed, and control authority are often important
parameters for the other vehicles in the system to know in or-
der to properly avoid each other. In a homogeneous system,
these parameters are known implicitly because they are the
same for every vehicle, but in a heterogeneous system, those
parameters must be exchanged. Communication is the most
obvious tool, though sensors could be employed to identify
the vehicle type and compare it to some known list, the same
way a captain can identify a sailboat or a ferry and infer their
size and maneuverability. Until this technology is fully ma-
ture, heterogeneity may require some degree of inter-vehicle
communication.

A final term important to collision avoidance is liveness,
which denotes the ability of the vehicles to attain their goals.
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Liveness is important to consider because one simple way
to avoid collisions is to have everyone stop moving. While
this method may avoid collisions, it is not useful because
the vehicles cannot arrive at their destinations. This type of
situation is called a deadlock. Another problem scenario is a
livelock, where the vehicles continue to move, but in such a
way that they cannot reach their goals.

The Distributed Reactive Collision Avoidance (DRCA)
algorithm presented here fills an important gap in the cur-
rent collision avoidance literature. Namely, this algorithm
presents a distributed, computationally efficient method to
guarantee collision avoidance between n vehicles in the
presence of arbitrary control authority limitations. No ho-
mogeneity is required among the vehicles that make up the
system. The DRCA algorithm allows the vehicles to perform
completely different tasks and to have different size, speed,
actuation limitations, and gains. Plus, liveness of the solu-
tions can be guaranteed, as well as robustness to modeling
errors and adversarial behavior.

The DRCA algorithm is a two-step process, consisting
of an optimization-based deconfliction maneuver, followed
by the longer-term deconfliction maintenance phase, which
is a reactive, force-field type approach. Both of the steps
are based upon the collision cone concept. The optimization
schemes are uniquely distributed, scale well computation-
ally, and guarantee the existence of a feasible solution un-
der given restrictions on initial conditions. The deconfliction
maintenance controller builds upon previous work (Lalish et
al. 2008; Lalish and Morgansen 2008) and ensures the vehi-
cles follow their arbitrary outer-loop controllers as much as
possible without sacrificing safety. This framework also al-
lows vehicles to be given different priorities, such that lower
priority vehicles will make way for higher priority ones.

This algorithm requires little (though nonzero) commu-
nication between vehicles and can safely add new vehicles
to the system as they reach sensor range. Bounds are given
on the required initial separation of vehicles, which im-
plies one serious caveat: vehicles can only be added singly;
merging groups does not yet have a safety guarantee. While
the algorithm is distributed, it is not quite decentralized, in
that all-to-all information is needed within a group. The in-
formation exchange can be easily implemented through a
broadcast, and if enough bandwidth is available for vehicles
to rebroadcast the information they receive, then a quasi-
all-to-all topology can be achieved. The robustness analy-
sis accounts for the corresponding time delays. Addition-
ally, the algorithm can be run in a completely decentralized
fashion, and while some of the guarantees no longer apply,
simulations are given that demonstrate significant capability
nonetheless.

The remainder of the paper is organized as follows. The
problem statement is given in Sect. 2, including the vehicle
model and definitions of conflict and collision. The DRCA

algorithm is described in Sect. 3, which forms the bulk of
the paper. Analyses of liveness and robustness are given in
Sect. 4. Finally, simulation results are presented in Sect. 5,
and concluding remarks are given in Sect. 6.

2 Problem statement

The work here presents a method for deconflicting n vehi-
cles. Each vehicle has a nominal desired control input, ud(t),
which comes from an arbitrary outer-loop controller. This
controller is designed for the vehicle to perform a desired
task, which could range from target tracking to waypoint
navigation, area searching, etc. The goal of the DRCA algo-
rithm is to adjust the control input on each vehicle to guaran-
tee collision avoidance while simultaneously staying close
to the desired control input (keeping in mind that this de-
sired control can change with time).

2.1 Vehicle model

For this approach to collision avoidance, the only vehicle
states that matter are position and velocity. Orientations af-
fect performance, as they often have bearing on the magni-
tude of acceleration available in a particular direction, but
they do not affect the underlying concepts of conflict and
collision. In this way, many different vehicle models work
equivalently with this approach.

The vehicle model chosen for the formulation of this
problem is the generic 3D double-integrator. Specific vehi-
cles are then modeled by restricting the control authority in
particular directions by time- or state-dependent functions
rather than by adjusting the dynamics themselves. In this
way, this single model can represent two-dimensional sys-
tems or even nonholonomic vehicles such as constant-speed
unicycles. Likewise, static obstacles can be avoided since
they can be represented as vehicles with zero speed and zero
control authority. Higher order dynamics (like an airplane
banking to turn) can be accounted for with the robustness
analysis.

The 3D double integrator dynamics are herein repre-
sented by

d

dt

[
r
v

]
=

[
v
u

]
and

d

dt
� = ��, (1)

where r,v,u∈R
3 are the position, velocity, and control in-

put, respectively. The matrix � = [t̂, n̂, b̂] defines the orien-
tation, and � is the cross product matrix of the body rota-
tion vector ωωω = [ωt ,ωn,ωb]T. The notation throughout this
paper will use bold face for vectors, hats over unit-vectors,
script capital letters for sets, standard capital letters for ma-
trices and functions, and everything else is assumed scalar.
Quantities subscripted with t , n, or b refer to the tangent,
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normal, or binormal direction, respectively, while i and j

subscripts reference the ith or j th vehicle.
Note that the orientation (defined by the t̂, n̂, and b̂ vec-

tors) is only used as a local coordinate frame for the DRCA
algorithm. The orientation does not directly affect the dy-
namics (r and v) and, as such, can be arbitrary. However,
many vehicle’s input constraints are related to their orienta-
tion, and connecting this local coordinate frame to the actual
body coordinates of the vehicle can be useful.

We constrain the input by use of an arbitrarily varying
constraint set, ui ∈ Ci . The only requirement is that Ci al-
ways contain the origin. Note this condition implies the posi-
tion space must be unbounded, as maintaining velocity must
always be allowed. A simple example of an input constraint
set that limits maximum acceleration and velocity is

Ci =
{

ui ∈ R
3
∣∣‖ui‖ ≤ umax,

‖vi‖ ≥ vmax =⇒ uT
i vi ≤ 0

}
. (2)

For the DRCA algorithm, one must choose a set of rect-
angular constraints Ri (which can also vary with time, state,
etc.) for each vehicle that encloses its Ci , as well as a cor-
responding saturation function, Si : Ri → Ci . The function
Si must be continuous, must become the identity map for
any ui∈Ci , and must preserve the sign of each component
of ui when decomposed in the t̂, n̂, and b̂ directions. In this
example, one can choose

Ri =
{

ui ∈ R
3
∣∣ − umaxi

≤ uti ≤ umaxi
, . . .

}
, (3)

and

Si =

⎧⎪⎪⎨
⎪⎪⎩

ui
umax‖ui‖ , ‖ui‖ > umax,

ui − viuT
i vi

vmax
, ‖vi‖ ≥ vmax,uT

i vi ≥ 0,

ui , otherwise.

(4)

An example of how more complex vehicle dynamics can be
represented by this simple model with an appropriate choice
of input constraint set follows.

Example 1 Let us model a vehicle which can move forward
with variable speed and turn in two axes (a 3D unicycle
model) and with limits on its turn rate, forward accelera-
tion, and maximum speed. One way to describe the model
mathematically is by

d

dt

[
r
s

]
=

[
s t̂
ua

]
and

d

dt
� = ��,

where |ua| ≤ uamax , |ωn| ≤ ωnmax , |ωb| ≤ ωbmax , and |s| ≥
smax =⇒ uas ≤ 0. Alternatively, an equivalent representa-
tion of the system is (1) with u = ua t̂ + ‖v‖ωbn̂ − ‖v‖ωnb̂.

The tangent vector must be initialized to the same direc-
tion as the velocity vector, but the dynamics will keep them
aligned from then on. In this case, R can be defined by

utmax = −utmin
= uamax ,

unmax = −unmin
= ‖v‖ωbmax ,

ubmax = −ubmin
= ‖v‖ωnmax ,

and the accompanying saturation function is

S =
{

u − vuTv
smax

, ‖v‖ ≥ smax,uTv≥0,

u, otherwise.

Normally, one would not equate the dynamics of a holo-
nomic model to those of a nonholonomic one, largely be-
cause of differences in controllability. However, the DRCA
algorithm is not dependent on controllability the way tradi-
tional control systems are.

The relative position vector from vehicle i to vehicle j is
denoted r̃ij ≡ rj − ri , while the relative velocity vector is
defined in the opposite sense: ṽij ≡ vi − vj . Note that these
definitions imply that ˙̃rij = −ṽij , and ˙̃vij = ui − uj .

To compare different systems in which collision avoid-
ance is to be implemented, a dimensionless Deconfliction
Difficulty Factor, η, will be of use. This factor is defined as

η = v2
max

umaxdsep

. (5)

Conceptually, this factor is the ratio of the worst case turning
radius to the required separation distance, dsep . It can also be
thought of in terms of stopping distance.

The DRCA algorithm was designed primarily for sys-
tems with large η (greater than unity) such as aircraft and
ships, where the collision avoidance task is difficult because
of the dominance of vehicle inertia. Vehicles with small η

(significantly less than unity) such as mobile robots can of-
ten be modeled as having a direct velocity command, since
the inertia becomes insignificant. In such cases, potential
function methods for collision avoidance may be preferable
to the DRCA algorithm because of their simplicity and abil-
ity to closely pack vehicles. The downside of potential func-
tion methods is their general lack of guarantees, especially
when inertia is considered.

2.2 Conflicts and collisions

The vehicles considered here are modeled as point masses,
however, physical vehicles have finite size. Therefore, to ac-
count for physical constraints in the theoretical model, the
condition for collision is not to attain the same position in
space at the same time but rather to come within a minimum
allowed distance at some point in time. This minimum dis-
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Fig. 1 A 2D section of the collision cone along the r̃ij -ṽij plane. The
area between the two dotted lines is the collision cone; a conflict occurs
when the relative velocity vector, ṽij , lies within this area. Technically,
position and velocity vectors should not be plotted together since they
have different units, but an exception is made here to show the rela-
tionship between their angles

tance could be, for example, the five nautical mile separation
between aircraft required by the FAA or the sum of the radii
of two vehicles.

Definition 1 (Collision) A collision occurs between vehi-
cles i and j when ‖r̃ij‖ < dsep,ij , where dsep,ij is the mini-
mum allowed separation distance between the vehicles’ ge-
ometric centers.

For two vehicles not actively in a collision, the next ques-
tion is whether they will collide if they remain on their
present course and speed. This situation will be called a con-
flict.

Definition 2 (Conflict) A conflict occurs between vehicles
i and j if they are not currently in a collision, but with zero
control input (i.e. constant velocity), at some future point in
time they will enter a collision:

min
t>0

∥∥r̃ij − t ṽij

∥∥ < dsep,ij . (6)

The following lemma provides a useful way to check for
conflicts. To simplify the notation in the rest of this paper,
the ij subscripts will generally be suppressed (for example,
r̃ij will be written as r̃).

Lemma 1 Let β = ∠ṽ − ∠r̃ and α = arcsin(
dsep

‖r̃‖ ). A nec-
essary and sufficient condition for no conflict to occur is
|β| ≥ α.

The angle α represents the half-width of the collision
cone (Chakravarthy and Ghose 1998; Frazzoli et al. 2001;
Carbone et al. 2006), which is depicted in Fig. 1. A proof
using this notation is given by Lalish and Morgansen (2008),
but it is conceptually the same as the original collision cone
proofs from Chakravarthy and Ghose (1998).

Fig. 2 Flow chart of the DRCA Algorithm

3 DRCA

The DRCA algorithm uses a two-step process: a decon-
fliction maneuver and a deconfliction maintenance phase.
The guarantees of n-vehicle collision avoidance rest upon
three theorems. The first is that if a group of vehicles is
conflict-free, the deconfliction maintenance controller will
keep them that way. If a vehicle starts in conflict with one
or more other vehicles, the second theorem states it can per-
form a deconfliction maneuver quickly enough to ensure no
collisions happen during the maneuver. The third theorem
gives a conservative separation criterion to ensure the de-
confliction maneuver will bring the vehicle to a conflict-free
state.

The basic algorithm a vehicle uses is to first check the
separation criterion to see if the other vehicles are close
enough to worry about. If so, conflict is checked. If a con-
flict is found, a maneuver is performed until a conflict-free
state is reached. Once conflict-free, the deconfliction main-
tenance controller is used to keep them that way. These steps
yield the flow chart for the DRCA algorithm that is shown in
Fig. 2. The deconfliction maintenance phase also takes the
desired control into account, though there is no guarantee
that it is followed at all times.

The first theorem and proof, along with a description of
the deconfliction maintenance controller, are presented in
Sect. 3.1. The maneuver is described in Sect. 3.2 along with
the second two theorems and proofs. The pieces are brought
together in Sect. 3.3, which describes the algorithm in de-
tail and the conditions and caveats implicit in these collision
avoidance guarantees. Section 3.4 shows how the algorithm
can be adjusted to allow for cases when the conditions for
the guarantees are not met. This heuristic backup performs
well at avoiding collisions, as shown in Sect. 5, meaning the
guarantees are indeed conservative, and the algorithm has
some robustness around the sufficient conditions.
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Fig. 3 Block diagram of the system when using the deconflic-
tion maintenance controller. The vector z = [zT

1, zT
2, . . . , zT

n]T and
zi = [rT

i ,vT
i ]T. Note that the deconfliction maintenance block acts as

a type of saturation on the desired control, ud

3.1 Deconfliction maintenance

The deconfliction maintenance controller is used to keep
the system of vehicles conflict-free. This controller allows
each vehicle to use its desired control input unless that in-
put would cause the vehicle to come into conflict with an-
other vehicle. A basic block diagram of this control system
is shown in Fig. 3.

In order to smoothly transition between the desired con-
trol and the avoidance control, each vehicle needs a way to
measure how close its velocity vector is to causing a conflict.
The first step is to construct a unit-vector, ĉ, representing the
side of the collision cone nearest ṽ. The vector ĉ is found by
rotating r̃ by α around a vector q = r̃×ṽ and normalizing:

ĉ = r̃
‖r̃‖ cosα +

(
q × r̃

‖q‖‖r̃‖
)

sinα. (7)

Next, construct a normal vector, e, from the collision
cone to the relative velocity vector, ṽ (see Fig. 4). If ĉTṽ > 0,
then e ≡ (I − ĉĉT)ṽ, but if ĉTṽ≤0 (the vehicles are headed
away from each other), then no normal exists, and the near-
est point on the collision cone is the tip, so e ≡ ṽ. Therefore:

e ≡
{

ṽ, ĉTṽ≤0,

(I − ĉĉT)ṽ, ĉTṽ > 0.
(8)

In order to combine the effects of multiple collision
cones, the system is decomposed into three component di-
rections, and those directions will be analyzed separately.
Let the coordinate system be defined by the orthonormal
vectors t̂, n̂, and b̂. The orientation of this coordinate system
is arbitrary, but the convention of using tangent, normal, and
binormal notation is chosen since fixing the coordinates to
the body of the vehicle often simplifies analysis.

The next step is to determine how much control (change
in velocity) can be applied in each of these directions before
a conflict forms. For simplicity, a conservative approach is
taken whereby the signed distance is found from ṽ to the
tangent plane enclosing the collision cone (defined by the

Fig. 4 Geometry of the e and ĉ vectors, as seen in an r̃-ṽ section
through the 3D collision cone (dotted lines). The conflict measures pt

and pn are shown, but b̂ points into the page, so pb is infinite. In this
example, ĉTṽ > 0

normal vector e) in each of the t̂, n̂, and b̂ directions. These
signed distances are

pt,ij = ‖eij‖2

eT
ij t̂i

, pn,ij = ‖eij‖2

eT
ij n̂i

, and

pb,ij = ‖eij‖2

eT
ij b̂i

,

which are depicted in Fig. 4.
Select εt , εn, εb > 0 as thresholds such that when |pt | >

εt , the conflict is far enough away that it can be ignored
(and likewise for pn and pb). The n-vehicle deconfliction
maintenance controller running on vehicle i computes pt ,
pn, and pb to each of the other vehicles and then finds the
closest conflict in each direction, i.e.,

p+
ti

= min
j

{
pt,ij > 0, εti

}
,

p−
ti

= −max
j

{
pt,ij < 0,−εti

}
,

(9)

and likewise for pn and pb. Note that by definition 0 <

p± ≤ ε. To simplify notation, in any case where a relation
holds in all of the tangent, normal, and binormal directions,
the subscript will be suppressed.

The input is constructed using a function, F , such that in
each direction u = F(p+,p−). The control function chosen
for this implementation of the DRCA algorithm is

F(p+,p−) = umin

ε
p+ + umax

ε
p−

+ ud − umax − umin

ε2
p+p−, (10)

because it is a bilinear interpolation of the following ordered
triples of the form (p+,p−, u):

P1 = (0,0,0) P2 = (ε,0, umin),

P3 = (0, ε, umax) P4 = (ε, ε, ud).
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Fig. 5 Example of the control function, F . Note that P4 moves up and
down with changing ud

An example of this control function is shown in Fig. 5. Be-
cause F depends on the desired control, ud must be satu-
rated such that

umin ≤ ud ≤ umax. (11)

This choice of control function means that once the u vector
is constructed from its three components, then u∈R.

Let the gain, k, be defined as the maximum gradient of
the function F (for any ud ). For (10), the following holds:

k = umax − umin

ε
. (12)

Note that k has units of inverse seconds, and implicitly, kt ,
kn, and kb can have different values. These gains will be
used in further analyses, since they are more generic than ε.

Assuming the system consists of n vehicles, this algo-
rithm’s computation time on each vehicle scales as O(n),
since it only requires the computation of each other vehi-
cle’s collision cone and then substitution of these results into
the control function. Technically O(n2) computations occur
in the entire group, but since these computations are inde-
pendent of each other (only linked by the sensed or commu-
nicated states), they can happen in parallel in a distributed
fashion, so only the per-vehicle scaling matters.

Theorem 1 The deconfliction maintenance controller de-
scribed above, when implemented on n vehicles with dynam-
ics (1) and inputs constrained by Ci , will keep the system
collision free for all time if the system starts conflict-free.

Proof To measure the distance to a collision, define m as a
signed version of ‖e‖ (in terms of ṽ from the geometry in

Fig. 4):

m ≡
{

‖ṽ‖, ĉTṽ≤0,

‖ṽ‖ sin(|β| − α), ĉTṽ > 0.
(13)

Note that m is negative during conflict and positive during
non-conflict.

To ensure that a conflicted state is never reached (i.e. m

is always greater than zero), it is sufficient to show that for
every pair of vehicles there is a neighborhood on the posi-
tive side of m = 0 where ṁ ≥ 0. This condition implies that
as a velocity vector and the boundary of a collision cone
approach each other, they will either stop approaching or
recede before a conflict is formed. The fact that this neigh-
borhood is one-sided is important because ṁ does not exist
at m = 0 for the same reason that d

dt
‖ṽ‖ does not exist at

ṽ = 0. However, if this condition is satisfied, then m > 0 for
all time, ensuring that m 	= 0.

For ĉTṽ≤0,

ṁ = ṽT ˙̃v
‖ṽ‖ = êT ˙̃v, (14)

where ê = e/‖e‖. Expanding ui into its components yields
ui = uti t̂i + uni

n̂i + ubi
b̂i . Next substitute for ˙̃v in (14) to

get (using the ij notation again briefly for clarity)

êT
ij

˙̃vij = uti ê
T
ij t̂i + uni

êT
ij n̂i + ubi

êT
ij b̂i

− utj êT
ij t̂j − unj

êT
ij n̂j − ubj

êT
ij b̂j .

Because of the symmetry of the problem, eji = −eij and
mij = mji , so

êT
ij

˙̃vij = uti ê
T
ij t̂i + uni

êT
ij n̂i + ubi

êT
ij b̂i

+ utj êT
ji t̂j + unj

êT
ji n̂j + ubj

êT
ji b̂j

= mij

(
uti

pt,ij

+ uni

pn,ij

+ ubi

pb,ij

+ utj

pt,j i

+ unj

pn,ji

+ ubj

pb,ji

)
. (15)

For ĉTṽ > 0, the derivative of (13) becomes

ṁ = sin(|β|−α)
d‖ṽ‖
dt

+‖ṽ‖ cos(|β|−α)
d

dt
(|β|−α). (16)

The derivative exists because m > 0 implies ‖ṽ‖ 	= 0, |β| ≥
α > 0, and ‖r̃‖ ≥ dsep > 0. From the geometry,
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d |β|
dt

= sgn(β)

(
d∠ṽ
dt

− d∠r̃
dt

)

= sgn(β)
d∠ṽ
dt

+ ‖ṽ‖
‖r̃‖ |sinβ| .

The derivative of α is somewhat less straight-forward:

dα

dt
= d

dt

(
arcsin

(
dsep

‖r̃‖
))

= d

dt

(
dsep

‖r̃‖
)(

1 −
(

dsep

‖r̃‖
)2

)−1/2

= dsep‖ṽ‖ cosβ

‖r̃‖2

⎛
⎝ ‖r̃‖√

‖r̃‖2 − d2
sep

⎞
⎠

= ‖ṽ‖
‖r̃‖ cosβ tanα.

Combining the above two terms gives

d

dt
(|β| − α) = ‖ṽ‖

‖r̃‖ (|sinβ| − cosβ tanα) + sgn(β)
d∠ṽ
dt

,

which can be substituted into (16) to get

ṁ = sin(|β| − α)
d‖ṽ‖
dt

+ cos(|β| − α) sgn(β)‖ṽ‖d∠ṽ
dt

+ cos(|β| − α)
‖ṽ‖2

‖r̃‖ (|sinβ| − cosβ tanα). (17)

To simplify the above, note that in the case of ĉTṽ > 0, the
geometry of the vectors (Fig. 4) gives

êT ˙̃v = sin(|β| − α)
d‖ṽ‖
dt

+ cos(|β| − α) sgn(β)‖ṽ‖d∠ṽ
dt

.

Therefore (17) reduces to

ṁ = êT ˙̃v + cos(|β| − α)
‖ṽ‖2

‖r̃‖ (|sinβ| − cosβ tanα).

This expression can be further simplified by recognizing that

m

‖ṽ‖ cosα
= sin |β| cosα − sinα cos |β|

cosα

= |sinβ| − cosβ tanα.

Therefore

ṁ = êT ˙̃v + m
‖ṽ‖ cos(|β| − α)

‖r̃‖ cosα
. (18)

The second term is always positive because ĉTṽ > 0 implies
that cos(|β| − α) > 0, and α ≤ π/2 by definition. Combin-
ing this result with (14) implies that

ṁ ≥ êT ˙̃v

for any value of ĉTṽ. Recalling (15),

ṁij ≥ mij

(
uti

pt,ij

+ uni

pn,ij

+ ubi

pb,ij

+ utj

pt,j i

+ unj

pn,ji

+ ubj

pb,ji

)
. (19)

As long as the controller ensures that uti has the same sign as
pt,ij , etc. then ṁ ≥ 0 for that pair of vehicles. Note that each
vehicle need only calculate its control from its own point of
view, and this rule will automatically cause the vehicles to
cooperate in avoiding conflicts.

Combining this result with the definitions (9), any con-
tinuous control function that satisfies

lim
p+

ti
→0+

uti ≥ 0, lim
p−

ti
→0+

uti ≤ 0,

lim
p+

ni
→0+

uni
≥ 0, lim

p−
ni

→0+
uni

≤ 0, (20)

lim
p+

bi
→0+

ubi
≥ 0, lim

p−
bi

→0+
ubi

≤ 0,

also ensures that a neighborhood exists on the positive side
of m = 0 for which ṁ ≥ 0, guaranteeing the system cannot
enter a conflicted state.

The control function (10) satisfies (20), so the deconflic-
tion maintenance controller will cause the n-vehicle system
to remain conflict-free for all time, assuming it started that
way. �

Note that this result holds for arbitrary (even time vary-
ing) ud , umin and umax , so long as they satisfy (11) and
R contains the origin at every instant. In addition, u can
be further saturated using S in order, conform to the non-
rectangular constraint set C without affecting the guarantee.
The key for this saturation to work is that S must preserve
the octant of u such that (20) is still satisfied.

3.2 Deconfliction maneuver

If the vehicles start in conflict, something must be done to
bring them to a conflict-free state before the deconfliction
maintenance controller can do its job. In this subsection, an
analysis is shown for the case of a single vehicle being added
to a group of n vehicles that are conflict-free with each other,
but not with the new vehicle. This set of conflict-free vehi-
cles will be denoted D . Section 3.3 will extend this analysis
to more general n-vehicle systems.

The purpose of the deconfliction maneuver is to bring
a vehicle to a conflict-free state with a guarantee that no
collisions will occur during this maneuver, given certain
bounds on the separation. These derived bounds, while suf-
ficient, are conservative. It can be easily shown that some
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restrictions on the initial conditions are necessary for any
type of collision avoidance to be possible between vehicles
with limited acceleration, however determining those exact
bounds on feasibility for an n-vehicle system remains an
open problem.

The deconfliction maneuver described here only works
for vehicles that are capable of stopping. A similar maneu-
ver has also been developed for constant-speed vehicles (or
vehicles with a minimum speed), which has been omitted for
brevity, but can be found in Lalish (2009). Both deconflic-
tion maneuvers are fundamentally 2D (native 3D maneuvers
are a topic of current research). In order to use this maneuver
in a 3D application, one must project the vehicle’s positions
and velocities onto a plane (usually horizontal), perform the
calculations, then add back in the original vertical compo-
nent to the resulting velocity. The guarantees of attaining
conflict-freedom will still apply (though the solutions will
be more conservative) and once deconfliction maintenance
takes over, the 3D nature of the system will be accounted
for in a less conservative way.

To perform its maneuver, vehicle i calculates an opti-
mization to find a new velocity vector, v′

i , which is free of
conflict with the other vehicles in D and minimizes ‖
vi‖,
where 
vi = v′

i − vi . While this minimization is nonconvex
in general (see Fig. 6), it can be solved relatively quickly
because only a finite number of possible points must be
checked. The algorithm for solving this optimization works
as follows.

The allowable space for v′
i is a disk, centered at the ori-

gin, of radius vi,max . The optimal solution must lie on a
boundary because the zero-cost point is not feasible (oth-
erwise there would be no conflicts). This optimal solution
must either be a vertex between two collision cones, the
nearest point on a single collision cone, or the vertex be-
tween one collision cone and the edge of the allowable
space. These points are depicted in Fig. 6. This problem and
solution are similar to Guy et al. (2009), which was shown to
be computationally efficient for systems with a great number
of vehicles.

The first step of the algorithm is to compute each of the
nearest points on each collision cone (a right and a left so-
lution exist for each cone). These points are found by first
computing the unit-vector ĉ, now using a 2D version of (7):

ĉ = R(±α)
r̃

‖r̃‖ , (21)

where R is the 2 × 2 rotation matrix. The nearest points are
now given by v′

i = ĉĉTṽ + vj . This list of points is checked
to make sure each ‖v′

i‖ ≤ vi,max . If not, then v′
i is replaced

with

v′
i = vj − ĉĉTvj ± ĉ

√
(ĉTvj )2 − vT

j vj + v2
i,max,

Fig. 6 Example optimization of a variable-speed maneuver. The up-
per, darker vector (black in the online color version) is vi , the lower,
lighter vector (green in the online color version) is v′

i , the circle is the
edge of the allowable disk of solutions, and the shaded regions (blue
in the online color version) are the collision cones. The tips of the col-
lision cones are offset from the origin by vj (this figure is like several
copies of Fig. 4 overlaid). This plot is in the absolute velocity-space of
vehicle i, so the vehicle positions cannot be directly represented any
more than by the shape of the collision cones. The possible optima
are also plotted; solid circles are one-cone points and open circles are
two-cone points

where only the solution with the smaller ‖
vi‖ is kept.
These points account for the only possible optima on the
intersection of a cone and the edge of the space. Next, all of
the two-cone intersection points are found using linear equa-
tions (keeping only those with ‖v′

i‖ ≤ vi,max ). All of these
points are ordered by increasing ‖
vi‖ and are checked con-
secutively for conflicts with the other vehicles. Because of
the ordering, as soon as a point is found which is conflict
free for all j , it is the optimal solution, and the algorithm
terminates.

This optimization has a bound on its computation time
since only a finite number of possible optima must be
checked. Because some points are a combination of two
cones, there are O(n2) points to check. Since these points
need to be checked for conflict with the other n−2 collision
cones, the maximum computation time is upper-bounded by
cn3, where c is related to the time each type of computation
requires. This scaling is conservative because, in general, the
algorithm will terminate long before it checks every point.

This analysis would guarantee a conflict-free solution if
the vehicle could attain its desired velocity vector instan-
taneously. However, the limited control authority available
makes this impossible. Instead, a finite amount of time is re-
quired for the vehicle to attain its desired velocity, and dur-
ing that time it and the other vehicles move, causing the col-
lision cones to move. In order to ensure that the system is
still conflict-free after this motion, the initial collision cones
must be enlarged to the point of enclosing all possible move-
ments.
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To bound the collision cone, one must simply bound
‖
r̃‖ ≤ δ, or how much the vehicles can change position
before the maneuver is complete. Then the width of the col-
lision cone is enlarged to

αe = arcsin

(
dsep + δ

‖r̃‖
)

. (22)

Note that this expression implies an initial separation of
‖r̃‖ ≥ dsep + δ, or else αe will be undefined.

Lemma 2 Consider two vehicles (i and j ), each modeled
by a planar version of (1). Vehicle j is subject to the maxi-
mum speed constraint ‖vj‖ ≤ vj,max . Vehicle i is subject to
‖ui‖ ≤ ui,max and ‖vi‖ ≤ vi,max and is moving with maxi-
mum acceleration from its initial velocity, vi , to its desired
velocity, v′

i . The relative motion between the vehicles in the
time it takes vehicle i to attain its desired velocity is bounded
by ‖
r̃‖ ≤ δ, where

δ = 2vi,max

ui,max

(
vi,max + vj,max

)
. (23)

Proof The velocity change of the maneuver is bounded by
‖
ṽi‖ ≤ 2vi,max , which means the time, t , for the maneuver
to complete is bounded by

t ≤ 2vi,max

ui,max

. (24)

Let 
ri denote the net motion of vehicle i during the ma-
neuver, such that 
r = 
rj −
ri . Conservatively, ‖
ri‖ ≤
vi,maxt and ‖
rj‖ ≤ vj,maxt . Therefore ‖
r̃‖ ≤ δ. �

This bound can in turn be used in (22) to size the enlarged
collision cone. Note that for a homogeneous group of vehi-
cles, this bound can be written in terms of the deconfliction
difficulty factor as δ = 4ηdsep . The following theorem states
how this bound can be used to keep vehicles from colliding
during a deconfliction maneuver.

Theorem 2 Consider a set of vehicles, D , which are not
in conflict with each other and are preforming deconfliction
maintenance. When another vehicle, i, is in conflict with
some or all members of D and performs the deconfliction
maneuver, the system will come to a conflict-free state and
no vehicles will collide during the maneuver. The vehicles
are all modeled by a planar version of (1), have speed con-
straints ‖vj‖ ≤ vj,max , and vehicle i has the input constraint
‖ui‖ ≤ ui,max . A feasible solution to the optimization prob-
lem, v′

i , is assumed to exist, and the vehicles in D maintain
a conflict-free state with v′

i , using a cone with width defined
by (22) and (23).

Proof If the optimization problem is feasible, then the op-
timal solution is guaranteed to be found, and this point will
satisfy

∣∣∠ṽ′ − ∠r̃
∣∣ ≥ arcsin

(
dsep + δ

‖r̃‖
)

.

The maximum amount of time required for the maneuver is
given by (24), and during this time ‖
r̃‖ ≤ δ as given by
Lemma 2. Therefore, once the desired velocities have been
attained, one still has

∣∣∠ṽ′ − ∠(r̃ + 
r̃)
∣∣ ≥ arcsin

(
dsep

‖r̃‖
)

,

meaning the vehicles are not in conflict. The vehicles cannot
collide during this time because, as stated earlier, the pairs
must be initially separated by at least ‖r̃‖ ≥ dsep + δ, which
means after the maneuver, they still must be outside of col-
lision because ‖r̃ + 
r̃‖ ≥ dsep . �

Of course, all of this is for naught if a feasible optimiza-
tion solution does not exist. The following theorem gives a
conditional bound on initial separation that is sufficient to
guarantee the existence of a solution.

Theorem 3 For vehicle i of a planar n-vehicle system, let
vehicle i’s speed be constrained by ‖vi‖ ≤ vi,max , while
each other vehicle’s speed is constrained by the uniform
bound ‖vj‖ ≤ vmax . Let the separation criterion, σi , be de-
fined as

σi ≡
∑
j∈D

αe, (25)

and the separation bound be defined as

ρi ≡
{

arcsin(
vi,max

vmax
), vi,max < vmax,

π
2 , vi,max ≥ vmax.

(26)

There exists an admissible velocity vector, v′
i , which is

conflict-free with the other n − 1 vehicles if vehicle i is sep-
arated from the other vehicles such that σi ≤ ρi .

Proof In order for a conflict-free point to exist, the colli-
sion cones from the other vehicles cannot completely cover
the admissible disk of possible velocities of vehicle i. The
worst case for this coverage when the other vehicles are ca-
pable of higher speed than vehicle i is when all the vehicles
have the same heading at their maximum speed, and their
positions splay out their collision cones so as to form one
large, continuous cone (see Fig. 7). The interior angle of this
large cone must be less than 2 arcsin(vi,max/vmax) to ensure
that it cannot cover the entire admissible circle. When ve-
hicle i’s speed is higher than the other vehicles, the arcsine
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Fig. 7 Example of a borderline case for six vehicles where no con-
flict-free maneuver exists. As in Fig. 6, the circle is the edge of the al-
lowable disk (radius vi,max ), and the shaded regions (blue in the online
color version) are the collision cones, shown with all equal velocities,
of magnitude greater than vi,max

takes on its limiting value of π/2 and becomes conserva-
tive because it only allows the combined collision cone to
cover a half-space within the disk. Together these constraints
form (26). �

In the special case where all of the vehicles are exactly
the same distance from vehicle i (as in Fig. 7), the bound
(26) can be simplified to a bound on distance. First note that
the sum of the collision cones is just (n−1)αe, and rearrang-
ing (22) gives ‖r̃‖ ≥ (dsep + δ)/ sinαe . Then the distance
bound is

‖r̃‖ ≥

⎧⎪⎪⎨
⎪⎪⎩

dsep+δ

sin(
arcsin(

vi,max
vmax

)

n−1 )

, vi,max < vmax,

dsep+δ

sin( π
2(n−1)

)
, vi,max ≥ vmax.

(27)

Note that as n gets large, the bound approaches a linear re-
lationship with n − 1. Intuitively, as more vehicles exist in a
space, they must be spaced out more to ensure a safe trajec-
tory exists between them.

3.3 Algorithm

The first step of the DRCA algorithm is to decide when a
vehicle needs to perform its deconfliction maneuver. Let D
be the set of vehicles which are currently deconflicting (ei-
ther performing the deconfliction maneuver or deconfliction
maintenance). Each vehicle in D must be able to broadcast
to all the other vehicles in D .

Vehicle i follows its desired control until ρi − σi < φ, as
defined in (25) and (26), where φ is a small positive number
chosen to be small enough to give the vehicle time to com-
pute its optimization before σi > ρi . At this point, vehicle i

becomes a member of D and performs its deconfliction ma-
neuver, which amounts to choosing a conflict-free velocity

vector, broadcasting it to the group, and then accelerating to
attain it as quickly as possible. Once this vehicle attains a
conflict-free state with the other vehicles in D , it switches
to deconfliction maintenance. The other vehicles in D that
are already performing deconfliction maintenance avoid this
new vehicle using its broadcast velocity instead of its actual
velocity until its maneuver is complete. Conceptually, this
method is akin to a turn signal, where the new vehicle tells
the group how it will be accelerating, and the group can then
work around that decision. As such, each vehicle will see no
conflicts with a newly added member of the group.

If D is empty, then each vehicle uses σi = αe of the near-
est vehicle. The first vehicle to reach ρi − σi < φ makes it-
self the first member of D but does not perform a deconflic-
tion maneuver, since the other vehicle will be able to safely
deconflict even when the vehicles are closer together. Now
that D is nonempty, the system then follows the previous di-
rections. Once ρi − σi > φ again, vehicle i can cease to be
in D and start solely following its desired control again.

It is possible for multiple vehicles to cross the thresh-
old for starting their maneuvers at the same time. However,
their maneuvers must be consecutively arranged. A simple,
distributed method is for each vehicle to broadcast a random
number, then the one with the lowest number computes its
new velocity first and broadcasts it, allowing the next ve-
hicle to compute its maneuver using that vehicle’s intended
velocity, and so on.

The only information the DRCA algorithm needs on a
continuous basis is the position and velocity of each vehicle
in D , which can either come from broadcast communication
(e.g. a transponder) or sensing (e.g. radar). If the system is
heterogeneous, then the vehicles must know a bound on the
maximum speed and the minimum separation distance of
the other vehicles in D , which can be accomplished by a
broadcast communication or vehicle identification. Finally,
the vehicles must know who is in D and must receive the
intended velocity of any vehicle performing a deconfliction
maneuver. This information cannot be attained through sens-
ing, so some form of broadcast communication is necessary
to disseminate it. Any vehicle not yet in D only needs the
information at a range just outside of where ρi − σi = φ. In
the case of D being empty, this information is required only
of the nearest vehicle.

Two caveats exist with respect to the assumptions in this
algorithm. First, two separate deconfliction groups cannot
safely merge. The reason is that vehicles performing de-
confliction maintenance are in general separated by as lit-
tle as dsep , for which σi > ρi , but vehicles joining D must
have σi < ρi . In many applications, vehicles are added to a
group singly. For example in an airport, if one considers the
congested airspace of the airport itself as a group, wherein
all vehicles are in the deconfliction maintenance phase with
each other, then new aircraft arrive from all around where
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the airspace is not as congested. These new aircraft can
safely integrate one at a time as long as they stay separated
from each other by enough distance that when one vehicle
joins D , it does not cause σi > ρi for other vehicles outside
the group.

The second caveat concerns communication range. While
the communication range must be chosen such that vehicle
i can talk to vehicle j by the time ρi − σi = φ, this range
only ensures that D is connected, not necessarily all-to-all.
This problem can be overcome by having vehicles rebroad-
cast information they have received. This multi-hop method
will tend to accrue more time delay, however the robustness
analysis in Sect. 4 shows how the algorithm can be made
robust to these delays.

3.4 Heuristic extensions

The guarantees provided by the maneuver are ideal if one
can ensure the vehicles always have sufficient warning of
each other’s presence, but this may not be the case for all
systems. However, if at any time the system can come to a
conflict-free state, the strong guarantee of Theorem 1 will
still apply. Therefore the robustness of the system to viola-
tions of the conditions of Theorems 2 and 3 can be increased
by choosing heuristic behaviors for the deconfliction maneu-
ver in cases where it would otherwise be undefined.

The first thing that could cause a solution to not exist is
if ‖r̃‖ < dsep + δ, causing αe to be undefined. In this situa-
tion, let the heuristic be to set αe = π/2 (its limiting value).
The condition (26) is conservative, so even if it is not met,
the optimization should be attempted because a solution is
still likely to exist. In the event that no solution exists, let
the heuristic return the solution v′

i = −vi . This solution was
chosen because it is a velocity the vehicle can attain, and
it will take significant acceleration to get there. The intu-
ition behind the choice is that when vehicles are in conflict,
it is better to do something than nothing, and by continuing
to use maximum acceleration, there is more chance that the
system will stumble upon a conflict-free state.

If a vehicle does not find a solution to its optimization, it
does not join D unless it attains a conflict-free state, since
the deconfliction maintenance controller that the other vehi-
cles in D are running does not allow for vehicles in conflict.
As a worst case, it is better for the new vehicle to collide
with one of the members of D than to cause all of the mem-
bers of D to collide with each other.

4 Analysis

Liveness and robustness properties of the DRCA algorithm
will be proven in the following subsections. Robustness for
this system is split into two categories: robust stability and

robust avoidance. Robust stability encompasses the tradi-
tional ideas of linear stability analysis, focused on how much
gain can be applied to the system before time delays or other
unmodeled dynamics drive the system to oscillate explo-
sively. Robust avoidance is a higher-level idea relating to
how relaxation of the assumptions (in this case cooperation)
affects the validity of the collision avoidance guarantees.

4.1 Liveness

Proving that the DRCA algorithm allows all vehicles to at-
tain their goals in general is made difficult by the breadth
of possible goals. For instance, if the desired control is for
two vehicles to attain the same waypoint, the DRCA algo-
rithm will always choose safety over performance, so the
goal will not be met in favor of keeping the vehicles from
colliding. Likewise, if the desired controller is a cooperative
search algorithm, it becomes unclear how one would define
the liveness of a solution. In light of these facts, liveness
will be shown here for a strict set of assumptions, though
the arguments should hold qualitatively for a wider range of
situations.

Theorem 4 Let the deconfliction group, D , contain n

constant-speed vehicles that are not in conflict. Let their de-
sired controllers be heading regulators where each vehicle
has some constant desired heading. If each vehicle has an
avoidance gain, kn, such that its speed is separated from the
others’ speeds by at least the avoidance threshold, εn, then
all of the vehicles will attain their desired headings while
remaining conflict-free.

Proof Theorem 1 already guarantees that the system will
remain conflict-free for all time. Any vehicle for which pn ≥
εn will follow its desired control exactly and, hence, will
attain its heading as long as the collision cones remain at
least ε away.

Any vehicle for which pn < εn must have ĉTṽ > 0, be-
cause if ĉTṽ≤0 then from (8), e = ṽ and ‖ṽ‖ ≥ εn and since
pn ≥ ‖e‖, then pn ≥ εn, which is a contradiction. Since
ĉTṽ > 0, (18) applies. A collision cone only acts as a bar-
rier if the desired controllers want to accelerate the vehicles
such that the êT ˙̃v term is negative, since the DRCA algo-
rithm adjusts those inputs such that ṁ ≥ 0. However, we al-
ready know that the second term of (18) is strictly positive
since the vehicles are not in conflict, and ĉTṽ > 0 (see proof
of Theorem 1). Therefore êT ˙̃v can be negative while allow-
ing the DRCA algorithm to keep ṁ ≥ 0. Recall from (15)
that êT

ij
˙̃vij = uni

êT
ij n̂i + unj

êT
ij n̂j . Even though each vehicle

wants its own term to be negative, and even though the sum
is allowed to be negative, the DRCA algorithm may cause
one vehicle’s term to be positive (move away from its goal)
in order to allow the other to be more negative (approach its
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goal faster). However, once one vehicle attains its goal head-
ing, then its un goes to zero, which allows the other vehicle
to start moving toward its goal.

Even though these conflicts can be daisy-chained such
that each vehicle is in conflict with another vehicle, this anal-
ysis still guarantees that at least one vehicle in the group
is moving toward its goal at all times, and so some vehicle
must eventually attain its goal and allow another to progress.
Therefore all the vehicles in the group must eventually attain
their desired headings. �

This theorem may seem limited, but attaining a fixed
heading is effectively equivalent to moving towards a distant
waypoint, which is a common goal for a wide range of ap-
plications. Additionally, even for changing desired headings,
this analysis still shows some net progress will be made, but
how that progress will be distributed between the vehicles is
unclear.

The main limiting assumption in this theorem is the speed
separation. The reason for this assumption is to guarantee
that ĉTṽ > 0, because otherwise ṁ = êT ˙̃v, and there may be
no net progress. This situation can only occur if the relative
velocity is small: ‖ṽ‖ < ε. Most desired controllers tested
so far by the authors on equal-speed vehicles or variable-
speed vehicles have shown this situation to be unstable, such
that the vehicles will move to a different configuration where
progress toward goals can be made. However, it is possible
to stabilize this situation and form a livelock, which must
be avoided in the design of a desired controller or else goals
may never be attained.

One whole class of desired controllers is eliminated by
this logic: flocking or schooling controllers. The goal of
these controllers is to make ṽ = 0, which amounts to m = 0,
which the DRCA algorithm does not allow. The vehicles
cannot progress toward their goal of ṽ = 0 because the
DRCA algorithm sees this situation as being on the edge
of safety. On the plus side, for vehicles which can stop, a
deadlock is impossible because only one vehicle is allowed
to stop at a time (since two stopped vehicles would also
have m = 0). However, avoiding deadlock is not sufficient
to prove liveness in general.

4.2 Robust stability

As complex as this control algorithm may appear, it can still
be analyzed for robustness using linear tools. The deconflic-
tion maneuver creates a constant input, so robust stability
does not apply. The desired controller is assumed to exhibit
an adequate degree of robust stability, since this controller is
designed for the system in question. Therefore, the decon-
fliction maintenance controller is the part of this algorithm
that needs to be analyzed for robust stability. Depending on
the system in question, uncertainties can take many differ-
ent forms. The following analysis is based upon a complex

multiplicative uncertainty bounded by the transfer function
w(jω).

Stability in this case is analyzed about an equilibrium in
the conflict space, i.e. where ṁ = 0 for the pair of vehicles
in question. This equilibrium refers to the period from when
the vehicles end their deconfliction maneuver to when they
begin to pass each other, characterized by nearly constant-
velocity trajectories.

Theorem 5 Let kij = kti +kni
+kbi

+ktj +knj
+kbj

, where
k is the gain from (12). The system is stable in the presence
of a complex multiplicative uncertainty bounded by w(jω)

if kij satisfies

kij√
k2
ij + ω2

<
1

|w(jω)| ∀ω. (28)

Proof Recalling (14), (15), and (18), one has that

ṁij = mij

(
uti

pt,ij

+ uni

pn,ij

+ ubi

pb,ij

+ utj

pt,j i

+ unj

pn,ji

+ ubj

pb,ji

+ hij

)
, (29)

where hij is a positive quantity given by

hij =
{ ‖ṽ‖ cos(|β|−α)

‖r̃‖ cosα
, |β| − α ≤ π

2 ,

0, |β| − α > π
2 .

The worst case for robust stability is when the feedback gain
is the largest (most negative), and one can see by looking at
Fig. 5 that the largest gain in terms of p+ will occur when
p− = ε and ud = umin. One can assume without loss of gen-
erality that the nearest conflict is in the positive direction, i.e.
p > 0. In this case,

m
ut

pt

= m
F(pt , ε)

pt

= m

(
ut,max

pt

+ ut,min − ut,max

εt

)

= −ktm + êT t̂ut,max.

Applying this result to (29) yields

ṁij = − (
kij − hij

)
mij + êT�iui,max + êT�j uj,max, (30)

where ui,max = [uti,max
, uni,max

, ubi,max
]T. The second two

terms are always positive (pt > 0 =⇒ êT t̂ > 0, etc.) and
only serve to push the equilibrium to a value of m that is
greater than zero. Only the first term has bearing on the ro-
bust stability of the system. One can open the loop on this
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negative feedback system and examine the loop gain as a
transfer function, L(s):

L(s) = kij − hij

s
.

Note that hij < kij , or else this system does not have an
equilibrium, and the stability analysis does not apply.

The complementary sensitivity function, T (s), is given
by

T (s) = L

1 + L
= kij − hij

s + kij − hij

. (31)

For a system perturbed by a complex multiplicative uncer-
tainty, the perturbed loop gain, Lp(s), is given by

Lp(s) = L(1 + w
), |
(jω)| ≤ 1, ∀ω.

In this case, robust stability to an uncertainty bounded by w

is guaranteed if

|T (jω)| < 1

|w(jω)| ∀ω,

as shown by Skogestad and Postlethwaite (2005). From (31),

|T (jω)| ≤ kij − hij√
(kij − hij )2 + ω2

.

Since 0 ≤ hij ≤ kij , then

kij − hij√
(kij − hij )2 + ω2

≤ kij√
k2
ij + ω2

,

which implies that (28) is a sufficient bound for stability. �

Depending on the nature of the system on which this al-
gorithm is implemented, the uncertainty, w, could take many
forms. As an example, one common type of unmodeled dy-
namics is time delay. Delays can be caused by sensors, com-
munication, or even the discretization of this continuous-
time system.

Lemma 3 The system is stable in the presence of a constant,
pure time delay no greater than τ if

kij <
1.47

τ
. (32)

Proof A multiplicative uncertainty, w, that bounds this time
delay is given by Skogestad and Postlethwaite (2005):

w(ω) =
{∣∣1 − e−jωτ

∣∣ , ω < π/τ,

2, ω ≥ π/τ.

When ω ≥ π/τ , then (28) becomes

kij√
k2
ij + ω2

<
1

2
,

kij <
ω√

3
<

π

τ
√

3
.

If ω < π/τ , then

kij√
k2
ij + ω2

<
1

|1 − e−jωτ | ,

kij√
k2
ij + ω2

<
1√

2 − 2 cos(ωτ)
,

k2
ij (1 − 2 cos(ωτ)) < ω2,

kij τ <
ωτ√

1 − 2 cos(ωτ)
.

The right hand side is now in terms of a single variable (ωτ ),
and the minimum can be calculated numerically:

min
ωτ

ωτ√
1 − 2 cos(ωτ)

≈ 1.4775.

This case is more restrictive because 1.4775 < π/
√

3.
Therefore (32) is sufficient to guarantee stability in the pres-
ence of the time delay τ . �

This type of analysis can be used to find similar bounds
on the gain of the system to guarantee stability to other types
of unmodeled dynamics and uncertainty, for instance noise
or lags caused by filtering.

4.3 Robust avoidance

A possible challenge for this system is a vehicle which does
not cooperate, i.e. does not satisfy (20). Such a vehicle is
regarded as antagonistic, regardless of its actual goals. Note
that a vehicle which does not run the DRCA algorithm, but
rather holds a constant velocity always satisfies (20) and is
therefore not considered antagonistic.

One can see that in a multivehicle scenario, several an-
tagonistic vehicles could surround another vehicle’s veloc-
ity vector with their collision cones, bringing them together
until no conflict-free region was left, leaving the hapless
vehicle with no guarantee of collision avoidance. Indeed,
in some situations collision avoidance may be impossible
against adversaries. Likewise even a single adversary can
pin another vehicle between itself and one or more constant-
velocity vehicles (or vehicles with very small control author-
ity). This problem is fundamental to pursuit-evasion within
groups of vehicles, and this algorithm does not provide an
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Fig. 8 Geometry of the worst situation for avoiding an adversary. The
dotted lines represent the collision cone, and the circles represent the
set of allowable velocity vectors for the two vehicles

easy solution. However, for a two-vehicle system with a sin-
gle adversary, the DRCA algorithm still provides a guaran-
tee.

Theorem 6 Consider a two-vehicle system in which the ve-
hicle’s dynamics are restricted by (3). Assume vehicle one
runs the deconfliction maintenance controller, and vehicle
two is an adversary using an unknown controller. The ve-
hicles will remain conflict-free for all time provided they
started that way and that

u1,max ≥ u2,maxv1,max

√
3√

v2
1,max − v2

2,max

, (33)

which implies also that v1,max > v2,max .

Proof The control function (10) ensures that at the edge of
a conflict, not only does the deconflicting vehicle not ap-
proach the conflict any further, but it actually applies its
maximum control authority in the opposite direction. Re-
deriving (30) for only vehicle one using deconfliction main-
tenance yields

ṁ = − (kt + kn + kb − h)m + êT�iu1,max + êT�j u2,

where one can see that the first term goes to zero as m → 0.
The second term is always greater than or equal to u1,max

because êT t̂1 ≥ 0, etc. However, the last term is upper-
bounded by u2,max

√
3, so u1,max ≥ u2,max

√
3 is suffi-

cient to guarantee limm→0+ ṁ ≥ 0, and thus that conflict
is avoided.

A problem with this analysis is that the control author-
ity limits of the vehicles are not actually fixed, but become
restricted when the maximum speed, vmax , is reached. The
worst case occurs when vehicle one is at its maximum speed
and is on the edge of a conflict with vehicle two, which is
nearly at its own maximum speed. The angle that the colli-
sion cone makes with the boundary of vehicle one’s allow-
able velocity set defines the ratio of control authority needed

to avoid vehicle two’s worst action. As can be seen in Fig. 8,
the worst angle for the collision cone to have is when γ is
maximized. The law of sines gives

sinγ

v2,max

= sin θ

v1,max

,

so γ is maximized when sin θ = 1, and the maximum is
γ = arcsin(v1,max/v2,max). The required control authority
to both stay out of conflict and to stay within v1,max is then

u1,max ≥ u2,max secγ
√

3.

Substituting the maximum γ from above and simplifying
yields the bound (33). �

5 Performance

In this section the performance of the DRCA algorithm will
be demonstrated in simulation. The following subsections
are intended to illustrate a variety of possible applications
as well as showcase the nominal and off-nominal behavior
of the algorithm. The first subsection shows the standard
way the algorithm functions, conforming to all of the re-
quirements for the guarantees of safety in a 2D, variable-
speed, heterogeneous system. The next subsection demon-
strates how vehicle priority can be changed and how it af-
fects the trajectories. Section 5.3 shows a number of sim-
ulations where various requirements of the guarantees are
broken and demonstrates the limits of the heuristic per-
formance of the algorithm. Section 5.4 discusses how the
DRCA algorithm can be adjusted to work with swarms of
vehicles and shows an example. The final subsection com-
pares the DRCA algorithm to a Satisficing Game Theory
(SGT) algorithm in two classically difficult situations. Only
this last subsection uses real-world scale; the other simula-
tions use scales near unity because their purpose is to show
the generic behaviors of the algorithm, rather than a partic-
ular application.

5.1 Variable speed

This simulation (Fig. 9) is of a heterogeneous group of five
vehicles performing target tracking. Each vehicle has a tar-
get that moves at constant velocity (0.4 m/s), whose position
the vehicle is attempting to attain using a standard target fol-
lowing controller. Circles around each vehicle in Fig. 9a de-
note their size, and overlapping circles imply collision. In
this example k = 5 s−1, each vehicle’s maximum speed is
0.5 m/s, and its maximum control authority is 0.2 m/s2. Fig-
ure 9e shows the excess separation distances for each pair of
vehicles, demonstrating that no collisions occur.

The initial conditions in this example are contrived such
that the vehicles enter the deconfliction group one at a time,
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Fig. 9 Five vehicle simulation: (a) shows the vehicle trajectories. Tar-
get paths are shown as dotted lines. Vehicle images are plotted at
30 seconds, while their initial positions are denoted by small circles.
(b) shows a snapshot of the collision cones from the perspective of the
center vehicle at 30 seconds. The center arrow denotes the center ve-
hicle’s velocity. This illustration effectively overlaps several diagrams
like Fig. 4. The vehicle speeds and control magnitudes are shown in (c)
and (d), respectively. The excess separation of the vehicles is plotted
in (e)

counter-clockwise starting from the center vehicle (red in
the online color version). Each vehicle starts its variable-
speed deconfliction maneuver just before the bound (26), to
ensure all the safety guarantees are met. The deconfliction
maneuvers can be seen as short plateaus in the control mag-
nitude plot (Fig. 9d).

The snapshot of the simulation in Figs. 9a and b shows
just how small a conflict-free region can be. While Theo-
rem 1 guarantees that this region will never disappear, one
can see how if any of the smaller vehicles (green, yellow
or purple in the online color version) became antagonistic,
they could easily cause a collision despite the best efforts
of the other vehicles to deconflict. This type of situation is

Fig. 10 Preferential routing comparison for three vehicles. Desired
paths are depicted by dotted lines. The symmetric case is shown in
(a) where each vehicle has kn = 5 s−1, while (b) shows the difference
when the right-hand vehicle (blue in the online color version) is given
routing preference (kn = 10 s−1)

why the analysis of antagonistic vehicles was limited to only
two-vehicle scenarios.

5.2 Preferential routing

A feature of the DRCA algorithm is that vehicles can be
given different priority by adjusting the gain, k (12), of one
vehicle relative to the other vehicles in the group. Vehicles
with lower gain values will effectively get out of the way of
higher gain vehicles, allowing those with priority to follow
their desired controllers more closely.

In order to isolate the effects of preferential routing, the
pair of simulations in Fig. 10 use identical vehicles and ini-
tial conditions. In this case the three vehicles are restricted to
a constant speed of 1 m/s. The vehicles start in an exact con-
flict (i.e. without control, all would reach the same point at
the same time), and immediately begin their constant-speed
deconfliction maneuver. The upper vehicle traveling left to
right (red in the online color version) is the first vehicle, and
so maintains its heading throughout the maneuver. After one
second, a conflict-free state is attained, after which the vehi-
cles attempt to return to their original straight paths.

Even though this simulation is symmetric and homoge-
neous, the upper vehicle stays closer to its path than the
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Fig. 11 Merging two groups of vehicles. No collisions occur despite
the vehicles being too close for all the safety guarantees to apply

others because it had order preference during the deconflic-
tion maneuver. In Fig. 10b, the right-hand vehicle (blue in
the online color version) was given priority by doubling its
gain, kn, relative to the others. As can be seen, the right-hand
vehicle still performs the same deconfliction maneuver, but
once a conflict-free state is achieved, it begins to turn back
toward its path. The other vehicles are forced to make way
for it, while never allowing a conflict to form.

5.3 Heuristic performance

Unlike the previous examples, this simulation (Fig. 11) vio-
lates some of the guarantees of safety, forcing the algorithm
to use its heuristic backup to try and avoid collisions. Ten
vehicles are arranged in two opposing groups. The mini-
mum separation is dsep = 2 m, their communication range
is 8.8 m, their maximum speed is 1 m/s, their target speed
is 0.6 m/s, and their maximum control authority is 0.5 m/s2,
giving these variable-speed vehicles δ = 8 m (23).

The first problem is that the nearest vehicles have ‖r̃‖ <

dsep + δ, so αe is set to π/2, rather than forcing it to be un-
defined. The second problem is that the vehicle communica-
tion range is only 10% more than dsep + δ. These vehicles
are set up to rebroadcast information about their neighbors,
such that any connected group will have full information
(pseudo all-to-all), which means that the two groups know
about their own members but not about each other until they
get close enough to communicate. This leads to two decon-
fliction maneuvers: one at the beginning to avoid the other
vehicles in the group, and later a second to avoid everyone.
Despite these difficulties, the algorithm successfully decon-
flicts the vehicles such that no collisions occur.

5.4 Formations

One limitation of the DRCA algorithm is that vehicles mov-
ing with identical velocities are on the edge of conflict
(m = 0). Because the deconfliction maintenance controller
is continuous, it will tend to push the vehicles to an equilib-
rium where m > 0, which means the vehicles move slightly

Fig. 12 Fifty-vehicle swarm avoiding a static obstacle

away from one another. This behavior precludes the use of
the DRCA algorithm for collision avoidance within a for-
mation of vehicles because the desired state is for all of the
vehicles to move with the same velocity.

One way around this problem is to split up the duties
of the desired controller and the DRCA algorithm. In the
case of formation flight, the relative motion of the vehicles
can be stabilized with any of a variety of controllers from
the literature (Reif and Wang 1999; Skjetne et al. 2002;
Gazi 2006). By using a desired controller that guarantees
intervehicle spacing, the DRCA algorithm can simply be
turned off between the vehicles in the formation. However,
for the more difficult task of avoiding objects moving at high
relative speed, the DRCA algorithm can take over.

A simulation of this situation for a fifty-vehicle swarm
avoiding a static obstacle is shown in Fig. 12. In this case,
the communication topology is broken into two pieces: the
DRCA algorithm uses a star graph, from the static obsta-
cle to each other vehicle, while the desired controller uses
everything else (the complete graph minus the star graph).
Therefore the desired controller has no knowledge of the
static obstacle; it simply keeps the vehicles spaced out us-
ing potential functions. In this way the vehicles avoid the
static obstacle in a guaranteed fashion using the DRCA al-
gorithm while the desired controller maintains intervehicle
spacing.

The maximum vehicle speed is 1 m/s while the swarm
moves at 0.5 m/s, and the vehicle maximum control author-
ity is 0.2 m/s2. The vehicle diameters are 1 m, and the ob-
stacle’s diameter is 6 m. The vehicles begin their decon-
fliction maneuver when they have 6.5 m of excess separa-
tion from the obstacle (13 m center-to-center). The swarm
is “unzipped” around the obstacle, but the vehicles avoid it
by no more than they have to. One can also choose the dis-
tance at which vehicles deconflict such that αe is no more
than some threshold, thus keeping the ‖
v‖ of the maneuver
small enough to ensure the desired controller can adequately
maintain intervehicle spacing.
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Fig. 13 Collision avoidance of 32 aircraft using the DRCA algorithm.
Vehicles are shown 30 seconds before attaining their waypoints. No
near misses occur even though the vehicles start without sufficient sep-
aration to guarantee deconfliction (26)

5.5 Comparison to an SGT algorithm

To demonstrate the performance strength of the DRCA al-
gorithm, two systems were simulated to compare with the
results of a Satisficing Game Theory algorithm by Hill et
al. (2005). The first scenario is based originally on a model
used by Pallottino et al. (2002), aimed at air traffic control.
The aircraft have a constant speed of 500 mph, start evenly
spaced on a circle of radius 50 miles, pointed at the center,
and each is attempting to reach a waypoint on the exact op-
posite side of the circle (the starting point of the opposite
aircraft). This scenario is referred to as a choke point be-
cause, without deconfliction, all the vehicles would meet at
the center (Fig. 13).

A near miss is defined as two aircraft coming within five
miles of each other, so dsep was set to this value. The ef-
ficiency of the maneuver is defined as the average of the
percentage of time delay in arrival at the waypoints:

Efficiency = 1

n

n∑
i=1

Tr

Ti

,

where Tr = 12 minutes is the reference time (flying straight),
and Ti is the actual time taken for the ith vehicle. In Hill et
al. (2005), the maximum turn allowed was 5 degrees per
second, which corresponds to umax = 64 ft/s2. Additionally,
the gain chosen was kn = 0.4 s−1.

In order to fairly compare these two algorithms, the
DRCA algorithm has been set up for this simulation such

that each vehicle has information only from those vehi-
cles within a 50 mile radius of itself, just as in Hill et al.
(2005). While this breaks some of the guarantees of safety,
the heuristic performance will be shown to be more than ad-
equate. Additionally, since the vehicles start off such that
‖r̃‖ < dsep + δ, this simulation used half of the standard δ

value, because the safety guarantees are already gone, so that
the choice of δ such that ‖r̃‖ > dsep + δ is appropriate.

Figure 13 shows a simulation of the DRCA algorithm de-
conflicting 32 vehicles, the densest choke pattern demon-
strated by Hill et al. (2005). The DRCA algorithm attained
an efficiency of 87.6%, compared to 85.7% in Hill et al.
(2005). The real achievement was that no near misses oc-
curred with the DRCA algorithm, as opposed to 19 in Hill
et al. (2005). Even though each vehicle only knows about
other vehicles within 50 miles, the symmetry of this situa-
tion means that the closest conflicts for each vehicle are only
with its two nearest neighbors, and so the communication
limitations are not noticeable in this simulation.

The second scenario is that of two perpendicular flows of
the same aircraft as before. Like the worst case shown in Hill
et al. (2005), the aircraft streams are constant speed, with a
starting separation of seven miles between the aircraft. Be-
cause the DRCA algorithm does not allow vehicles to main-
tain the same velocity as each other, the algorithm was mod-
ified such that vehicles only avoid each other within a circle
of radius 50 miles from the initial crossing point. That is,
for two vehicles to detect each other, they must both be in
the circle and be within 50 miles of each other. Unlike the
standard implementation of the DRCA algorithm, these ve-
hicles must frequently perform deconfliction maneuvers as
new vehicles are spotted. The δ used is 1 mile, but every-
thing else is the same as the previous simulation.

The goal of each vehicle in the simulation in Hill et al.
(2005) was unclear, so for the simulation in Fig. 14 the de-
sired controller points each vehicle toward a distant way-
point along their original trajectory, which is effectively
equivalent to attaining their original heading. Likewise, the
definition of efficiency was unclear in this example, and so is
omitted. The DRCA algorithm demonstrated no near misses,
while Hill et al. (2005) recorded 29. The algorithms were
qualitatively similar, forming alternating waves of vehicles
that flowed past each other.

6 Conclusion

The primary contribution of this paper is a widely applica-
ble, provably safe collision avoidance algorithm. The DRCA
algorithm is designed for the exceedingly simple 3D double-
integrator, which can model a vast array of vehicles through
the application of appropriate control saturation functions.
Instead of using more complex dynamics to model nonholo-
nomic constraints, state-dependent control saturation can be
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Fig. 14 Collision avoidance of two perpendicular flows. Vehicles only
perform the DRCA algorithm when they are inside of the black dashed
circle (radius 50 miles)

used to accomplish the same goal. As shown in the robust-
ness analysis, higher order dynamics can be accounted for
through the proper choice of gains.

The most important aspects of the DRCA algorithm are
the complete guarantees of safety at every phase. Almost
no other collision avoidance algorithms in the literature give
complete safety guarantees for n vehicles in the presence of
acceleration or force limitations. Even the other optimiza-
tion schemes frequently give no mention of when a feasible
solution exists. Strict requirements are used by the guaran-
tees in this paper, but those requirements help to shed light
on the fundamental constraints of avoiding collisions with
limited available acceleration.

As the name Distributed Reactive Collision Avoidance
implies, this algorithm ensures real-time operability by dis-
tributing the computations among the agents, bounding the
computational scaling, and requiring no central server. The
information required by this algorithm in order to maintain
safety guarantees is higher than for some others and may be
higher than is practical for certain systems. However, it has
been demonstrated that even when these requirements are
relaxed, for instance by making the system truly decentral-
ized with only local information, the heuristic performance
is still better than other algorithms. Part of the reason is
that although the deconfliction maneuver may not be proven
safe, if the system becomes conflict-free, the deconfliction
maintenance controller will guarantee it stays that way.

A lengthier description of this material, including a
constant-speed deconfliction maneuver, is available in the

authors’ dissertation, Lalish (2009). Recently the DRCA al-
gorithm was successfully implemented on quadrotor heli-
copters (Melander 2010) and robotic fish (Melander et al.
2010), demonstrating its practicality.
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