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Abstract This paper investigates the coordination of mul-
tiple robots with pre-specified paths, considering motion
safety and minimizing the traveling time. A method to es-
timate possible collision point along the local paths of the
robots is proposed. The repulsive potential energy is com-
puted based on the distances between the robots and the
potential collision points. This repulsive potential energy is
used as the cost map of the probabilistic roadmap (PRM),
which is constructed in the coordination space for multiple
robots taking into account both motion time cost and safety
cost. We propose a search method on the PRM to obtain
the Pareto-optimal coordination solution for multiple robots.
Both simulation and experimental results are presented to
demonstrate the effectiveness of the algorithms.

Keywords Path planning · Multiple robots · Coordination
space · Probabilistic roadmap (PRM) · Pareto-optimal ·
Safety guarantees

1 Introduction

Multiple autonomous robots, including automatic ground
vehicles (AGVs), unmanned underwater vehicles (UUVs),
unmanned ariel vehicles (UAVs), etc., are being employed
in a growing number of areas, such as military applications,
space/subsea explorations, and disaster relief (Durfee 1999;
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Fua et al. 2007; Ge and Fua 2004; Shanmugavel et al. 2009;
Cui et al. 2010). A common scenario is when a group
of agents are dispatched to perform tasks, each agent has
to avoid other dispatched agents while moving towards
its respective destination. Therefore, the problem of mo-
tion coordination for multiple robots should be considered,
which is beyond the scope of simple path planning prob-
lem to avoid static obstacles. We should consider the inter-
collision/confliction between robots and plan the motion of
several robots simultaneously.

Several approaches have been proposed to solve the col-
lision avoidance problem for multiple robots. An overview
of recently proposed methods was presented in Kuchar and
Yang (2002), where the methods can be categorized into
centralized and decentralized. In the centralized algorithms,
a multiple robots system is always being treated as a sin-
gle complex system and each robot in the system is consid-
ered as a part of component of this complex system. Then
the motion coordination problem can be solved as planning
the motions of different components in the complex system.
It could be solved by searching the configuration space of
the complex system (Barraquand and Latombe 1991). This
method is suitable for the off-line computation as it takes
the information of all the robots. It uses semi-definite pro-
gramming or non-linear dynamic programming to solve a
global optimization problem (Hu et al. 2002), and always
can get the optimal solution. The disadvantage is that it
is a challenging task to gather all information at a cen-
tral location in practice. In the decentralized methods (Pur-
win et al. 2008; Schouwenaars et al. 2004; Mataric 1995;
Ge and Cui 2002b), each robot is treated as separated indi-
viduals and its motion is planned independently by treating
other robots as moving obstacles. A cost-based negotiation
process based algorithm was proposed for the cooperative
decentralized path-planning of multiple agents in Purwin et
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al. (2008), of which the basic algorithm was augmented by
the introduction of way-points. The agents considered in
Purwin et al. (2008) can come to a full stop, so the algo-
rithm needs to be extended for the applications to the air-
crafts which cannot have zero forward speed. A decentral-
ized receding horizon strategy based on mixed integer linear
programming (MILP) was proposed for safe decentralized
trajectory planning of multiple aircraft in Schouwenaars et
al. (2004), where the safety is guaranteed by maintaining a
dynamically feasible trajectory for each aircraft that termi-
nates in a loiter pattern. Conflicts between multiple aircrafts
were resolved in a sequential and decentralized fashion, in
which each aircraft takes into account the latest trajectory
and loiter pattern of the other aircrafts. The decentralized
algorithms are easy to implement and can be used for the
real-time implementation based on the information gathered
by the onboard sensors. However, the global optimal solu-
tion cannot be guaranteed.

In this work, we consider the coordination motion plan-
ning for multiple robots in a common workspace, such as
managing a collection of AGVs in a factory. Assuming that
the information of all robots can be gathered at a central lo-
cation, we use the centralized algorithm to obtain the global
optimal solution. The centralized algorithms can be catego-
rized into direct or decoupled (Choset et al. 2005). A di-
rect approach typically solves the problem considering all
the constraints simultaneously, and it is usually challeng-
ing to find a solution which satisfied all constraints. A de-
coupled approach divides the process of solving problems
into several stages. For coordinated trajectory planning, the
problem is decoupled into collision-free path planning fol-
lowed by time scaling in two stages (Kant and Zucker 1986;
Choset et al. 2005; Chitsaz et al. 2004; Ghrist et al. 2005a).
Initially, collision-free paths are computed for each robot in-
dividually, without taking into account the other robots but
simply considering the obstacles of the workspace. In the
second stage, coordination is achieved by computing the rel-
ative velocities of the robots along their individual paths and
avoiding collisions among them (Kant and Zucker 1986).
Decoupled planning does not increase the dimensionality
of the configuration space, and is quite practical (LaValle
2006).

Motivated by Chitsaz et al. (2004), Ghrist et al. (2005a),
we propose a new decoupled coordinated trajectory plan-
ning approach. On the basis of the pre-specified paths, this
approach uses PRM to solve the problem in the coordina-
tion space. The coordination space is a state space formed
by the pre-specified paths of all the robots and schedules the
motions of the robots along their paths so that they will not
collide (Ghrist et al. 2005a). Besides of the motion cost, it
also considers the motion safety of coordination.

Each robot has an independent criterion to evaluate its
performance, such as finish its path in minimum time to

maximize the productivity. As there may be intersections
between the pre-specified paths resulting from the fact that
the robot-robot interaction was ignored, the motion of the
robots will affect others. Hence, the objectives of the robots
are conflicting. In this case, we are interested in finding the
Pareto-optimal coordination solutions by treating multiple
robots coordination as a multi-objective optimization prob-
lem (Ghrist et al. 2005a, 2005b). This notion of Pareto op-
timality is widely used in mathematical economics to model
individual consumers striving to optimize distinct economic
goals, and the Pareto solutions are the ones that there exist
no solutions that are better for all robots.

The main contributions of this work are: (i) a method to
estimate the potential collision point along the local paths of
the robots is proposed, and the repulsive potential is com-
puted based on the distances to the potential collision points
of the robots; (ii) a new approach to evaluate the motion time
cost and safety cost is presented, which facilities the con-
struction of the coordination roadmap; and (iii) the search-
ing heuristic function is defined taking into account both
safety cost and motion cost, following by Dijkstra algorithm
to search the optimal solution. The coordination methodol-
ogy of multiple robots proposed in this work can be applied
to the areas of automatic air traffic conflict detection and
resolution, and that for land or sea based vehicles as well.

The remainder of the paper is organized as follows. In
Sect. 2, preliminaries and the problem formulation are pre-
sented. The safety cost map construction procedure is pre-
sented in Sect. 3, followed by roadmap construction in
Sect. 4. The motion cost and the search strategy are de-
scribed in Sect. 5. Simulation and experimental results are
presented in Sects. 6 and 7, respectively. Conclusions are
drawn in Sect. 8.

2 Preliminaries and problem formulation

In this work, we investigate the problem of coordinating
multiple robots with pre-specified paths considering motion
safety and minimizing the elapse time. Our approach is to
determine the velocity of each robot along its pre-specified
path.

Definition 1 Let Q be a topological space, and a path, τ ,
is defined as a continuous function, τ : [0,1] → Q. Alterna-
tively, R, R

2, or R
3 may be used for the domain of τ . Each

point along the path is given by τ(s) for some s ∈ [0,1].
A trajectory is defined as a path with an associated velocity
profile on each point along the path, i.e., the trajectory needs
to be specified over time (LaValle 2006).

We assume there are m robots in the team, and each robot,
Ai , i = 1, . . . ,m, is treated as a rigid object capable of mov-
ing in a workspace that is a bounded subset of R

2 or R
3.
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Fig. 1 Pre-specified paths and coordination space of two robots

Each robot is independently constrained to traverse a pre-
specified path, τi, i = 1, . . . ,m. This path is computed from
the initial configuration q ini

i to goal configuration q
goal
i of

the robot, not taking into account the other robots but con-
sidering the static obstacles of the workspace (Choset et al.
2005). For m robots, an m-dimensional state space called
a coordination space is that schedules the motions of the
robots along their paths so that they will not collide (Ghrist
et al. 2005a). Mathematically, the coordination space Xτ is
defined as

Xτ := (τ1 × · · · × τm) − O, (1)

where O denotes the collision region. This collision region
contains the positions on which the collisions will happen
between the robots. One important feature is that time will
not be explicitly represented in the coordination space. If
a trajectory is computed in the coordination space, then the
explicit timings can be computed from this trajectory (Ghrist
et al. 2005a).

It is clear that following conditions should be satisfied to
avoid collisions between any pair of the robots.

Aj

(
C(t)

) ∩ Ak

(
C(t)

) = ∅, ∀j �= k, t ∈ [0,1], (2)

where Aj(·) is the subset of the workspace occupied by
robot Aj , and is related to the physical size and shape of
the robot.

Example 1 To show the pre-specified paths and correspond-
ing coordination space clearly, we give an example with
two robots in Fig. 1. Specifically, Fig. 1(a) shows the pre-
specified paths of the robots, and Fig. 1(b) shows the cor-
responding coordination space. Both robots considered here
are squares with sizes 2 m × 2 m and there are intersections
between the paths of them. As a result, there are collision
regions in the coordination space as shown in Fig. 1(b). This

collision region is a set of positions along the paths where
the robots will experience collisions/conflicts. It is noted that
the lengths of the paths of A1 and A2 are 31.241 and 27.785,
respectively. This length is consistent with the length of the
related axis in Fig. 1(b).

One important feature of the coordination space is that
the large sizes of robots will result in large collision re-
gions due to the fact that the large robot will occupy more
workspace. For the point masses, there is almost no collision
unless the robots are exactly at the same position.

If the rigorous shapes and sizes of the robots are used in
constructing the coordination space, and all the robots can
follow their paths precisely, then any free trajectory which
has no intersection with the collision regions in the coor-
dination space can ensure the collision avoidance between
robots. Then considering only the motion time cost, such as
the one in Chitsaz et al. (2004), Ghrist et al. (2005a), we can
obtain the Pareto-optimal coordination solution to minimize
the elapse time of the system. In practice, however, robots
may violate their trajectories due to the constraints on the
tracking ability of robots. In addition, the physical sizes and
shapes of robots considered in the construction of the coor-
dination space may be coarse. We may not able to ensure
the collision avoidance between robots considering only the
time cost. Therefore, in the coordination of multiple robots,
motion safety should be considered as well.

The objective of coordinated planning is to obtain C :
[0,1] → Xτ in the coordination space, where the initial
state is {q ini

1 , . . . , q ini
m } and the goal state is {qgoal

1 , . . . , q
goal
m }.

Then the explicit velocity scheduling information for each
robot will be computed from the planned trajectory. Let
cost functional, Li(C), i = 1, . . . ,m, separately measure
the cost function of each robot Ai . The goal of safety coordi-
nation planning becomes to find the optimal C∗ to minimize
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Fig. 2 Two robots with same
distance between them

the Li(C) over the duration of motion

C∗ = arg min
C∈U

{
Li(C), i = 1, . . . ,m

}
, (3)

where U is the set of all the possible coordination results.
While performing tasks, distinct robot possesses distinct

goal and/or cost function Li(C) for evaluating performance,
such as finishing its own path in minimum time to maximize
its productivity. Then each robot wishes to optimize its cost
function independently of the others. However, due to the
fact that there are intersections of paths in the workspace be-
tween the robots, the motion of the robots will affect others.
As a consequence, their objectives are conflicting. Because
a multi-objective optimization task can consider several ob-
jective functions simultaneously, we treat the coordination
planning as a multi-objective optimization problem in this
work. Our perspective is to find the Pareto-optimal coordi-
nation solution (Parker 1997; Liu and Li 2002; Ghrist et al.
2005b; Chitsaz et al. 2004).

Definition 2 The Pareto-optimization is a vector-valued op-
timization, preserving all cost function data, and widely
used in mathematical economics to model individual con-
sumers striving to optimize distinct economic goals. Each
Pareto-optimal strategy is one for which there exists no strat-
egy that would be better for all robots (Ghrist et al. 2005b;
Chitsaz et al. 2004). In other words, compared with other co-
ordination solution C′ ∈ U , the Pareto-optimal solution C∗
in this work satisfies
{

Li(C
∗) ≤ Li(C

′), ∀i = 1, . . . ,m

Li(C
∗) < Li(C

′), ∃i.
(4)

It is noted that there is usually no single optimal solution
for the multi-objective optimization, but a set of alternatives
with different trade-offs. Despite the existence of multiple
Pareto-optimal solutions, in practice, usually only one of
these solutions is to be chosen. Motivated by Chitsaz et al.
(2004), Ghrist et al. (2005a), our objective is to plan the ve-
locities of robots along the pre-specified paths to avoid col-
lisions. We use the criterion that minimize the elapse time
of the system (the time that the last robot completes its path)
and the safety cost to obtain the unique solution.

3 Safety cost map construction

In this section, the safety cost map construction method is
introduced. The safety cost is used to measure the collision
risk for the robot traveling along the pre-specified path.

3.1 Safety criterion

The most intuitive criterion used to evaluate the collision
risk between robots is the distance between robots in the
configuration space. For example, one common used artifi-
cial potential method is to fill the workspace of the robots
with an artificial potential field in which the robot is re-
pulsed away from the obstacles (Ge and Cui 2002a, 2002b).
Voronoi graph is another kind of map built using the dis-
tance among robots over the configuration space (Mortezaie
1991). However, the distance between robots cannot always
reveal the true possibility of the collision between robots.
As shown in Fig. 2, the distance d between two robots in
Fig. 2(a) is the same as the one in Fig. 2(b). There is no col-
lision risk in case of Fig. 2(a), but the robots in Fig. 2(b)
will conflict with each other at the intersection point fol-
lowing the specified paths. Motivated by guidance theory
in the aerospace literatures, the collision cone concept was
proposed in Chakravarthy and Ghose (1998) for the real-
time collision detection and obstacle avoidance of robots. It
provides a convenient means to determine whether any two
moving objects are on a collision course in the configuration
space. It also reduces the engagement between two irregu-
larly shaped objects into an equivalent engagement between
a point and a circle.

In this work, we propose a method to estimate the pos-
sible collision point for the robot traveling along the pre-
specified path. The repulsive potential energy for each point
along the path will be computed to evaluate the colli-
sion risk and used as the safety cost in the roadmap con-
struction stage. Different from the collision cone approach
(Chakravarthy and Ghose 1998), we construct the repulsive
potential field in the coordination space. In addition, the
physical sizes and shapes of robots have been considered in
the construction of the coordination space. The safety cost
computed here is dependent on the local path of each robot,
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Fig. 3 The velocity and its rate of change

Fig. 4 Relationship between
the change of velocity and the
angle

and is not dependent on the physical size and shape of the
robot.

3.2 Possible collision position

We estimate the possible collision position of the robot by
using its local path. When a robot travels along the path τ :
[0,1] → Q, the relationship between the velocity v and its
rate of change �v at point τ(s0) can be obtained from the
path as shown in Fig. 3. Suppose the robot moves in the 2D
plane, then the curvature of the path, K(τ(s)), can be written
as

K
(
τ(s)

) = |τ ′′(s)|
3
√

1 + τ ′2(s)
. (5)

Let �� be the displacement of the robot with velocity v in
time interval �t , then �� = v�t . Define �α as the direction
change of the velocity as shown in Fig. 4, then �v = v�α.

From (5), we have

lim
�t→0

|�α(t)|
|��| = K

(
τ(s)

)
, (6)

and can conclude that

lim
�t→0

|�v(t)|
|v(t)|2�t

= K
(
τ(s)

)
. (7)

To compute the potential nearest collision position using
current position τ(s0), we introduce an estimated path τe,
which is computed using the local path at current posi-
tion. Assuming that the velocity and its rate of change
keep unchanged in a small time interval, then from (7), we
know that the curvature of the estimated path τe is con-
stant. Therefore, the estimated path τe has a constant cur-
vature K , i.e., the estimated path will be a circle with radius
r = 1

K(τ(s))
|s=s0 .

As shown in Fig. 5, qec is the possible collision point of
the two robots computed from estimated paths τe1 and τe2.
We will use the distance between current position τ(s0) and
the possible collision point qec on the estimated path τe to

Fig. 5 Possible collision point

Fig. 6 Estimated distances in multiple robots system

evaluate the collision risk of the robot traveling along the
pre-specified path.

3.3 Distance computation in multiple robots system

If there are only two robots, Ai and Aj , in coordination
as shown in Fig. 5, then the estimated distance deij

can be
computed using the summation of the distance to the po-
tential collision point of the robots. However, there are al-
ways more than two robots in the multiple robots system.
For every point x in the coordination space Xτ , it contains
the states of all the robots. Paths of all the robots should
be taken into account to compute the distance between the
robot and the estimated collision position.

Motivated by computing the potential function using
sensor-based implementation, we compute all the estimated
distances deij

between each robot pair and select the mini-
mal one as

de = min{deij
}, i, j = 1, . . . ,m, (8)

as shown in Fig. 6.

3.4 Repulsive potential and cost map

The repulsive potential is computed in accordance with the
computed distance de, with the purpose to keep the robot
away from collision regions in the coordination space. The
strength of repulsive potential depends on the proximity to
possible collision position. The repulsive potential energy
increases when the robot is closer to the collision point. The
repulsive potential function used in this work takes the fol-
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lowing form (Choset et al. 2005)

Urep(q) =
{ 1

2η( 1
de

− 1
d∗ )2, de ≤ d∗

0, de > d∗,
(9)

where d∗ ∈ R is the maximum distance that allows to ig-
nore risk of collision sufficiently far away from the colli-
sion point, and η is a positive scaling factor. Being consis-
tent with the commonly used potential function, η is used to
scale the effect of the repulsive potential, and is usually de-
termined by trial. The large η will result in a large repulsive
potential energy.

By utilizing the definition of repulsive potential energy,
the cost map Xcost can be viewed as function of repulsive
potential energy, i.e., Xcost(Urep(q)). In this work, we define
the cost map Xcost as

Xcost(q) = Urep(q). (10)

It is noted that Urep in (9) is used to represent conflict danger
for point-vehicles in traditional potential field method for
robot path planning. In this paper, Urep is used as the cost
map to evaluate the collision risk traveling along the pre-
specified path. It is computed from the local path; therefore,
it depends on the pre-specified paths, but not depends on the
physical sizes and shapes of the robots.

In practice, we can set a maximum limit, Umax, on the
cost map. If the repulsive potential energy exceeds Umax on
some positions along the pre-specified path, these positions
will be regarded as being too risky to move. Umax can be
determined according to following two factors: (i) The ac-
curacy of the physical sizes and shapes of robots considered
in the coordination space construction stage: if it is roughly
considered, then we can choose a lower limit, otherwise, we
can choose a higher one; and (ii) Tracking abilities of robots:
if the tracking error of the robot is larger, then Umax can be
selected lower, otherwise, it can be chosen larger. Note that
the potential function should be smooth in the traditional
potential field method because its gradient will be computed
as the potential force. In this work, Urep is not smooth due
to Umax. This will not affect the computation because we use
Urep as the cost map directly, and do not need to compute the
potential force, i.e., the gradient of the potential function.

Example 2 Figure 7 gives two examples of the pre-specified
paths, corresponding coordination space, and safety cost
map under our criterion for two robots. In the examples, both
robots are squares with size 10 m × 10 m. We set Umax = 10
in both examples.

4 Coordination roadmap

To construct the data structure once and then use that data
structure to plan subsequent coordination trajectories more

quickly, we build a roadmap in Xτ . This is motivated by the
roadmap concept for path planning in configuration space
(Choset et al. 2005). We give the definition of the coordina-
tion roadmap as follows.

Definition 3 A union of one-dimensional curves is a coordi-
nation roadmap (CRM) for m robots if for all {xini

1 , . . . , xini
m }

and {xgoal
1 , . . . , x

goal
m } ∈ Xτ that can be connected by a

trajectory, the following properties hold: (i) Accessibil-
ity: there exists a trajectory from {xini

1 , . . . , xini
m } to some

{x1, . . . , xm} ∈ CRM, (ii) Departability: there exists a trajec-
tory from some {x1, . . . , xm} ∈ CRM to {xini

1 , . . . , xini
m }, and

(iii) Connectivity: there exists a trajectory in CRM between
{xini

1 , . . . , xini
m } and {xgoal

1 , . . . , x
goal
m }.

The roadmap is represented by a graph, Gτ = (Vτ ,Eτ ),
where Vτ and Eτ are the vertices set and edges set, respec-
tively. The vertices in Vτ are the points in the coordination
space in which there are no collisions between robots. An
edge (x1, x2) ∈ Eτ corresponds to a collision-free trajectory
connecting states x1 and x2. It is not easy to obtain the coor-
dination solution in Xτ directly. For the path planning prob-
lem in configuration space, sampling-based planning was
developed for the purpose of reducing planning complex-
ity, of which the computational complexity is related to the
number of samples other than the dimension of planning
space (Kavraki et al. 1996). Sampling-based planning algo-
rithm can consider at most a countable number of samples.
It employs a variety of strategies for generating samples and
for connecting the samples with paths to obtain solutions to
the path planning problems.

There are several strategies about building the sam-
pling roadmap in configuration space, including probabilis-
tic roadmap planner (PRM), expansive-spaces trees (EST),
rapidly-exploring random trees (RRT), and sampling-based
roadmap of trees (SRT) (LaValle and Hinrichsen 2001;
Hsu 2000; Kuffner and LaValle 2000; Plaku and Kavraki
2005). In the PRM, it creates a roadmap in configuration
space, and uses rather coarse sampling to obtain the ver-
tices of the roadmap and very fine sampling to obtain the
roadmap edges, which are free paths between node configu-
rations (LaValle and Hinrichsen 2001). Compared to PRM,
EST relies on the ability to avoid over sampling any region.
Sampling points are chosen biased toward configurations
whose neighborhoods are not dense (Hsu 2000). Different
from EST, RRT chooses the sampling points nearest to the
goal to avoid over sampling (Kuffner and LaValle 2000). In
SRT, the vertices of the roadmap are not single configura-
tions but trees and connections between trees are computed
by a bidirectional tree algorithm such as EST or RRT (Plaku
and Kavraki 2005).

To compute the optimal solution in coordination space,
we utilize PRM planner in the coordination space to con-
struct the CRM. The main procedure can be divided into
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Fig. 7 Examples of repulsive potential energy with different paths for two robots

two steps: creating samples in the coordination space and
connecting these samples in a suitable way to construct the
coordination roadmap.

4.1 Sampling in the coordination space

Sampling means that selecting suitable points in the coordi-
nation space to constitute the vertices set Vτ in the roadmap.
In this work, assume that the generation of states is done
randomly from a uniform distribution. As defined in (1),
the coordination space contains all the possible coordina-
tion solutions for the robots following their paths. Therefore,
a sample in the coordination space corresponds to a com-
bination of robot’s particular position on their paths. This

property is utilized to create the sampling points. For each
robot Ai , we randomly choose a point xi on its path τi . Then
the combination of these points, x = (x1, . . . , xm), will be a
sample in Xτ .

Since there are collision regions/obstacles in the coordi-
nation space, it is clear that the sampling point, x, which
corresponds to the position that the robots collide with oth-
ers, cannot be utilized for planning. The useless point x has
the following property.

Aj(xj ) ∩ Ak(xk) �= ∅, ∃j, k = 1, . . . ,m, and j �= k. (11)

In case of a collision point being selected, we need to in-
crease the connectivity of the roadmap. In this case, we pro-
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Algorithm 1: Vertices construction
Input: Paths of all the robots {τi |i = 1, . . . ,m}
Output: A set of roadmap vertices Vτ

Vτ ← ∅;
while |V |τ < n do

x = (x1, . . . , xm) ← random points set from
{τi |i = 1, . . . ,m};
for All xi, xj do

if Ai(xi) ∩ Aj(xj ) �= ∅ then
repeat

xi ← xi + step
until Ai(xi) ∩ Aj(xj ) = ∅ ;

Vτ ← Vτ ∪ {x}

Fig. 8 Collision position transferring

pose a point transferring strategy to transfer the collision
point to the feasible one nearby to increase the density of
samples in this area. Consequently, it can increase the con-
nectivity of the roadmap. From Ghrist et al. (2005a), we
know that the position where several robots collide can be
viewed as the collision between different combinations of
two robots. Therefore, we can handle the pair-wise conflict
resolution first. The proposed vertex construction algorithm
for the CRM is shown in Algorithm 1, where step is de-
fined as the minimum distance variation of the robot along
its path, and n is the number of vertices to put into the co-
ordination roadmap. If at the new position, no collision hap-
pens between the robots, then the new state x′ can be put
into the roadmap. As shown in Fig. 8, x = (x1, x2) cannot
be put into the roadmap, so we randomly select a robot, A2,
to change its position randomly along the pre-specified path.
The position of A1 is kept unchanged. Then the new state,
x′ = (x1, x

′
2), can be put into the roadmap.

It is noted that the number of samples gives a measure of
the work that needs to be done. Hence it can be used as a
measure of the complexity of the proposed sampling based
planning algorithm. In this work, the number of the sam-
pling points should ensure the three properties of CRM ten-
able first, and the larger number of sampling points can ob-
tain better solution while increasing the computational com-
plexity of the algorithm.

Fig. 9 Sampling along the straight line between two states x and x′ in
coordination space. The numbers correspond to the order in which the
strategy checks the samples for collision

4.2 Concatenation of the sampling points

To construct the roadmap, the sampling points should be
connected to neighbors to form the edges in the roadmap.
In general, two aspects should be considered: (i) the created
edge e ∈ Eτ should be feasible, which means that the robots
will not collide while traveling on the edge; and (ii) the cost
on the edge should be computed, which is necessary for the
subsequent coordination planning.

Motion safety should be considered in building roadmap.
It is necessary to judge whether edge e connected two given
states, x and x′, is feasible to be put into the CRM. In this
work, both collision checking and safety checking are used
to do this judgment. Motivated by the collision checking in
path planning (Schwarzer et al. 2003), we use the step-size
checking algorithm to check whether there are collisions on
edge e in coordination space (Kuffner 2004). As shown in
Fig. 9, in the collision checking, edge e is discretized into a
number of states (x1, . . . , x�), where x = x1 and x′ = x�.
The distance between any two consecutive states xi and
xi+1 is equal to some positive constant step_size. On
each step point, we check whether the collision takes place
as described in (11). If so, the edge e is infeasible and will
not be put into the CRM.

Safety checking is carried out with the collision checking
simultaneously, and its purpose is to compare the safety cost
on the step with the allowed maximum limit of repulsive
potential, Umax. If the safety cost is larger than Umax, the
robots will collide with large probability, then the edge will
not be put into the coordination roadmap. On the basis of
the methods of sampling and connecting vertices, the edge
construction algorithm is proposed as shown in Algorithm 2.
Same as other sampling based algorithms, the coordination
roadmap constructed in this work is not unique because the
sampling points are random selected.

Remark 1 It is noted that the value of step-size is prob-
lem specific and is defined by the user. In general, it needs
to be very small to guarantee that all collisions are found in
coordination space. In addition, step_size can be deter-
mined relating the distance between the robot and collision
region in the coordination space to the maximum length of
the trajectory traced out by any point on the robot.
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Algorithm 2: Edges construction
Input: A set of roadmap vertices Vτ , and paths of

robots {τi |i = 1, . . . ,m}
Output: A set of roadmap edges Eτ

Eτ ← ∅;
for All x ∈ Eτ do

N ← k nearest neighbor vertices in Vτ ;
for All x′ ∈ N do

if (x, x′) /∈ Eτ and feasible then
Eτ ← Eτ ∪ (x, x′);

Fig. 10 Different direction of change in safety cost with same quantity

In this paper, we consider both motion cost and safety
cost of the edge in the CRM to optimize the coordination
planning. The motion cost, Lm, is dependent on the mov-
ing distance of the robot, but not dependent on the motion
direction. The safety cost is influenced greatly by the edge
direction, which is affected by the motion direction as shown
in Fig. 5. Different moving direction will result in the differ-
ent direction of change of the repulsive potential energy. It
is clear that only the positive change will harm the motion
safety as shown in Fig. 10. Therefore, the cost of the edge
can be written as

L(e) = Lm(e) + μLs(e), (12)

where Lm(e) and Ls(e) = ∫
dUrep>0 Urep de are the motion

cost and safety cost, respectively; μ is an adjustable weight
to measure the proportion of the two costs. If we choose a
large μ, the safety cost will be considered more in the co-
ordination planning, then more safety trajectory will be find
out in the coordination space.

While using the step-size checking algorithm to compute
the edge cost, based on the step �e, (12) can be discretized
as

L(e) = Lm(e) + L′
s(e), (13)

where

L′
s(e) = μ

∑

�Urep(i)>0

(
Urep(i) + Urep(i − 1)

2

)
�ei (14)

with �Urep(i) = Urep(i) − Urep(i − 1).
The discretization transforms the optimization problem

to a discrete planning problem in the coordination space.
This leads to complete planning approaches, which are guar-
anteed for a solution when it exists, or correctly report fail-
ure if it does not. For discrete planning, it will be important
that the set of all the possible states is countable, and this
will reduce the computational complexity in practical appli-
cations.

By using the proposed algorithms, the coordination
roadmaps of Example 1 can be constructed as shown in
Fig. 11. It is observed that the constructed roadmap will
be closer to the collision regions if ignoring the safety cost.

5 Motion cost and searching strategy

Having constructed the coordination roadmap Gτ in Xτ , we
can find out the optimized coordination solution C∗ through
searching the roadmap. Besides of the feasibility of solution,
we should also take into account the system efficiency. In
this section, we focus on the derivation of the motion cost
function on the edge e in the CRM, i.e., to determine Lm(e)

in (12).
Several criterions have been proposed to evaluate the mo-

tion cost on a path, including minimizing the average time
elapsed of system (Hu et al. 2002), and minimizing the per-
formance time of each robot added together (Shin and Zheng
1992). Such approaches are common and may be appropri-
ate in some cases. However, it is important to recognize that
scalarization of a vector of m criteria occurs in the process
of managing m robots. Each robot has its own cost func-
tion, e.g., elapsed time. These m criteria are then converted,
often in an arbitrary manner, into a single criterion to be
optimized. In this work, we prefer to investigate the opti-
mization problem for multiple robot coordination without
scalarizing the vector-valued cost function. This brand of
optimization is faithful in the sense that the costs of all the
robots are involved by scalarization. A left-greedy searching
strategy by introducing the Pareto-optimization to optimize
the vector constituted by the efficiency of each robot was
proposed in Ghrist et al. (2005a), of which the purpose is
to minimize the elapse time of the system. In this work, we
propose a new optimal planning algorithm which can obtain
the Pareto-optimized solution on the basis of the constructed
CRM as well.

As shown in Fig. 12, e is an edge in Eτ of Gτ . Suppose
the velocity of Ai is vi , the angle between the trajectory of
Ai and e is θi , and the distance of robot Ai traveling along
the edge e is ei . If the robots follow the edge e, the following
equation holds
{ v1

cos(θ1)
= v2

cos(θ2)
= · · · = vm

cos(θm)
, cos(θi) �= 0

vi = 0, otherwise.
(15)
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Fig. 11 Examples of coordination roadmaps for two robots. The parallelograms are the contours of the repulsive potential energy. Symbols “+”
correspond to the vertices of the roadmap. The straight lines between “+” correspond to edges of the roadmap

Fig. 12 Edges in the coordination space

Define by ti the time for robot Ai to complete the motion
along edge e, and then the system efficiency can be de-
scribed as [t1, . . . , tm]T . From (15), we know that on the
fixed edge e, the ratio of the velocities between the robots
is a constant. As defined in Pareto-optimization, at least one
robot travels with its maximum velocity on the edge, i.e.,

vi(t) = vi,max, ∃i ∈ {1, . . . ,m}, and t ∈ [ti0, ti], (16)

where vi,max is the maximum speed of Ai , and ti0 is the
starting time of Ai moving on the edge. Therefore, to obtain
the optimal coordination, we can set the time that the last
robot takes on this edge as the motion cost, i.e.,

Lm(e) = max
i=1,...,m

{ |ei |
vi,max

}
. (17)

Suppose that we find out Lm(e) = |ek |
vk,max

, robot Ak will travel
with maximum speed vk,max on the edge. Then the velocities
of other robots can be computed by (15).

Considering the safety cost in Sect. 4, and combine with
(13) and (17), we define the searching heuristic function as

H = min
e∈Eτ

{∑
L(e)

}
. (18)

Based on the heuristic function (18), we can search for the
trajectory on the CRM from (0, . . . ,0) to (|τ1|, . . . , |τm|) by
using A∗ or Dijkstra algorithm to obtain the optimal solution
C∗ for multiple robots coordination. As the heuristic func-
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Fig. 13 Pre-specified paths of
the robots

tion (18) is derived taking into account both motion time
and motion safety on each edge, the solution C∗ could real-
ize the optimal solution in combination of these two costs.
In addition, by introducing the cost function (17) and ensur-
ing that there is at least one robot traveling with maximum
velocity on each edge, we know that the solution satisfies
(4) in the definition of Pareto-optimization. Therefore, the
search result C∗ is a Pareto-optimal solution for the sys-
tem.

Remark 2 The proposed algorithm is inherited from the
probabilistically completeness PRM planning (Ladd and
Kavraki 2002). Therefore, we can always find the optimal
solution as long as the number of samples is large enough.

Remark 3 In this work, we considered that the robots ob-
jective is to minimize the time to travel a path, and each
robot has a maximum velocity constraint. For other appli-
cations, suitable class of cost functions can be used by de-
forming the geometry of the coordination space, and some
constraints can be added in selecting feasible edges put into
the coordination roadmap. For the fixed wing aircraft, which
has a minimum velocity requirement to stay aloft, we should
set some constraints in the edge construction stage. Specif-
ically, the edges whose slopes satisfy some requirements
can be put into the CRM only. In addition, the algorithm is
used for off-line computation when the pre-specified paths
of all the robots are available. Then we can get the Pareto-
optimal solution for the multiple robots system. If the algo-
rithm is used for the real-time computation when only the
local paths of robots are available, we may obtain the local
optimal solution, rather than the global Pareto-optimal solu-
tion.

6 Simulation results

In the numerical simulation, we consider the systems with
both two robots and three robots cases. This is because the
dimension of the coordination space agrees with the number

Table 1 Maximum velocities of the robots

Number of robots v1,max v2,max v3,max

2 2 m/s 1 m/s –

3 2 m/s 1 m/s 1 m/s

of robots in the system. We can show the coordination space
in 2D and 3D space intuitively. The pre-specified paths of
robots are shown in Figs. 13(a) and 13(b), respectively. In
the simulation, the maximum velocity of each robot is given
in Table 1. All the robots are squares with sizes 2 m × 2 m.

By applying proposed algorithms, the coordination plan-
ing results in coordination space are shown in Fig. 14. The
CRMs of the systems with two robots and three robots
are shown in Figs. 14(a) and 14(b), respectively. Two co-
ordination solutions are computed as shown in Figs. 14(c)
and 14(d), where the red lines are the coordination solutions
considering time cost only, and the green lines are the co-
ordination solutions considering both time cost and safety
cost. For the system with three robots, the coordination plan-
ning results in A1–A2 profile, and A1–A3 profile in the co-
ordination space are shown in Figs. 14(e) and 14(f), respec-
tively.

The motion cost, safety cost and the maximum safety po-
tential value in the coordinated planning are shown in Ta-
ble 2. In general, one would just indicate a single overall cost
for the optimization result. The purpose of the data shown in
Table 2 is to compare the results of different cases. The time
cost and safety cost are computed by using (17) and (14), re-
spectively. It is noted that the values with brackets are not in-
volved in the coordination planning computation. The value
of the safety cost with bracket is computed by (14) from the
existing solutions.

We show the velocity schedule results with respected to
time in Fig. 15. It is observed that these velocities have dis-
crete jumps. These planned velocities would be sent to the
control systems of the robots as the desired velocities. The
actual velocities will be continuous with errors with respect
to the desired velocities. Although the control system de-
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Fig. 14 (Color online) Coordination roadmaps and the Pareto-optimal solutions considering time cost only (red lines) and considering both time
cost and safety cost (green lines)



Auton Robot (2012) 32:189–205 201

Table 2 Costs in different cases
Cases Time cost Safety cost Maximum repulsive potential value

Two robots ignoring safety cost 31.58 (144.24) 9.19

Two robots considering both costs 37.27 66.68 8.48

Three robots ignoring safety cost 47.30 (187.31) 6.71

Three robots considering both costs 63.52 117.04 5.63

Fig. 15 Velocities schedule results for the robots

sign is out of the scope of this work, we considered that
there would be trajectory tracking errors of robots in prac-
tice. Hence the safety cost is considered in the coordination
planning.

From the simulation results, it is observed that, compared
with the case considering both safety cost and time cost, the
robots could move with higher speeds in the case ignoring
safety cost, as shown in Figs. 15(a) and 15(c). The elapse
time of the system will be shorter considering time cost only,
as shown in Table 2. However, as shown in Figs. 14(c) and
14(d), the planned path is closer to the collision regions re-
gardless of safety cost. In addition, that the maximum safety
potential value is larger in Table 2. Therefore, it is proba-
ble that the robots will collide with others which consider-

ing time cost only. As such, we can conclude that the coor-
dinated planning solutions considering both costs are more
practical and useful in the real applications.

7 Experimental results

7.1 Experiment setup

Two Pioneer3-DX robots are used in the experiment. We
use a laptop to connect with the robots via wireless com-
munication as shown in Fig. 16. The coordinated planning
results are computed off-line on the laptop, and the veloc-
ity commands sent to the robots every 0.1 s. The Pioneer3-
DX robot itself has an embedded computer to control its
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Fig. 16 Experiment setup

motors to follow the desired velocity. In addition, we set
the maximum velocities of the robots as v1,max = 0.2 m/s,
v2,max = 0.1 m/s, respectively.

7.2 Experimental results and analysis

Two cases in the experiment are considered. In the first case,
the robots move on the paths using the scheduled veloc-
ity information computed by our algorithm. In the second
case, we set that A1 moves toward its target directly with its
maximum speed. A2 takes A1 as a moving obstacle, and use
front-avoid mechanism provided in the Advanced Robotics
Interface for Applications (ARIA)1 software to compute the
velocity in real-time (Laffary 2002). The purpose of the
front-avoid mechanism is to avoid front obstacles through
controlling both translation and rotation of the robot. If the
distance to the obstacle is within the safety range, the robot
will slow down and turn an angle to avoid the obstacle. Users
need to set three parameters to use this mechanism, includ-
ing the safety range davoid at which to turn on the front-avoid
mechanism, the angle �θ to turn relative to current heading,
and the speed vavoid at which to go while avoiding an obsta-
cle. If the distance between the closet obstacle and the robot
is dro, the speed of the robot vao will be adjusted as

vao =
{

vavoid
dro

davoid
, 1

2davoid < dro ≤ davoid

0, dro ≤ 1
2davoid.

(19)

In this experiment, we set davoid = 0.6 m, �θ = 15◦,
vavoid = 0.08 m/s for A2. Front sonar are used to detect
the distance to the obstacle for the robot.

1ARIA is a software provided by MobileRobots, Inc. USA for the Pi-
oneer robots. Users can develop their own algorithms based on the ex-
isting classes and interfaces provided by the software.

In the first case, the pre-specified path of A1 is defined
as a line from point (−1.1,−2.4) to (0.9,0), and the pre-
specified path of A2 is a line from point (1.1,−2.4) to
(−0.9,0). Both the lengths of the paths are 3.12 m. It is clear
that there are intersections between the paths of the robots.
The coordination planning solutions using our algorithms is
shown in Fig. 17. From Fig. 17(a), we can see that the path
considering safety cost is far away from the collision region
in the coordination space. The planed velocities of the robots
are shown in Fig. 17(b). The elapse time of the experiment is
27.6 s, and the sequence of the snapshots for the experiment
using solutions considering both costs is shown in Fig. 18.
The blue areas are the regions where the onboard sonar can
detect. A2 will slow down and let A1 run first near the colli-
sion area as shown in Fig. 18(b). In addition, there is at least
one robot moving with maximum speed at any time in the
experiment, as shown in Fig. 19(a).

In the second case, A1 moves with its maximum speed
until approaching the target. A2 will not slow down where
near the collision region, but will try to take a detour treating
A1 as an obstacle. It recomputes the velocity and turning an-
gle at each step. This results in large fluctuation in its veloc-
ity as shown in Fig. 19(b). Before A1 approaches the target,
A2 runs on the right of A2 as shown in Figs. 20(b) and 20(c).
After A1 stops and is not in front of A2, A2 moves with max-
imum speed to the target. The elapse time is 83.3 s for this
case, and is longer than the first case. This is because A2

takes A1 as a moving obstacle and it takes long tour to the
target.

8 Conclusion

In this work, a new method for solving the motion coordina-
tion problem for coordination of multiple robots on the pre-
specified paths has been proposed. The strategy consists of
two parts, building the roadmap in coordination space and
searching for the Pareto-optimal solution on the coordina-
tion roadmap. The motion safety concept and a computation
method for the motion safety based on the local paths of the
robots has been presented. Simulation results have been pro-
vided for the two robots system and three robots system, and
the planning results with and without considering safety cost
have been compared. Experimental results for two Pioneer3-
DX robots have been presented, and the comparison with the
results using the front-avoid mechanism has been illustrated.

The algorithms proposed in this work have the following
two characteristics. First, we do not need to explicitly con-
struct the boundaries of the collision regions in coordina-
tion space. Second, sampling based algorithms computed in
the coordination space are introduced to reduce the compu-
tational complexities. The proposed approach has been ap-
plied to coordinate the robots traveling on the pre-specified
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Fig. 17 (Color online) Pareto-optimal solution for two Pioneer-3DX robots

Fig. 18 Snapshots of
experimental results of two
robots using the proposed
methods

Fig. 19 Velocities of A1 (solid) and A2 (dash-dot) in the experiment
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Fig. 20 Snapshots of the
experimental results using
front-avoid mechanism

paths. For the application to general cases using the pro-
posed algorithm, it is possible to reserve more than one valid
paths in the individual path planning stage, then search for
the Pareto-optimal results in the coordination space taking
into account all these paths.
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