
Auton Robot (2012) 32:81–95
DOI 10.1007/s10514-011-9260-1

Distributed pursuit-evasion without mapping or global
localization via local frontiers

Joseph W. Durham · Antonio Franchi · Francesco Bullo

Received: 29 October 2010 / Accepted: 5 November 2011 / Published online: 22 November 2011
© Springer Science+Business Media, LLC 2011

Abstract This paper addresses a visibility-based pursuit-
evasion problem in which a team of mobile robots with
limited sensing and communication capabilities must co-
ordinate to detect any evaders in an unknown, multiply-
connected planar environment. Our distributed algorithm to
guarantee evader detection is built around maintaining com-
plete coverage of the frontier between cleared and contam-
inated regions while expanding the cleared region. We de-
tail a novel distributed method for storing and updating this
frontier without building a map of the environment or requir-
ing global localization. We demonstrate the functionality of
the algorithm through simulations in realistic environments
and through hardware experiments. We also compare Monte
Carlo results for our algorithm to the theoretical optimum
area cleared as a function of the number of robots available.

Keywords Pursuit-evasion · Clearing · Cooperative
robotics · Distributed algorithms · Multi-robot coverage ·
Surveillance · Monitoring

Electronic supplementary material The online version of this article
(doi:10.1007/s10514-011-9260-1) contains supplementary material,
which is available to authorized users.

J.W. Durham · F. Bullo
Department of Mechanical Engineering, University of California,
Santa Barbara, CA 93106, USA

J.W. Durham
e-mail: joey@engineering.ucsb.edu

F. Bullo
e-mail: bullo@engineering.ucsb.edu

A. Franchi (�)
Dept. Human Perception Cognition and Action,
Max Planck Institute for Biological Cybernetics,
Spemannstrasse 44, 72076 Tübingen, Germany
e-mail: antonio.franchi@tuebingen.mpg.de

1 Introduction

This paper deals with a distributed pursuit-evasion prob-
lem for a team of robotic searchers in an unknown envi-
ronment. The particular pursuit-evasion problem we exam-
ine, also known as the clearing problem, involves designing
control and communication protocols such that the searchers
sweep an environment and detect any intruders which may
be present. The clearing problem has received a lot of at-
tention in recent years because of its applications to safety
and security. In this paper, we describe a distributed environ-
ment clearing algorithm based on the concept of the frontier
or boundary between cleared and contaminated regions. Our
algorithm can guarantee the detection of any intruders or, if
there are insufficient searchers available, clear as much area
as it can while ensuring no cleared area is recontaminated.

1.1 Related work

In the literature on pursuit-evasion problems, many different
approaches and starting assumptions have been explored.
The study of guaranteeing detection of evaders in planar en-
vironments began with Suzuki and Yamashita (1992). For
a single searcher, Gerkey et al. (2006) studied the case of
limited field of view in a known polygon, while Sachs et al.
(2004) cleared unknown environments without localization
using minimalist sensing. The most similar work to this one
is Kolling and Carpin (2010), which uses coordinated sweep
lines of agents to clear unknown environments while build-
ing a graph representing the cleared space.

Pursuit-evasion on graphs representing decompositions
of known environments is a related topic which goes back
to Parsons (1978) and includes recent works by Adler et al.
(2003) and Kolling and Carpin (2008). Another active area
is efficient evader detection, where one or more searchers

http://dx.doi.org/10.1007/s10514-011-9260-1
mailto:joey@engineering.ucsb.edu
mailto:bullo@engineering.ucsb.edu
mailto:antonio.franchi@tuebingen.mpg.de

82 Auton Robot (2012) 32:81–95

are tasked with probabilistically locating targets which move
randomly (Hollinger et al. 2010). The pursuit-evasion litera-
ture has also addressed what to do once evaders are located,
including tracking moving evaders (Jung and Sukhatme
2002) and capturing evaders (Bopardikar et al. 2008).

Beyond pursuit-evasion, our work is inspired by meth-
ods for exploration and deployment based on the frontier
between explored and unknown regions (Yamauchi 1998;
Howard et al. 2002; Franchi et al. 2009a). A preliminary
version of this work appeared in Durham et al. (2010).

1.2 Statement of contributions

There are three key contributions of this work. First, our
frontier-based clearing algorithm can guarantee detection
of evaders in unknown, multiply-connected planar envi-
ronments which may be non-polygonal. We introduce the
(d,φ)-searcher model, a realistic model of current robot
and sensor hardware with limited range and limited field-
of-view sensing, and prove that our algorithm will clear an
environment provided sufficient searchers are available.

Second, our clearing algorithm is distributed and effi-
cient. We detail a novel method for storing and updating
the global frontier between cleared and contaminated areas
based on local intersections of oriented arcs. This method
uses a small, constant amount of memory per robot and
does not require a map or global localization. We also pro-
pose a viewpoint planning method which locally minimizes
the number of robots required to rapidly expand the cleared
area.

Third, we present both realistic simulations and hardware
experiments to validate our approach. We implemented the
algorithm using the Multirobot Integration Platform and the
Player/Stage robot simulation system. Our implementation
demonstrates that frontiers and sensor footprints can be han-
dled in a discretized fashion, that the algorithm is robust to
sensor and motion noise, and that the local optimizations in
our algorithm lead to efficient clearing of complex environ-
ments. We also present Monte Carlo results for the clear-
ing efficacy of our algorithm as a function of the number of
robots.

In the literature, Kolling and Carpin (2010) is the only
other work for multiple robots which can guarantee detec-
tion of evaders without prior knowledge of the environment.
Their approach sweeps hallways using lines of robots where
the robots at the ends perform wall following and give com-
mands to those in the middle. There are a few important dif-
ferences from our work. For one, they build and store a topo-
logical map whose memory footprint scales with the size
of the environment, whereas our approach requires only a
constant amount of memory per robot. Partly because of the
global map, their approach sweeps only one hallway at a
time and they admit there are complications in dealing with

topological holes. Our method expands in parallel and han-
dles holes seemlessly. Their dependence on wall following
would also prove challenging in cluttered environments or
in large empty spaces which our approach can handle. We
also provide simulation and experimental validation which
are not included in their theoretically-oriented work.

1.3 Paper organization

Section 2 provides definitions and states the problem we
are addressing. In Sect. 3 we examine a centralized version
of our algorithm to explain some details. The decentralized
clearing algorithm is presented and illustrated in Sect. 4. In
Sect. 5 we discuss theoretical properties of the algorithm and
in Sect. 6 we present experimental results. We conclude in
Sect. 7 and mention some future directions.

2 Searcher model & problem formulation

We are given a team of n robotic searchers with limited sens-
ing and communication capabilities and finite memory. The
searchers start clustered together in the free space of an un-
known but limited planar environment. Let Q be the free
space of the environment, which must be connected but can
have holes and may be non-polygonal. The searchers are
tasked with detecting evaders which may be arbitrarily small
and can move arbitrarily fast, but continuously, through Q.
The trajectories and initial positions of the evaders are un-
known.

2.1 Robot and sensor models

The robot model we use, the (d,φ)-searcher, is a differential
or omnidirectional drive mobile robot that can rotate in place
and translate continuously at bounded speed through Q. Our
model gets its name from the attached distance sensor which
has a maximum range d > 0 and an angular field-of-view
φ ∈ [π,2π]. The sensor cannot penetrate obstacles but is
capable of detecting any evaders visible to it. We will also
discuss d-searchers, which are a (d,φ)-searchers with φ =
2π .

Let S denote the footprint of the sensor when a robot is in
a generic configuration, as shown in Fig. 1. The footprint is a
local obstacle free region and we say that a point is guarded
by a robot if it belongs to the footprint of the sensor of that
robot. The oriented boundary of the sensor footprint, ∂S of
S, is a closed arc partitioned into two sets: (1) the local ob-
stacle boundary (all the points where the sensor has per-
ceived an obstacle), and (2) the free boundary, denoted by L,
which consists of all the remaining points. Notice that while
S is always a simply connected region, L is not, in general, a
connected set. We refer to the connected subsets of L as free

Auton Robot (2012) 32:81–95 83

Fig. 1 On the left, four obstacles surround a (d,φ)-searcher and lie
within the dashed circular sector representing the area perceivable by
the searcher’s sensor without occlusions. The right image shows the
boundary ∂S of the sensor footprint for this configuration, with dashed
oriented arcs for the free boundary L and solid arcs for the local ob-
stacle boundary

arcs. The orientation of ∂S is defined in a counter-clockwise
manner, such that a point moving along the boundary would
have the internal part of S on the left. The free arcs consti-
tuting L inherit the orientation of ∂S and are an open subset
of the topological manifold ∂S, with their endpoints on ob-
stacles. The local obstacle boundary arcs, on the other hand,
are closed in ∂S.

The perception of a searcher’s sensor at a given pose is
the tuple {S, ∂S, L}, i.e., a footprint S, the boundary ∂S, and
the set of free boundary arcs L of ∂S.

2.2 Communication, localization, and memory

Our method for classifying ∂S requires that a pair of robots
are guaranteed to be able to communicate whenever their
sensor footprints intersect. For example, this condition
would be satisfied if robots can communicate when the dis-
tance between them is less than the sum of the radii of their
sensor footprints.

One of the benefits of our approach is that it can work
in the absence of global localization. Instead, we will as-
sume that two robots with intersecting sensor footprints can
compute their relative poses as a result of some mutual lo-
calization procedure. Mutual localization could be achieved
by the method described in Franchi et al. (2009b), or by
scan matching (Censi 2008). Alternatively, the mutual vis-
ibility of the overlapping portion of footprints could be used
by projecting calibration dots or dispatching an extra robot
to serve as an intermediary. We further require that a robot
is able to localize itself with respect to a perception when-
ever it is inside the footprint, e.g., by a simple pairwise scan
matching.

Each searcher must have an amount of memory which is
strictly sufficient to store two perceptions, plus some vari-
ables of negligible size used for the execution of the al-
gorithm. This constraint means that each step of the dis-
tributed clearing algorithm must use only a limited and con-

stant amount of memory per robot regardless of the size
of Q.

2.3 Inspected region and problem statement

For notation and explanation, we have use for the union of
the perceptions taken by all robots from different poses in
Q during algorithm execution, which we refer to as the in-
spected region and denote by I . Since our algorithm does
not allow recontamination, I also represents the cleared
area. Though I will be connected, it may not be sim-
ply connected, meaning that ∂I is a set of closed oriented
curves. As with ∂S, ∂I is oriented and partitioned into
two sets: (1) the obstacle boundary, and (2) the frontier
denoted by F . We wish to emphasize that our algorithm
does not compute or store I , which is incompatible with the
memory constraint, but instead uses only the oriented fron-
tier F .

With these definitions we can now state the goal of our
algorithm: control a team of n (d,φ)-searchers so that they
always guard all the points of the frontier F while ex-
panding the cleared region I as much as possible, subject
to the limited sensing, communication, and memory con-
straints.

3 The centralized clearing algorithm

For clarity, we have split the presentation of our clearing al-
gorithm into two stages. In this section we pretend that a
central controller is commanding the searchers so that we
can describe the fundamental algorithm steps and the data
structures involved. In Sect. 4 we detail the distributed im-
plementation of the algorithm.

At any given time, the team of n searchers is divided into
two classes, the frontier-guards and the followers:

Frontier-guard Each frontier-guard is assigned a unique
pose v = (x, y, θ) ∈ Q × [0,2π[called the guard’s view-
point, which can move during the evolution of the algo-
rithm. The frontier-guard must quickly reach its viewpoint
and report a perception {S, ∂S, L}. To detect evaders, each
frontier-guard must also continuously monitor its sensor.

Follower Each follower is assigned to passively follow a
frontier-guard, and this assignment can change as the algo-
rithm progresses.

As needed, the central process will switch some frontier-
guards to followers, and vice-versa. The steps of the central-
ized clearing algorithm are as follows.

84 Auton Robot (2012) 32:81–95

Centralized Clearing Algorithm

Initialize one robot as a frontier-guard, the rest as followers.
Then:

1: for each {Sk, ∂Sk, Lk} received do
2: Compute Fk from Fk−1 and {Sk, ∂Sk, Lk} as detailed

in Sect. 3.1.
3: Compute the next set of viewpoints Vk+1 as detailed

in Sect. 3.2.
4: Assign each v ∈ Vk+1 to a nearby searcher and set the

searcher to be a frontier-guard.
5: Assign remaining searchers a frontier-guard to fol-

low.
6: Compute paths for all frontier-guards to reach their

viewpoints while maintaining coverage of Fk−1, and
send the paths to the guards.

For the reader’s convenience we describe the algorithm
in detail. At the beginning, all n searchers are clustered
around a point in Q. One robot is selected as the initial
frontier-guard and assigned its initial pose as a starting view-
point. All other robots are set as followers of this guard.
The initial frontier-guard then records the first perception
{S1, ∂S1, L1}, which initializes the main data stored during
the evolution of the algorithm.

Whenever a frontier-guard arrives at its viewpoint and
records a new perception, it sends the perception to a cen-
tral processing unit. In this way the central process receives
a sequence of perceptions. For each perception received, a
new step k of the algorithm starts and the perception is clas-
sified as {Sk, ∂Sk, Lk} and called the k-th perception (refer
to Table 1 for a reminder of the meaning of the symbols).

We denote the total inspected region at step k as Ik :=
∪k

i=1Si . Again, the algorithm does not use or store Ik or the
obstacle portion of ∂Ik ; an important innovation of this work
is that it stores and updates only Fk , the oriented frontier
arcs of Ik . Since the obstacle boundary of the inspected re-
gion Ik is impossible for either searchers or evaders to cross,
there are only two ways an evader can enter Ik : (1) by being
inside of Sk\Ik−1 at the instant in which the k-th perception
is performed, or (2) by crossing Fk . In the first case detec-
tion of the evader is immediate, the focus of our algorithm is
thus on maintaining complete coverage of Fk and updating
it when a new perception is added.

The basic flow of the centralized clearing algorithm is as
follows. After receiving a new perception the global frontier
is updated (Step 2). Next the determination of a new set of
viewpoints to cover and expand the frontier is performed
(Step 3). After that, searchers are assigned roles as guards or
followers and dispatched to their respective target positions
(Step 4).

To guarantee the detection of any evaders in Q, the plan-
ning of new viewpoints in Step 2 must meet the frontier
guarding property and the expansion property laid out in

Table 1 Main symbols used in the algorithm

Symb. Description

Q Planar environment.

S(v) Sensor footprint from pose v.

Sk Sensor footprint of the k-th perception.

∂Sk Oriented boundary of Sk .

Lk Free (non-obstacle) boundary of ∂Sk .

Ik Inspected region at the k-th step := ∪k
i=1Si .

Fk Oriented frontier arcs of Ik . Fk = F Ext
k−1 ∪ LExt

k .

F Ext
k−1 Fk−1\closure(Sk).

LExt
k Lk\interior(Ik−1).

Vk Set of viewpoints at the k-th step.

the following definition. We describe our method which
achieves these properties in Sect. 3.2.

Definition 1 (Viewpoint planning properties) Given a non-
empty frontier Fk and a set of prior viewpoints Vk , the view-
point planner selects the smallest set of viewpoints Vk+1 in-
side Ik which satisfy the following:

1. Frontier guarding: Ensure Fk is contained in the closure
of ∪v∈Vk+1S(v), and

2. Expansion: Ensure Area(Ik+1) ≥ Area(Ik) + ε for some
ε > 0 except for at most finite steps.

Within these constraints, the viewpoint planner maximizes
Area(Ik+1) assuming that there will be no new obstacles dis-
covered.

We can now state the main result of this paper.

Theorem 1 (Detection of evaders) Given an implementa-
tion of the centralized clearing algorithm with the viewpoint
planning properties in Definition 1 and a number of robots
n ≥ maxk |Vk|, the entire environment Q is cleared and ev-
ery evader in Q is detected in finite time.

Proof The expansion property in Definition 1 ensures that
there will be a time step kf where Fkf

= ∅, meaning that
∂Ikf

consists entirely of obstacle arcs and Ikf
completely

covers Q. Therefore, for every evader e in Q, there exists
at least one instant of time when e either (1) is inside of
Ske\Ike−1 at time ke ∈ {1, . . . , kf }, or (2) crosses Fke−1 dur-
ing the time interval [ke−1, ke] for ke ∈ {2, . . . , kf }. In the
first scenario, detection of the evader is immediate. We can
conclude, by means of the frontier guarding property, that
the second scenario will also be detected. �

In the rest of this section we describe how to implement
the frontier update and how to plan viewpoints (Steps 2
and 3 of the centralized clearing algorithm, respectively).

Auton Robot (2012) 32:81–95 85

The path-planning in Step 6 is also non-trivial, however we
will only discuss how to perform this in the context of the
distributed version of the clearing algorithm in Sect. 4.

3.1 Global frontier without a map of the environment

On the first iteration, frontier F1 is initialized as the free
boundary of the first perception, L1. For each step k > 1,
the algorithm needs to compute the new frontier Fk , i.e.,
the non-obstacle boundary of the inspected region Ik =
Ik−1 ∪ Sk . The set Fk can be partitioned into two subsets,
(1) the set F Ext

k−1 of arcs from Fk−1 which do not belong to
the closure of Sk , and (2) the set LExt

k of arcs from Lk which
are not on the interior of Ik−1 = ∪k−1

i=1 Si . While the compu-
tation of F Ext

k−1 from Fk−1 and {Sk, ∂Sk, Lk} is immediate, in
this section we describe a novel method for computing LExt

k

using only the oriented arcs of Fk−1 and {Sk, ∂Sk, Lk}.
In all previous work including Franchi et al. (2009a),

LExt
k has been computed using Sk and Ik−1. The disadvan-

tages of this prior procedure for updating the frontier are
that computing Ik−1 requires global localization and storing
it requires an amount of memory proportional to the area
of environment Q, which is in contrast with the problem
statement in Sect. 2.3. It is also worth noting that at step
k it is not possible in general to compute LExt

k using only
the most recent sensor footprints from each frontier-guard,
see the example in Fig. 2. The orientation of Fk−1 and ∂Sk

is critically important for properly determining the frontier
without Ik−1.

Our global frontier update method for computing LExt
k is

based around the intersections of the oriented arcs of Fk−1

and ∂Sk . Let L�
k denote the set of points belonging to the

intersection between the arcs of Lk and the arcs of Fk−1,
and L̄�

k the remaining points of Lk . The actions of the global
frontier update method are defined as follows.

Global Frontier Update Method

1: Classify the neighborhood of each p ∈ L�
k as internal or

not
2: Classify the ends of each � ∈ Lk

3: Propagate classification to rest of Lk

4: Set Fk = F Ext
k−1 ∪ LExt

k

The points of LExt
k can be either on the boundary of or

exterior to Ik−1, the boundary points belong to L�
k while

the exterior ones belong to L̄�
k . The following crucial result

states that an arc in Lk can only switch between the interior
and exterior of Ik−1 at an intersection point in L�

k .

Lemma 1 (Neighborhood classification) Let � be an arc in
Q which does not intersect Fk−1. If any point of � belongs
to the exterior of Ik−1, then all of � belongs to the exterior.
If any point of � belongs to the interior of Ik−1, then all of �

belongs to the interior.

Fig. 2 (Color online) (a) After robots 1 and 2 have classified their
frontiers, robot 1 moves to a new position. Once robot 1 has moved
and recorded a new perception, its prior perception is no longer stored
by the robot team. (b) When robot 3 arrives and records {Sk, ∂Sk, Lk}
(striped yellow), it cannot properly classify Lk based only on the most
recent perceptions of the other robots. Without all of Ik−1, robot 3 can
only determine that the indicated section of Lk is not on the global
frontier using the intersections of ∂Sk and robot 2’s oriented frontier
segments (dashed red)

Proof Since � is in Q, it cannot cross the obstacle boundary
of ∂Ik−1. Therefore, if � does not intersect Fk−1, then it does
not cross ∂Ik−1. �

The first step of the frontier update method is to classify
the neighborhood on ∂Sk of each intersection point p ∈ L�

k

as either internal to Ik−1 or not. An example of this neigh-
borhood classification is shown in Fig. 3(a). The neighbor-
hood classifications for all possible intersection cases are de-
picted in Fig. 3(b).

The second step of the method is to classify the ends of
each arc � ∈ Lk in the neighborhood of the endpoints of the
adjacent obstacle arcs. These neighborhoods can be classi-
fied using the following lemma.

Lemma 2 (Obstacle arc classification) Let o denote a local
obstacle arc of ∂Sk , let �L and �R ∈ L̄�

k denote the ends of
the free arc segments on the left and right of o, respectively,
in the neighborhood of the endpoints of o. Let Eo ⊂ o be the
set of endpoints of any frontier arcs of Fk−1 which either
begin or end on o, and which are, in the neighborhood of o,
fully contained in the closure of Sk . Then:

– If Eo = ∅, then either �L and �R are both internal to Ik−1

or neither are.

86 Auton Robot (2012) 32:81–95

(a) Classification of the neighborhood J of p ∈ L�
k where arcs

� ∈ Lk and f ∈ Fk−1 intersect. At left, the partitions of J induced
by � and f are shown separately. The white region on the right of the
oriented arcs indicates the exterior and the patterned region indicates
the interior. The fusion of the two partitions of J is shown at right.
The bold part of �, denoted by �′, belongs to LExt

k because it lies
between a white and a patterned region. Note that in this case p ∈ �′

(b) The classification of the points of arc � ∈ Lk in the neighbor-
hood of all possible types of intersections with arc f ∈ Fk−1. Arc
� is drawn solid, while f is dashed. Each row shows a different
intersection type, with columns for the various reciprocal orienta-
tions of � and f . The first row shows isolated crossings, the second
shows isolated tangents, the third shows joinings, and the fourth row
shows segments where � and f overlap. The bold portions of � be-
long to LExt

k

(c) Four classification cases are depicted for an obstacle arc o (dot-
ted) with two adjacent free arcs (solid). In the first two, no internal
frontier arc has an endpoint on o, so in the neighborhood of o the
free arcs are classified as both frontier (bold) or both internal (thin).
In the second two cases, an internal frontier arc f (dashed) has an
endpoint on o which induces opposite classifications for the two free
arcs

Fig. 3 Detailed explanation of frontier classification for (a)–(b) arc
crossings and (c) intersections on obstacles

– If Eo �= ∅, then �L is internal to Ik−1 if the closest1 e ∈ Eo

is the beginning of a frontier arc, and not internal other-
wise. The opposite holds for �R.

Proof If Eo = ∅, as shown in the first two cases of Fig. 3(c),
then there exists a free arc connecting �L with �R which is
contained in the interior of Sk and is close enough to o to not
intersect Fk−1. Therefore, we can apply Lemma 1. If Eo �=
∅, assume without loss of generality that it is a singleton, i.e.,
Eo = {e}, as shown in the third and fourth cases of Fig. 3(c).
Then, there exists a free arc connecting �L to the ‘nearest’
half of the neighborhood of e which is in the interior of Sk

and is close enough to o to not intersect Fk−1. Therefore,
we can apply Lemma 1. Similar claims hold for �R. �

The third and final step is to propagate the classification
from the neighborhoods to all points of the arcs of Lk . This
propagation again exploits Lemma 1. Notice that, so long as
the selection of viewpoints guarantees that either L�

k �= ∅ or
at least one local obstacle arc o has a non-empty Eo, this
third step is well defined.

Combined, these three steps determine which segments
Lk are not in the interior of Ik−1 and thus should be included
in frontier Fk .

3.2 Viewpoint planning

In this section we describe how to pick a set of viewpoints
Vk+1 which meet the frontier guarding property and expan-
sion property of Definition 1. With the distributed applica-
tion in mind, we simplify the planning of Vk+1 by construct-
ing it from Vk . Let vk be the viewpoint of the k-th percep-
tion. As detailed in Sect. 3.1, Fk can be partitioned into two
sets: F Ext

k−1 (a subset of the prior frontier), and LExt
k (a subset

of ∂Sk). Let F Int
k−1 be the portion of Fk−1 which is inside the

closure of Sk .
To construct Vk+1, we need the following sets:

1. The set of viewpoints V obs
k ⊂ Vk which are assigned to

guard only obsolete portions of the frontier in F Int
k−1, if

any.
2. A set of new viewpoints V ′ inside Sk to cover and expand

the new frontier segments LExt
k .

With these defined, we then set:

Vk+1 = (
(Vk \ vk) \ V obs

k

) ∪ V ′.

The rest of this section is devoted to describing how to
choose V ′ inside of Sk when LExt

k �= ∅.
We say that a free arc � ∈ Lk is relevant for viewpoint

planning if it contains a frontier fragment from LExt
k . A rel-

evant free arc may contain one or more frontier fragments,

1With respect to the distance on the arc o.

Auton Robot (2012) 32:81–95 87

and each frontier fragment is entirely contained in one rele-
vant free arc. Let LRel

k ⊆ Lk denote the set of relevant free
arcs around vk .

Our local viewpoint planning method consists of parti-
tioning the frontier fragments of each �Rel ∈ LRel

k among the
fewest possible new viewpoints. We first detail how to per-
form the method for d-searchers, that is, robots with a sensor
with a field-of-view of 2π . Afterwards, we describe how to
adapt the method for (d,φ)-searchers. In both cases, the ac-
tions of the local viewpoint planning method are as follows.

Local Viewpoint Planning Method

Initialize V ′ = ∅. Then, for each �Rel ∈ LRel
k perform the

following:

1: Determine p, the number of viewpoints needed to cover
�Rel

2: Partition �Rel into p pieces
3: for i = 1 to p do
4: Select a pose v in Sk to cover the i-th partition of �Rel

and as much new area as possible
5: Add v to V ′

Remark 1 This viewpoint planner is for circular sector foot-
prints of radius d and field-of-view φ ≥ π . For more general
footprints, our clearing algorithm could also be applied pro-
vided a viewpoint planning method with the properties in
Definition 1 is available.

Each �Rel is comprised of straight radial segments and
circular segments with radius d . The possible configurations
are: single radial; single curved; curved with radial on one
side; or curved with radial segments on both sides (see the
examples in Figs. 1 and 4). Let S(v) denote the sensor foot-
print for a robot at viewpoint v. The following lemma sim-
plifies the determination of when a radial segment is inside
S(v) for φ = 2π .

Lemma 3 (Coverage of radial arcs) Let v′ be a potential
new viewpoint inside Sk for a d-searcher, and let r ∈ LRel

k be
a radial free arc segment. Let p be the endpoint of r farthest
from v′ and v′p be the line segment between v′ and p. If
dist(v′,p) < d and v′p only intersects ∂S at p, then open
set r is contained inside of S(v′).

Proof Our proof centers around the triangle T formed by
vk , v′, and p. Radial free arc segment r is a connected sub-
set of vkp. Since Sk has maximum radius d , dist(v′, vk) < d .
Combined with the fact that dist(v′,p) < d , we can con-
clude that all of r is within d of v′. All that remains is to
show that there are no obstructing obstacles inside of trian-
gle T .

We know that v′p is contained in the closure of Sk be-
cause it only intersects ∂S at p. Since Sk is star-shaped, both

vkp and vkv′ are also contained in the closure of Sk . Then,
as Sk is simply connected, we can conclude that the interior
of T is in Q and, therefore, r is inside of S(v′). �

There are two notable consequences of Lemma 3. First,
for any �Rel with only a radial segment, one viewpoint is suf-
ficient. Second, for any �Rel which contains both curved and
radial segments, we only need to partition the curved seg-
ment: the viewpoint which covers an endpoint of the curved
segment will also cover any attached radial segment.

To assist in selecting viewpoints to cover curved seg-
ments, we introduce parameter dmin ∈ (0, d], the minimum
distance between vk and any v ∈ V ′. As will become clear,
dmin encodes a trade-off in the algorithm: smaller values
of dmin can reduce |V ′| and thereby reduce the number of
searchers required; larger values of dmin can increase the
area exposed and thereby reduce the number of iterations
required to clear Q.

Let δ(�Rel) be the angular width of �Rel measured
counter-clockwise from the right-most frontier point on �Rel

to the left-most frontier point on �Rel. A single viewpoint
at least dmin from vk can then cover an angular width of at
most α(dmin) given by

α (dmin) = 2 arccos (dmin/2d) ∈
[

2π

3
,π

)
.

The number of viewpoints η necessary to cover �Rel is de-
termined by the following lemma.

Lemma 4 (Number of viewpoints required) For any �Rel ∈
LRel

k , the clearing algorithm requires η ∈ {1,2,3} view-
points. Moreover:

– if δ (�Rel) ≤ 2π
3 , then η = 1,

– if 2π
3 < δ (�Rel) < π, then η = 1 or 2,

– if π ≤ δ (�Rel) < 2π, then η = 2 or 3, and
– if δ (�Rel) = 2π, then η = 3.

Proof This result is a direct consequence of Lemma 3 and
the fact that α(dmin) ∈ [2π

3 ,π). �

For η > 1, the angular width of �Rel is then partitioned
such that the first viewpoint covers [0, δ(�Rel)/η], and each
subsequent viewpoint covers the next equally sized slice of
angular width. This partitioning of �Rel achieves Step 2 of
the viewpoint planning method.

After partitioning �Rel, the final step is to place each new
viewpoint v. This placement must ensure that a perception
from v covers the required portion of �Rel and also uncov-
ers as much area as possible beyond �Rel (assuming no new
obstacles). For single radial segments, we place v at the mid-
point of the segment facing perpendicular to the segment out
into the unknown territory beyond �Rel. For all other config-
urations, we construct a line through vk which bisects the

88 Auton Robot (2012) 32:81–95

curved arc in �Rel assigned to v. We then place v on this bi-
sector at the point in Sk which is closest to the intersection
with �Rel and also ensures that both endpoints of the curved
arc in �Rel assigned to v will be inside S(v). Here pose v is
oriented radially outward from vk .

By construction, this method of selecting V ′ guarantees
that LExt

k ∈ ∪v∈V ′S(v) for searchers with φ = 2π , meaning
that the frontier guarding property in Definition 1 is satis-
fied. For dmin close to zero, it creates the fewest new view-
points possible, while for dmin = d it exposes more area with
minimal additional viewpoints. The following lemma shows
that this viewpoint planner also guarantees the expansion
property.

Lemma 5 (Guaranteed expansion) The set of new view-
points V ′ produced by the Local Viewpoint Planning Method
satisfies the expansion property from Definition 1.

Proof Consider a new viewpoint v ∈ V ′ inside of Sk and the
associated footprint S(v). What we will show is that, except
for at most a finite number of steps, there exists some new
area A ∈ S(v) where Area(A) ≥ ε and Area(A ∩ Ik) = 0 for
some small ε > 0.

Two properties allow us to determine values for ε. We
have specified that v will be at least dmin from vk . Let �v be
the free arc segment assigned to viewpoint v and let re be
the smallest possible diameter of any evader the team will
be asked to detect. Then, we know that the length of �v is at
least re or it can be ignored. In the case where �v is either
a radial or curved segment, then a value for ε assuming that
dmin and re are small is dminre . The case were �v is mixed is
more intricate, but a similar lower bound can be found.

Finally, the only circumstances in which Area(A) might
be less than ε occur when either there is a finite-sized ob-
stacle or a finite-length portion of F which reduces the size
of A. These can only occur a finite number of times, so the
statement holds. �

We have described a viewpoint planning method which
meets the requirements of Definition 1 for searchers with
φ = 2π . For (d,φ)-searchers whose sensors have a field-of-
view in [π,2π), the above method is optimal in the num-
ber of viewpoints required to cover �Rel when it contains
either only radial frontier fragments or only curved frontier
fragments. One option for handling mixed fragments is to
split them and handle the radial and curved parts separately.
However, this simple approach may create more viewpoints
than needed. We instead propose the following geometric
method.

Consider the case when �Rel consists of a radial segment
on the right of a curved segment. Let pr be the first frontier
point in the radial part of �Rel, and let pm be the intersection

of the curved and radial segments. Next, loop over possible
pl’s, starting from pl = pm and moving along the curved
segment, stopping at the furthest pl for which the midpoint
of prpl is within d of pm. Then, place v at the midpoint
of prpl , facing outward perpendicular to prpl . This place-
ment ensures that all frontier points between pr and pl are
covered by a perception taken from v for φ ≥ π , while max-
imizing the amount of �Rel covered. If any frontier on the
curved segment remains uncovered, it can be handled using
the prior approach. This method can be trivially modified
if the radial segment is on the left, and can also be applied
on both sides for a curved segment with radial segments on
both sides.

4 The distributed clearing algorithm

In the distributed setting, the communication graph is in
general disconnected, necessitating some changes from the
centralized description. First, the global frontier must be
stored and updated in a distributed manner. Second, view-
point planning must be performed locally by the frontier-
guards. Third, the distributed algorithm must work with only
pairwise relative mutual localization between neighbors. Fi-
nally, while the centralized version is synchronous and se-
quential, the distributed setting is asynchronous and concur-
rent, i.e., it is possible for perceptions from disconnected
searchers to be recorded at the same time.

4.1 Distributed handling of global frontier and viewpoint
planning

We distribute the global frontier by having each frontier-
guard store its local frontier segments and update them
through communication with its neighboring frontier-guards.
We denote the section of the global frontier Fk owned by
robot i by Fk,i . This distributed storage of the global fron-
tier can always be achieved since, by the frontier guarding
property, each global frontier point is covered by a frontier-
guard. The pairwise frontier update method which follows
is a distributed version of the method in Sect. 3.1 for classi-
fying the free boundary Lk .

This distributed frontier classification is always possible
because the classification of Lk requires only the frontier
fragments from Fk−1 which intersect Sk . In the distributed
setting, each of these frontier fragments belong either to
a neighboring guard’s perception or to robot i’s previous
perception. The localization with respect to the first kind
of fragments is guaranteed since by assumption two robots
whose footprints intersect are in communication and are mu-
tually localized. The localization w.r.t. the second kind of
fragments is also guaranteed by assumption since robot i’s
current viewpoint would lie in the footprint of the previous
one.

Auton Robot (2012) 32:81–95 89

Pairwise Frontier Update Method

When robot i records a new perception, it updates Fk as
follows:

1: Classify neighborhood of each intersection p between
Lk and Fk−1,i as internal or not, if any

2: for each robot j in communication with i do
3: Classify neighborhood of each intersection p be-

tween Lk and Fk−1,j as internal or not
4: Inform j if any piece of Fk−1,j lies inside Sk

5: Classify the ends of each � ∈ Lk

6: Propagate classification to rest of Lk

7: Store Fk,i

Updates to the global frontier in the pairwise frontier up-
date method are based on current relative poses of nearby
searchers, not on absolute poses. Therefore, the distributed
clearing algorithm can continue clearing an environment
even if the searchers cannot determine where they are rela-
tive to where they started. Also note that because it operates
in pairs this frontier update method requires only an amount
of memory per robot proportional to that required to store
two perceptions.

Once Fk,i is determined, we can use the local viewpoint
planning method from Sect. 3.2. This method is already dis-
tributed as it requires only the local frontier of the frontier-
guard doing the planning. The execution of the path to new
viewpoints can also be done without global localization by
either the guard itself or by a follower. Since the new view-
point is in Sk , either local odometry of reasonable accuracy
or a registration of footprints taken along the path with Sk

will suffice.

4.2 Distributed algorithm & robot roles

The two classes of searchers from the centralized algorithm
are each split in two, yielding four possible states:

Expand: When a searcher is assigned a new viewpoint to
move to, it enters the expand state until it reaches the view-
point and records a perception.

Frontier-guard: Each frontier-guard i remains stationary
at its viewpoint and has complete control over its local
frontier segments, Fk,i . It must communicate with neigh-
boring frontier-guards to update Fk,i , plan a new viewpoint
to cover and expand Fk,i , and dispatch a follower to the
new viewpoint.

Follow: Must passively follow and respond to commands
from a frontier-guard or expander.

Wander: When a frontier-guard no longer has a local fron-
tier to guard, it wanders to locate a leader to follow.

Distributed Clearing Algorithm

To begin, one searcher is set to Expand to its starting pose
and all others start either Following the first or in the Wander
state. All agent’s then continuously execute the procedure
corresponding to their state:

Procedure Expand
Data: frontier, path
foreach follower in followers do1

Send(follower,“follow”, path);2

Move(path);3

{S, ∂S, L} ← Perceive();4

neighFront ← UpdateNeighFrontier();5

frontier ← Frontier({S, ∂S, L}, frontier, neighFront);6

DoBehavior(“Frontier-Guard”, S, frontier);7

Procedure Frontier-Guard
Data: S, frontier
if frontier is empty then1

Send(followers,“wander”);2

DoBehavior(“Wander”);3

(bestVP, NumVPs) ← ViewPointPlan(S, frontier);4

path ← PathToViewPoint(S, bestVP);5

if NumVPs == 1 then6

DoBehavior(“Expand”, frontier, path);7

else8

if followers has at least one follower then9

follower ← PopFollower(followers);10

Send(follower,“expand”, path);11

while follower is expanding do12

Sleep();13

else14

while no new neighbor and no followers do15

Sleep();16

DoBehavior(“Frontier-Guard”, S, frontier);17

Procedure Follow
Receive(Leader, message, path); switch message do1

case “follow”2

Move(path);3

case “expand”4

DoBehavior(“Expand”, ∅, path);5

case “wander”6

DoBehavior(“Wander”);7

Procedure Wander
SearchForLeader();1

if leader found then2

DoBehavior(“Follow”);3

if all searchers wandering then4

exit5

90 Auton Robot (2012) 32:81–95

Fig. 4 (Color online) Simulation of three (d,φ)-searchers clearing
an environment. Recorded perceptions are shown in a light blue, with
frontiers shown with bold lines in the color of the frontier guard who

owns them. The trajectories of the robots are shown in the final panel,
with large squares for viewpoints

The distributed clearing algorithm consists of an initial-
ization step, followed by each searcher iteratively execut-
ing the procedure corresponding to its current state. These
procedures have subroutines for all important computations,
and detail when searchers transition between states. There
are four key subroutines we would like to highlight:

UpdateNeighFrontier & Frontier: perform the
pairwise frontier update method in Sect. 4.1.
ViewPointPlan: follows the local viewpoint planning
method in Sect. 3.2, and then picks the best new viewpoint
to expand first.
PathToViewPoint: determines a safe path from the cur-
rent viewpoint to the new viewpoint inside S, which can be
a straight line since S is star-shaped.
SearchForLeader: does a random walk with two addi-
tional behaviors: (1) when it encounters a frontier-guard, it
switches to Follow; (2) wanderers may join to form a wan-
dering blob.

The following subsections describe our implementation of
the algorithm, show simulation and hardware experiment re-
sults, and expand on some technical details.

4.3 Illustrative simulation

Figure 4 provides a detailed example of three robots imple-
menting the distributed algorithm. A video is also available
in Online Resource 1. The searchers are simulated Khep-
era III robots with laser rangefinders with a range of 0.8 m
and a field-of-view of 240◦. Perfect mutual localization is
provided for this simulation, while the Smooth Nearness Di-
agram navigation driver in Player is used to navigate be-
tween viewpoints and avoid collisions (Durham and Bullo
2008).

The first panel of Fig. 4 shows the initialization of the al-
gorithm. The three robots start within communication range
of each other and with initial poses which do not signifi-
cantly interfere with each other’s sensors. The green robot
begins as a frontier-guard and records the first perception.
The blue robot then clears the area behind the green robot.

In the second panel, the orange robot has expanded one
of the initial frontiers, classified its boundary, and become
a frontier-guard. As orange only needs one new viewpoint
to expand its single frontier arc, it will expand alone around
the top of the obstacle. Blue is then dispatched to clear the
other initial frontier.

The next two images show the continued expansion of
the cleared area. By the fourth panel, both orange and green
have reached positions from which they require assistance in
order to expand. After the blue robot clears the inside of the
U-shaped obstacle, it enters the Wander state and searches
for a leader.

The remaining images show the final stages of the algo-
rithm, where orange and blue clear one room while green
clears the lower corridor. Green finishes before the others,
and enters the Wander state to try to find them. The final
panel shows recorded trajectories for the robots during clear-
ing as well as all viewpoints.

5 Theoretical analysis

5.1 Frontier guarding & expansion properties

The behavior of the frontier-guards in the distributed clear-
ing algorithm guarantees both the frontier guarding prop-
erty and the expansion property from Definition 1. When
expander i reaches its viewpoint and makes a perception, it
then enters the stationary frontier-guard state. So long as i

Auton Robot (2012) 32:81–95 91

remains a frontier-guard, it maintains complete coverage of
the frontier segments in Fk,i . Searcher i will only leave the
frontier-guard state if either Fk,i is erased by a new neigh-
bor, or if i determines that one new viewpoint is sufficient
to cover Fk,i and that the path to the viewpoint also main-
tains coverage of Fk,i . The local viewpoint planning method
guarantees that each new viewpoint will expand the cleared
area.

5.2 Algorithm completeness

Two assumptions are required to extend Theorem 1 and
claim that the distributed clearing algorithm is guaranteed
to detect every evader in Q. First, there must be a suffi-
cient number of searchers available to expand at least one
frontier segment at each step of the algorithm. Second, any
searcher who enters the Wander state must reach an active
frontier in finite time. When these two assumptions are satis-
fied, the searchers will never have to wait an infinitely long
time between the recording of perceptions. Therefore, we
can conclude following the proof of Theorem 1 and the fron-
tier guarding and expansion properties that the distributed
clearing algorithm will clear all of Q and detect every evader
in Q.

5.3 Time and memory complexity

The computational requirements of the four main subrou-
tines of the distributed clearing algorithm are as follows.
An important innovation of this works is the pairwise fron-
tier merging method, which requires only O(2|∂S|) memory
and O(|∂S|2) time to find intersections and classify the lo-
cal frontier (where ∂S is the boundary of a sensor footprint).
Our geometric viewpoint planning method typically requires
only constant time per viewpoint, but scales with |∂S| if
φ < 2π and the relevant frontier arc consists of both curved
and radial segments. Path planning to new viewpoints is triv-
ial as the straight line between viewpoints is always in S.
Finally, the search for leader subroutine is also straightfor-
ward as it must simply pick a point on the free boundary of
the robot’s current sensor footprint to drive towards.

Therefore, we have the following result which satisfies
the memory assumption in Sect. 2.2. Notice that this state-
ment is per robot: the frontier-guarding property ensures
that the team of searchers will divide the global frontier F
into finite sized pieces.

Lemma 6 (Constant memory per robot) The distributed
clearing algorithm requires each searcher have an amount
of memory proportional to that required to store two percep-
tions.

5.4 Detecting completion

When the environment has been cleared, all searchers will
be in the Wander state. If all-to-one communication is avail-
able (e.g., if all robots have even a very low-bandwidth con-
nection to a central command center), then detecting task
completion is trivial. In the most general case, the wandering
searchers will have to reach a consensus that the task is com-
plete by querying other searchers when they encounter them.
In the absence of global localization or other means of as-
suring rendezvous, our proposal is that robots in the Wander
state clump together when they encounter each other to form
wandering blobs. Eventually, through the random walks of
these growing blobs, all searchers will be joined into a sin-
gle blob and task completion can be easily detected provided
that the number of searchers is known in advance.

5.5 Handling agent failure

The distributed clearing algorithm relies on maintaining
complete coverage of the global frontier at all times. The
failure of any searcher in the frontier-guard state, therefore,
has the potential to recontaminate the cleared area and re-
quire restarting the algorithm. However, the algorithm can
be made quite robust to random failures with a few minor
modifications, at the cost of requiring a larger robot team.

The two mission-critical robot behaviors are Frontier-
guard and Expand. To handle the potential failure of a
frontier-guard, all followers of the guard could hold dupli-
cate copies of the guard’s perception and local frontier. The
followers would regularly communicate with the guard to
check that it is functioning and, if it fails, then one follower
would take its place. If a high degree of robustness is re-
quired for a particular application, the algorithm could be
modified to ensure each guard always has one or more fol-
lowers. The failure of a searcher in the Expand state could be
handled by one of its followers in a similar manner. In addi-
tion, when a frontier-guard commands a searcher to expand
to a particular point, it can regularly check the expander’s
progress and dispatch another agent if necessary.

6 Experimental results & numerical analysis

To demonstrate the utility of the proposed distributed clear-
ing algorithm, we implemented it using the open-source
Multirobot Integration Platform (MIP) (Franchi and Ste-
gagno 2009) and the Player/Stage robot software system
(Gerkey et al. 2009). The clearing algorithm and related
modules were implemented using the MIP architecture,
which provides a multi-tasking estimation/control frame-
work, a realistic simulation environment, and allows direct

92 Auton Robot (2012) 32:81–95

Fig. 5 Three screenshots from a simulation of six d-searchers clearing a portion of a hospital wing. The paths of the agents are shown at right,
with all viewpoints drawn with larger squares

porting for execution on real robots. Perceptions are imple-
mented as local coverage grids with 5 cm resolution,2 with
oriented frontier arcs handled as ordered sequences of cells.
Each robot stores only its most recent perception and its lo-
cal frontier.

6.1 Hospital wing simulation

Figure 5 presents a simulation in a complex environment
modeled after part of a wing of a hospital. A movie version
is available in Online Resource 2. The environment is 16 m
wide and 20 m tall, with a number of small patient rooms
around a central desk, as well as a few other rooms at the
bottom of the map.

Six simulated d-searchers with d = 2.0 m begin in the
largest room in the bottom right corner. The first image
shows the result of the first expansion, with the blue robot
having reached its viewpoint and erasing the first third of
the initial full circle frontier. The initial frontier-guard then
dispatches another follower to cover the second third, before
expanding the final third itself.

By the middle image, the team has swept through all of
the lower rooms. Five of the searchers are engaged in cov-
ering and expanding the frontier, while the purple robot re-
mains behind. The purple robot was part of the group of four
which cleared the bottom left room, and all four of those
searchers entered the Wander state once that room was clear.
While most of these searchers found their way to an active
frontier, the purple searcher is still wandering.

2Such a discretization of local space is useful and common in practice,
the resolution of the local grid should be chosen based on the minimum
desired detectable evader size.

The final image shows the recorded trajectories of each
agent, with viewpoints indicated with larger squares. The
bottom set of rooms, as well as the rooms in the top right,
show a dense set of tracks of searchers. The density in these
rooms is a result of multiple searchers repeatedly executing
the Wander behavior after clearing these parts of the map.
The clear lines in the top right and middle left show the ef-
ficient, simple paths taken by searchers executing repeated
expansions.

6.2 Hardware experiments

The distributed clearing algorithm was experimentally vali-
dated using Khepera III robots. Each robot is equipped with
a wi-fi card and a Hukuyo URG-04LX laser sensor. The lat-
ter has a field-of-view of 240◦ and a range we artificially
limit to 0.8 m. Simple odometry is used to provide mu-
tual localization and Smooth Nearness Diagram navigation
is used to avoid obstacles. Each robot is controlled by a sep-
arate process and they communicate with each other using a
wireless network.

A complete experiment is summarized in Fig. 6, where
each column contains a camera image and the relative per-
ceptions for a distinct phase of the algorithm. A video of the
experiment is provided in Online Resource 3. In the first two
panels (a, e) one robot acts as frontier-guard while the others
are followers. By the second phase (b, f), the first dead-end
corridor has been cleared and two frontier-guards are set to
sweep the next two corridors. In the third phase (c, g) one
robot simulates a motor fault, which forces the two other
robots to complete the task by themselves. In the end (d, h),
the environment is fully cleared and the trajectories for each
robot are shown, with larger boxes indicating viewpoints.

Auton Robot (2012) 32:81–95 93

Fig. 6 Four phases of an experiment with three Khepera III robots with Hukuyo URG-04LX laser sensors. One of the robots simulates a motor
fault (b, f) which forces the others to complete the task by themselves (d, h)

6.3 Area cleared in empty space

In this section we use Monte Carlo simulation to study how
the area cleared in an obstacle-free environment changes
with the number of robots available. The simulated searchers
expand from their starting position and clear as much area
as they can before reaching a final equilibrium where the
team would need additional searchers to continue. The the-
oretical limit on the area cleared in the absence of obstacles
by n d-searchers occurs when the searchers are at the ver-
tices of a n-sided regular polygon with sides of length 2d .
The cleared area in this limit is the area of the regular poly-
gon plus the area of the sensor footprint of each searcher
beyond the polygon. For n searchers, this area is given by

nd2

tan(π
n
)
+ (n+2)πd2

2 . We set d = 1.0 m, meaning the limit on

the area 12 searchers can clear is 66.8 m.
We conducted 100 simulations for 3 through 12 robots.

In each trial, we chose a random agent as the initial frontier-
guard, which produced differences in subsequent robot roles
and timing of establishment of perceptions. The robots are
only asked to get within 2 cm and 2◦ of a particular view-
point, which leads to variability in the resulting perceptions
and frontiers. When the first guard records the initial percep-
tion, it has a frontier arc with angular width 2π . We divide
followers evenly such that a third of the available robots will
end up at each of the three viewpoints needed to expand the
initial frontier.

The results of our simulations are shown in Fig. 7. With
three searchers the Distributed Clearing Algorithm consis-
tently cleared 95.2% of maximum possible area. This effi-
ciency dipped to 85.2% with six searchers, then increased to
96.8% and 90.6% on average with 9 and 12 searchers, re-
spectively. A video of an example trial with 12 robots which
cleared 96.2% of the optimal area is available as Online Re-

Fig. 7 Comparison of average, maximum, and minimum area cleared
in 100 simulations for different numbers of robots to the theoretical
limit

source 4. The variability in the area cleared with six or fewer
searchers is minimal because the sequence of expansions
is independent of the relative timing of when robots record
their perceptions. With six searchers, two go to each of the
three viewpoints needed to expand the initial circular fron-
tier. Each of these pairs will then split the next two view-
points needed to expand their local frontier, and the team
will then reach an equilibrium. With eight searchers, the
number of expansions increases from 9 to 17 or 18 and these
later expansions influence each other by sometimes clearing
a significant portion of a neighboring guard’s frontier.

These numerical results demonstrate that expansion se-
quence generated by the Local Viewpoint Planning Method
can produce efficient global results without global informa-
tion even for large numbers of searchers.

94 Auton Robot (2012) 32:81–95

7 Conclusion & future work

We have presented a distributed pursuit-evasion algorithm
for a team of mobile robots with limited sensing and com-
munication capabilities, limited on-board memory, and ac-
cess to only local mutual localization. Our algorithm can
guarantee detection of moving evaders in an unknown, non-
polygonal environment with holes, provided the team con-
sists of a sufficient number of robots. A key contribution of
this work is a novel method for updating the global frontier
between cleared and contaminated regions using only local
information. We also validated the algorithm through both
simulations and hardware experiments, and discussed some
theoretical and numerical results on the algorithm’s perfor-
mance.

There are a number of interesting future directions for
this work. One useful extension would be to guarantee a con-
nected communication graph for the searchers at all times,
perhaps including a connection back to the initial starting
point. The development of bounds on the number of d-
searchers required to clear a general environment would be
a significant contribution. Finally, the frontier concept could
also be applied to three-dimensional environments.

Acknowledgements The authors would like to thank Paolo Ste-
gagno and the Robotics Lab at DIS led by Giuseppe Oriolo. This
work is supported in part by National Science Foundation award IIS-
0904501 and by Army Research Office MURI award W911NF-05-1-
0219.

References

Adler, M., Räcke, H., Sivadasan, N., Sohler, C., & Vöcking, B. (2003).
Randomized pursuit-evasion in graphs. Combinatorics, Probabil-
ity & Computing, 12(3), 225–244.

Bopardikar, S. D., Bullo, F., & Hespanha, J. P. (2008). On discrete-
time pursuit-evasion games with sensing limitations. IEEE Trans-
actions on Robotics, 24(6), 1429–1439.

Censi, A. (2008). An ICP variant using a point-to-line metric. In
2008 IEEE int. conf. on robotics and automation, Pasadena, CA
(pp. 19–25).

Durham, J. W., & Bullo, F. (2008). Smooth nearness-diagram navi-
gation. In IEEE/RSJ int. conf. on intelligent robots and systems,
Nice, France (pp. 690–695).

Durham, J. W., Franchi, A., & Bullo, F. (2010). Distributed pursuit-
evasion with limited-visibility sensor via frontier-based explo-
ration. In 2010 IEEE int. conf. on robotics and automation, An-
chorage, AK (pp. 3562–3568).

Franchi, A., & Stegagno, P. (2009). Multirobot Integrated Platform.
http://www.dis.uniroma1.it/~labrob/software/MIP/.

Franchi, A., Freda, L., Oriolo, G., & Vendittelli, M. (2009a). The
sensor-based random graph method for cooperative robot explo-
ration. IEEE/ASME Transactions on Mechatronics, 14(2), 163–
175.

Franchi, A., Oriolo, G., & Stegagno, P. (2009b). Mutual localization in
a multi-robot system with anonymous relative position measures.
In IEEE/RSJ int. conf. on intelligent robots and systems, St. Louis,
MO (pp. 3974–3980).

Gerkey, B., et al. (2009). The Player/Stage Project. http://playerstage.
sourceforge.net, version 2.13.

Gerkey, B. P., Thrun, S., & Gordon, G. (2006). Visibility-based pursuit-
evasion with limited field of view. The International Journal of
Robotics Research, 25(4), 299–315.

Hollinger, G., Singh, S., & Kehagias, A. (2010). Improving efficiency
of clearing with multi-agent teams. The International Journal of
Robotics Research, 29(8), 1088–1105.

Howard, A., Matarić, M. J., & Sukhatme, G. S. (2002). An incremen-
tal self-deployment algorithm for mobile sensor networks. Au-
tonomous Robots, 13(2), 113–126.

Jung, B., & Sukhatme, G. S. (2002). Tracking targets using multiple
robots: the effect of environment occlusion. Autonomous Robots,
13(3), 191–205.

Kolling, A., & Carpin, S. (2008). Multi-robot surveillance: an im-
proved algorithm for the graph-clear problem. In 2008 IEEE
int. conf. on robotics and automation, Pasadena, CA (pp. 2360–
2365).

Kolling, A., & Carpin, S. (2010). Multi-robot pursuit-evasion without
maps. In 2010 IEEE int. conf. on robotics and automation, An-
chorage, Alaska (pp. 3045–3051).

Parsons, T. D. (1978). Pursuit-evasion in a graph. In Y. Alavi & D. Lick
(Eds.), Lecture notes in mathematics: Vol. 642. Theory and appli-
cations of graphs (pp. 426–441). Berlin: Springer.

Sachs, S., Rajko, S., & LaValle, S. M. (2004). Visibility-based pursuit-
evasion in an unknown planar environment. The International
Journal of Robotics Research, 23(1), 3–26.

Suzuki, I., & Yamashita, M. (1992). Searching for a mobile intruder
in a polygonal region. SIAM Journal on Computing, 21(2), 863–
888.

Yamauchi, B. (1998). Frontier-based exploration using multiple robots.
In 2nd int. conf. on autonomous agents, Minneapolis, MN
(pp. 47–53).

Joseph W. Durham is a Research
Scientist at Kiva Systems in North
Reading, MA. He received a B.A.
magna cum laude in physics from
Carleton College, Northfield, Min-
nesota, in 2004, and a M.Sc. and
Ph.D. in control and dynamical sys-
tems from the University of Cali-
fornia, Santa Barbara, in 2007 and
2011, respectively. His research in-
terests include robotic coordination
and navigation, distributed resource
allocation, and voting methods.

Antonio Franchi is a Research Sci-
entist at the Max Planck Institute
for Biological Cybernetics. He ob-
tained the master degree in Elec-
tronic Engineering (2005) and the
Ph.D. in Control and System The-
ory (2009) at “La Sapienza” Uni-
versity of Rome. His research inter-
ests lie in the areas of autonomous
systems and robotics, including co-
operative control and estimation,
human-robot bilateral control and
teleoperation, and distributed plan-
ning for multi-robot systems.

http://www.dis.uniroma1.it/~labrob/software/MIP/
http://playerstage.sourceforge.net
http://playerstage.sourceforge.net

Auton Robot (2012) 32:81–95 95

Francesco Bullo received the Lau-
rea degree “summa cum laude”
in Electrical Engineering from the
University of Padova, Italy, in 1994,
and the Ph.D. degree in Control and
Dynamical Systems from the Cal-
ifornia Institute of Technology in
1999. From 1998 to 2004, he was
an Assistant Professor with the Co-
ordinated Science Laboratory at the
University of Illinois at Urbana-
Champaign. He is currently a Pro-
fessor with the Mechanical Engi-
neering Department and the Cen-
ter for Control, Dynamical Systems

and Computation at the University of California, Santa Barbara. He is
a recipient of the 2003 ONR Young Investigator Award and the 2008
Outstanding Paper Award for the IEEE Control Systems Magazine.

	Distributed pursuit-evasion without mapping or global localization via local frontiers
	Abstract
	Introduction
	Related work
	Statement of contributions
	Paper organization

	Searcher model & problem formulation
	Robot and sensor models
	Communication, localization, and memory
	Inspected region and problem statement

	The centralized clearing algorithm
	Frontier-guard
	Follower
	Global frontier without a map of the environment
	Viewpoint planning

	The distributed clearing algorithm
	Distributed handling of global frontier and viewpoint planning
	Distributed algorithm & robot roles
	Illustrative simulation

	Theoretical analysis
	Frontier guarding & expansion properties
	Algorithm completeness
	Time and memory complexity
	Detecting completion
	Handling agent failure

	Experimental results & numerical analysis
	Hospital wing simulation
	Hardware experiments
	Area cleared in empty space

	Conclusion & future work
	Acknowledgements
	References

