
Auton Robot (2011) 31:333–343
DOI 10.1007/s10514-011-9247-y

A Mixed Integer Linear Programming approach to pursuit
evasion problems with optional connectivity constraints

Johan Thunberg · Petter Ögren

Received: 12 October 2010 / Accepted: 16 July 2011 / Published online: 18 August 2011
© Springer Science+Business Media, LLC 2011

Abstract In this paper, we address the multi pursuer version
of the pursuit evasion problem in polygonal environments.
By discretizing the problem, and applying a Mixed Integer
Linear Programming (MILP) framework, we are able to ad-
dress problems requiring so-called recontamination and also
impose additional constraints, such as connectivity between
the pursuers. The proposed MILP formulation is less con-
servative than solutions based on graph discretizations of the
environment, but still somewhat more conservative than the
original underlying problem. It is well known that MILPs, as
well as multi pursuer pursuit evasion problems, are NP-hard.
Therefore we apply an iterative Receding Horizon Control
(RHC) scheme where a number of smaller MILPs are solved
over shorter planning horizons. The proposed approach is
implemented in Matlab/Cplex and illustrated by a number
of solved examples.

Keywords Pursuit evasion · MILP · Search

1 Introduction

The visibility based pursuit evasion problem addressed here
was first proposed by Suzuki and Yamashita (1992) and later

The first author would like to gratefully acknowledge the financial
support by the Swedish National Space Technology Research
Programme (NRFP).

J. Thunberg
Division of Optimization and Systems Theory, Department
of Mathematics, Royal Institute of Technology (KTH), 100 44
Stockholm, Sweden
e-mail: johan.thunberg@math.kth.se

P. Ögren (�)
Department of Aeronautical and Systems Technology, Swedish
Defence Research Agency (FOI), 164 94 Stockholm, Sweden
e-mail: petter.ogren@foi.se

studied in e.g., (Guibas et al. 1999; Gerkey et al. 2006; Isler
et al. 2005; Hollinger et al. 2009, 2010; LaValle and Hin-
richsen 2002; Tovar and LaValle 2008; Simov et al. 2009;
Yu and LaValle 2008; Kolling and Carpin 2007). The prob-
lem is to find a search strategy for a group of pursuers, such
that an evader moving arbitrarily fast, and starting in an un-
known location, will be captured no matter what path he de-
cides to take.

The obvious applications of the pursuit evasion problem
is where security guards or robots are to clear an office, a
warehouse, or a shop after closing time. However, search
strategies of this type can also be used in search and rescue
missions, or when looking for an item that might be moved
by a non-adversarial agent in a larger area, such as a ware-
house.

A complete solution to the one-pursuer case was pro-
posed by Guibas et al. (1999), where it was also pointed
out that the extension of that same approach presented con-
siderable challenges in the multi-pursuer case. The two pur-
suer case was addressed in Simov et al. (2009), but since
Guibas et al. also showed that the general problem is indeed
NP-hard, solving problems with additional pursuers in rea-
sonable time will be very hard. The concepts of Guibas et
al. (1999) were built upon in Gerkey et al. (2006), where
a field of view limitation was incorporated into the prob-
lem. The one-pursuer case was successfully treated, but once
again, the multi-pursuer case turned out to be computation-
ally intractable. Additional aspects of the problem have also
been addressed, such as curved environments (LaValle and
Hinrichsen 2002) and bounded speed evaders (Tovar and
LaValle 2008).

As optimal deterministic strategies with guaranteed cap-
ture are hard to find, the option of using randomized strate-
gies was explored in Isler et al. (2005). It was shown that
a single pursuer can locate an evader in any simply con-

mailto:johan.thunberg@math.kth.se
mailto:petter.ogren@foi.se


334 Auton Robot (2011) 31:333–343

nected environment with high probability. Randomized ap-
proaches such as these are clearly an option for the multi-
pursuer problem, but will not be investigated here. An inter-
esting approach, focusing on the discrete time evolution of
the cleared and contaminated parts of the environment was
presented in Yu and LaValle (2008). The approach is related
to the one presented here, but uses graphs, instead of a MILP,
to keep track of the status of the different areas. Once the
evader is found, the problem of how to move the pursuers in
order to keep the evader in view arises. Such problems are
sometimes referred to as target tracking problems (Jung and
Sukhatme 2002) but will not be considered in this paper.

A problem that is closely related to the visibility based
pursuit evasion problem is the one where the evader and pur-
suers are constrained to move in a graph. All instances of the
former can be more or less conservatively discretized into
the latter (Hollinger et al. 2010). One version of the graph
search problem is called GRAPH-CLEAR, and was studied
in Kolling and Carpin (2007). In the GRAPH-CLEAR prob-
lem, each vertex corresponds to a room, and each edge cor-
responds to a door. Each vertex and edge furthermore has
a number assigned to it, corresponding to how many pur-
suers are needed to clear the vertex (room), or block the
edge (door). The problem is now to deploy pursuers to the
edges and vertices in such a way that the whole graph is
cleared. It is easy to see that most polygonal environments
can be divided into rooms and doors in many different ways.
The rooms could either be very small, and trivially clearable
by a single pursuer, or quite big, making the room clearing
a non-trivial subproblem. The potential drawback of mak-
ing the rooms very small is that the quality of the solution
might be reduced since pursuers can not see from one room
to another. Therefore, one could imagine a hierarchical ap-
proach with a global GRAPH-CLEAR problem and a polyg-
onal pursuit evasion problem for each room. The latter can
be solved by e.g., the approach presented here, to find how
many pursuers are needed to clear each room.

In this paper, we will propose an approach using the tools
of Mixed Integer Linear Programming (MILP) and Reced-
ing Horizon Control (RHC). These tools were applied to
UAV path planning in Schouwenaars et al. (2001), Belling-
ham et al. (2002), where MILP was used to find detailed
trajectories over a short planning horizon. The MILP com-
putations were then iterated in an RHC fashion where each
trajectory ended closer to goal than the previous one. The
polygonal pursuit evasion problem is quite different from
the UAV problem studied in Schouwenaars et al. (2001),
Bellingham et al. (2002), but share the properties of a com-
plex short term planning step and a long term goal. In the
pursuit evasion problem we let the size of the cleared area be
a measure of how far we are from completing the search, and
encode the motion of the pursuers and the evolution of the
cleared area into a MILP problem that is iteratively solved.

The proposed approach can be seen as a lying in be-
tween the exact approaches and the graph based ones in
the following sense. The visibility properties of the differ-
ent areas is captured by the MILP in a way that is more
conservative than the exact approaches (Guibas et al. 1999;
Simov et al. 2009), but less conservative than the graph
based ones (Hollinger et al. 2010).

This paper is an extension of the basic concepts presented
in the conference paper (Thunberg and Ögren 2010). The
new material includes decomposition (Sect. 5), connectivity
constraints (Sect. 6) and results on problems requiring so-
called recontamination (Sect. 7). The main contribution of
the paper is the MILP formulation, including variations, of
the visibility based pursuit evasion game. To the best of our
knowledge, this has not been done before.

The outline of the paper is as follows. In Sect. 2 the
polygonal pursuit evasion problem is formally stated and
in Sect. 3 the proposed solution is described. Then, Sect. 4
describes an RHC extension of the algorithm, Sect. 5 de-
scribes how larger problems can be addressed, and Sect. 6
describes how additional constraints, such as connectivity
can be incorporated. Finally, Sect. 7 contains simulation ex-
amples to illustrate the approach and Sect. 8 concludes the
paper.

2 Problem formulation

Following Guibas et al. (1999), the pursuers and evader are
modeled as points moving in the polygonal free space, F .
Let e(τ ) denote the position of the evader at time τ ≥ 0. It is
assumed that e : [0,∞) → F is continuous, and the evader
is able to move arbitrarily fast. The initial position e(0) and
path e is not known to the pursuers. At each time instant, F

is partitioned into two subsets, the cleared and the contami-
nated, where the latter might contain the evader and the for-
mer can not. Given N pursuers, let pi(τ ) : [0,∞) → F de-
note the position of the i:th pursuer, and P = {p1, . . . , pN }
be the motion strategy of the whole group of pursuers.

Let V (q) denote the set of all points that are visible from
q ⊂ F , i.e., the line segment joining q and any point in V (q)

is contained in F .

Problem 1 (Pursuit Evasion) Given an evader, a set of N

pursuers and a polygonal free space F , find a solution strat-
egy P such that for every continuous function e : [0,∞) →
F there exists a time τ and an i such that e(τ ) ∈ V (pi(τ )),
i.e., the evader will always be seen by some pursuer, regard-
less of its path.

It was shown in Guibas et al. (1999) that computing the
minimal number of pursuers needed to solve Problem 1 is
NP-hard. Hence it is also NP-hard to determine if a solution



Auton Robot (2011) 31:333–343 335

exists for a given number of pursuers. To find efficient solu-
tions in reasonable time one must thus sacrifice optimality.
This can be done by exploring randomized approaches (Isler
et al. 2005), or by relaxing the problem and applying other
optimization schemes.

In the following section we will first relax Problem 1
by discretizing it, and then apply a combination of Mixed
Integer Linear Programming (MILP) and Receding Hori-
zon Control (RHC). These tools have proved to be very
useful when addressing other hard path planning problems
(Schouwenaars et al. 2001; Bellingham et al. 2002) and we
will argue that they are applicable to Problem 1 as well.

3 Proposed solution

In the proposed solution, we first discretize Problem 1 by
partitioning the polygonal free space F into a set of con-
vex regions, F = ∪i∈J Fi , J = {1, . . . ,K}. The relations
between those regions are then described by Mj ⊂ J and
Nj ⊂ J , where Mj is the index set of other regions that
are neighbors to Fj , and Nj is the index set of regions that
are visible from Fj . Then, a MILP is formulated, capturing
what regions are occupied by pursuers at what times, and
when the regions are cleared or contaminated over time. By
maximizing the cleared area at the end time of the MILP,
the continuous pursuer trajectories pi(τ ) can be constructed
from the discrete MILP output.

3.1 Discretization of the free space environment

The first step of the discretization of Problem 1, i.e., the par-
titioning F = ∪iFi , is illustrated in Fig. 1. As can be seen,
all straight obstacle boundaries are extended until they reach
another obstacle, or the perimeter of F . These extended
boundaries form the partition F = ∪iFi .

Lemma 1 In the partition there are at most O(n2) regions,
where n is the number of straight boundaries of the obstacle
polygons and the perimeter.

Proof In the partitioning, each extended straight obstacle
boundary intersects a number of other extended boundaries.
There are at most n2 such intersections. Each such inter-
section borders at most four regions. Thus the number of
regions k, satisfy k ≤ 4n2 and k ∈ O(n2). �

The second step of the discretization of Problem 1 deals
with the motion, pi(τ ), of the pursuers. These are now dis-
cretized into moving between the regions Fi . A pursuer
standing in Fi can in the next, discretized, time instant oc-
cupy any region with index in the set Mi , i.e., any neighbor-
ing region. This is illustrated in Fig. 2(a).

Fig. 1 An example environment with one irregularly shaped obstacle
(a), and the corresponding partition of the free space F into convex
polygons F1 . . . F21 (b)

Fig. 2 The neighborhood that can be moved to, M1 (a) and the neigh-
borhood that can be seen, N1 (b), from area F1

The third step in discretizing Problem 1 involves the vis-
ible set V (·). Let Ni be the index set of regions such that
Fj ⊂ V (x) for all j ∈ Ni and all x ∈ Fi . Note that visibility
is symmetric, i.e. j ∈ Ni implies i ∈ Nj .

Remark 1 Note that the discretization of V (·) is conserva-
tive, since regions Fj that are partially visible are considered
not visible at all. In some approaches, such as (Guibas et al.
1999; Gerkey et al. 2006), this is not the case, but in oth-
ers, such as the graph search approaches (Hollinger et al.
2010), an even more conservative discretization is needed to
address open areas.

The final step of discretizing Problem 1 is to capture the
regions being clear, or contaminated during the search in
terms of a MILP.

3.2 MILP formulation

As described above, a pursuer located in polygon i sees the
polygons with index in set Ni and can move to polygons
with index in the set Mi .

During the search we keep track of where the pursuers
are, and which polygons are cleared and which are con-
taminated. In order to do so, we introduce the following



336 Auton Robot (2011) 31:333–343

binary variables λit , σit , θit ∈ {0,1}, where i ∈ J and t ∈
{1,2, . . . , T }. Let λit = 1 if and only if a pursuer is located
in polygon i at time t . Let furthermore σit = 1 if and only if
polygon i is seen at time t and θit = 1 if and only if polygon
i is cleared but unseen at time t .

Before formulating the MILP we define four different
search-states that each region Fi can be in. Theoretically,
there are eight combinations of the three binary variables
λit , σit , θit , but given the meanings we assign to them, only
four of those eight combinations are possible, and we denote
them S1, S2, S3, S4. These four states will help us capture the
time evolution of the search in the MILP formalism. We dif-
ferentiate between three different cleared states, S1, S2, S3

and one contaminated state, S4.

S1 The region is seen by a pursuer and contains a pursuer,
i.e., λit = 1, σit = 1 and θit = 0.

S2 The region is seen by a pursuer, but does not contain a
pursuer, i.e., λit = 0, σit = 1 and θit = 0.

S3 The region is not seen by a pursuer, but can not contain
the evader, i.e., λit = 0, σit = 0 and θit = 1.

S4 The region might contain the evader, i.e., λit = 0, σit =
0 and θit = 0.

Note that no other combinations of λit , σit , θit are possible
by definition.

We now state the MILP formulation and then show, in
Lemma 2, that a feasible solution does indeed correspond
to traversable pursuer paths pi(τ ) and an expanding cleared
region {i : θit = 1}.

Problem 2 (MILP) Given a T ∈ Z
+ solve the following in-

teger linear program.

max Z = α
∑

i∈J

θiT + (1 − α)
∑

i∈J

σiT (1)

subject to
Constraints addressing: λit (pursuer locations),

∑

i∈J

λit − N = 0, (2)

N − (N − 1)λit −
∑

j∈Mi

λjt ≥ 0, (3)

∑

j∈Mi

λjt − λi(t−1) ≥ 0, (4)

2 −
∑

j∈Mi

λj (t−1) − λit ≥ 0. (5)

Constraints addressing: σit (seen regions)
∑

j∈Ni

λjt − σit ≥ 0, (6)

σit − λjt ≥ 0, ∀j ∈ Ni (7)

Constraints addressing: θit (unseen cleared regions)

σjt + θjt − θit ≥ 0, ∀j ∈ Mi − {i}, (8)

σi(t−1) + θi(t−1) − θit ≥ 0, (9)

1 − σit − θit ≥ 0, (10)

θi1 = 0, (11)

where α ∈ [0,1], i ∈ J and t ∈ {2,3, . . . , T } in (4), (5) and
(9) and t ∈ {1,2, . . . , T } in the other constraints.

We will now motivate all the constraints and then make
remarks about the objective function and the fact that the
constraints are somewhat conservative. In (2) we make sure
that there are exactly N pursuers at each time t . Constraints
(3)–(5) make sure, in a somewhat conservative way, that the
pursuers move between neighboring regions one step at a
time. Constraint (3) states that if a region is occupied, then
all its neighbors must be unoccupied. (4) Makes sure that if
a region was occupied in the last time step, at least one of
its neighbors must be occupied in this time step. (5) Implies
that if a region is occupied, at most one of its neighbors was
occupied the last time step.

Moving on to the constraints making sure that the right
regions are labeled as seen, we note that (6) makes sure that
if there are no pursuers in the Ni neighborhood, then the
region can not be seen, and (7) makes sure that if there is a
pursuer in one of the Ni neighborhood regions, then it must
be seen.

Finally, looking at the constraints governing the unseen
but cleared regions, we note that (8) implies that if any
neighbor of a region is not seen nor cleared, then the re-
gion can not be cleared itself. (9) Implies that a cleared re-
gion must have been either cleared or seen in the previous
time step. (10) Then states that a region can not be seen and
cleared but unseen at the same time. (11) Finally makes sure
that there are no cleared areas at starting time. Note also that
the objective function makes sure that regions that can be
marked as cleared are marked as cleared.

Remark 2 (Objective function) Note that α = 1 corresponds
to maximizing the cleared but unseen region (S3), α = 0
corresponds to maximizing the visible region (S1 or S2),
while α = 0.5 corresponds to maximizing the cleared region
(S1, S2 or S3) at the final time T . In Sect. 7 below we will
see that α = 1 is actually the best measure of progress for the
clearing task. By removing the visible region from the ob-
jective function, we decrease the risk of the pursuers staying
in locations where they see a large area, instead of moving
on to clear additional areas.



Auton Robot (2011) 31:333–343 337

Remark 3 (Conservative constraints) Note also that con-
straints (3)–(5) implies that pursuers never occupy the same
or neighboring regions. This restriction is somewhat conser-
vative, as it is not present in Problem 1. A less conservative
version of the proposed approach can be created at the price
of increased complexity. This is done by adding one more
index k on the variable λ, i.e. λitk , where k is the pursuer
index, and letting λijk = 1 if and only if pursuer k is in re-
gion i at time t . In this representation however the number of
variables and constraints grow linearly with the number of
pursuers, compared to the presented representation in which
they are constant.

Lemma 2 A feasible solution to Problem 2 can be used to
generate pursuer paths pi(τ ), τ ∈ [0, T ′], i ∈ {1, . . . ,N},
guaranteeing the following. If e(τ ) �∈ V (pi(τ )) for all i and
τ ∈ [0, T ′], then e(T ′) ∈ Fi such that Fi is in state S4 at time
T, i.e., if the evader has not been seen up till time T ′, then it
must be in the contaminated area. Above, T ′ is the continu-
ous final time corresponding to the discrete final time T .

Proof We first prove that N valid pursuer paths can be gen-
erated from a feasible solution. In (2) it is guaranteed that
there are exactly N pursuers at each time t . Constraints (2)–
(5) together guarantee that a pursuer move between adjacent
regions in consecutive time steps. Now, pursuer paths pi(τ )

can be created from λit where all pursuers cross borders be-
tween the Fi at the same time. Finally, a mapping between
continuous time τ and discrete time t can be created to ac-
commodate the pursuer velocity bounds.

To see that the right regions are denoted as seen, σit = 1,
we note that in (6) and (7) the variable σit is set to 1 if and
only if there is a j ∈ Ni such that λjt = 1.

To see that the cleared area, θit = 1, evolves correctly
note the following. In (8) it is verified that the polygon i

cannot be in state S3 at time t if any of the Mi -neighbours
are in state S4, and in (9) it is verified that the polygon i

cannot be in state S3 at time t if it was in state S4 at time
t − 1. In (10) it is verified that polygon i cannot be in state
S3 if it is in state S1 or state S2 at time t and (11) verifies
that no polygon is in state S3 when the search starts.

To conclude we note that evader e(τ ) can not start in the
cleared area S3 and that the cleared area is always separated
from the contaminated S4 by seen or occupied areas S1, S2.
Thus, if it is not seen, it must be in the contaminated area. �

Lemma 3 A feasible solution strategy P to Problem 2 with
N pursuers ending with an empty contaminated area, i.e.,
∑

i∈J

(σiT + θiT ) = card(J ), (12)

is a solution to Problem 1.

Proof A straightforward application of Lemma 2 above. �

Remark 4 (Backwards) Given a solution strategy P of Prob-
lem 1, a new solution can be created by running the pur-
suer trajectories pi(τ ) backwards. To see this note that the
cleared unseen area (S3) is always separated from the con-
taminated area (S4), and we start with an empty cleared
unseen area and finish with an empty contaminated area.
Running the trajectories backwards would thus result in ex-
changing the labels cleared unseen and contaminated, i.e.
switching states S3 and S4.

Remark 5 (Number of pursuers) In the proposed MILP for-
mulation, the number of variables or the number of con-
straints will not increase with the number of pursuers, i.e.,
the size of the problem does not grow with the number of
pursuers. However, the number of constraints does grow lin-
early with the number of regions.

4 Reducing the computation times using RHC and
relaxation

In this section we will describe how the computation times
for solving Problem 1 can be reduced using RHC and relax-
ing some of the integer constraints in the MILP.

4.1 An RHC solution to the pursuit evasion problem

Depending on the problem size, large time horizons T might
be needed to find a solution to Problem 2 with empty con-
taminated area, and large time horizons T often result in
long computation times. As explained in Sect. 1 above, a
classical way to balance performance with computational
resources is RHC, where an optimization problem over a
shorter time horizon is iteratively solved instead of solving
it once and for all over a longer horizon. In our setting the
RHC concept might be implemented as follows.

Algorithm 1

1. Solve the MILP with α = 1 or α = 0.5 and some given
horizon length T .

2. If the final states σiT and θiT satisfies

∑

i∈J

(σiT + θiT ) = card(J ), (13)

the whole area is cleared, and the algorithm terminates.
3. Else, if there was no increase in

∑
i∈J (σiT + θiT )

(a) If more pursuers are available, use them, i.e. increase
the number of pursuers N ,

(b) else, if computational resources allow it, increase the
horizon length T ,

(c) else, decompose the problem into smaller subprob-
lems, as described in Algorithm 2.



338 Auton Robot (2011) 31:333–343

4. Prepare a new RHC iteration by removing constraint
(11) and adding constraints setting the initial states of
the next iteration θi1, λi1, σi1 equal to the terminal states
θiT , λiT , σiT of the current iteration.

5. Goto 1.

Lemma 4 If Algorithm 1 terminates, a solution to Prob-
lem 1 is found.

Proof A straightforward application of Lemma 3 above. �

4.2 Relaxation of the MILP problem

To increase the computational efficiency when solving Prob-
lem 2 we note that some of the integer constraints can be
relaxed.

Problem 3 (Relaxation) The variables σit and θit in Prob-
lem 2 are relaxed such that they are no longer binary vari-
ables but belong to [0,1], i.e.

0 ≤ σit ≤ 1, (14)

0 ≤ θit ≤ 1. (15)

Using CPLEX 10.2, Problem 3 seems to be between 2
and 20 times as fast as the original formulation.

Lemma 5 The pursuer paths λit in the solution to Prob-
lem 3 are also pursuer paths in an optimal solution to Prob-
lem 2.

Proof Note that if there is a j such that λjt = 1, j ∈ Ni

then σit = 1 by (7), also if λjt = 0, ∀j ∈ Ni then σit = 0 by
(6), thus σit is binary. Now let (λ, σ , θb) be a (possibly sub-
optimal) solution to Problem 2 in which only θb differs from
the solution of Problem 3. Let Z2 and Z3 be the cost of the
solutions to Problems 2 and 3 respectively. By (8), (9) and
(10) we get that for each θit ∈ (0,1], θb

it = 1. This implies
that Z3 ≤ Z2, but problem 3 is a relaxation of problem 2
which implies Z2 ≤ Z3. Thus Z2 = Z3. �

5 Decomposition of large environments

As noted in Sect. 1, one way of reducing the complexity of
large problem instances is to use a hierarchical decompo-
sition with a GRAPH-CLEAR problem at the top and in-
stances of Problem 1 at the lower level. Another option is
to decrease the problem size and complexity by placing sta-
tionary pursuers at positions where they cover large areas,
and then solve instances of Problem 1 in the remaining un-
seen parts of F . This approach is described below.

Algorithm 2

1. Solve the MILP with k pursuers and one time step with
α = 0. This corresponds to maximizing the number of
seen polygons by k pursuers, i.e., solving an Art Gallery
problem (Urrutia 2000).

2. Remove all polygons that are in state S1 or S2 from F ,
leaving a possibly disconnected F .

3. Apply Algorithm 1 to each connected component of F

and let q be the maximal number of pursuers needed.
4. The number of pursuers needed to clear the original F is

now k + q .

6 Connectivity constrained search

An area receiving an increasing amount of interest is com-
munication aware motion planning (Anisi et al. 2010;
Lindhe and Johansson 2008). In this section we will show
how the proposed MILP framework can be extended to han-
dle one such problem, namely the problem where the whole
group of pursuers shall be connected in a line-of-sight graph
at a given time instant t ′. We will present two sets of con-
straints. The first set corresponds to a general line-of-sight
graph, while the second set corresponds to a special case, a
star shaped line-of-sight graph, where one of the pursuers
sees all others.

For the general case we extend Problem 2 with a set of bi-
nary variables uij , where i ∈ J and j ∈ {1,2, . . . ,N} = JP .
Below we will first add constraints (16–18) to ensure that
uij = 1 if and only if pursuer j is located in region i at time
t ′, constraints . We then add constraint (19) so that all pur-
suers, except pursuer number one, is visible to a pursuer with
an index that is lower than its own. The list of constraints is
as follows.

λit ′ − uij ≥ 0, ∀i ∈ J, j ∈ JP , (16)
∑

j∈Jp

uij ≤ 1, ∀i ∈ J, (17)

∑

i∈J

uij = 1, ∀j ∈ JP , (18)

j−1∑

l=1

∑

k∈Ni

ukl − uij ≥ 0, ∀i ∈ J, j ∈ JP − {1}. (19)

Equation (16) states that uij can be equal to 1 only if λit ′ is
equal to 1. Equations (17–18) together guarantee that there
is one and only one unique uij = 1 for each λit ′ = 1. Equa-
tion (19) states that uij where i ∈ J and j ∈ {2,3, . . . ,N}
can only be equal to 1 if there is at least one pair (k, l),
where k ∈ Ni and l ∈ {1,2, . . . , j − 1}, such that uk,l = 1.
Given (16–18), equation (19) guarantees the existence of a
line-of-sight graph.



Auton Robot (2011) 31:333–343 339

Fig. 3 The results of running Algorithm 1 with a 6 step planning hori-
zon (b) in the environment in (a). A green triangle denotes the start
of a pursuer path, and a red square denotes the stop of a pursuer path,
blue discs denote intermediate steps

Fig. 4 The partition (b) of a Manhattan grid with four obstacles (a)

Remark 6 If these constraints are used at all time steps, the
entire search is performed with the group of pursuers con-
nected in a line-of-sight graph.

An alternative to the general case above, is the problem
of creating a line-of-sight graph where one single vertex is
connected to all others. This results in a smaller set of bi-
nary variables ui . The topology of the connected visibility
graph is defined by the first constraints below, whereas the
last constraint, with the sum of all uj :s, implies that there
must exist such a graph.

λit ′ +
∑

j∈Ni

λjt ′ − (N + 1)ui ≥ 0, i ∈ J, (20)

∑

j∈J

uj ≥ 1. (21)

Both these sets of constraints will result in a connected graph
independently of the number of pursuers.

7 Simulation examples

When running Algorithm 1, it turns out that the best results
are found using α = 1. A drawback of the more intuitive

Fig. 5 The results of running the algorithm on a Manhattan grid with
four obstacles. The partition is showed in Fig. 4, and the search prob-
lem is solved with 2 pursuers in three iterations where the results of
iteration 1, 2 and 3 are shown in (a), (b) and (c) respectively. Note that
4 time steps were necessary in iteration 3, the result of the third itera-
tion with 3 time steps is showed in (d). White regions are in states S1,
S2 or S3, whereas grey regions are in state S4. A green triangle de-
notes the start of a pursuer path, and a red square denotes the stop of a
pursuer path, blue discs denote intermediate steps. A number i inside
a triangle, disc or square indicates that the pursuer waits an additional
i time steps in the region

α = 1/2 is that the pursuers might get stuck at positions
where they see a large area, e.g., looking down a corridor,
but any motion results in a reduction of this area. Thus we
use α = 1 in all but one of the examples below. The simula-
tions were done on a Intel Xeon CPU X5450, 3.00 GHz with
4 cores, running the MILP software CPLEX 10.2 (CPLEX
2007). Furthermore, all results were found using the relaxed
version, Problem 3, as it was found to be between 2 and
20 times as fast as the non-relaxed formulation. Finally, we
note that the proposed approach is not directly suitable for
very large problems. Such problems can be decomposed into
smaller ones, either by applying Algorithm 2 or using a
GRAPH-CLEAR formulation, as described in Sect. 1. The
performance and limitations of the approach can be seen
from the examples below.

The first problem instance is depicted in Fig. 3(a) with
the corresponding solution in Fig. 3(b). With a time horizon
of T = 6, and α = 1/2, a single RHC iteration was needed,
and found in 4 seconds.

The second problem instance is shown in Fig. 4, with cor-
responding solution in Fig. 5(a–c). The problem was first
solved in 3 RHC iterations using a total number 10 time



340 Auton Robot (2011) 31:333–343

Fig. 6 (a) The solution of running the algorithm on the environment in
Fig. 4 with 2 pursuers for 6 time steps. The color coding of the regions
are as in Fig. 5. (b) A complex environment with fewer loops

Fig. 7 The results of running the algorithm on the environment in
Fig. 6(b). The search problem is solved with 3 pursuers in four iter-
ations where the results of iteration 1, 2, 3 and 4 are shown in (a), (b),
(c) and (d) respectively. After iteration 3, no improvement is achieved
with 2 pursuers, thus one more pursuer is added in iteration 4. The
number of time steps was also increased. The color coding of the re-
gions are as in Fig. 5

steps. The computational time was about 3 seconds for each
iteration resulting in a computational time of 9 seconds in to-
tal. Note that the first two RHC iterations achieved progress
with T = 3, while the third iteration needed T = 4 to re-
move the last S4 region. Figure 5(d) shows the result of the
iteration leading to the increase in horizon length. This prob-

Fig. 8 The results or running Algorithm 2 with two pursuers on the
environment in Fig. 6(b). In step 1, we use k = 1, i.e., one pursuer is
used to cover as much of the area as possible, and the resulting position
is shown in (a). Then the remaining five connected components of F

are searched one after the other with one pursuer, (b). The color coding
of the regions are as in Fig. 5

Fig. 9 The result of running the algorithm on the Manhattan grid with
the additional connectivity constraints (20) and (21) active at the final
time of each iteration. The problem was solved in two iterations using
4 and 5 timesteps respectively, and one can verify that the pursuers can
see each other at the final time of each iteration

lem was also solved in a single iteration using a time horizon
of T = 6, with a corresponding computational time of 110
seconds, see Fig. 6.

The third problem instance is shown in Fig. 6(b) with cor-
responding solution in Fig. 7. The solution involves three
RHC iterations with 2 pursuers, followed by one iteration
with three pursuers. The computational time was about 5
seconds for the three first iterations and 15 seconds for the
last iteration. Trying to find a 2 pursuer solution we run the
algorithm with 2 pursuers and 10 time steps in the first it-
eration, after 45 minutes, the algorithm had not finished the
first iteration.

The solution of the fourth problem is shown in Fig. 8.
The environment is the same as the third problem, but the
solution is found using decomposition, i.e., Algorithm 2, as
presented in Sect. 5. Step 1 of the algorithm was solved in
2 seconds with k = 1, i.e. one stationary pursuer was used.
The position of this pursuer is shown in Fig. 8(a). The search



Auton Robot (2011) 31:333–343 341

Fig. 10 The results of running
the algorithm on a problem
requiring recontamination. Note
that the upper part of the area is
first cleared, then contaminated
and finally cleared once again,
and that recontamination is
necessary when clearing the
whole area with one pursuer

of the remaining unseen parts of F , in this case five dis-
connected regions, took 2 seconds each and is shown in
Fig. 8(b). Thus the problem was solved in a total of 12 sec-
onds, using 2 pursuers.

The fifth problem illustrates the connectivity constraints.
The Manhattan grid in Fig. 4 was solved with the algo-
rithm in two iterations with 4 and 5 time steps respectively,
see Fig. 9. The additional connectivity constraints (20) and
(21) were active at the final time of each iteration. In the
figure one can see that the two pursuers are indeed con-

nected by a free line of sight at the final time of each it-

eration.

The sixth problem is a single pursuer one, solving a prob-

lem that requires so-called recontamination, Fig. 10. The

problem is taken from Guibas et al. (1999), where it was

shown that some problems require a linear (in edges) num-

ber of recontaminations, i.e., some areas need to change

back and forth between being contaminated and cleared a

number of times, before finally being cleared. In this prob-



342 Auton Robot (2011) 31:333–343

Table 1 The computational time in seconds as a function of environ-
ment size (E1 to E4) and number of pursuers. Below, ‘–’ denotes that
starting positions with the required separation could not be found

Pursuers E1 E2 E3 E4

2 < 1 7 >1700 > 1700

3 < 1 26 >1700 > 1700

4 < 1 < 1 >1700 > 1700

5 < 1 8 >1700 > 1700

6 < 1 < 1 >1700 > 1700

7 < 1 13 >1700 > 1700

8 < 1 < 1 >1700 > 1700

9 < 1 13 >1700 > 1700

10 < 1 < 1 21 > 1700

11 – < 1 2 > 1700

12 – < 1 39 > 1700

13 – 72 38 < 1

14 – < 1 < 1 18

15 – – < 1 10

lem, the recontaminated area is at the very top, and the re-
contamination is shown in Fig. 10b.

In the seventh problem, we investigate how the com-
putational time varies with the size of the environment
to be cleared, and the number of pursuers. Four different
search environments of increasing size were used. These
were created as follows from the four subsets A,B,C, and
D shown in Fig. 11. Environment E1 = A, E2 = A ∪ B ,
E3 = A ∪ B ∪ C, and E4 = A ∪ B ∪ C ∪ D. We run Algo-
rithm 1 with α = 1 and time horizon T = 3 on environments
E1 to E4 with the number of pursuers ranging from 2 to 15.
The resulting computational times can be found in Table 1,
where an ‘–’ indicate that feasible starting positions satis-
fying (3)–(5) could not be found. As expected, we can see
that the computational time increases with the environment
size. However, it does not grow with the number of pursuers
and solutions to the more complex environments E3,E4 can
only be found, within the given time limits, with a larger
number of pursuers.

8 Conclusions

In this paper a new approach for solving multi-pursuer pur-
suit evasion problems in polygonal environments has been
proposed. In this approach a mixed integer linear program-
ing (MILP) formulation was used in an iterative RHC fash-
ion to address NP-hard pursuit evasion problems.

It was shown that the proposed approach can solve prob-
lems requiring so-called recontamination, if the planning
horizon is long enough to capture the benefits of this re-
contamination. We have also seen that the approach is flexi-

Fig. 11 The environments used to investigate computational time as
a function of problem size and the number of pursuers. The four envi-
ronments of Table 1 are E1 = A, E2 = A ∪ B , E3 = A ∪ B ∪ C, and
E4 = A ∪ B ∪ C ∪ D

ble, allowing additional aspects, such as connectivity con-
straints, to be included in the formalism. Finally, the ap-
proach represents a middle ground between the computa-
tionally efficient but conservative graph approaches and the
non-conservative but computationally challenging exact so-
lutions.

Acknowledgements We would like to thank Erik Peldan and
Richard Hermanson for their help in running the simulations reported
in Table 1.

References

Anisi, D., Ögren, P., & Hu, X. (2010). Cooperative minimum time
surveillance with multiple ground vehicles. IEEE Transactions on
Automatic Control, 55. doi:10.1109/TAC.2010.2047438.

Bellingham, J., Richards, A., & How, J. (2002). Receding horizon con-
trol of autonomous aerial vehicles. In American Control Confer-
ence: Vol. 5 (pp. 3741–3746). New York: IEEE Press.

CPLEX, I. (2007). 10.2 user’s manual. ILOG Inc., Gentilly.
Gerkey, B., Thrun, S., & Gordon, G. (2006). Visibility-based pursuit-

evasion with limited field of view. The International Journal of
Robotics Research, 25(4), 299.

Guibas, L., Latombe, J., LaValle, S., Lin, D., & Motwani, R. (1999).
A visibility-based pursuit-evasion problem. International Journal
of Computational Geometry and Applications, 9, 471–493.

Hollinger, G., Singh, S., & Kehagias, A. (2009). Efficient, guaranteed
search with multi-agent teams. In 2009 Robotics: science and sys-
tems conference, RSS

Hollinger, G., Singh, S., & Kehagias, A. (2010). Improving the effi-
ciency of clearing with multi-agent teams. The International Jour-
nal of Robotics Research, 29(8), 1088–1105.

Isler, V., Kannan, S., & Khanna, S. (2005). Randomized pursuit-
evasion in a polygonal environment. IEEE Transactions on
Robotics, 21(5), 875–884.

Jung, B., & Sukhatme, G. (2002). Tracking targets using multiple
robots: the effect of environment occlusion. Autonomous Robots,
13(3), 191–205.

Kolling, A., & Carpin, S. (2007). The GRAPH-CLEAR problem: def-
inition, theoretical properties and its connections to multirobot
aided surveillance. In Proceedings of the IEEE/RSJ international
conference on intelligent robots and systems (pp. 1003–1008).

http://dx.doi.org/10.1109/TAC.2010.2047438


Auton Robot (2011) 31:333–343 343

LaValle, S., & Hinrichsen, J. (2002). Visibility-based pursuit-evasion:
The case of curved environments. IEEE Transactions on Robotics
and Automation, 17(2), 196–202.

Lindhe, M., & Johansson, K. (2008). Communication-aware trajectory
tracking. In IEEE international conference on robotics and au-
tomation, ICRA (pp. 1519–1524).

Schouwenaars, T., De Moor, B., Feron, E., & How, J. (2001). Mixed in-
teger programming for multi-vehicle path planning. In European
control conference (pp. 2603–2608).

Simov, B., Slutzki, G., & LaValle, S. (2009). Clearing a polygon with
two 1-searchers. International Journal of Computational Geome-
try and Applications, 19(1), 59–92.

Suzuki, I., & Yamashita, M. (1992). Searching for a mobile intruder in
a polygonal region. SIAM Journal on Computing, 21, 863.

Thunberg, J., & Ögren, P. (2010). An iterative Mixed Integer Linear
Programming approach to pursuit evasion problems in polygonal
environments. In IEEE international conference on robotics and
automation (ICRA) (pp. 5498–5503). New York: IEEE Press.

Tovar, B., & LaValle, S. (2008). Visibility-based pursuit-evasion
with bounded speed. In Algorithmic foundation of robotics VII
(pp. 475–489). Berlin: Springer.

Urrutia, J. (2000). Art gallery and illumination problems. In Handbook
of computational geometry (pp. 973–1027).

Yu, J., & LaValle, S. (2008). Tracking hidden agents through shadow
information spaces. In IEEE international conference on IEEE
robotics and automation, ICRA 2008 (pp. 2331–2338). New York:
IEEE Press.

Johan Thunberg was born in Stock-
holm, in 1982. He has received a
Master of Science degree in En-
gineering Physics from the Royal
Institute of Technology (KTH) in
Stockholm, Sweden. After finishing
his Master he has worked as a re-
search assistant at the Swedish De-
fence Research agency (FOI), and
at ENEA, a Swedish software com-
pany specialized in embedded sys-
tems.
Currently he is a Ph.D. student
within the Centre for Autonomous
Systems (CAS) and is funded by the

Swedish Space Corporation (SSC) and the Swedish National Space
Technology Research Programme (NRFP). His supervisior is Profes-
sor Xiaoming Hu. His research interests include vision based control
and estimation, consensus problems, and optimization based Multi-
agent coordination.

Petter Ögren was born in Stock-
holm, Sweden, in 1974. He re-
ceived the M.S. degree in engi-
neering physics and the Ph.D. de-
gree in applied mathematics from
the Royal Institute of Technology
(KTH), Stockholm, Sweden, in 1998
and 2003, respectively. In the fall
of 2001, he visited the Mechanical
Engineering Department, Princeton
University, Princeton, NJ. He is cur-
rently working as a Senior Scientist
with the Swedish Defence Research
Agency (FOI), Stockholm, Sweden.
His research interests include mul-

tirobot systems, formations, navigation, and obstacle avoidance.


	A Mixed Integer Linear Programming approach to pursuit evasion problems with optional connectivity constraints
	Abstract
	Introduction
	Problem formulation
	Proposed solution
	Discretization of the free space environment
	MILP formulation

	Reducing the computation times using RHC and relaxation
	An RHC solution to the pursuit evasion problem
	Relaxation of the MILP problem

	Decomposition of large environments
	Connectivity constrained search
	Simulation examples
	Conclusions
	Acknowledgements
	References


