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Abstract Capturing color in water is challenging due to the
heavy non-uniform attenuation of light in water across the
visible spectrum, which results in dramatic hue shifts toward
blue. Yet observing color in water is important for monitor-
ing and surveillance as well as marine biology studies re-
lated to species identification, individual and group behav-
ior, and ecosystem health and activity monitoring. Under-
water robots are equipped with motor control for large scale
transects but they lack sensors that enable capturing color-
accurate underwater images. We present a method for color-
accurate imaging in water called perceptual adaptive illu-
mination. This method dynamically mixes the illumination
of an object in a distance-dependent way using a control-
lable, multi-color light source. The color mix compensates
correctly for color loss and results in an image whose color
composition is equivalent to rendering the object in air. Ex-
periments were conducted with a color palette in the pool
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and at three different coral reefs sites, and with an underwa-
ter robot collecting image data with the new sensor.
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1 Introduction

Underwater monitoring of natural as well as human-engi-
neered environments can be greatly enhanced by automated
capture of underwater color images using underwater robots
(Singh et al. 2004a, 2004b; Williams et al. 2009).

Our goal is to develop color-accurate automated imaging
of underwater environments using robots capable of captur-
ing, mosaicing, mapping, and analyzing color images of the
space. In our previous work (Vasilescu et al. 2010), we de-
scribed a robot capable of such a task. Figure 7 shows this
underwater robot at the end of an underwater color imaging
mission. In this paper, we discuss an algorithm and instru-
ment that enables robots to image objects such as coral heads
and wrecks by automatically collecting a succession of un-
derwater color-accurate images. Color encodes important
information and plays a key role in underwater object identi-
fication, monitoring and surveillance, and marine biology—
for example a healthy sea anemone is pigmented by zooxen-
thella, while an unhealthy sea anemone is bleached.

Current cameras are not able to capture color accurately
in water at distances greater than 1 m, which makes color-
dependent underwater studies challenging (Jaffe et al. 2007).
Part of the challenge is the uneven attenuation of the color
spectrum as light travels through water. Longer wavelengths
(e.g., red light) attenuate more rapidly than shorter wave-
lengths (e.g., blue light), resulting in dramatic hue shifts to-
ward blue. Absorption, the primary cause for color loss in
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Fig. 1 Comparison of underwater imaging using white flash and adap-
tive illumination in a wreck setting. The color row in the middle shows
color patches extracted from these images for visualization without the
scene context. The images show a coral formation on a ship wreck in
the Grand Cayman with existing white flash (Top) and adaptive illu-
mination (Bottom). The pictures were taken at 15 m depth by Cathy
Church. The scene was at a distance of 3 m

water, is exponential with respect to the propagation dis-
tance. The exponential varies according to the wavelength
of the light (Smith and Baker 1981). Other factors such
as scattering contribute to image loss, but are substantially
independent of the wavelength of the visible light and do
not affect color. Current approaches to underwater imag-
ing rely on flooding objects with white light from a very
close distance (e.g. less than 0.5 m), using color filters, and
doing manual post-processing. These techniques are cum-
bersome, do not render accurate colors, and work only for
fixed setups, as color loss is distance-dependent. For exam-
ple, Fig. 1(Top) and Fig. 13(Top) show underwater images
taken with current techniques at 3 m distance.

In this paper, we describe a new method for color-
accurate imaging in water called perceptual adaptive illu-
mination. Our method uses knowledge about the physical
processes that lead to the color shift. It computes light loss
given distance to the imaged object and compensates for
light loss using an illuminant whose radiation spectrum is
controlled to be approximately the inverse of the water trans-
fer function. The human color perception models are used

for computing the optimal radiation spectrum. The full dy-
namic range of the camera is used and post-processing is not
necessary. The end result is the color-accurate presentation
of the object’s image to the camera’s CCD. Color-accurate
imaging renders the object as if the image was taken in air,
without the color loss side effects of water.

Figure 1 shows the comparison between images taken in
water, using white flash and using perceptual adaptive illu-
mination. The top pictures were taken with a white Xenon
flash. The bottom figures were taken using the perceptual
adaptive illumination method described in this paper. The
color row in between the pictures shows color patches ex-
tracted manually from the images, presented without the
scene context.

Underwater imaging with perceptual adaptive illumina-
tion requires a controllable illumination source capable of
estimating distances. We have developed an instrument,
algorithm, and software for capturing color-accurate im-
ages underwater by adaptive illumination which includes a
spectrum-controllable light source. The light composition is
calculated so that this composition is transformed into white
light by the water between the camera and the subject. The
energy content of the light source is calculated using the op-
tical properties of water and the distance to the subject. The
light is generated by a source composed of several filtered
Xenon light bulbs. Varying the relative power of the Xenon
flashes effectively results in a light source with variable
spectrum. Intuitively, the device senses the distance of the
object and mixes the light of a multi-color flash so as to com-
pensate for each component of the color spectrum according
to known physics of how that particular light frequency dis-
sipates in water. Distance sensing is accomplished with an
acoustic sonar, by using the distance information from the
camera’s auto-focus system, or can be manually entered by
the operator.

We present data from a suite of pool experiments and
ocean experiments using our system. We use a color palette
and the L∗a∗b∗ color metric for evaluating color accuracy.
Our experiments demonstrate color-accurate imaging in one
image plane at distances ranging from 1 m to 5 m and at
depths ranging from 5 m to 30 m. Distance to the imaged ob-
ject was measured in three different ways: using a measuring
tape, using an external distance sensor, and using auto-focus
information from the camera. We have attached the imaging
apparatus to our underwater robot (see Fig. 7(Right)) and
used it to collect underwater images. We do not report in de-
tail on the underwater robot missions because the focus of
the paper is the underwater imaging system.

1.1 Related work

Underwater color photography is an important field. It be-
gan with the first color underwater photograph by Marin
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and Longley in 1926 (National Geographic 2010). The
field grew and became popularized by the oceanographer
Jacques-Yves Cousteau (1950s–1970s). Despite a flurry ac-
tivity, reproducing accurate colors at distances beyond 1 m
has been an elusive goal in all this prior body of work.

Color plays a very important role in underwater monitor-
ing and surveillance, as well as in marine biology studies
related to species and behavior identification (Crook 1997).
Many recognized species of coral reef fishes exhibit two or
more color variants (Messmer et al. 2005). A recent study
(Bellwood 2011) found that fish use color to communicate.

Current approaches to color imaging underwater rely on
flooding objects with white light from close distances (e.g.
less than 0.5 m (Edge 2006)), possibly followed by post-
processing (Torres-Méndez and Dudek 2005; Yamashita et
al. 2007). Taking photographs at such short distances is a
very limiting factor for both humans and robots using imag-
ing as a sensor, as the range of subjects is severely con-
strained. Using wide angle lenses helps, but some scenes are
too big for close proximity imaging. To improve the range at
which colors are rendered correctly, color compensating fil-
ters have been developed for underwater photography (Color
correction filters 2011; Edge 2006). While filters generate
significantly better images than the no-filter setup, they are
limited by two factors. First, a single filter can only com-
pensate for a specific depth and distance to subject. Images
taken closer than the optimal distance will be too red. Pic-
tures taken too far away way will be too blue. In addition,
it is hard to manufacture filters with the exact transmission
function required, so filters will only approximately com-
pensate for the color shift.

Post-processing (Bazeille et al. 2006; Chambah et al.
2004; Eustice et al. 2006; Åhlén 2005; Jaffe et al. 2007;
Iqbal et al. 2007; Singh et al. 2004a, 2004b; Torres-Méndez
and Dudek 2005; Yamashita et al. 2007) an underwater im-
age can further improve its color approximation. This tech-
nique works by manually setting a white point and correct-
ing the image uniformly so that the selected point appears
white. When objects of known color are present in the pic-
ture, various statistical or learning approaches have been ap-
plied (Torres-Méndez and Dudek 2005). Another option is
to add a color filter to the camera to block much of the blue
light, correcting for the loss of red (Edge 2006). Since ab-
sorption is distance-dependent, a different filter is needed
for each distance. Furthermore, because the color attenua-
tion is not uniform the postprocessing techniques will not
render accurate colors. Postprocessing addresses the blue
color shift by making assumptions about the properties of
the picture (e.g. tagging known white patches in the picture)
instead of using knowledge of the physical process that led
to color shift. Finally, postprocessing is a manual and cum-
bersome technique.

The most common postprocessing approaches rely on the
retinex (Land and McCann 1971) method, which assumes

that the image contains objects that reflect the maximal
amount of red, blue and green. These three color channels
are normalized by the maximum pixel value of that respec-
tive channel contained in the image. This process is believed
to be very similar to what the human brain does when eval-
uating colors under different illuminants. There is an entire
class of retinex algorithms that attempt to achieve color con-
stancy for computer vision. A significant part of this work
addresses the weakness of the retinex assumption and the
imperfection in the image—noise can affect dramatically the
normalization. In underwater imaging the retinex assump-
tion has been used under several names including intensity
stretching (Bazeille et al. 2006) and histogram stretching
(Iqbal et al. 2007).

Another common assumption is the gray world, which
assumes that the average color in a photograph should be
neutral (e.g., a shade of gray). Given this assumption the
pixels of the image are normalized such that the average
color is gray. This is the method favored in many under-
water visual surveys (Chambah et al. 2004; Eustice 2005;
Eustice et al. 2006; Singh et al. 2004a, 2004b). The advan-
tage of the gray assumption over the white retinex method
is much higher noise tolerance as more pixels are averaged
together. However, the validity of the assumption remains
highly dependent on the scene and subject and yields vari-
able degrees of success. The best application for this method
is in ocean floor surveys where big areas of sand or rock
make the assumption plausible.

A recent paper by Yamashita et al. (2007) considers the
problem from a fundamental perspective and models the wa-
ter effects on the color using the wavelength-dependent ab-
sorption coefficients and distance between camera and sub-
ject. The computed inverse function is applied to the cap-
tured image. The function is only a very coarse approxima-
tion that takes into account only the effect on three particular
light wavelengths instead of the continuous spectrum. This
simplification limits the performance and is not scalable to
significant distances.

A recent body of research in underwater imaging, that is
orthogonal to understanding color shift correction, consid-
ers the effect of light scattering by the particles suspended in
water (Jaffe et al. 2007). The two main approaches are struc-
tured lighting (Narasimhan and Nayar 2005; Narasimhan
et al. 2005) and range gating (Chen et al. 2008; McLean
et al. 1995). In the case of structured lighting the scene
is illuminated by scanning with a narrow line of light and
thus limiting the amount of back-scattering, which is one of
the main cause of limited contrast in underwater pictures.
Range-gating relies on illuminating the scene with a very
short pulse of light combined with a precise activation of the
camera. This results in capturing just the light that traveled
for the desired distance—from the light source to the ob-
ject and back to the camera. The back-scattered light, which
travels less is, therefore, not captured.
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In contrast with this prior work, our method of color-
accurate imaging by adaptive illumination addresses the
physical process that causes the color shift. It compensates
for the light loss to objects at a specific distance by an illu-
minant with a radiation spectrum roughly the inverse of the
water transfer function; therefore, the camera’s CCD is al-
ready presented the corrected image (e.g. as if objects at the
target distance were imaged in air). The full dynamic range
of the camera is used and post-processing is not necessary,
perfectly accurate colors being possible.

1.2 Outline

This paper is organized as follows. Section 2 introduces the
physics of color perception in water. Section 3 discusses
color perception by the human visual system and its impli-
cations to computation. Section 4 presents the adaptive il-
lumination algorithm. Section 5 describes the adaptive illu-
mination instrument and the calibration procedure. Finally,
Sect. 6 presents our experimental data and evaluation.

2 Color perception in water

In this section we discuss the physics of color perception in
water and the intuition behind how knowledge about color-
absorption in water can be used to do color-accurate imaging
in water.

There are two important phenomena that affect imaging
in water: scattering and absorption. Scattering is the physical
process whereby light is forced to deviate from straight tra-
jectory as it travels through water. The effect is caused pre-
dominantly by solid particles suspended in water, but also
by the water molecules and substances dissolved in water.
Scattering is wavelength independent and does not affect
the color balance of the underwater image. This paper is not
concerned with scattering.

Absorption is caused by water molecules and dissolved
substances which convert light energy into heat. The wa-
ter absorption coefficient, aw , is wavelength dependent.
Within the visible spectrum, longer wavelengths are attenu-
ated stronger than shorter wavelengths (see Fig. 2). Absorp-
tion is responsible for the color shift in underwater imaging.
The absorption law describing the light energy transmitted
by water is exponential:

I (λ, d) = I (λ,0)e−aw(λ)d , (1)

where λ light wavelength; I (λ,0) spectral power distribu-
tion at source; aw(λ) water absorption coefficient; I (λ, d)

spectral power distribution at distance d from the source, in
water.

The distance light travels through water (and is attenu-
ated) is double the distance between subject and camera dsc.

Fig. 2 The simulated spectrum of sunlight after it travels through 1 m,
2 m, and 5 m of water. The simulation uses published sun spectrum
and published light attenuation coefficients of water (Smith and Baker
1981)

Fig. 3 The light required to compensate for color absorption in water.
This is the inverse of water light transfer function plotted in Fig. 2. The
data is presented on a logarithmic scale due to its high dynamic range

One solution to the problem of attenuation is to compen-
sate exactly for the light absorption (see Fig. 3). For exam-
ple, given the camera to subject distance, the 650 nm red
light is attenuated 5 times more than the 530 nm green light;
thus, the light source should output 5 times more power at
650 nm than at 530 nm. In general the spectral output power
of the light source should be:

Iec(λ, dsc) = ID65(λ)

e−2aw(λ)dsc
= ID65(λ)e2aw(λ)dsc . (2)

Such a light source compensates exactly for the light loss
at the specified camera to subject distance dsc. The subject
appears as though illuminated by mid-day Sun light (D65
illuminant in air).
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The usefulness of the brute-force method that relies on
Iec(λ, dsc) is very limited in practice. Fabricating a light
source with the required spectral power distribution is chal-
lenging as the amount of optical power needed rises very
sharply with distance (e.g. at 3 m the power required to take
the picture in water is over 105 times the power required
to take the picture in air). In addition, existing light sources
generally have fixed output spectra, which implies the use
of filters to generate the required spectral distribution. This
increases the power requirements by another order of mag-
nitude.

Alternatively, we can exploit the scope of human color
vision to save power.

3 Color perception by the human visual system

Creating the exact inverse of water attenuation will concen-
trate the majority of the energy in the deep red part of the
spectrum where the water attenuation is the highest. How-
ever, it turns out that the human eye sensitivity is very low
in this part of the spectrum. Very little extra accuracy would
be achieved by exactly compensating for the deep red atten-
uation.

Exact compensation is not necessary since the eyes (and
cameras) sample the spectrum with only three discrete color
sensors, collapsing the infinite-dimensional color space into
a three dimensional space, as shown in Fig. 5. To preserve
the human-perceived color accuracy, it is only necessary to
preserve the color coordinates for naturally occurring colors
in the three dimensional color space of humans. This allows
for some tolerance in the light source spectrum.

Under typical conditions the objects around us are illumi-
nated by a white light source I0(λ), which contains energy
at all visible spectrum wavelengths. The color of an object
is given by its wavelength-dependent reflection coefficient,
R(λ), which represent the fraction of incident power that
is reflected. Our eyes receive the reflected light as shown in
Fig. 4. The spectral distribution of the reflected light is given
by the equation: E(λ) = R(λ)I0(λ).

The human vision system perceives colors by sampling
the light spectrum with three different types of cone cells
(ρ, γ and β). Each type of cell is sensitive to a differ-
ent region of the visible spectrum—long, medium and short
wavelengths. The three normalized sensitivity curves Sρ(λ),
Sγ (λ) and Sβ(λ) are plotted in Fig. 6. The responses of these
three types of cells Tρ , Tγ and Tβ are used by the central
nervous system to associate colors to objects. For example,
in the case of the Munsell 5Y8/10 color sample illuminated
with white light, the responses of the three types of cone
cells can be calculated as:

T 5Y8/10
ρ =

∫ 750 nm

380 nm
Sρ(λ)E(λ)dλ

Fig. 4 Reflected spectral power of red color sample when lighted by a
standard light (CIE illuminant D65)

Fig. 5 The human visual system color response as modeled by the CIE
1931 2◦ Standard Observer (Commission internationale de l’éclairage
1931). The 3 curves model the response of the three types of cone cell
in human retina

=
∫ 750 nm

380 nm
Sρ(λ)R5Y8/10(λ)I0(λ)dλ

T 5Y8/10
γ =

∫ 750 nm

380 nm
Sγ (λ)E(λ)dλ

=
∫ 750 nm

380 nm
Sγ (λ)R5Y8/10(λ)I0(λ)dλ

T
5Y8/10
β =

∫ 750 nm

380 nm
Sβ(λ)E(λ)dλ

=
∫ 750 nm

380 nm
Sβ(λ)R5Y8/10(λ)I0(λ)dλ.
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Fig. 6 Normalized sensitivities of the three types of cone cells present
in human retina (ρ, γ and β) (Stockman et al. 1993)

The brain receives a tuple of three numbers, (Tρ, Tγ , Tβ),
and associates colors to objects based on this tuple. This re-
sults in an apparent three dimensional color space for hu-
mans. Any two objects that generate the same respective re-
sponse in the three types of cone cells will appear to human
observers as having the same color. This property can be ex-
ploited to reduce the complexity and power requirements of
the underwater light source.

Using this observation, we develop a light source that
preserves the coordinates of most naturally occurring col-
ors in the human three dimensional color space, when
used underwater. With this approach, the coordinates are
also preserved in the color space of cameras. The color
space varies somewhat between different cameras (and the
response models are rarely published), but they typically
closely match the human vision color space and do not no-
ticeably impact the results.

We use the Color Rendering Index (CRI) metric to eval-
uate the ability to render colors accurately of the optical
system composed of our light source and the water. Arti-
ficial light sources do not have the same spectral composi-
tion as the sun light. Therefore, they do not render the color
of objects in the same way sunlight does. The Color Ren-
dering Index (CRI) was developed by Commission Interna-
tionale de l’Éclairage (CIE) as a metric for comparing abil-
ity of light sources to render color accurately. The metric is
based on comparing the color coordinates of 15 sample col-
ors illuminated with the reference light and the tested light.
The color samples have been chosen as representative for
naturally occurring colors. The Euclidean distance between
the color coordinates of two colors represented in CIE 1964
U∗V ∗W ∗ color space (Wyszecki 1963) is used as a quantita-
tive value for color difference. U∗V ∗W ∗ is a uniform color
space, meaning the Euclidean distance is a consistent mea-
sure of perceptual color difference, across the entire color
space.

Our algorithm selects the power levels of a multi-color
flash to maximize the CRI for objects illuminated in water.
Formally, CRI is defined as:

CRI = 100 − 4.6ΔĒU∗V ∗W ∗ , (3)

where:

ΔĒU∗V ∗W ∗ = 1

15

15∑
i=1

ΔEi, (4)

ΔEi =
√

ΔU2
i + ΔV 2

i + ΔW 2
i . (5)

CRI has values between 0% and 100%. A CRI of 100% cor-
responds to a perfect light source which renders colors iden-
tically to the reference light source.

4 Perceptual adaptive illumination

Perceptual adaptive illumination is a power-efficient method
for color-accurate imaging underwater. Given the distance
to the object, the wavelength-dependent attenuation is com-
puted using the known optical properties of water (Smith
and Baker 1981). The light source spectrum is adjusted to
compensate for this attenuation. The required light spectra is
generated by a variable spectrum light source composed of
several basic light sources with fixed, distinct spectral power
distributions. The variable spectrum is achieved by varying
the relative power of the composing light sources. The spec-
tral power distribution is optimized such that when filtered
by the water between the camera and the subject, it will ren-
der the subject’s human-perceived colors in the same way
that natural light would render it in air. The optimization
is performed by maximizing the apparent CRI of the light
source when filtered by the water.

Given the camera-subject distance dsc, adaptive illumina-
tion computes the optimal spectrum that can be generated by
a source composed of n light sources with fixed output spec-
tra Ii(λ) and independently adjustable output power pi . The
total output spectrum is a linear combination of the compos-
ing light sources:

I (λ) =
n∑

i=1

piIi(λ). (6)

The spectra of the component light sources can be viewed
as the basis functions that are used to generate the required
spectral power distribution. The scaling factors, pi , corre-
spond to the output power setting of the component light
sources.

The generated light is filtered by the water between the
light source and the subject, and also by water as it travels
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Algorithm 1 Light optimization
Require: Ii(λ, ti) Output characteristics of the component

light sources
Require: dmax Maximum distance for which the light will

be used
1: for dsc = 0m to dmax in 0.1m steps do
2: compute t1(dsc) for optimal illumination at distance

dsc in air
3: compute t2(dsc)..tn(dsc) =

arg maxt2..tn∈[0..1] CRI(e−2aw(λ)dsc
∑6

i=1 Ii(λ, ti))

4: end for

back from the subject to the camera. Thus, the total travel
distance is 2dsc, where dsc is the distance between sub-
ject and camera. Water attenuation makes the illumination
equivalent to a light source in air:

Î (λ) = e−2aw(λ)dscI (λ) = e−2aw(λ)dsc

n∑
i=1

piIi(λ). (7)

From the camera (and observer) perspective, the subject
looks as though it is illuminated by Î (λ) in air. The problem
can be posed as adjusting Î (λ) so that the colors are rendered
accurately in the observer’s color space.

The power settings are found by solving the following
optimization problem for the subject to camera distance pa-
rameter dsc:

p1..pn = arg max
p1..pn∈[0..1]

CRI
(
Î (λ)

)

= arg max
p1..pn∈[0..1]

CRI

(
e−2aw(λ)dsc

n∑
i=1

piIi(λ)

)
. (8)

This optimization problem can be solved using any exist-
ing numerical optimization software. Algorithm 1 summa-
rizes the computation for the optimal light.

The range of obtainable Color Rendering Index for Î (λ)

depends on the choice of the source light components
I1(λ)..In(λ). This is restricted by the available light source
technologies and filters, and is discussed in Sect. 5. The aim
is to obtain a CRI of at least 90%, which is equivalent to the
best artificial light sources in air.

5 Imaging apparatus

We developed and built a light source prototype capable of
adaptive illumination, called AquaLight. The light source
can be used as an external flash for a digital SLR cam-
era (as seen in Fig. 7(Left)), as a free-standing illumination
unit, or attached to an underwater robot or sensor node. Fig-
ure 7(Right) shows the apparatus attached to an underwater
robot.

Fig. 7 (Left) The adaptive illumination device consists of six colored
flashes with adjustable power. The device is attached to a standard dig-
ital camera in an underwater housing. (Right) Imaging apparatus at-
tached to an underwater robot at the end of a mission

The light source is composed of 6 independently con-
trolled Xenon strobes. Each strobe is capable of energy dis-
charge up to 50 J. The strobes have different but fixed spec-
tra. One is unfiltered and capable of full light spectrum il-
lumination. The other five strobes are filtered with increas-
ingly longer cut-off long pass optical filters. The choice of
filters was based on availability and simulation. We opti-
mized for maximum corrected light output for objects at
practical underwater photographic range (e.g distances, dsc,
between 0 m and 5 m). The output spectrum of each flash
was measured with a calibrated radiometric spectrometer.
Adaptive illumination is achieved by controlling the strobes’
output power, or, equivalently, the energy discharged by
each individual flash. Energy discharge is controlled by tim-
ing the flash so as to achieve the desired CRI.

We chose Xenon flashes for their uniform output power
across the visible spectrum, which is very similar to sun
light. In addition, a Xenon lamp is capable of the highest
instantaneous output power for its size (thus its widespread
use in general photography). One of the flashes is unfiltered
and provides the power required for the short wavelengths of
the spectrum. Each of the other 5 component light sources
has a Xenon discharge lamp and a long-pass filter. Filters are
needed to generate different spectra for the 6 light sources.
Long-pass filters are used in order to improve the overall
efficiency of the device. Since the attenuation in water in-
creases with the wavelength, more power is needed at longer
wavelengths than the shorter wavelengths for any distance.
The filters were chosen using simulation and maximization
of the CRI and illumination power. The cut-off wavelengths
for the 5 filters are 475 nm, 575 nm, 600 nm, 600 nm, and
630 nm.

For the duration of their discharge, the Xenon lamps are
powered by a capacitor bank. Each lamp has an associated
1080 μF capacitor, for a maximum discharge energy of 33 J.
The capacitors are charged to 350 V by an inverter. The en-
tire unit is powered by a 11.7 V, 2.1 Ah Lithium-Polymer
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battery which provides enough power for approximately 300
full power flashes.

An NXP LPC2148 CPU together with a Xilinx XC2C256
CPLD control the timing of the 6 flashes. The timing is
based on the distance to the subject and a precomputed
lookup table of distance versus power requirements. In our
system, the distance to the subject can be input to the unit
manually through a user interface (using magnets to set the
range that is shown on a small display), camera auto-focus
information, or it can be automatically determined using a
distance sensor such as an ultrasonic pinger. The data we
report in this paper was collected using manually set dis-
tance and auto-focus information using an Olympus cam-
era. We found that the ultrasonic pinger (Teledyne Benthos
PSA-916) performed poorly for our application (swimming
pool conditions as well typical reef environment).

The flash electronics are housed in a water and pressure
resistant enclosure made out of clear acrylic. Two under-
water connectors are placed on the back of the enclosure.
One is used for the electrical connection between the cam-
era and the flash (for synchronization). The other is used for
interfacing with the ultrasonic pinger, programming the con-
troller, interfacing with the robot, and charging the battery.
The flash is attached to the camera through a rigid fixture,
which ensures they point in the same direction (see Fig. 7).

5.1 Experimental calibration

The practical use of our method requires calibration to de-
termine Ii(λ, t) for each of the i = 1..6 composing lamps
(i.e. the spectral power distribution of the generated light as
a function of the flash time for each flash). The functions,
Ii(λ, t), have to be determined experimentally since both
the characteristics of each filter used in the flash construc-
tion and the output energy versus the duration of the flash
pulse of each flash are not known precisely. For output cal-
ibration, we used a CCD based spectrometer (specifically, a
B&WTek BRC111A Series Fiber Coupled 16 bit USB CCD
Spectrometer). The spectrometer output was radiometrically
calibrated using an incandescent lamp Ocean Optics LS-1.

The flash was positioned facing the spectrometer’s probe,
2 m apart. Each filtered Xenon lamp was fired separately for
time intervals of 0.06 ms, 0.125 ms, 0.25 ms, 0.5 ms, 0.7 ms,
1 ms, 1.5 ms, 2 ms, 3 ms, 4 ms. The output spectrum was
captured for each of these cases. Figure 8 plots the measured
relative spectra of the 6 flashes, when fired for 0.5 ms. Fig-
ure 9 plots the measured spectral energy distribution of flash
F1 (unfiltered) as a function of flash time. Using this data
we constructed the functions Ii(λ, t) as piecewise polyno-
mial interpolations of the measured data. Using this data we
ran the Algorithm 1 to compute the optimal flash pulse dura-
tions for distances 0.1 m–5 m between camera and subject.
This durations were stored in the flash memory, and used
experimentally.

Fig. 8 Normalized output spectral energy distribution of the 6 flashes.
F1 is unfiltered, with the approximate spectrum of daylight sun. F2-F6
have increasingly long cut-wavelength to compensate for the water ab-
sorption which increases with wavelength

Fig. 9 Normalized output spectral energy distribution flash F1 (unfil-
tered) as a function of flash time

6 Evaluation

Adaptive illumination has been evaluated in a series of pool
and ocean experiments. The goal was to measure the color
accuracy and to compare the results with existing methods.

We ran the adaptive illumination optimization algorithm
for distances between 0.1 m and 5 m (in 0.1 m incre-
ments) and determined the optimal power ratios between
the flashes. Table 1 shows the relative power of six flashes
for illuminating an object at distance dsc away in water and
the resulting CRI. We note that the predicted CRI is above
95% in all cases. The best available artificial light sources
are halogen incandescent bulbs which have a CRI of 98% to
100%, while fluorescent illumination has a CRI of 75%. In
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Table 1, F1 is the white flash, which was kept at a constant
power. Very little power is required from F1 relative to the
other flashes. F2 is the yellow flash which contributes to the
overall high CRI, but for longer distances a light-red flash
would have been more effective.

The experimental methodology consisted of imaging the
test object at distance dsc varying between 1 m and 5 m
(in 1 m increments) using (1) ambient light, (2) white
light strobe, (3) white light strobe and post-processing, and
(4) adaptive illumination. In the case of white light strobe
optimal light levels were used given the distance and sen-
sitivity of the camera. Additional light would have satu-
rated the blue sensor of the camera and thus distort the col-
ors even more. The test object was also imaged in air for
ground-truth. The test object was a custom made waterproof
color palette with 15 colors distributed evenly in the color
space (see Fig. 10). Distance was determined with a measur-
ing tape and was set manually using the system’s magnetic
switches. We also used the camera’s auto-focus information
to automatically determine the distance to the imaged ob-
ject. The standard white flash pictures were post processed
with the current state of the art method: equalization using
a manually marked white sample patch as reference. This
method adjusts the R, G, B channels proportionally to yield
the white color on the selected sample.

Color accuracy was measured by computing the color
distance between manually selected patches of the color
palette and the corresponding patches of the image captured
in air. For each pair of color patches, we converted the col-
ors to the L∗a∗b∗ color space (Commission internationale
de l’éclairage 1976) and computed the resulting Euclidean
distance. Since the L∗a∗b∗ color space was specifically de-
signed to preserve the perceptual color distance, the Eu-
clidean distance is an accurate representation of the percep-
tual color difference. The smaller the distance the better the

Table 1 The relative power of the 6 flashes at different distances and
the expected CRI. Note that the object is at distance D

2 from the light
source

D
2 F1 F2 F3 F4 F5 F6 CRI

1 m 0.0652 0.0227 0.0405 0.0285 0.0272 0.0188 99.26

2 m 0.0652 0.0317 0.0789 0.0710 0.0517 0.0302 98.56

3 m 0.0652 0.0421 0.1798 0.1518 0.1425 0.1090 97.97

4 m 0.0652 0.0475 1.0000 1.0000 0.9802 0.6584 96.16

color accuracy. We used L∗a∗b∗ color space due to the dif-
ficulty of measuring CRI experimentally (i.e. procuring the
precise color samples used in CRI’s definition).

Figure 12 shows the average L*a*b* error for all 15 col-
ors in the palette for each distance. The numerical values for
these averages is shown in Table 2. The ambient light per-
forms the worst, as expected. White flash performs well at
1 m (and below), but the performance decreases significantly
for greater distances. The post processed white flash under-
performs adaptive illumination. Its performance decreases
steadily with a lower slope than the white flash. Adaptive
illumination has no significant decrease in quality up to the
measured distance.

Figures 11 show experimental data for four colors from
the palette: yellow, red, green and blue. We note that the
images taken with the adaptive illumination method have
low constant L∗a∗b∗ distances from ground-truth for all dis-
tances (accurate colors), while the images taken with the

Fig. 10 Results of imaging the color palette in water. The columns
correspond to the distance between the light source and the object: 1 m,
2 m, 3 m, 4 m, and 5 m (note this corresponds to dsc in the main doc-
ument. The rows show the image obtained using ambient light (first
row), white strobe (second row), post-processed white strobe image
(third row), and adaptive illumination (fourth row)

Table 2 The L∗a∗b∗ distance
from in-air, averaged over 15
colors

Dist/2 1 m 2 m 3 m 4 m 5 m

ambient 59.4586 52.2793 53.8530 54.2241 58.6122

white 14.9747 26.4679 37.4749 43.9231 51.0177

white post-processed 9.2605 14.3705 18.9246 27.9815 34.8542

adaptive 8.3305 11.0851 11.3560 8.7389 9.9966
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Fig. 11 The L∗a∗b∗ color error (left graphs) and visual appearance
(right graphs) for four colors extracted from the color palette (yellow,
red, green and blue), as captured by the four imaging methods: ambient
light (blue curve), white strobe (green curve), white strobe followed by
post-processing (red curve), and adaptive illumination (cyan curve). In
the left graphs, the smaller the error, the more accurate the color. The
ambient light method performs poorly, the white flash and postpro-

cessed white flash methods degrade with distance, and the adaptive
illumination curve remains constant for all distances. The right graphs
present the colors extracted from the color palette, as captured by the
camera. The columns of the matrix correspond to distance. The rows
correspond to the method used (NL for ambient light, WF is white
flash, PPWF is postprocessed white flash and AF is adaptive illumina-
tion)

Fig. 12 L∗a∗b∗ average values for 15 colors at 1 m, 2 m, 3 m, 4 m, and
5 m, as computed by 4 different imaging methods: ambient light (blue
curve), white strobe (green curve), white strobe with post-processing
(red curve), and adaptive illumination (cyan curve)

other methods have L∗a∗b∗ distances that increase with dis-
tance (that is, the rendering is increasingly inaccurate).

As expected, not all the colors are affected in the same
way. As seen in Fig. 11, red is most affected by wa-
ter and it is hardly recoverable by post-processing. Blue
is the least affected color. All methods render blue well.

Fig. 13 Comparison of underwater imaging using white flash and
adaptive illumination in a coral reef setting and a wreck setting. The
color row in the middle shows color patches extracted from these im-
ages for visualization without the scene context. The left images show a
clown-fish and sea anemone in Moorea imaged using white flash (Top)
and adaptive illumination (Bottom). The pictures were taken at 20 m
depth by Melissa Holbrook Schmitt. The scene was at a distance of
3 m. The right images show a coral formation off the Taveuni Island,
Fiji imaged using white flash (Top) and adaptive illumination (Bottom).
The pictures were taken at 25 m depth. The scene was at a distance of
3 m

Green and the brown—the most commonly occurring nat-
ural colors are significantly distorted. This figure also shows
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distance-dependent L∗a∗b∗ values and the perceived colors
the L∗a∗b∗ values map to, as computed by ambient light (top
row), white flash (second row), post-processed white flash
(third row), and adaptive illumination (fourth row).

An additional suite of pool experiments was done using
the camera auto-focus information for automatically setting
the distance to the imaged object. The camera used in these
experiments was an Olympus E520 SLR camera. Data from
these tests is very similar to the data from the tests where the
distance was measured externally.

Underwater imaging experiments have also been con-
ducted in the field at four sites: Fiji, Tahiti, Hawaii, and
Grand Cayman. In each experiment images were taken at
measured distances using the white flash and the adaptive
flash. The images were compared visually. Figure 1 shows
typical images using white strobe and adaptive illumination.

Finally, we installed the adaptive illumination device on
our underwater robot and commanded the robot to swim
around a coral head taking a dense sequence of color-
accurate photographs. These photographs can be mosaiced
to reconstruct the coral head. The robot experiment demon-
strated that color-accurate underwater images can be gath-
ered automatically.

7 Conclusions

Adaptive illumination computes the color dissipation at a
given distance and compensates for color loss by introduc-
ing the correct color mix for that distance into the scene. Per-
ceptual adaptive illumination was tested in a variety of envi-
ronments and was shown to significantly outperform exist-
ing methods for underwater photography with respect to im-
age color accuracy using the L∗a∗b∗ metric space for mea-
suring colors. Color encodes important information about
underwater environments and habitats. This work enables
the capture of color-accurate underwater images and thus
opens the door to automating underwater monitoring and
surveillance operations based on color.

Our work demonstrates that color-adaptive illumination
is effective for color-accurate imaging in water for objects
at a specified or computed distance. Our experimental data
provides support for this claim for imaging objects that are
up to 5 m away from the camera. Current methods are cum-
bersome and do not produce accurate colors at distances
greater than 2 m. Our imaging instrument was prototyped
in our lab using inexpensive components to demonstrate
the concept. The instrument was not optimized for distance.
Imaging at distances greater than 5 m is achievable if the
instrument uses more powerful light sources.

Perceptual adaptive illumination renders color accurately
for all the objects at the given distance d in the image. Ob-
jects further away or closer to the camera will not be ren-

dered correctly because adaptive illumination is distance-
dependent. We are currently extending perceptual adaptive
illumination from color-accuracy in one image plane to
color-accuracy in multiple image planes. We are also work-
ing on extensions from still images to video.

Our current work includes field experiments to mosaic
underwater scenes using robots equipped with the percep-
tual adaptive illumination device described in this paper.
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