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Abstract This paper surveys recent results in pursuit-
evasion and autonomous search relevant to applications in
mobile robotics. We provide a taxonomy of search prob-
lems that highlights the differences resulting from varying
assumptions on the searchers, targets, and the environment.
We then list a number of fundamental results in the areas
of pursuit-evasion and probabilistic search, and we discuss
field implementations on mobile robotic systems. In addi-
tion, we highlight current open problems in the area and
explore avenues for future work.
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1 Introduction

Joint research between divergent disciplines has led to sig-
nificant advances in autonomous search and pursuit-evasion
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with mobile robots. While robotics applications have often
served as catalysts for vibrant research at the intersection
of traditional disciplines, only recently have researchers un-
dertaken the study of robotic systems for search missions
and pursuit-evasion contexts. This article surveys recent ad-
vances in this area, which leverage both theoretical founda-
tions and practical implementations to forge new and inno-
vative results.

Search and pursuit-evasion problems (also known as
“one-sided search” and “adversarial search,” respectively)
have traditionally been addressed using two contrasting ap-
proaches. One perspective has been to design strategies
that maximize searcher performance against a worst-case
adversary. In such settings, the evader is often character-
ized by infinite speed, complete awareness of searcher lo-
cation and intent, and full knowledge of the search en-
vironment. Such methods offer guarantees on the success
of the search, defined, for example, by capture of the tar-
get in finite time. However, the powerful adversary model
may yield solutions that are too conservative in practical
applications. In contrast, parallel research has emphasized
probabilistic formulations addressing average-case behav-
iors. Measures of interest can include expected time until
detection or expected number of glimpses. The assumption
about knowledge about the evader behavior allows incorpo-
rating probabilistic uncertainty in target locations, their be-
haviors, and/or sensor observations.

Many variations on the theme of search and pursuit-
evasion problems exist, due to the diverse contexts in which
they are studied. Figure 1 outlines a partial taxonomy of
the parameter space for search and pursuit-evasion mod-
els. Two prior surveys in pursuit-evasion have focused on
adversarial search when the environment is represented as
a graph (Alspach 2004; Fomin and Thilikos 2008). These
surveys do not include probabilistic search or field imple-
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Fig. 1 Illustration of the parameter space for autonomous search models

mentations on mobile robots. In the current paper, we fo-
cus on the connection between fundamental work in search
and pursuit-evasion and applications to related problems in
mobile robotics. Rather than presenting a broad survey of
results on a wide range of pursuit-evasion games (which
would require volumes), we limit our focus to a small num-
ber of games which, in our opinion, are directly related to
robotics. We present results on the variants of these games
based on, e.g., the complexity of the environment and the
sensing powers of the players, both of which are important
in modeling realistic scenarios. We also omit the large body
of work on related differential games, such as the homici-
dal chauffeur game, and refer the reader to the book on this
topic (Başar and Olsder 1999).

Similarly, though works in classical search theory
(Benkoski et al. 1991) construct stochastic optimization
models for operational settings, these approaches often face
shortcomings when addressing the computational, sensing,
and mobility questions arising in physical mobile robot sys-
tems. We specifically examine the foundational elements of
search theory that have commonalities with relevant robotic
missions, such as the desire to maximize detection probabil-
ities spatially or minimize time until detection in temporal
contexts. This survey aims to bridge these related commu-
nities through their respective but relevant formulations and
theoretical approaches.

This article surveys recent works in search and pursuit-
evasion research with applications to mobile robotic sys-
tems. We have limited the scope of the paper to two types of
problems: (1) adversarial pursuit-evasion games on graphs
and in polygonal environments and (2) probabilistic search
where the motions of the searchers and targets are indepen-
dent. To see the difference between the two formulations,
imagine a pursuer and evader in a room with a round obsta-
cle in the middle. To make the game precise, let us assume
that the players can see each other at all times and have equal
maximum speeds. Suppose the pursuer picks his initial lo-
cation, followed by the evader. In this scenario, it is easy to

see that there exists an evader strategy which avoids capture
indefinitely. Therefore, we say that a single pursuer cannot
capture an evader in this environment. In contrast, suppose
the evader is moving in the same environment in a way that
is independent of the pursuer’s motion. For example, it may
be performing a random walk. In this case, the evader can
be captured. In fact, capture of the randomly walking evader
can occur even with a stationary pursuer, as the evader will
eventually hit the pursuer! The main question here would be
the design of an optimal strategy to capture the randomly
walking evader as quickly as possible. This is the focus of
probabilistic search.

In Sect. 2 we present results on a number of fundamen-
tal pursuit-evasion games that take place either on graphs
or in polygonal environments. The problems in this section
are games because the players have conflicting objectives:
the pursuers try to “capture” the evaders, and the evaders
actively avoid capture. In Sect. 3, we focus on probabilistic
search problems in which the target motion is independent
of the pursuer strategy. In Sect. 4, we discuss transitional re-
search that bridges the gap between theory and relevant ap-
plications on robotic systems. We then discuss problems that
arise specifically from robotics applications, and we high-
light challenges faced in implementations and field studies.
Finally, in Sect. 5, we conclude the survey with a discussion
of open problems and avenues for future research.

2 Pursuit-evasion games

In a pursuit-evasion game, one or more pursuers try to cap-
ture one or more evaders who, in turn, try to avoid cap-
ture. In robotics, pursuit-evasion games are used for study-
ing motion planning problems that arise in adversarial set-
tings, such as catching burglars, playing hide-and-seek, and
so on. In addition, pursuit-evasion games are used to obtain
results on the worst-case performance of robotic systems.
For example, imagine a search-and-rescue setting in which
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the robots try to find a lost person. In this case, by treating
the lost person as an adversarial entity trying to avoid being
found, one can obtain worst-case bounds on the number of
robots necessary for rescue in a given environment. This is
because a pursuit strategy, if it exists, will guarantee that the
person would be found no matter how s/he moves. On the
other hand, in some settings a pursuit-evasion formulation
can be too conservative, for example, in terms of the num-
ber of pursuers. In such cases, a probabilistic model (Sect. 3)
can be more appropriate.

Beyond robotics, pursuit-evasion games find applica-
tions in numerous other settings (network security, model-
ing animal behavior, just to name a few). As a result, re-
searchers have studied many different versions of pursuit-
evasion games based on:

– Environment where the game is played: Examples include
plane, grid, graph, polygons, etc.

– Information available to the players: Do they know each
other’s positions all the time?

– Controllability of the players motion: Is there a bound on
their speed? Can they turn with arbitrary angles?

– Meaning of capture: In some games, the pursuer captures
the evader if the distance between them is less than a
threshold. In other games, the pursuers must see or sur-
round the evader in order to capture it.

In robotics literature, there are two primary approaches
for solving pursuit-evasion games: differential and combi-
natorial. The former approach is based on techniques de-
veloped for solving non-cooperative differential games (cf.
Başar and Olsder 1999). In these games, differential equa-
tions governing the motion of the players are brought to-
gether using Hamilton-Jacobi-Isaacs (HJI) differential equa-
tions. The solutions to HJI equations yield players’ strate-
gies as control inputs for achieving capture or evasion ob-
jectives. The advantage of this approach is that one can
model physical constraints such as bounds on turning veloc-
ity or acceleration by expressing them as differential con-
straints. On the down side, since the resulting equations
are rather complex (especially in complex environments),
their solutions are often numerical, only locally valid, and/or
heuristic-based rather than globally optimal.

Games that take place in complex environments (the
main focus of this section) are usually solved using combi-
natorial techniques. A common approach is to represent the
environment geometrically (e.g., with a polygon) and solve
the game directly using this representation. Alternatively, a
graph can be used to represent the environment topologi-
cally. For example, one can use a graph whose vertices cor-
respond to rooms and corridors in a building. The edges will
then correspond to doors and represent connections between
rooms and corridors. In general, one can start with a geomet-
ric representation and study the pursuit-evasion game which

takes place on a graph extracted from the geometric features.
Natural candidates for such graphs are the dual of the trian-
gulation of a polygon or its medial axis.

In the remainder of this section, we survey pursuit-
evasion games that take place in these two types of settings,
and list open problems. We start with games that take place
on graphs.

2.1 Pursuit-evasion on graphs

In this section, we review work on two fundamental pursuit-
evasion games that take place on graphs. In the cops-and-
robbers game (Sect. 2.1.1), the players can move one edge
at a time. In contrast, the single evader in Parson’s game can
be arbitrarily faster than the pursuers (Sect. 2.1.2).

2.1.1 The cops and robbers game

One of the basic games that takes place on graphs is the cops
and robbers game. In this game, the cops (pursuers) try to
capture a robber (evader) by moving along the vertices of a
graph. The players move in turns along the edges. The cops
win the game if they can move onto the robbers vertex. This
game was introduced by Nowakowski and Winkler (1983),
and by Aigner and Fromme (1984).

There are two immediate questions. (1) Given a graph,
what is its cop number: the minimum number of cops neces-
sary to capture the robber regardless of the initial locations
of the players? (2) What is the class of graphs whose cop
number is a given number? Let us first consider a simple
algorithmic solution, based on the dynamic programming
principle, for this game which will be useful in highlight-
ing its interesting aspects.

Let G = (V ,E) be the graph where the game takes place.
For each vertex v ∈ V , N(v) denotes its neighborhood:
N(v) = {u : (u, v) ∈ E,u, v ∈ V }. For now, we assume that
there is a single cop. We will represent the state of the game
with a pair (c, r) corresponding to the cop’s and the rob-
ber’s locations respectively. Consider the following algo-
rithm which iteratively marks the states of the game. Initially
all states are unmarked.

Marking algorithm for cops-and-robbers

– For all u ∈ V , mark the state (u,u)

– repeat
– for all unmarked states (c, r),

if ∀r ′ ∈ N(r),∃c′ ∈ N(c) such that (c′, r ′) is marked,
then mark (c, r).

– until no further marking is possible

It is a simple exercise to prove the statement “if all states
are marked, the cop can win the game from any starting
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state” by induction on the marking order. For the other direc-
tion (“if there is an unmarked state, the robber wins game”),
suppose that there is an unmarked state (c, r) and the play-
ers start the game at vertices c (for the cop) and r (for the
robber). It must be that there is a vertex r ′ ∈ N(r) such that
if the robber moves to r ′, no matter which vertex c′ the cop
moves to, the resulting state (c′, r ′) must be unmarked; oth-
erwise (c, r) would be marked. Therefore, the robber can
force the game to stay in an unmarked state. Since all the
capture states are initially marked, this means that the cop
can never capture the robber.

Now that we have a simple algorithm to solve the single
cop game, let us consider various extensions.

Number of cops: A naïve implementation of the algo-
rithm above would run in O(n4) steps, where n = |V |. Now,
suppose there are k cops in the game. By extending the state
representation from pairs of the form (c, r) to (k + 1)-tuples
of the form (c1, . . . , ck, r), the algorithm above can be ex-
tended for the multi-cop case. However, the state space is
now of size O(nk+1), which causes the running time to in-
crease to O(n2(k+1)). This exponential increase in the run-
ning time clearly makes the algorithm impractical for a large
number of cops.

Of course, it is possible that there are more efficient al-
gorithms for solving the cops and robber game. Indeed, for
the single cop version, more efficient algorithms were pre-
sented both by Nowakowski and Winkler (1983), and Aigner
and Fromme (1984). However, the problem of determining
whether k cops with given initial locations can capture a
robber on a given undirected graph is EXPTIME-complete
(Goldstein and Reingold 1995). Therefore, it is not likely
that significantly more efficient algorithms exist for the gen-
eral case.

One approach for dealing with this complexity issue is
to limit the class of graphs on which the game is played.
Structurally, it is easy to see that the cop number of trees
and cliques is one. Aigner and Fromme (1984) show that
the cop number of planar graphs is at most three. Another
approach is to approximate the minimum number of cops.
This interesting aspect of the problem has not received sig-
nificant attention which gives us our first open problem: Are
there efficient algorithms for approximating the cop-number
of a given graph?

Order of Play: Imagine a game between a single cop and
the robber on a complete graph Kn. If the players move in
turns, the cop can capture the robber in a single move. If they
move simultaneously, the game does not admit a determin-
istic solution in the sense that if the cop fixes a deterministic
strategy based on the location of the robber, the robber can
avoid capture indefinitely. Similarly, if the robber fixes his
strategy, he will be captured after a single move. Of course,
there is a mixed equilibrium in which the players pick their
next location uniformly at random which yields capture in n

steps.

It seems that randomization can be used to solve simulta-
neous-move games in general. As an example, consider the
game on a dismantlable graph on which a single cop wins
under the turn-based model. It can be shown that the dura-
tion of the game is bounded by n, the number of vertices
(Isler and Karnad 2008). Hence, the cop can guess the next
n moves of the robber and capture him with a small but non-
zero probability. One would expect that there are more effi-
cient strategies: In the turn-based model, when players move
optimally, the last configuration on a dismantlable graph be-
fore capture is (c, r) with N(r) ⊂ N(c). At this stage, the
cop can simply guess the move of the robber and capture
him. Turning this intuition into an efficient randomized strat-
egy is not straightforward since it is not obvious how the cop
can force this end condition under the simultaneous move
model.

One helpful observation is that whenever the cop can cap-
ture the robber in the turn-based model, he has a strategy to
reduce the distance between the players to one in the simul-
taneous move model. In the latter case, the cop simply waits
for a single step and executes the turn-based strategy.

We summarize the discussion with the following open
problems: Characterize the role of the order of play in the
cops-and-robbers game. Is it true that a strategy for the
turn-based model can be turned into an efficient randomized
strategy under the simultaneous-move model?

The order of play has interesting implications when the
underlying domain is continuous. This issue is further dis-
cussed in Sect. 2.2.

Information available to the players: In the basic cops-
and-robbers game, it is assumed that the players know each
other’s positions at all times. There are some settings in
which this assumption is plausible. For example, Vieira et
al. (2009) developed a system where a network of stationary
sensors provide information about the location of the evader
to the pursuers. In such settings, the basic cops-and-robbers
formulation is applicable. However, in most robotics appli-
cations, the players must operate under sensing limitations.

As a start, imagine that the players can not observe each
other unless they are located on the same vertex. This game
is known as the hunter-and-rabbit game. It has been studied
by Adler et al. (2003).1 Let us revisit the game played on
the complete graph Kn. Consider any deterministic pursuer
strategy which can be specified, for example, by an ordered
list of vertices to be visited. As soon as the pursuer fixes this
strategy, the evader can avoid the pursuer by picking a differ-
ent order. In this case, the evader does not need to “see” the
pursuer. By simulating the pursuer’s strategy, the evader will
know the pursuer’s position at all times. A symmetric argu-
ment can be made for deterministic evader strategies. Using

1To avoid confusion, hereafter we will use the term pursuer for the
cop/hunter and evader for the robber/rabbit.
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the standard game theory terminology, we have just argued
that this game does not have a solution for pure (determin-
istic) strategies. Observe that the pursuer can win the game
(with high probability) simply by picking the next vertex
uniformly at random. Since the evader can not infer the pur-
suer’s next move, the pursuer’s probability of success at each
move is 1

n
. Therefore, the pursuer is expected to capture the

evader in n trials. The probability of not capturing the evader
after n lnn trials is upper bounded by 1

n
. It is worth empha-

sizing that a randomized strategy where the player random-
izes his own actions is different from probabilistic games
(presented in the next section) which are solved under the
assumption that the other player is moving according to a
probabilistic model (e.g., a randomly walking evader).

In most cases, the solution of a limited information game
is randomized. Note that this argument is environment-
specific and a randomized strategy is not always necessary.
For example, the pursuer can sweep a path (graph) and cap-
ture the evader using a deterministic strategy. Nevertheless,
Adler et al. (2003) showed that in the no-visibility version,
a single pursuer can catch the evader in O(n logn) expected
time on any graph. It was also shown that this analysis is
tight: there are graphs and matching evader strategies which
guarantee that no pursuer strategy can capture the evader in
less than �(n logn) steps in expectation.

So far, we considered the two extremes regarding the vis-
ibility of the players: global (i.e., full) visibility and no vis-
ibility. When the players have limited (or local) visibility,
representing the state of the game in a compact fashion be-
comes harder. To see this, let us revisit the marking algo-
rithm given above. Suppose a single cop tries to capture the
robber. As the game progresses, the robber will keep track
of a set C of all possible locations of the cop. Of course,
when the robber sees the cop, C will contain only the cop’s
location. As the players move, set C can contain multiple
vertices. Now, imagine that the robber is at location r , the
cop is not visible, and for every position r ′ the robber can
move to, there is a vertex c ∈ C from which the cop can land
on r ′. If this happens, the cop can obtain non-zero capture
probability by randomizing among strategies that lead to
vertices in C. Hence, a winning robber strategy, if it exists,
must prevent the game from entering configuration (r,C).
Observe that the state of the game now includes sets of ver-
tices (C) which may result in an explosion in the number of
states. This makes designing dynamic programming based
algorithms for solving pursuit-evasion games with limited
visibility difficult.

Isler et al. (2006) studied the case where the evader
has local visibility. They study a variant where the players
move simultaneously, and introduce the notion of i-visibility
where a player with i-visibility can see another player only
if the distance between them is at most i. It was shown that
when the evader has 1-visibility (i.e., can see only the neigh-
bors of its current location), two cops with 1-visibility can

Fig. 2 Both players have 1-visibility. On this graph, the pursuer P
can not capture the evader E using a deterministic strategy. However,
a randomized capture strategy exists (from Isler et al. 2006)

capture the evader with high probability on any graph. The
expected capture time with two pursuers is polynomial in the
number of vertices. A characterization of cop-win graphs
where a single pursuer suffices to capture the evader was
also presented. It was also shown that when the evader has 2-
visibility, the number of cops required becomes unbounded:
there are graphs which require �̃(

√
n) cops to capture an

evader with 2-visibility.
Similar to the no-visibility case, the winning pursuit

strategies are often randomized. A simple example is illus-
trated in Fig. 2. Suppose, on this graph, the pursuer has a de-
terministic strategy of visiting the labeled vertices in the or-
der a, b, c. Then, we can design a evader strategy that waits
until the pursuer arrives at b and escapes to a. Afterwards,
while the pursuer is visiting c, the evader escapes to b and
it is easy to see that by repeating similar moves, the evader
can always avoid the pursuer. However, on this graph there
is a simple randomized strategy for the pursuer: pick one of
the leaves at random and visit that leaf.

More recently, Isler and Karnad (2008), studied the effect
of reducing the pursuer’s (i.e., the cop’s) visibility against
an evader with global visibility. Let G be the class of graphs
where a single pursuer with global visibility can capture the
evader. They showed that a pursuer with limited visibility
can capture the evader with high probability on any graph
in G . However, there exist graphs where the capture time is
exponential in the number of vertices. This was proven con-
structively by presenting evader strategies which guarantee
that the expected capture time is lower-bounded by an expo-
nential quantity.

Many open problems remain regarding identifying the
role of information available to the players on the outcome
of the game. We list the most general versions as open prob-
lems: Suppose the cops have i-visibility and the robber has
j -visibility; what is the class of graphs on which k cops suf-
fice? What is the minimum number of cops necessary to cap-
ture the robber on a given graph?
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Fig. 3 Lion and man in various environments. In all three cases, the
lion guards a region given by a fixed center and the lion’s position and
makes progress by making the guarded region larger. Left: solution to

the original lion and man game. Middle: lion and man in the first quad-
rant. Right: lion and man in polygons

2.1.2 Parson’s game

When the graph on which the game takes place is an ab-
straction of a geometric environment, the temporal aspect of
the game is sometimes lost. For example, in the cops-and-
robbers game, players move along one edge at a time. But
if the edges correspond to corridors of varying lengths, the
turn-based model fails to capture this variability. One ap-
proach, in line with the worst-case spirit of pursuit-evasion
games, is to make the evader very powerful and to treat it as
a adversarial target which can be arbitrarily faster than the
pursuers.

In this “infinite speed model,” the graph can be consid-
ered as a system of tunnels represented by the edges of the
graph in which an evader is hiding. To catch such a powerful
evader, the pursuers must surround it. Alternatively, one can
view the evader as a harmful gas contaminating the graph
which must be cleared. Parsons (1976) defined the search
number (or sn(G)) of a graph to be the minimum number
of pursuers necessary for capture. Determining the search
number of a graph was later found to be NP-hard (Megiddo
et al. 1988), and to be NP-complete due to the monotonicity
of optimal edge search schedules (Bienstock and Seymour
1991; LaPaugh 1993). In this work, the evader can only hide
in the edges of the graph (referred to as edge search).

Various versions of the infinite speed model play a key
role in solving visibility-based search problems in robotics.
These games will be reviewed in Sect. 4.

2.2 Pursuit-evasion in geometric settings

In this section, we review the lion-and-man game which is
perhaps the most natural game to capture robotics applica-
tions. After an overview of basic results, we present results
on variants of this game.

The lion-and-man game is a geometric version of the
cops-and-robbers game. In the original version, the game
takes place inside a circular arena of radius r . The players

have the same maximum speed, which we will assume to
be one. The objective of the lion (pursuer) is to capture the
man by moving onto the his current location. Suppose the
players move in turns. It is not too difficult to see that the
lion can win the game with the following strategy: starting
from the center of the circle, stay on the radius that passes
through the man’s current location and move as close as pos-
sible to the man (Fig. 3, left). It can be shown that the cap-
ture time of this strategy is O(r2) using a similar analysis
to the one given by Sgall (2001). It is interesting to note that
when the players move in continuous time, this strategy does
not reduce the distance between the players to zero in finite
time. Littlewood (1953) provided a proof of how a similar
argument can be made against any lion strategy. Therefore,
if the game is played in continuous time, the man escapes.
Alonso et al. (1992) showed that there exists a strategy with
which the lion can get within a distance c of the man in time
O(r log r

c
). They also show that this results is almost tight

by presenting an evasion strategy for the man which delays

capture for at least �(r

√
log(r/c)

log log(r/c)
) steps.

Sgall (2001) studied a version of the lion and man game
which takes place in the first quadrant (Fig. 3, middle). Let
M be the initial location of the man, and L be the initial
location of the lion. If one of the coordinates of the man is
greater than or equal to the corresponding coordinate of the
lion, the man wins the game. In the remaining case, Sgall
shows that the lion can win the game as follows: Let R be
the line passing through L and M . The lion finds the smallest
circle which touches both of the axes and the center C of
the circle is on R. Afterwards, when the man moves to M ′,
the lion moves to the point closest to the man on the line
M ′C that it can reach. The number of the moves required
for this strategy is quadratic in the lion’s initial distance to
the origin, but it is also a function of the slope of the line R.
Note that the players move in turns as opposed to the model
used in the original version where they move simultaneously
in continuous time.
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Isler et al. (2005) studied the lion-and-man game in
polygonal environments (Fig. 3, right) and showed that a
single lion can capture the man in any simply-connected
polygon. Recently, Bhadauria and Isler (2011) showed that
three lions can capture the man in any polygon (possibly
with holes). This leaves the following problems open: What
is the class of polygons in which two lions can capture the
man? What is the number of lions necessary to capture the
man in a complex environment when the players are subject
to sensing limitations?

Variations: Perhaps the first strategy any one would think
of for the lion and man game is the greedy strategy: move
toward the man. One of the advantages of the greedy strat-
egy is that it is easy to implement. Further, in the circular
case, it seems that the lion can eventually capture the man
using the greedy strategy. This is because, to maintain the
separation between the players, the man has to move away
from the lion along the line connecting them. This can not
go on forever: Eventually he will have to turn because of
the boundary. At this point, the distance between the play-
ers decreases. However, the gain in distance can be arbitrar-
ily small for example when both players are located on the
boundary of a large circle.

Recently, researchers studied two variations of the lion
and man game: higher dimensions and sensing limitations.
On the open plane, it has been known that three lions can
capture the man if and only if the man’s initial location is
contained in their convex hull (Jankovic 1978). Recently,
Kopparty and Ravishankar (2005) generalized this result to
arbitrary dimensions: d +1 lions suffice in Rd . Alexander et
al. (2009) further generalized this result to convex environ-
ments of arbitrary dimension and shape. The same authors
studied the game in bounded environments and showed that
the lion can decrease the distance between the players by
executing the greedy strategy if the environment has the so-
called CAT(0) property (Alexander et al. 2006).

More recently, Bopardikar et al. (2007) studied sensing
limitations in the lion-and-man game. In their model, the
lion can observe the man’s location only if the distance be-
tween the players is less than a given threshold. The man
is reactive in the sense that he moves only when he sees
the lion. They show that the lion strategy outlined in Fig. 3
can be used to capture such a reactive evader. Karnad and
Isler (2008) focused on a different type of sensing model
in which the lion can measure only the man’s bearing an-
gle. In their model, the players move in turns and take mea-
surements after each move. They studied the game in the
first quadrant and showed that the lion can reduce the dis-
tance between the players to the step size. The lion and man
game in a general three-dimensional environment remains
open.

3 Probabilistic search

Pursuit-evasion games, presented in the previous section,
seek to maximize the worst-case performance on search or
capture. In contrast, probabilistic search methods consider
optimization of the expected value of a search objective,
such as maximal probability of detection or minimal time
to detection. The latter class of probabilistic approaches is
the focus of the theory of search, which has a long-standing
legacy in the field of Operations Research (OR). Bernard
Koopman’s seminal works in search theory outlined analytic
principles for applied probability and optimization models
for maritime warfare strategies (Koopman 1956a, 1956b,
1957) This original formulation required analytical speci-
fication of the following components of a search-theoretic
model: (i) an a priori probability distribution of the target’s
location within the search region, (ii) a measure of the den-
sity of search effort, and (iii) the detection probability af-
forded by application of a given density of search effort. For
example, search in a plane (such as the open ocean) requires
a two-dimensional target probability density (i.e., probabil-
ity per unit area), denoted p(x, y), with detection probabil-
ity defined as

D(x,y, z) = Pr[target detected|target at x, y

and search effort z].
The search effort can be quantified, often interchangeably,
by the search time, e.g., hours spent inspecting a sector, or
by the search cost, e.g., resources expended observing an
area.

In his book, McCue (1990) provides a thorough and il-
lustrative case study outlining an extensive operations anal-
ysis of the search operations conducted during World War II
for submarines in the Bay of Biscay. In addition to mathe-
matical models governing the likelihood of target presence,
McCue quantitatively models the density of the search ef-
fort in the context of the searcher’s sensor sweep width (vi-
sual and radar detectors) and flight speed. Such values define
the sweep rate, which, in conjunction with the chosen flight
search path and its length (or search duration), can determine
the probability of detecting a submarine within the sensor’s
sensor swath. This text highlights the various modeling ele-
ments utilized to apply the probabilistic search techniques,
and its relevance to robotic search and pursuit-evasion ap-
plications is clear.

This probabilistic model forms the foundation of the the-
ory of search. Since the total search effort, such as search
time or physical assets, is often a constrained resource, the
question of optimal allocation of the search effort is of inter-
est. Koopman further developed an exponential model for
detection of targets based on random search, which ade-
quately reflects realistic sensors and also offers analytic ad-
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Fig. 4 Illustration of the partial taxonomy provided by Benkoski et al. (1991) for search theoretic problems and application areas previously
considered in the operations research and applied mathematics communities

vantages. The exponential model offers a mathematical rep-
resentation of improving detection probabilities, while re-
flecting diminishing returns with increasing search effort.
Exploration of these combined probability and optimization
models engendered significant research in both applied math
and the OR communities. Such investigations include exten-
sions to the probabilistic descriptions of the prior distribu-
tions of target locations throughout a spatial region of in-
terest, as well as variations on the detection models which
account for the possibility of overlooking the targets by the
searcher’s imperfect sensors. For these search problems, the
objective is often either to minimize the expected time un-
til a target is detected or to maximize the probability of its
detection in the face of “missed detection” probabilities.

Dobbie (1968) provided a survey of the classical search
theory literature, the first of several periods in search
theory, according to Stone (1989b), labeled as classi-
cal (1942–1965), mathematical (1965–1975), algorithmic
(1975–1985), and dynamic search (1985-present). The clas-
sical period describes the development of simple, yet prac-
tical, models for search and detection, enabling immediate
application to search problems of interest. Emphasis on an-
alytic rigor characterized the mathematical era, with focus
placed on developing necessary and/or sufficient conditions
on the optimality of search plans. As cheap computational
resources evolved, so did the research in the algorithmic pe-
riod of search theory, where numerical methods were con-
structed for addressing more complex search problems, such
as those involving moving targets. Results from all of these
preceding eras provide the fundamental methods for ad-
dressing dynamic search problems, where information ac-
quired during the search process is readily incorporated and
used to generate new optimal search plans. This last class of
search problems continues to present interesting and open
challenges, increasingly so as greater employment of au-
tonomous systems have broadened the communities of in-
terest.

Benkoski et al. (1991) offered an annotated bibliography,
in which the authors provide an abridged taxonomy for the
search theoretic problems to date, by first dividing the liter-
ature into one-sided search and search games and then in-
vestigating a number of subdivisions therein, illustrated by
Fig. 4. The former relates to contexts where the target is
unaware of the search process and does not act to conceal
its whereabouts nor actively evade an approaching searcher.
The optimization of search is unopposed, which may ap-
ply in operations where the searcher’s ability for stealth sur-
passes that of the target. On the other hand, search games, as
described here, have relevance to the adversarial behaviors
examined in the previous section. However, many works in
this category also consider discrete time and space, includ-
ing stationary placement of a target to adversely affect the
searcher’s efforts.

Much of these early works on the theory of optimal
search relied on assumptions to facilitate the formal analy-
sis, including exponential detection models and continuous
allocations of search effort (Koopman 1979). Stone consol-
idated these analytic formulations and developed conditions
for uniformly optimal search plans, relying on the above as-
sumptions for sensing with missed detections, continuous
searcher trajectories, and divisible search effort, and solved
using Lagrange multipliers (Stone 1989a).

Other search theoretic works during these earlier eras in-
volve characterization of lateral range curves for detection,
e.g., for both sonar and visual sensors (see Fig. 5), develop-
ing empirically-validated models for physical sensing phe-
nomena (e.g., passive and active acoustic sensing; Wagner
1999), and development of bounding cases such as random
search in the presence of overlook probabilities (Washburn
2002; see Fig. 6). Though much of these sensing models
remain valid for contemporary operational search problems
(e.g., anti-submarine warfare), there has been rapid develop-
ment of new sensor technologies, such as 3D LIDAR, depth



Auton Robot (2011) 31:299–316 307

Fig. 5 Illustration of mathematical models for sensor detection characteristics. Left: the lateral range curve for a range-dependent sensor such as
sonar. Right: an inverse cube model for visual (aerial) sightings

Fig. 6 Illustration (from Washburn 2002) of the cumulative density
function for the time until target detection for the random search model.
Search strategies which seek to, for example, minimize the expected
time until target detection, can be evaluated and benchmarked against
the random search model, which serves as a lower bound on search
performance

cameras, synthetic aperture sensors, etc., and their new capa-
bilities, including fused sensing modalities. These systems
offer the following open problem: Can unified analytic mod-
els be developed for modern and future sensing modalities
that are applicable to probabilistic search theoretic formu-
lations?

The emphasis on continuous space and search effort his-
torically offered a context for analytic tools, such as the cal-
culus of variations, to solve for optimal search distributions.
Examination of discrete search space, either via partitioning
of a continuous area or by the inherent nature of the search
problem (e.g., search for an object among n discrete boxes),
also developed as an active area of research, even more so
as computational capabilities have evolved. In these mod-
els, suppose the search for the target occurs over n locations
or cells, such that there is some finite probability, pi , that
the target resides in the ith cell. Let the detection function

D(i, z) be the probability of detecting the target in cell i

given that the target is truly in cell i and z search effort has
been applied. The search effort z can still be a continuous
(e.g., time spent inspecting the cell) quantity or can now be
represented in discrete units (e.g., number of glimpses or in-
spections of the cell). As before, the metric remains to either
maximize the detection probability or to minimize the time
until the target is found.

Some of the key results include the characterization of the
computational complexity of the constrained path optimal
search problem, where the searcher incurs a penalty (e.g.,
travel time or cost) for transit between locations in the search
region. Wegener (1985) showed that, for positive penalties
or “switching costs,” even special cases of the optimal search
problem are NP-hard. Trummel and Weisinger (1986) later
independently generalized these complexity results by re-
duction from finding Hamiltonian paths on a graph, find-
ing that maximization of the probability of detection is an
NP-complete problem, and that the minimization of the ex-
pected time until detection is an NP-hard one. These results
also outline the tight relationship between the two measures
of search performance, highlighting their equally prominent
examination in the literature.

As a result of the intractability of solutions, much re-
search has since been dedicated to finding near-optimal so-
lutions to variations of the optimal search problem. Rela-
tion to the vehicle routing problem (e.g., see Lenstra and
Kan 1981; Toth and Vigo 2002) in operations research
offers numerous approximation algorithms, often relying
on customized branch-and-bound approaches (Washburn
1998). These works formulate optimization objective func-
tions with relevance to both types of search performance
measures, namely maximal detection probability and min-
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imal (expected) detection time. Further, to address the addi-
tional challenge of a moving target, Washburn (1983) pro-
posed an iterative forward-and-backward algorithm to ad-
dress the case of a Markovian target in a discretized search
environment, and Eagle and Yee (1990) provided a branch-
and-bound algorithm to find an optimal path for a single
moving target. Extensions to these works have led to models
for more sophisticated target motion models (e.g., Dambre-
ville and Cadre 2002). However, the following open problem
remains: How can adversarial behaviors of target(s) (such
as the pursuit-evasion results highlighted in Sect. 2) be in-
corporated into search theoretic constructs within the con-
straints of computational tractability?

More recently, algorithms such as proposed by Sato and
Royset (2010) represent the current state-of-the-art in solv-
ing these problems computationally. In this work, the op-
timization model is given by a mixed integer linear pro-
gram and solved using numerical solvers. Constraints such
as transit costs and search times (that is, time required to
inspect a given location) offer operational relevance while
maximizing the probability of detection of multiple targets.
Such results build upon the foundational works (e.g., Chew
1967) which define such costs and show that the “most invit-
ing strategy” is optimal, i.e., myopic selection of the next
search location that has the highest ratio of probability of
target presence to cost of searching and/or transiting to the
location is provably best under special assumptions.

Another area in search theory that has seen much activ-
ity involves the possibility of “false alarms” or false positive
detections. Kadane (1971) first proposed the optimal where-
abouts search, in which the searcher seeks a stationary tar-
get, or if unable to find it within a fixed search effort bud-
get, specifies its most likely location in the search region.
Kadane’s work leveraged results from the optimal stopping
problem (Ross 1969; Chew and Milton 1973), which offer
specification of termination criteria for the search process.
Such stopping conditions are more relevant once false con-
tacts are introduced to the search problem formulation (Dob-
bie 1973). Much of the more recent investigations, such as
Kalbaugh (1992) and Hohzaki (2007), studied the effect of
these false contacts, which may arise not only from sensor
errors but also from the presence of physical objects in the
search region distinct from the desired target(s).

Bayesian approaches have also been utilized to address
imperfect sensors, recognizing the benefit of adaptive ap-
proaches. Assaf and Zamir (1985) utilized prior distributions
on locations of multiple objects and constructed theoretical
descriptions of posterior distributions in a Bayesian man-
ner from the searcher’s observations. For these classes of
probabilistic distributions, the authors further prove that the
myopic “most inviting” strategy is optimal, extending their
predecessors’ results from deterministic to probabilistic do-
mains. This and other contemporary works (e.g., Kimeldorf

and Smith 1979) led to substantial research in the proba-
bilistic modeling communities. However, these theoretical
results apply only for special distributions and further rely
on the absence of false positive detection errors, both of
which are limiting in the case of real world implementations.

Kress et al. (2008) examined how best to allocate search
effort, i.e., observations, at discrete locations to detect a sta-
tionary target in minimum time. The authors incorporate
false positive detections, and their model assumes that a sep-
arate effort must be expended to verify the presence or ab-
sence of the target. The combined cost of search and veri-
fication yields an expression for the expected time until the
target’s location is correctly identified, for which a myopic
rule is shown to be optimal. A remaining open problem in-
cludes: For what broad classes of search problem formula-
tions can a myopic search strategy be proven to be optimal?
The lines of research above bring the probabilistic search
field closer to the robotics community, which has been in-
vestigating sensor-based search planning in recent years, as
discussed in the sequel.

4 Search and pursuit-evasion in robotics

Recently researchers have extended search and pursuit-
evasion techniques to allow for implementation on real-
world systems. In this section, we will discuss transitional
research that bridges the gap between theory and applica-
tion on robotic systems, and we will highlight field deploy-
ments and implementation results. Within the scope of this
survey, we limit the discussion to probabilistic search and
pursuit-evasion on graphs and in polygonal environments,
which have direct impact on robotic applications. We do not
consider other forms of pursuit-evasion games (e.g., differ-
ential games).

One of the key differences between theory and imple-
mentation of search and pursuit-evasion algorithms on mo-
bile robots is that the environment and searchers must
be modeled realistically. For instance, graphical represen-
tations are limited by the requirement for discretization
of both the possible locations and the sensor capabilities.
Polygonal representations are somewhat more realistic in
that they allow for continuous sensing and movement, but it
is often difficult to obtain polygonal maps from sensor data,
especially in cluttered environments. A number of discrete
and continuous representations have been explored, which
lead to various solutions and methods for analyzing these
solutions.

In addition, as noted above, many of the techniques ap-
plied to mobile robotics can be partitioned into worst-case
and average-case techniques based on the assumptions on
the target’s model and the objective function. Techniques
from the probabilistic optimization literature (see Sect. 3) as



Auton Robot (2011) 31:299–316 309

Fig. 7 Visibility-based
pursuit-evasion examples. The
environment on the left can be
cleared by a single searcher with
unlimited visibility. Since the
evader has unlimited speed, it
can avoid the pursuer in the
environment on the right.
Additional examples can be
found in LaValle (2006)
Sect. 12.4. The pursuer can use
a randomized strategy to capture
the evader in both cases.
Compare with Fig. 2

well as techniques from the pursuit-evasion literature (see
Sect. 2) have been extended for use on robotic systems. We
will now discuss both theoretical and experimental results
particularly relevant to robotics research.

4.1 Search in polygonal environments

To better model physical environments, robotics researchers
have studied formulations of the adversarial search prob-
lem on representations other than a graph. Guibas and
LaValle et al. extended pursuit-evasion techniques to guar-
antee detection of an adversarial target in polygonal envi-
ronments (LaValle et al. 1997; Guibas et al. 1999). The re-
sulting visibility-based pursuit-evasion problem is as fol-
lows. Given a bounded continuous environment, pursuers
with controlled movements, an evader whose position is un-
known to the pursuer, and a visibility sensor that defines an
observed subset of the environment based on the position of
a pursuer, the task is to find a path for the pursuers that guar-
antees detecting the evader, regardless of the path it takes.
Such a path is said to clear the environment. Some polygo-
nal environments can be cleared with a single pursuer, and
others require multiple pursuers. It can be challenging to de-
termine whether or not an environment is clearable with a
single pursuer, and small changes to the polygon can actu-
ally modify the number of searchers required (see Fig. 7).
However, Isler et al. (2005) showed that a single pursuer can
locate an evader in any simply-connected polygon using a
randomized strategy.

One important difference between pursuit-evasion in
polygonal environments and pursuit-evasion on the edges
of a graph is that polygonal environments can require recon-
tamination (i.e., a previously cleared area must be opened to
possible target intrusion during the search) to clear with the
minimal number of searchers. In contrast, the edge search
game (Parsons 1976) will never require recontamination to
achieve a search strategy with minimal searchers (LaPaugh
1993). Guibas and LaValle et al. showed that, in fact, a lin-
ear number of recontaminations are sometimes necessary for

Fig. 8 Environment from Guibas et al. (1999) that requires a linear
number of recontaminations to clear with a single searcher. The peak
(labeled a) must be recontaminated as the legs (labeled b and c) are
progressively cleared. In contrast with edge search, where recontami-
nation cannot improve the search number, polygonal environments can
require recontamination in order to clear with the minimal number of
searchers

visibility-based pursuit-evasion. More precisely, they show
that there exists a sequence of simply-connected free spaces
with search number equal to one such that �(n) recontami-
nations are required for n edges.

Figure 8 gives an example environment requiring a linear
number of recontaminations (Guibas et al. 1999). The peak
at the top of the environment must be recontaminated to con-
tinue clearing the legs. The environment can be cleared by
a single pursuer with line-of-sight sensing, but the peak will
be recontaminated at least k − 1 times. The possibility of
recontamination increases the difficulty of generating solu-
tions to polygonal search problems, particularly when mul-
tiple searchers are required.

To solve the problem of polygonal search with a single
searcher, Guibas et al. (1999) introduced the idea of gap
edges: edges of a searcher’s visibility polygon that border
areas that may or may not contain the target. Their approach
discretizes polygonal environments into visibility regions in
which a robot can move freely without modifying the state
of its gap edges (i.e., whether or not the region bordered by
the gap edge contains a target). The algorithm then gener-
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ates and searches an information space defined by the labels
of the gap edges combined with the location of the robot.
The resulting algorithm is guaranteed to find a solution with
a single searcher if one exists, and it has been shown to be
efficient in practice (Guibas et al. 1999). The only known
worst-case bound on the number of information states gen-
erated by this algorithm is exponential in the number of ver-
tices of the polygon. However, it is not clear if this bound is
tight.

Park et al. (2001) provided necessary and sufficient con-
ditions for polygonal environments clearable with a single
searcher, and they present an O(n2) algorithm for clearing
a polygon with a single pursuer, which improves on the re-
sult from Guibas et al. with possibly exponential worst-case
running time. An alternative to using deterministic strate-
gies is the randomized strategy given by Isler et al. (2005),
which guarantees that a single pursuer can locate an evader
in any simply-connected polygon with high probability in
time polynomial in the number of vertices.

With multiple searchers, both algorithms by Guibas et
al. and Park et al. would generate a potentially exponen-
tial number of visibility regions and search the resulting
information space. This approach is only tractable for few
searchers and small environments. One alternative is to use
an iterative visibility-based method, but doing so loses com-
pleteness.

The work described above is limited to 2D environments.
Lazebnik (2001) provided an initial characterization of the
challenges of extending visibility-based techniques to 3D
environments. This leads us to an open problem: Are effi-
cient and complete algorithms possible for clearing 3D en-
vironments? What restrictions on geometry and searcher ca-
pabilities are necessary for such algorithms to be applica-
ble?

A similar problem is that of maintaining visibility to
an adversarially moving target in a cluttered environment.
This problem was originally introduced by LaValle et al.
(1997), and has been extended to the case of limited range
(Murrieta-Cid et al. 2007). Bhattacharya and Hutchinson
(2010) recently examined the presence of Nash equilibrium
for the case of a single pursuer maintaining visibility to an
evader with bounded speed. They presented necessary and
sufficient conditions for cases where the target can escape
the pursuer. These methods provide strategies for continu-
ous tracking in surveillance applications. However, few al-
gorithms for maintaining visibility have been implemented
on real systems.

4.2 Searching environments represented as graphs

As described in Sect. 2, a large portion of fundamental work
in pursuit-evasion examined the problem of edge search,
where the evader resides on the edges of a graph. Edge

search does not apply directly to many robotics problems.
The possible paths of an evader in many indoor and outdoor
environments often cannot be accurately represented as the
edges in a graph. In some cases, it is possible to construct
a dual graph by replacing the nodes with edges, but these
translations do not necessarily yield the same results as the
original problem.

Several versions of “node search” appear in the litera-
ture. In one formulation, the evader resides in the edges of
the graph (hence, despite the name, this is really an edge
search problem), and these edges are cleared by trapping
(i.e., two searchers occupy the adjacent nodes). Hollinger
et al. (2010a) discussed the properties of adversarial search
when the evader resides on the nodes, and they show its for-
mal relationship to edge search. Any node search clearing
strategy is also an edge search clearing strategy, but the op-
posite is not true. However, it is NP-hard to determine the
minimal searchers required for a clearing strategy for both
edge search and node search.

Kolling and Carpin (2010) presented a formulation of the
adversarial search problem, which they refer to as GRAPH-
CLEAR. The GRAPH-CLEAR problem is represented by
a weighted graph where nodes represent arbitrarily shaped
areas, and edges represent transitions between these areas.
Each node is labeled by the number of searchers required
to clear that area, and each edge is labeled by the number
of searchers to guard that edge (i.e., prevent an adversary
from moving through it). Kolling and Carpin showed that the
GRAPH-CLEAR problem of finding the minimal number of
pursuers to clear this hybrid graph can be solved efficiently
if the topology is a tree, but is NP-hard for general graphs.
In addition, they developed a graph cut algorithm to find
the minimal number of searchers required for a GRAPH-
CLEAR instance on trees. The application of the GRAPH-
CLEAR framework to complex environments is a subject of
ongoing research.

The traditional formulation of guaranteed search does
not restrict the movement of searchers: they are allowed
to “teleport” between nodes in the graph without follow-
ing the edges between them (Parsons 1976; Megiddo et al.
1988). This assumption enables searchers to clear disjoint
parts of the graph without maintaining a route to a start-
ing node. Barrière et al. (2003) introduced the idea of con-
nected search, during which searchers must maintain a con-
nected subgraph of cleared nodes. Connected search guar-
antees that a path exists to the starting nodes at all times
and that searchers are connected by a cleared or “safe” re-
gion of the graph. Barrière et al. argued that such a con-
straint is an important quality for search strategies in the
network decontamination domain. Connectedness is also an
important characteristic of guaranteed search strategies in
robotics applications. Real robots cannot teleport between
nodes in the graph because these nodes represent physical
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Table 1 Complexity results from (Borie et al. 2009) for various
pursuit-evasion problems on different special case graphs. The known
hardness results are shown for clearing a discrete graph with multiple

pursuers. The evader exists in the edges of the graph, and the pursuers
clear edges by traversing them. The pursuers also block the evader’s
movement by occupying nodes on the graph

Minimum pursuer Minimum distance Minimum time

Unit-length arbitrary-width graphs

Paths P Pseudo-P Pseudo-P

Cycles P Pseudo-P Pseudo-P

Stars NP-Complete, Pseudo-P NP-Complete Strongly NP-Complete

Trees NP-Complete NP-Complete Strongly NP-Complete

Two-Vertex Graphs NP-Complete, Pseudo-P NP-Complete Strongly NP-Complete

Series-Parallel Graphs NP-Complete NP-Complete Strongly NP-Complete

Cliques NP-Complete NP-Complete NP-Complete

General Graphs NP-Complete NP-Complete Strongly NP-Complete

Unit-width arbitrary-length graphs

Paths P P P

Cycles P P P

Stars P P Strongly NP-Complete

Trees P (Open) Strongly NP-Complete

Two-Vertex Graphs P P Strongly NP-Complete

Series-Parallel Graphs (Open) (Open) Strongly NP-Complete

Cliques P P Strongly NP-Complete

General Graphs NP-Complete NP-Complete Strongly NP-Complete

locations. Instead, robots must restrict their search paths to
those traversable in the environment.

The algorithms described above attempt to minimize the
number of searchers necessary to clear a given graph. Re-
searchers have paid far less attention to generating clearing
schedules that require minimal time or distance. Minimizing
distance and time are of particular interest for robotics appli-
cations when a fixed number of robots may be available, but
time is limited. Borie et al. (2009) discussed algorithms and
complexity results for the minimal time and minimal dis-
tance clearing problems. They provided a summary of the
known complexity results for the minimum pursuer, mini-
mum distance, and minimum time problems of various types
of graphs. Hollinger et al. (2010b) also examined the prob-
lem of minimizing distance using a heuristic that bootstraps
on solutions to the adversarial search problem on an under-
lying spanning tree. Despite these recent efforts, we are left
with the following open problems: A number of minimum
time and minimum distance problems remain open on dis-
crete graphs (see Table 1). For such problems with known
complexity results, what heuristics and approximations are
still possible?

4.3 Probabilistic search methods in robotics

Both classical pursuit-evasion approaches and more recent
graph search algorithms rely on the worst-case assumption

of the target’s behavior, which precludes modeling the tar-
get’s motion or incorporating uncertainty into the search
plans. An alternative formulation of multi-robot search
problems uses a probabilistic approach to model the loca-
tion of the target or the movement of the searchers.

Many search problems can be formulated as a Markov
Decision Process (MDP) if the target’s position is fully
observed (Eaton and Zadeh 1962) or a Partially Observ-
able Markov Decision Process (POMDP) if it is unknown.
These formulations provide probabilistic representations of
the problem, which can reason about uncertainty in mea-
surements and target models. Roy et al. (2005) showed how
belief compression can be used to make the POMDP search
problem tractable for a single pursuer, but the increased state
space makes this approach infeasible as the environment and
team size scales up.

A number of approximate sampling-based algorithms are
available for solving general POMDPs. A state-of-the-art
approach that involves sophisticated sampling of the belief
space was proposed by Ong et al. (2010) to allow for mixed
observability (e.g., when the locations of the searchers are
completely known but the location of the target is unknown).
The use of mixed observability extends POMDP capabilities
to search problems with up to two robots, but they require a
discrete representation of the problem, and Markovian tar-
get motion models. The Markovian assumption does not al-
low any target model that requires a history. Hollinger et
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al. (2009) also examined a receding horizon approximation
algorithm to the search POMDP that achieves performance
guarantees by sequentially allocating the search effort, re-
quiring only linear computation in the team size. As in gen-
eral POMDP methods, they also assume a Markovian mo-
tion model, and the computation of their method increases
exponentially with the horizon length.

Similar to formulations using partial observability, re-
searchers have applied combinatorial optimization tech-
niques to the coordinated search domain. Lau et al. (2006)
presented a dynamic programming approach for efficiently
finding a single non-adversarial target. The approach pro-
vides optimal solutions for non-adversarial search, but suf-
fers from scalability issues as the team size and environment
size increases. Lau et al. (2005) also proposed a branch and
bound approach for finding multiple targets that uses a novel
bounding strategy. They tested their approach in simulated
environments, where it was able to find optimal solutions
with several minutes of running time. Branch and bound
techniques have the advantage of finding optimal solutions
on termination, as well as providing continually improv-
ing suboptimal solutions. Such solutions often suffer from
scalability issues, and the development of better bounding
techniques is an active area of research.

A large number of techniques assume that the map
is known beforehand and does not change. Hespanha et
al. used a probabilistic framework to formulate a pursuit-
evasion problem on partially known maps. They proposed a
one-step greedy algorithm, and they proved that their algo-
rithm generates a one-step Nash equilibrium (Hespanha et
al. 2000). The equilibrium guarantees that the searchers and
target cannot do better by modifying their strategies using
a local search. However, such algorithms do not guarantee
global optimality, which leaves the following problem open:
Are there efficient probabilistic search algorithms with ap-
proximation guarantees for unknown and dynamic environ-
ments?

4.4 Implementation and field results

An increasing number of search and pursuit-evasion al-
gorithms are being implemented on multi-robot systems.
A major issue with implementation on such systems is the
requirement that the system be robust to failures. This re-
quirement has led to a number of approaches that are de-
centralized and avoid single points of failure. Vidal et al.
(2002) developed decentralized coordination strategies for
a UAV/UGV team searching for multiple targets. Their
testbed consisted of two Pioneer 2-AT ground vehicles act-
ing cooperatively with a Ymaha R-50 helicopter. All vehi-
cles were equipped with GPS, inertial navigation, onboard
computation, a PTZ vision system, and wireless communi-
cation. Vidal et al. presented two greedy coordination ap-
proaches based on maximizing the probability of detection.

They demonstrated empirically that their method is able to
locate targets attempting to evade capture. However, their
method does not explicitly model the target as adversarial
and provides no guarantees in this case.

A number of researchers have applied probabilistic filter-
ing approaches to model the target. Bourgault et al. (2003,
2006) examined the problem of locating a potentially mov-
ing, non-adversarial target where the target’s predicted mo-
tion is modeled using a Bayesian filter. In other work, these
techniques were extended to multiple targets (Wong et al.
2005). These works applied decentralized data fusion to de-
velop a fully distributed approach. They also examined sev-
eral candidate utility functions and present an optimal search
strategy for a single searcher. While a large portion of this
work was validated in simulation, one notable exception is
the work of Tisdale et al. (2009), which applied receding-
horizon control with a variable horizon to a UAV search
problem where the target’s position is modeled using recur-
sive Bayesian estimation. Two Sig Rascal airframes were
equipped with GPS, wireless communication, onboard com-
puting, and downward looking cameras. Their objective is
to maximize the information gain given a new UAV sensor
measurement, which yields performance guarantees due to
the submodularity of the objective function. Their approach
is purely average-case, and provides no guarantees if the tar-
get is acting adversarially or if the forward model in the
probabilistic filter is violated.

Practical implementation of search algorithms has been
demonstrated in the wilderness search and rescue domain.
Goodrich et al. (2008) provided an extensive experimental
analysis of UAV-enabled search with vision, which includes
field trials with search and rescue operators. They utilized
a small and light fixed wing UAV equipped with autopilot,
GPS, and a video camera on a gimbal mount. The vehi-
cle used a radio transceiver for data communication and an
analog transmitter for video transmission. They presented
a number of techniques for mosaics and visual processing
to improve how information is viewed by human operators.
Their work used a relatively simple contour-based search
strategy to guide the UAVs, with the goal of covering the
area.

While a number of techniques have been implemented on
mobile robots searching for non-adversarial targets, fewer
have been implemented for the adversarial search prob-
lem. Gerkey et al. (2005) utilized the PARISH algorithm to
clear a small academic building with three physical robots
equipped with laser scanners. PARISH frames the clearing
problem as a parallel optimization, and allows robots to form
teams that work together to clear the environment. Team for-
mation and path generation are guided by a heuristic, which
makes the algorithms sensitive to choice of heuristic. Vieira
et al. (2009) presented experiments with a team of iRobot
Create platforms executing adversarial target search using a
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graph partition method. The robots utilize beacons in the in-
door environment to localize themselves, and they execute
a team strategy to capture a target moving faster than the
searchers. Hollinger et al. (2010a) implemented a building
clearing algorithm using a human-robot search team on a
single floor of an office building. Their approach utilizes the
clearing schedule of an underlying spanning tree as a heuris-
tic to generate clearing schedules with few searchers and fast
clearing times. Their search team consisted of a Pioneer dif-
ferential drive platform with a camera for detection and laser
for localization, along with two humans carrying laptops.
The humans’ laptops communicate through the wireless net-
work with the robot, and the laptop displays relay waypoint
information to the humans.

The three implementations above were on small ground
vehicles in indoor environments. Katsilieris et al. (2010)
presented a demonstration on two large ground vehicles in
an outdoor field with obstacles. The test robots were spheri-
cal Rotundus GroundBot vehicles equipped with GPS, wire-
less communication, and two cameras for 360 degree field
of view. The vehicles cleared the outdoor environment of
any potentially adversarial target, which the authors refer to
as search and secure. The algorithm does not provide guar-
antees on the number of searchers or the time to complete
the search, nor does it account for communication limita-
tions between the robots. However, the robots successfully
executed the clearing strategy and were able to guarantee
detection of any potential adversary.

The above adversarial search algorithms were designed
to operate in 2D planar environments, possibly with ob-
stacles. Kolling et al. (2010) extended heuristic adversarial
search techniques to 2.5D environments by utilizing an ex-
tended notion of visibility. Their algorithm reduces the 2.5D
search problem on a height map to a graph through the use of
sampling and calculation of detection sets. Once the graph is
constructed, standard 2D adversarial search algorithms can
be applied. They demonstrated their algorithm using eight
human searchers in an outdoor testing site on the scale of
approximately one square kilometer (Kolling et al. 2011).
The development of more general techniques for search in
higher dimensions remains a topic for future study.

Despite the progress made by these implementations,
demonstrations of adversarial search on a team of mobile
robots in environments larger than a single floor of a build-
ing or a small outdoor area have yet to be presented. Many
of the challenges are related to systems engineering for field
testing of multi-robot teams. Due to poor reliability and the
number of possible failures, few multi-robot systems have
been tested on the scale necessary to demonstrate pursuit-
evasion in complex environments. In addition, a reliable
communication infrastructure is required to guarantee that
the plan will be executed without error. Decentralized archi-
tectures and methods capable of utilizing new information

as it becomes available reduce these requirements, but the
development and evaluation of such algorithms remains an
active research area.

5 Conclusion and future research

Search and pursuit-evasion problems have recently become
central to many application domains in robotics, natu-
rally arising from the increased capabilities of autonomous
agents. Practical impact areas include: surveillance, emer-
gency response, and wilderness/ocean rescue. In keeping
with its interdisciplinary nature, robotics brings an applied
context for revisiting existing theoretical results, as well as
inspiring new ones. This paper has highlighted fundamen-
tal work in search and pursuit-evasion as found in computer
science, operations research, and other communities, and it
has provided a survey of a number of recent advancements
in robotics.

Many interesting open problems exist in search and
pursuit-evasion. The problems of minimizing time and dis-
tance to capture in the adversarial domain have seen far less
attention than minimizing the number of pursuers. Since
computing the number of pursuers is often computation-
ally hard, existing solutions are heuristic in nature. Ap-
proximation algorithms with provable performance guaran-
tees are missing, even for many special-case environments.
These questions offer a possible bridge with the probabilis-
tic search problem, which traditionally has examined the ex-
pected time to find a target. Alternatively, using stochastic
optimization methods in the context of max-min pursuit-
evasion games (e.g., “attacker-defender” models) can intro-
duce notions of probabilistic adversaries.

With few exceptions, current practical search and pursuit-
evasion algorithms have been designed for 2D environ-
ments. The extension to 3D and higher dimensions has been
studied through theoretical analysis, but the development
of algorithms that are efficient for 3D search and pursuit-
evasion is still largely an open problem. The extension of
graph theoretic search to more general characterizations of
visibility, such as 2.5D height maps, provides one promising
avenue for future work.

Issues of practical relevance, including bounded speed,
constrained mission endurance, refined sensing models, and
limited inter-robot communication, continue to be of inter-
est to many robotics research efforts. Such issues must be re-
solved to enable large-scale testing and fieldwork on robotic
search systems. In addition, common software tools and ar-
chitectures have yet to be developed for search and pursuit-
evasion. Libraries of algorithms, environments, and data sets
would facilitate ease of comparison for new techniques and
provide a resource for researchers entering the field. These
and other avenues for future research can be rewarding to
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all relevant communities, driven by the collective interests
in robotic search and pursuit-evasion.
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