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Abstract This paper presents a method of autonomous
topological modeling and localization in a home environ-
ment using only low-cost sonar sensors. The topological
model is extracted from a grid map using cell decompo-
sition and normalized graph cut. The autonomous topo-
logical modeling involves the incremental extraction of a
subregion without predefining the number of subregions.
A method of topological localization based on this topolog-
ical model is proposed wherein a current local grid map is
compared with the original grid map. The localization is ac-
complished by obtaining a node probability from a relative
motion model and rotational invariant grid-map matching.
The proposed method extracts a well-structured topological
model of the environment, and the localization provides re-
liable node probability even when presented with sparse and
uncertain sonar data. Experimental results demonstrate the
performance of the proposed topological modeling and lo-
calization in a real home environment.
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1 Introduction

A mobile robot requires an environmental modeling and lo-
calization capability to be able to navigate autonomously.
Researchers have developed various robot mapping and lo-
calization methods for this purpose, including simultaneous
localization and mapping (SLAM) algorithms (Thrun 2002;
Thrun et al. 2001; Leonard and Durrant-Whyte 1991; Gut-
mann and Konolige 1999).

In general, internal representations of the environment
recognized by robotic sensors can be classified into metric-
based and topological approaches. The occupancy grid
map (Elfes 1989) and feature-based methods (Leonard and
Durrant-Whyte 1991) are typical examples of the metric-
based approach. The metric map represents geometric enti-
ties of the environment as exact locations with respect to a
reference frame, and localization is achieved by obtaining
the location of the mobile robot as accurate measures. These
exact representations help the mobile robot perform elabo-
rate tasks that require high accuracy, such as placing a cup
in an exact location.

On the other hand, the topological approach represents
environmental entities as a graphical model consisting of
nodes and edges (Choset and Nagatani 2001; Remolina and
Kuipers 2004). The nodes are extracted from some meaning-
ful places such as junctions, and the edges are determined
from the connectivity of the nodes. In this approach, local-
ization is performed by finding a node in which the robot is
currently located. The topological approach has the advan-
tage of being able to handle a large amount of data because
of its compact and abstracted scheme. Moreover, it is suit-
able for human-robot interaction because the representation
methodology is similar to the environmental perception of
human beings.

In this paper, we focus on the topological approach using
only sonar sensors in a home environment. Sonar sensors,
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which give relatively accurate range readings, are the most
commonly used type of range sensor. They are cost effec-
tive and useful for mobile robot applications such as obsta-
cle avoidance. However, because of their large beamwidth,
sonar sensors suffer significantly from angular uncertainty
and specular reflection, both of which make it difficult to re-
liably apply the sensors to feature-based approaches. Even
though several methods have been developed that produce
successful results in structured indoor environments (Tardós
et al. 2002; Choi et al. 2005; Yap and Shelton 2009), the
feature-based approach using sonar sensor always has the
potential for failure due to the high uncertainty of the sonar
sensor. Making a robot system work effectively using this
type of sensor requires two things: improving the sensor
performance by reducing the uncertainty, and enhancing the
mapping and localization capability in the presence of un-
certain sensor data. Enhancing the performance of the sonar
sensor is not the topic of this paper; instead, we propose
a robust topological approach based on a sonar grid map.
The creation of the environmental model involves partition-
ing the grid map into several subregions, and localization is
performed by comparing the current local grid map with the
grid map constructed during the modeling procedure.

The proposed method is composed of two phases: topo-
logical modeling in which subregions are extracted from the
sonar grid map, and topological localization in which the
local grid map is compared with the original grid map.

First, we propose an efficient environmental modeling
method for dividing the entire environment into several sub-
regions to extract the topological model. An offline mod-
eling process is first proposed to create the environmen-
tal model (Choi et al. 2009a), and then this offline method
is improved to create an autonomous topological modeling
method (Choi et al. 2009b). The offline topological mod-
eling comprises three steps: generating the grid map for
the whole environment, applying cell decomposition, and
extracting the topological representation using normalized
graph cut. Even though the offline method provides reli-
able modeling results suitable for a home environment, it
requires that the number of subregions is predefined. To
overcome this limitation, the autonomous topological mod-
eling method was developed to extract new subregions from
the current grid map incrementally. The extraction of a new
subregion is performed in a manner that guarantees its con-
vexity. This convexity criterion results in spatial recognition
similar to perception in humans because a convex region
generally involves similar spatial characteristics.

Second, localization based on the extracted topological
model is achieved by matching the current local grid map
with the original grid map generated during the modeling
procedure (Choi et al. 2009a). The proposed localization
is composed of four processes: extracting a template grid
map by filtering out noisy data in the local grid map, select-
ing candidate locations using rotational invariant grid-map

matching, calculating a prior node probability using a ro-
bot motion model, and obtaining posterior node probability.
A local grid map always contains noisy data because suf-
ficient sonar data cannot be accumulated. Therefore, as the
first step in localization, the template grid map is extracted
from the local grid map by filtering out the noisy data, and
the grid-map matching is performed using the template grid
map. Then, the node probabilities are calculated from the
rotational invariant grid-map matching process and the prior
probability, which is obtained from the previous node prob-
ability and the robot motion model. Here, a relative distance
and a relative angle are used as the robot motion model to
prevent accumulation of odometry error. The size of the lo-
cal grid map used in these processes is determined adap-
tively using a test of the node probability entropy. Using
this entropy test, the mobile robot can determine whether the
current local grid map should be expanded by accumulating
more sensor data.

The proposed method results in a well-structured topo-
logical representation of the environment and reliable local-
ization performance using only sonar sensors. The proposed
topological modeling and localization methods have several
advantages.

For the proposed topological modeling,

• cell decomposition can systematically extract empty re-
gions in the grid map and produce a roughly modeled
graph structure for the empty environment,

• normalized graph cut produces an effective clustering re-
sult by maximizing the similarity within clusters; this has
low computational burden because of the cell decomposi-
tion process, and

• the topological map can be constructed without defining
the number of subregions in advance.

For the proposed localization,

• a successful grid map match is possible even with noisy
data in the local grid map,

• odometry errors do not accumulate because only tempo-
rary relative robot motion is used to calculate the node
probability, and

• the proposed localization guarantees convergent and reli-
able node probability using the entropy test.

Furthermore, the proposed topological method can be in-
tegrated with high-level semantic information. By providing
semantic information such as “bedroom” or “kitchen” to the
extracted subregions, the proposed method would be very
useful for human-robot interaction in the high-level plan-
ning stage.

The remainder of this paper is organized as follows. Sec-
tion 2 presents related topological approaches. Section 3 de-
scribes the method of topological modeling using the sonar
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grid map. Section 4 presents the localization procedure us-
ing local grid-map matching. Section 5 describes experi-
mental results, and Sect. 6 presents the conclusion.

2 Related works

Several topological approaches have been developed for re-
liable environmental modeling and localization in indoor
environments. The generalized Voronoi graph (GVG), one
of the best-known topological approaches, detects nodes
and edges by investigating equidistant obstacles. Geomet-
ric characteristics are used to recognize nodes for localiza-
tion purposes. The GVG has been successfully implemented
as topological SLAM in a corridor environment (Choset
and Nagatani 2001), and Beeson et al. (2005) developed
the extended Voronoi graph that enabled the Voronoi graph
to be applied to non-corridor environments. Similarly, Doh
et al. (2009) developed a topological SLAM algorithm un-
der semi-permanent dynamics induced by door opening and
closing. Lee et al. (2006) categorized entire environments
into node and edge regions using the eigenvalue ratio (EVR)
of sonar sensor data.

Using a different approach, other researchers developed
topological representations by partitioning the environment
into several node regions. Thrun (1998) extracted topolog-
ical graphs from grid maps based on Voronoi diagrams
for the efficient planning method. Buschka and Saffiotti
(2002) obtained room-like spaces from grid maps using
fuzzy morphological openings and watershed segmentation.
Similarly, the graph partitioning method has been applied
to grid maps to extract node regions (Zivkovic et al. 2006;
Brunskill et al. 2007). Mozos and Burgard (2006) applied
the AdaBoost learning algorithm to laser-range data to clas-
sify door, room, and corridor regions. As an example of the
use of vision sensors, Tapus and Siegwart (2006) used the
fingerprints of places to generate an appearance-based topo-
logical model.

These methods cannot easily be directly applied to our
system. Some are suitable only in corridor environments
where few meaningful locations such as corner points and
crossing points are used as nodes, and localization is only
performed when the robot arrives at these node points
(Choset and Nagatani 2001; Doh et al. 2009; Lee et al.
2006). In a home environment, on the other hand, nodes
should be segmented as spaces such as rooms. Several of
the existing approaches do segment the environment into
several subregions. However, some previous methods used
only narrow passages, such as doorways, to extract nodes
(Buschka and Saffiotti 2002; Mozos and Burgard 2006),
and others could not provide reliable topological localiza-
tion in a home environment using only sparse sonar sen-
sors, because they did not consider the localization prob-

lem (Beeson et al. 2005; Zivkovic et al. 2006) or they re-
lied on laser range finders or vision sensors for the local-
ization (Brunskill et al. 2007; Tapus and Siegwart 2006;
Mozos and Burgard 2006).

Unlike the existing approaches, this paper describes a
novel topological algorithm consisting of environmental
modeling and localization using only low-cost sonar sensors
to achieve reliable results in a home environment.

3 Topological environmental modeling in a home
environment

Environmental modeling using a topological representation
should extract the nodes and edges from the complete en-
vironment. In a home environment, extracting meaningful
points such as junctions, in the case of corridors, is diffi-
cult, because almost all locations are potentially meaningful
for mobile robot tasks. Therefore, extracting nodes as spaces
such as rooms is more appropriate than acquiring them as
specific points, and edges should be defined as the connec-
tions between those spaces. For this purpose, a navigable re-
gion for the mobile robot is extracted from the environment,
and the navigable region is divided into several subregions.
These subregions are then regarded as nodes.

As previously mentioned, an offline topological model-
ing process is first proposed, and an autonomous topologi-
cal modeling algorithm is then developed by improving the
offline method.

3.1 Offline topological modeling

The first step in offline topological modeling is to generate
an occupancy grid map for the entire environment. The robot
pose is given by calibrated odometry data while generating
the grid map (Yun et al. 2008). Many occupancy grid map
generation methods exist, but the improvement of the grid
map performance is outside the scope of this paper. There-
fore, we used the existing grid mapping method (Lee and
Chung 2009).

3.1.1 Cell decomposition

The generated binary grid map consists of empty grids
m(x,y) = 0, which represent free space, and occupied grids
m(x,y) = 1, which contain obstacles. Cell decomposition
of the generated grid map is used for topological modeling
of the navigable free space to extract empty grids systemat-
ically.

Cell decomposition, also known as quadtree cell decom-
position, divides a square cell into four smaller square cells
of the same size if the original cell is composed of both
free and obstacle spaces (Katevas et al. 1998). This process
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Fig. 1 Example of offline topological modeling: (a) initial draft topo-
logical model, (b) normalized graph cut in which each cluster is repre-
sented as a different color, and (c) extracted topology

is executed recursively until every cell is decomposed into
separate free and obstacle spaces. Cell decomposition ef-
fectively extracts empty regions in the grid map, and the
empty regions can be modeled as squares of various sizes.
A large empty space would be modeled mainly as a few
large squares with a few relatively small squares, as shown
in Fig. 1(a).

Cell decomposition provides an initial draft model of
the topological representation of the environment. Each ex-
tracted cell becomes a node of the draft topological model,
and the connecting edge is determined by the adjacency of
two cells (Fig. 1(a)).

3.1.2 Normalized graph cut

The draft topological model constructed using cell decom-
position provides a connected graph structure for the empty
regions of the environment. However, many small cells
should be merged with large cells that could be considered
to be part of the same region. Normalized graph cut is ap-
plied to the draft topological model for effective clustering.

Normalized graph cut, a clustering method using graph
partitioning, was proposed by Shi and Malik (2000), who
applied it to image segmentation. It uses a graph struc-
ture G(V,E) composed of a set of vertices (nodes) V =
{V1,V2, · · · ,Vn} and a set of edges E = {E1,E2, · · · ,Em}.

Each edge has a weight wij that represents the similarity be-
tween Vi and Vj . To segment the graph, the normalized cut
(Ncut) is defined to measure the similarity between two clus-
ters that should be segmented. Ncut between two clusters C1

and C2 can be obtained by

Ncut =
∑

i∈C1,j∈C2
wij

∑
i∈C1,j∈V wij

+
∑

i∈C1,j∈C2
wij

∑
i∈C2,j∈V wij

. (1)

We can obtain two segmented clusters with minimum
similarity by minimizing Ncut. The result also maximizes
a measure of similarity within clusters C1 and C2 because
the sum of (1) and (2) is a constant value.

Nassoc =
∑

i∈C1,j∈C1
wij

∑
i∈C1,j∈V wij

+
∑

i∈C2,j∈C2
wij

∑
i∈C2,j∈V wij

. (2)

Unfortunately, finding the minimum Ncut is an NP-hard
problem. Therefore, spectral clustering is generally used as
an approximate solution. Spectral clustering to minimize
Ncut is performed in the following steps:

1. Construct a neighborhood graph with a corresponding
n × n affinity matrix W(i, j) = wij .

2. Compute the normalized graph Laplacian L =
D−1/2(D − W)D−1/2, where D = diag{d1, · · · , dn} and
di = ∑

j Wij .
3. Find the k smallest eigenvectors u1, · · · , uk of L and

form the matrix U = [u1 · · ·uk] ∈ R
n×k .

4. Form matrix Ũ from U by re-normalizing each row of U

to have unit norm, i.e., Ũij = Uij /(
∑

j Uij )
1/2.

5. Treat each row of Ũ as a point in R
k , and segment them

into k groups using the k-means algorithm.
6. Assign Vi to cluster j if and only if row i of Ũ is assigned

to cluster j .

Based on the result of cell decomposition, each cell be-
comes node Vi and the weight value between two cells is
defined to calculate the affinity matrix W using (3).

wij =
{

� of adjacent grids if Vi and Vj are adjacent

0 otherwise.
(3)

Using the draft graph model and the affinity matrix, k

clusters can be segmented with a predefined variable k. Fig-
ure 1(b) shows the result of the normalized graph cut using
the draft topology model of Fig. 1(a). We segmented four
clusters using the normalized graph cut, and the segmented
clusters can be represented as graphical structures, as shown
in Fig. 1(c). Four clusters were extracted successfully based
on the spatial geometry. Two rooms were segmented into
nodes A and C, and the remaining space was divided into
nodes B and D.
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Fig. 2 Flowchart for the autonomous topological modeling using
sonar grid map

3.2 Autonomous topological modeling

The offline method can successfully extract the topological
representation from the grid map. However, the number of
clusters k must be manually predefined, and the topological
model should be extracted when the grid map is generated
for the entire environment. If the robot navigates unexplored
areas after extracting the topological model, the topologi-
cal model must be reconstructed starting with the generation
of the grid map. To overcome these limitations, the offline
method is improved into an autonomous topological model-
ing process.

Autonomous topological modeling involves incremen-
tal extraction of subregions. A local grid map is generated
around the robot as it navigates the environment, and the
subregions are extracted using the local grid map. During
this process, the subregion can be extracted without pre-
defining the number of subregions.

Figure 2 shows a flowchart of the autonomous topologi-
cal modeling method. Most processes are similar to those in
the offline method. The major differences are the extraction
of a reliable region in the local grid map and extraction of
new subregions.

3.2.1 Obtaining reliable regions in the local grid map

Autonomous topological modeling should be performed us-
ing an incomplete local grid map. The local grid map always
contains noisy data because sufficient sensor data cannot be
accumulated to filter out spurious sonar data (Fig. 3(a)). To
reduce the effects of the noise, reliable regions in the lo-
cal grid map should be obtained before subregion extraction
takes place.

Fig. 3 Obtaining reliable regions in the local grid map: (a) noisy local
grid map, (b) boundary tracing, (c) contour for reliable region, and
(d) reliable cells

As the first step in obtaining reliable regions, a boundary-
tracing technique is used to find boundaries between occu-
pied and empty regions (Fig. 3(b)). A binary grid map is
acquired from the local grid map, and all boundary grids
between occupied and empty grids are obtained. Then, a
sequence of the connected boundary grids is obtained by
tracing the boundary grids in a certain direction, clock-
wise or counterclockwise (Gonzalez and Woods 2002). The
boundary-tracing method finds a contour that encloses the
empty regions in the local grid map.

A sonar sensor model is then used to measure a confi-
dence level for each occupied grid. A sonar beam S gener-
ated by a transmitter has a sound pressure function PS(r, θ)

defined as

PS(r, θ) = βf a4

r2

(
2J1(ka sin θ)

ka sin θ

)2

, (4)

where r is the distance from the transmitter, and θ is the
angle with respect to the transmitter direction. Detailed ex-
planations for the other variables can be found in Kleeman
and Kuc (2008).

The sound pressure function can be used to measure the
amount of sensor information. The confidence for each oc-
cupied grid m(x,y) is evaluated using the sensor model as

Conf (x, y) =
∑

m(x,y)∈Occ.(S)

PS(r, θ), (5)

where Occ.(S) is a set of grids determined to be occupied
according to sensor data S. The confidence value is used to
assess the reliability of each occupied grid. A grid with a
higher confidence value is more reliable than a grid with a
lower confidence value, because the confidence reflects the
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amount of sensor information that determines the current
status of each grid. The occupied grids that have confidence
values greater than the average confidence value are then
classified as confident grids (6).

Conf (x, y) > avg(Conf ), (6)

where avg(Conf ) is the average confidence value of all oc-
cupied grids in the local grid map. The grids classified as
confident are regarded as truly occupied grids, whereas all
other grids are considered to be noisy data.

Using the obtained confident grids, the reliable region can
be found by obtaining a contour that connects those confi-
dent grids (Fig. 3(c)).

Finally, reliable regions in the local grid map can be ob-
tained by removing the decomposed cells that are outside
the contour (Fig. 3(d)). A reliable region is obtained from
the noisy local grid map using these processes, and the re-
maining reliable cells are applied to the normalized graph
cut to extract subregions.

3.2.2 Extracting a new subregion

The autonomous topological modeling method involves ex-
tracting a new subregion from the obtained reliable cells. To
extract the new subregion, the proposed method tentatively
divides these cells into two clusters using the normalized
graph cut and determines whether the cells should be di-
vided into two clusters. If the cells should be divided into
two clusters, one of the two divided clusters is extracted as
a new subregion. Otherwise, the robot continues to generate
the grid map.

The convexity of the subregion is used as a criterion for
determining the division of the cells. In other words, the sub-
region is extracted in such a way as to guarantee its convex-
ity. More details of this procedure follow.

1. Evaluate a measure of convexity, considering the reliable
cells to be one cluster.

C1cluster = � of occ. grids ∈ CH1
∑

size of Cell
, (7)

where CH1 is a convex hull of all the reliable cells
(Fig. 4(a)).

2. Divide the reliable cells into two clusters using the nor-
malized graph cut.

3. Evaluate the convexity measure, considering the reliable
cells to be two clusters.

C2clusters =
∑2

i=1 � of occ. grids ∈ CH2(i)
∑

size of Cell
, (8)

where CH2(i) represents a convex hull of all cells corre-
sponding to the ith cluster (Fig. 4(b)).

Fig. 4 Convex hulls for (a) one cluster and (b) two clusters. The blue
and green cells represent two different clusters obtained from the nor-
malized graph cut

4. Extract a new subregion if the following conditions are
satisfied.

C1cluster > ct & C2clusters < 0.5 × C1cluster, (9)

where ct is a threshold value.

The convexity measures C1cluster and C2clusters are the ra-
tios of occupied grids in the convex hulls CH1 and CH2,
respectively, to the total size of reliable cells. A smaller con-
vexity measure indicates that the region is more convex. The
former condition in (9) means that the reliable cells cannot
be regarded as a convex region using the allowable thresh-
old value ct , and they should be divided into two regions
to extract a convex subregion. The threshold value, ct , was
determined by various experiments to be 0.2. The physical
meaning of this value is that, at most, 20% of the grids in a
subregion are allowed to be occupied for the subregion to be
considered a convex region. The latter condition in (9) en-
sures that the normalized graph cut provides effective clus-
tering to guarantee the divided clusters as convex regions.

When the conditions are satisfied, the divided cluster that
is farther from the current robot location is extracted as a
new subregion. The grid map around the cluster that is closer
to the current robot location might contain undetermined
grids, which should be updated by the subsequent sensor
data. On the other hand, the grid map around the cluster
that is farther from the current robot location has already
been updated sufficiently to be temporarily considered sta-
tic, as it is not affected by current sensor data. So, the cluster
that is farther from the current robot location is extracted as
the new subregion. The subregion extracted this way is not
considered for any subsequent segmentation unless the robot
navigates back to the same subregion again.

Figure 5 shows the process of extracting new subregions
incrementally. The cells filled with horizontal and vertical
line patterns represent the two current tentative clusters.
During the first two steps, shown in Figs. 5(a) and 5(b), new
subregions are not extracted, and the obtained cells are con-
sidered to be in one subregion because they do not satisfy
the dividing conditions in (9). The conditions are satisfied in
Fig. 5(c), so the cells filled with a vertical line pattern, which
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Fig. 5 Example of autonomous topological modeling using a sonar
grid map. Cells filled with vertical and horizontal line patterns repre-
sent the two current tentative clusters. An extracted subregion is repre-
sented by cells filled with a diagonal line pattern

are farther from the current robot location than the cells
filled with a horizontal line pattern, are extracted as a new
subregion. The newly extracted subregion is represented as
cells filled with a diagonal line pattern in Fig. 5(d), and they
are not reconsidered for subsequent extraction of another
new subregion. In other words, the remaining spaces (i.e.,
the cells filled with horizontal and vertical line patterns), ex-
cept the extracted new subregion (i.e., the cells filled with a
diagonal line pattern), are used to extract another new sub-
region in Fig. 5(d). A successful topological model can be
achieved autonomously from the sonar grid map using this
process.

4 Topological localization in a home environment

In the topological representation, localization of a mobile
robot can be performed by finding the node where the ro-
bot is currently located. Node classification using laser range
finders or vision sensors would be relatively easy. However,
node classification using sonar sensors is difficult because
of the sparseness and uncertainty of the data they produce.
When sonar sensors are used, sonar data should be accumu-
lated to overcome the limitations of the sensor performance.

In this paper, a local grid map around the current robot
position is generated to accumulate the sensor data. The ro-
bot can determine its own location by comparing the local
grid map to the original grid map generated during the mod-
eling procedure. Figure 6 shows a flowchart of the proposed
topological localization procedure. We first extract a tem-
plate grid map by filtering out the uncertain data because
of the uncertain information contained in the local grid map.
Candidate locations in each node are then selected by apply-
ing rotational invariant matching to the extracted template

Fig. 6 Flowchart of the proposed topological localization using sonar
grid-map matching

grid map. Finally, node probabilities are calculated from the
prior node probability and the grid-map matching probabil-
ity.

A test of the node probability entropy is also used to gen-
erate a reliable local grid map. Using the entropy test, the
size of the local grid map can be determined adaptively for
successful grid-map matching.

4.1 Extracting the template grid map

The template grid map is extracted using the confidence
measure of (5) which was proposed to obtain the reliable
region in Sect. 3.2. A grid has high confidence if it is repeat-
edly determined to be occupied using high-pressure sound
data. On the other hand, a grid detected by low-pressure
sound data only a few times has a low confidence value.
High-confidence grids can be regarded as reliable data, and
low-confidence grids can be considered as noisy data. The
noisy data can be filtered out of the local grid map for reli-
able grid-map matching using the confidence level.

Figure 7(a) shows an example of a local grid map. As
previously mentioned, the local grid map contains a large
number of uncertain data. A confidence map of the local grid
map is obtained as shown in Fig. 7(b) for reliable matching.
The template grid map is obtained as shown in Fig. 7(c) us-
ing the confidence measure and indicates that the extraction
of the template grid map was successfully achieved by re-
moving the uncertain data.
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Fig. 7 Extracting the template grid map: (a) uncertain local grid map,
(b) confidence map, and (c) extracted template grid map

Fig. 8 Ring projection transformation

4.2 Rotational invariant grid-map matching

Candidate locations are acquired by matching the template
grid map with the original grid map. One candidate loca-
tion is obtained from each node, and the candidate location
is assigned to the node as the location of a grid within the
corresponding subregion in the original grid map. The se-
lected candidate locations then become the representative
locations of the nodes for the current observation. Moreover,
the matching probabilities are obtained to calculate the node
probabilities.

4.2.1 Selecting candidate locations

The candidate locations are selected as the most simi-
lar location within each node of the template grid map.
The matching method for obtaining the candidate locations
should be rotational invariant because a difference in rota-
tion exists between the template grid map and the original
grid map. Ring projection transformation (RPT) is used as
the rotational invariant grid-map matching method.

RPT is a data-reduction method that transforms two-
dimensional data to a one-dimensional vector (Lin et al.
2006). It transforms all data at a distance of [r, r +1) to vec-
tor P(r), as shown in Fig. 8. For a grid map m(x,y) whose
center point is (xc, yc), the RPT vector P(r) is obtained as

Fig. 9 Ring projection transformation vector

follows:

P(r) = 1

Sr

∑

rxy∈[r,r+1)

m(x, y), (10)

where r is an integer value from 0 to R, Sr is the total num-
ber of grids in [r, r + 1), and rxy = √

(x − xc)2 + (y − yc)2.
Here, the size of the RPT vector, R, is determined as half
of the shortest dimension of the template grid map. Figure 9
shows an example of the RPT vector for the template grid
map in Fig. 7(c). The RPT vector represents a ratio of oc-
cupied grids in a range of [r, r + 1). The RPT vectors for a
template grid map PT (r) and original grid map PO(r) can
be obtained from (10), and the rotational invariant matching
can be achieved by calculating the normalized correlation
between two vectors using

ρ =
∑R

r=0{PT (r) − μT }{PO(r) − μO}
(∑R

r=0{PT (r) − μT }2 · ∑R
r=0{PO(r) − μO}2

)1/2
,

(11)

where μT =
∑R

r=0 PT (r)

1+R
, and μO =

∑R
r=0 PO(r)

1+R
.

The most similar location within each node can be ob-
tained by acquiring the maximum normalized correlation
for each node. In other words, k candidate locations are ob-
tained from k extracted nodes.

4.2.2 Calculating matching probability

The matching probability can be regarded as the correlation
value of each candidate location. However, we used an addi-
tional matching process to obtain a more distinct matching
probability because the RPT reduces the data too much.

To achieve more distinctiveness, we compared distances
from the candidate location to the closest obstacle for every



Auton Robot (2011) 30: 351–368 359

degree in 360◦. A distance vector for a candidate location
(L(xi, yi)) can be obtained as

Di(θ) = min Dist(Occ(x, y) from L(xi, yi) in θ direction),

(12)

where θ is an integer in the range 1–360, and Occ(x, y) is
a set of occupied grids in the grid map. The distance vector
for ith node Di can be obtained with respect to the candidate
location Li , and another distance vector for the template grid
map DT is obtained from the center point (xc, yc) of the
template grid map. A measure of dissimilarity between two
distance vectors is then calculated as

�Di = arg min
θc

360∑

θ=1

|DT (θ) − Di(θ − θc)|, (13)

where D(θ) = D(θ + 360) for θ < 0.
After calculating �D for every node, the similarity of the

distance vector for ith candidate location is obtained by

PD(i) = 1/�Di
∑k

j=1 1/�Dj

(14)

where k is the number of nodes.
Using this similarity measure, the matching probability

of each node is obtained by multiplying by the normalized
correlation calculated from RPT vectors.

Pmatch(i) = PD(i) × ρ(xi, yi) (15)

4.3 Calculating node probability

The node probability can be calculated from observation and
prior information. The grid-map matching probability can
be regarded as the observation, and the prior information
should be obtained from the previous node probability and
the robot motion model. In this paper, the relative distance
and relative angle are used as the motion model for acquiring
the prior node probability.

4.3.1 Basic equations

The node probability using the motion model and observa-
tions can be calculated by

P(Nt = Ni |u1:t , z1:t )

= η1P(zt |Nt = Ni,u1:t , z1:t−1)P (Nt = Ni |u1:t , z1:t−1)

= η1P(zt |Nt = Ni)P (Nt = Ni |u1:t , z1:t−1) (16)

where η1 is a normalizing factor, Nt is the node where the
robot is located at time t , Ni is the ith node, and u1:t and z1:t

Fig. 10 Robot motion model: (a) actual robot motion, (b) effective
distance (ED), and (c) effective angle (EA)

are the robot motions and observations up to time t , respec-
tively.

The first part of (16) is a likelihood and the last part is the
prior information. The likelihood can be obtained from the
grid-map matching probability in (15). The prior informa-
tion can be derived from the previous node probability and
the robot motion model using

P(Nt = Ni |u1:t , z1:t−1)

=
∑

j

P (Nt = Ni |Nt−1 = Nj ,u1:t , z1:t−1)

× P(Nt−1 = Nj |u1:t−1, z1:t−1). (17)

4.3.2 Effective distance as a motion model

The robot motion model is obtained from odometry data cor-
responding to the robot path that generates the current local
grid map. Because the candidate locations are selected with
respect to a center point of the template grid map, the rel-
ative distance is measured as a distance between the cen-
ter points of the previous template grid map and the current
template grid map. The straight-line distance between two
points is referred to as the effective distance (ED) and, it is
used as the robot motion model even though the robot does
not necessarily move in a straight line.

For example, when a robot moves as shown in Fig. 10(a),
only the straight line is considered for the ED even though
the robot actually moves along the dashed line. Therefore,
the ED for the robot path in Fig. 10(a) becomes the length
of the straight line shown in Fig. 10(b).

The prior node probability is calculated by the follow-
ing procedures using the ED. First, a predicted ED, d̂ , is
obtained from odometry. Estimated EDs are then acquired
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by calculating distances between candidate locations of the
previous and current template grid maps. In other words, an
estimated ED, dij , is calculated as the distance between a
candidate location Lt−1(xj , yj ) in the j th node at time t − 1
and another candidate location Lt(xi, yi) in the ith node at
time t . Finally, the first part of the prior node probability in
(17) is derived as

P(Nt = Ni |Nt−1 = Nj ,ED1:t , z1:t−1)

= P(Nt = Ni |Nt−1 = Nj ,EDt )

= N (ED; d̂, σ 2
d )|ED=dij

(18)

where N (·) is the normal distribution function. Node prob-
abilities for every node can be calculated using this approx-
imate motion model.

4.3.3 Effective angle as a motion model

The relative angle of robot motion is used to complement the
ED. The direction of EDt−1 is used as the reference for the
relative angle at time t . As shown in Fig. 10(c), the effective
angle (EA) at time t is defined as the relative angle of EDt

with respect to the direction of EDt−1.
The prior node probability using the EA can be calculated

similar to (18). However, the EA is related not only to the
state of time step t −1 but also to that of time step t −2. The
equation for the prior node probability should be expanded
to time step t −2. The following derivation assumes that ED
and EA are independent.

P(Nt = Ni |Nt−1 = Nj ,ED1:t ,EA1:t , z1:t−1)

= η2P(Nt = Ni |Nt−1 = Nj ,ED1:t ,EA1:t−1, z1:t−1)

× P(Nt = Ni |Nt−1 = Nj ,ED1:t−1,EA1:t , z1:t−1)

= η2P(Nt = Ni |Nt−1 = Nj ,EDt )

×
∑

k

P (Nt = Ni |Nt−1 = Nj ,Nt−2 = Nk,

ED1:t−1,EA1:t , z1:t−1)

× P(Nt−2 = Nk|Nt−1 = Nj ,ED1:t−1,DA1:t , z1:t−1)

= η2P(Nt = Ni |Nt−1 = Nj ,EDt )

×
∑

k

P (Nt = Ni |Nt−1 = Nj ,Nt−2 = Nk,EAt )

× P(Nt−2 = Nk|Nt−1 = Nj ,u1:t−1, z1:t−1) (19)

In (19), the first part is same as (18), and the last part can be
obtained from the previous motion model. The middle part
of (19) can be calculated as

P(Nt = Ni |Nt−1 = Nj ,Nt−2 = Nk,EAt )

= N (EA; â, σ 2
a )|EA=aijk

(20)

Fig. 11 Template grid maps: (a) inadequate template grid map for re-
liable grid-map matching and (b) template grid map expanded by ac-
cumulating more sensor data

where â is a predicted EA obtained from odometry and
aijk is an estimated EA calculated from candidate locations
Lt−2(xk, yk), Lt−1(xj , yj ) and Lt(xi, yi).

The prior node probability can be obtained efficiently us-
ing the ED and EA simultaneously. Moreover, the proposed
method has an advantage in that the accumulation of odome-
try error is bounded within two time steps because it is based
on relative motion models.

Topological localization can be therefore achieved suc-
cessfully by calculating the posterior node probability using
the prior node probability and the grid-map matching prob-
ability.

4.3.4 Entropy test of node probability

The size of the local grid map might be determined by a
constant traveling time or a constant traveling distance. Un-
fortunately, the constant time and traveling distance criteria
are generally insufficient for the sparse sonar grid map. For
example, the two template grid maps in Fig. 11 were ob-
tained from the same room, node C in Fig. 1. The template
grid map in Fig. 11(a) is difficult to match to the original
grid map because of insufficient information. Therefore, the
candidate locations using the template grid map in Fig. 11(a)
may be incorrect. In this case, the template grid map should
have more information obtained by accumulating more sen-
sor data, as in Fig. 11(b). Even though the template grid map
in Fig. 11(b) also contains noisy data, this template could be
matched to the original grid map to find reliable candidate
locations.

For this purpose, an entropy test is used to determine
whether more sensor data should be accumulated:

H(P ) =
n∑

i=1

−P(i) logn P (i) (21)

where n is the number of nodes, and P(i) is the node prob-
ability for the ith node. Without any loss of generality, we
can say that a successful observation should result in a con-
vergence of the node probability, and the convergent re-
sult would reduce the entropy value of the node probability.
Therefore, increasing entropy means that the information in



Auton Robot (2011) 30: 351–368 361

the template grid map is not sufficient to update the node
probability reliably. In the proposed entropy test, we use the
increasing entropy of node probability as an indicator to ac-
cumulate more sensor data to construct the local grid map. In
other words, when the entropy measure increases, the node
probability is not updated, and the robot continues to gen-
erate the local grid map by accumulating more sensor data.
This entropy test was tested in a real experiment with some
heuristics. It was applied to the localization process when
the maximum node probability was less than some thresh-
old value. The size of the local grid map can be determined
adaptively using the entropy test. The obtained local grid
map could be then used to update the node probability reli-
ably.

The proposed topological localization works well prin-
cipally in a static environment, which means that the en-
vironment in the localization procedure is same as in the
modeling procedure. In addition, it can also handle small
dynamic changes on the order of less than tens of cen-
timeters. General environmental changes in a home envi-
ronment include moved tables and chairs, an open door that
has been closed, and moving people. If these kinds of dy-
namic changes occur, localization would result in a tempo-
rary unreliable node-probability update due to the dynamic
changes. However, the proposed method recovers reliable
results using the entropy test and the subsequent Bayesian
node probability updates (16).

In a dynamic environment, the candidate locations cannot
be obtained accurately when the dynamic parts of the envi-
ronment dominate the proposed grid map matching. A fail-
ure of the grid map matching induces a divergent node prob-
ability, which increases the entropy measure of the node
probability. This increased entropy is detected by the pro-
posed entropy test procedure, enabling the topological local-
ization method to exclude the calculated node probability.
The robot, therefore, does not update the node probability
and continues to expand the local grid map by accumulat-
ing more sensor data. Through repetitions of this process,
the robot obtains sensor data in which a greater portion of
the data corresponds to static parts of the environment. Af-
ter accumulating enough sensor data, the robot obtains the
candidate location accurately. Then, the proposed localiza-
tion method can obtain a reliable convergent node proba-
bility by simultaneously using both the robot motion model
and the observation model in the Bayesian update process.
The performance of the proposed topological localization in
dynamic environments will be verified by experiments de-
scribed in Sect. 5.2.2.

5 Experimental results

This section presents the experimental results of the pro-
posed topological modeling and localization method. The

Fig. 12 Experimental setup: (a) Pioneer 3-DX with 12 Murata sonar
sensors and (b) experimental environment

Fig. 13 Experimental result of the offline environmental modeling
process: (a) clustering result (each cluster is a different color) and
(b) extracted topology

experiments were conducted using a Pioneer 3-DX differ-
ential drive robot (Fig. 12(a)) equipped with 12 Murata
MA40B8 sonar sensors in a 11.4 m × 8.7 m home en-
vironment of several rooms containing items of furniture
(Fig. 12(b)). The robot was manually guided along an ar-
bitrary path at an average speed of about 0.15 m/s while ac-
quiring sensor data at a rate of 4 Hz. The grid size of the
generated grid map was 5 cm × 5 cm.

5.1 Experimental results of topological modeling

Figure 13 shows the experimental results of the offline topo-
logical modeling process. The robot visited the complete en-
vironment and generated a grid map, dividing the environ-
ment into ten subregions corresponding to those shown in
Fig. 13(a). The number of subregions was predefined man-
ually in the offline modeling method. The proposed offline
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Fig. 14 Experimental results of the autonomous topological modeling
process: (a)–(d) autonomous subregion extractions (each subregion is a
different color) and (e)–(h) the corresponding topological models. The

blue and green cells in (a)–(c) were not included in the corresponding
topological models because they were not yet extracted as new subre-
gions

topological modeling process provided a successful topolog-
ical representation of the home environment. Three rooms
were detected as subregions (nodes A, C, and G) by seg-
menting around doorways effectively, and the kitchen was
modeled as a separate subregion (node D). The remaining
area was also divided into several subregions reflecting the
geometry of the environment. Figure 13(b) shows a graphi-
cal model of the extracted subregions.

The autonomous topological modeling was used under
the same experimental conditions. As mentioned, the thresh-
old value ct in (9) is used as 0.2, and this threshold means
that 20% of the occupied grids in the subregion were al-
lowed to extract a convex region. Figure 14 shows the
processes of the proposed autonomous topological modeling
method. Figures 14(a)–14(d) show the results of obtaining
reliable regions and extracting subregions, and Figs. 14(e)–
14(h) show the corresponding topological models. The blue
and green cells in Figs. 14(a)–14(c) represent tentative sub-
regions, which are not represented in the topological models
in Figs. 14(e)–14(g) because they are not yet extracted as
new subregions. The experimental results show that the re-
liable cells in the reliable region were successfully obtained
by filtering out the noisy data, and the topological models
were constructed effectively by extracting subregions from
the grid map as the robot moved.

As a result, the environment was partitioned into ten sub-
regions (Fig. 14(d)) by incremental modeling, and the subre-
gions were successfully assembled into a topological model
as shown in Fig. 14(h). The topological model properly rep-
resents the environment, as did the offline modeling method.
The three rooms were allocated to three different subregions
(nodes D, H, and J), and the kitchen was extracted as node

F. Areas in the living room were segmented into several sub-
regions because of the sofa and table located in the center of
the room.

A comparison of Fig. 14 with Fig. 13 shows that the
autonomous modeling method resulted in different subre-
gion extractions than the offline modeling method did, even
though the same number of subregions was extracted in both
methods. This difference is a natural result of the differ-
ing ways in which the two methods determine the minimum
normalize cuts. In the offline modeling method, the number
of subregions is predefined; because the environment was
divided into ten subregions at once, the minimum normal-
ized cuts were determined based on the entire environment,
whereas in the autonomous method, each minimum normal-
ized cut was found in the local area incrementally. The nor-
malized cut (Ncut ) is calculated from the weights within
clusters as well as the weights between clusters (1). There-
fore, the clustering result is affected by the grid map used in
the modeling method. As a result, the subregion extraction
of the autonomous method, which uses a local grid map,
cannot be identical to that of the offline method, because the
autonomous method extracts subregions before generating
a grid map of the complete environment. Moreover, the au-
tonomous method also considers the convexity criterion (9),
which can account for differences between the offline and
autonomous methods, as the convexity criterion determines
when new subregions should be extracted regardless of the
normalized cut in the autonomous modeling method.

Figure 15 shows the measure in (7) for each extracted
node to evaluate the convexity of the extracted subregion.
All the subregions had convexity measures less than the
threshold value ct = 0.2, and the results confirmed that
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Fig. 15 Convexity measures for extracted subregions

the proposed autonomous topological modeling method ex-
tracted subregions while guaranteeing the convexity.

Therefore, the proposed method provides a successful
topological model using sonar grid maps by extracting sub-
regions autonomously.

5.2 Experimental results of topological localization

Two kinds of experiments were conducted to verify the pro-
posed topological localization method based on the topo-
logical model shown in Fig. 14. The values for the standard
deviations, σd and σa , used in (18) and (20), were 50 cm (10
grids) and 15◦, respectively.

5.2.1 Static environment

The first experiment was performed without changing the
environment after the modeling procedure. The robot navi-
gated the path shown in Fig. 16 while acquiring sensor data
around the current location and generated local grid maps to
perform the topological localization.

Figure 17 shows the local grid map that was generated
and the corresponding template grid map generated from
node A at the first time step. The template grid map was
successfully extracted by filtering out the noisy data in the
local grid map using the algorithm described in Sect. 4.1.
Figure 18 shows the ten candidate locations obtained from
nodes A–J using rotational invariant grid-map matching
with the extracted template grid map. Of all the candidate lo-
cations, Fig. 18(a), which is the true hypothesis because the
template grid map was generated in node A, has the largest
number of geometric shapes in common with the template
grid map.

Figure 19 shows the experimental results of topological
localization with six data sets from among all those cap-
tured. The upper row in Fig. 19 shows the generated tem-
plate grid maps and the matching results. The matched grid
maps were obtained from the candidate locations that had

Fig. 16 Robot path for the topological localization in the static envi-
ronment. The numbers represent the path sequence

Fig. 17 Local grid map and corresponding template grid map at the
first time step

Fig. 18 Ten candidate locations for the template grid map of Fig. 17

maximum node probability at each time step. The match-
ing results show that the proposed method provided reli-
able grid-map matching even in the presence of noisy sensor
data.

The lower row in Fig. 19 shows the corresponding node
probabilities. Because no prior information was available at
time step 1, the node probability was obtained using only the
grid-map matching probability as shown in Fig. 19(a). As
the robot moved, the node probability was updated using the
proposed motion model and grid-map matching. As a result,
the proposed topological localization exhibited a convergent
node probability as the node probability was updated.
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Fig. 19 Experimental topological localization results in the static environment. The grid-map matching result and the corresponding node proba-
bility are shown for each time step

Figure 20 shows the maximum node probability at each
time step to evaluate the convergence of the node probabil-
ity. The maximum node probability tends to increase as the
node probability is updated. At time steps 5 and 12, the lo-
cal grid maps could not provide successful observations be-
cause of an insufficient accumulation of sensor data. The
entropy increases as shown in Fig. 21 because of the inad-
equate local grid maps. At those time steps, the node prob-
ability was not updated, and the local grid map was sim-
ply expanded by accumulating more sensor data. In Fig. 20,
the node probabilities that were not updated are represented
by a different color. Except for time steps 5 and 12 when
the node probability was not updated, the maximum node
probability increased and the entropy decreased as the node
probability was updated. These results confirm the conver-

Fig. 20 Maximum node probability in the static environment. The
node probability at time steps 5 and 12, represented by a different color,
is not updated because the entropy increases
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Fig. 21 Entropy of node probability in the static environment

gence of the node probability in the proposed localization
method.

Therefore, the experimental results of topological local-
ization show that the proposed method provided reliable
grid-map matching and node-probability update.

5.2.2 Dynamic environment

The second experiment was performed after making small
environmental changes once the modeling procedure was
complete, as shown in Fig. 22: a 70 cm × 70 cm sofa was
removed, an open door was closed, and a chair was re-
moved. The robot navigated the path shown in Fig. 23 in
this changed environment.

Fig. 22 Dynamic changes in the second topological localization ex-
periment

Fig. 23 Robot path for the topological localization in the dynamic en-
vironment

Figure 24 shows the localization results for three sampled
data sets. Figure 25 and Fig. 26 show the node probability of

Fig. 24 Experimental results of topological localization in the dynamic environment. The grid-map matching result and the corresponding node
probability are shown for each time step
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Fig. 25 Node probability of true hypothesis in the dynamic environ-
ment. The node probability at time steps 5 and 9, represented by a
different color, was not updated because the entropy increased

Fig. 26 Entropy of node probability in the dynamic environment

the true hypothesis and the entropy of the node probability,
respectively, for all data sets. The entropy increased at time
steps 5 and 9, and these increasing entropy values were due
mainly to the changes in the environment. These changes
affected the local grid maps for those time steps as shown
in Fig. 27. Because of the sofa and chair that had been re-
moved, the candidate location for the true hypothesis could
not be obtained accurately, resulting in a dramatic decrease
of the true node probability.

Even though the node probability was affected by the
dynamic changes, the proposed localization method can re-
cover the reliable node probability in subsequent updates.
The false updates were filtered out using the entropy test,
and the node probability was updated using more reliable
local grid maps. As a result, the node probability can pro-
vide more reliable results, as shown in Fig. 24(b) and 24(c).

The experimental results confirmed the good perfor-
mance of the proposed topological localization method in
a real home environment. The method works well in a sta-

Fig. 27 Local grid maps around (a) node G at time step 5 and (b) node
F at time step 9. The dashed boxes represent the sofa and chair that had
been removed

tic environment and can also handle small dynamic changes
through the Bayesian update using the approximate motion
model, grid-map matching, and entropy test.

6 Conclusions

This paper described a method for autonomous topolog-
ical modeling and localization using only low-cost sonar
sensors. The proposed topological approach was developed
to be appropriate for a home environment. The proposed
method provided reliable modeling and localization results
using sparse and noisy sonar data.

The autonomous topological modeling method generates
a topological model that reflects the spatial geometry of the
environment. By applying cell decomposition and normal-
ized graph cut, the topological model can be acquired by
autonomously partitioning the grid map into several subre-
gions without predefining the number of subregions. Fur-
thermore, the convexity criterion guarantees that the ex-
tracted subregions can be regarded as convex regions.

The topological localization method provides reliable re-
sults even in the face of the noisy sonar data and small dy-
namics. The proposed localization gives a convergent node
probability, using rotational invariant grid-map matching
and the approximate relative motion model, which prevents
an accumulation of odometry error. Moreover, the size of the
local grid map is determined adaptively by checking the en-
tropy of the node probability. The entropy test also guaran-
tees convergent localization results even in the face of small
dynamic changes.

The proposed method can be used as a basic framework
for human-robot interaction to use high-level semantic in-
formation in mobile robot navigation. By providing seman-
tic information to the extracted subregions, the robot may
recognize the environment as a human would.

Although the proposed method was developed for sonar
sensors, it can also be applied to any type of sensor that gen-
erates grid maps (e.g., laser range finders or stereo vision
sensors).
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