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Abstract Modern service robots will soon become an es-
sential part of modern society. As they have to move and
act in human environments, it is essential for them to be
provided with a fast and reliable tracking system that lo-
calizes people in the neighborhood. It is therefore impor-
tant to select the most appropriate filter to estimate the posi-
tion of these persons. This paper presents three efficient im-
plementations of multisensor-human tracking based on dif-
ferent Bayesian estimators: Extended Kalman Filter (EKF),
Unscented Kalman Filter (UKF) and Sampling Importance
Resampling (SIR) particle filter. The system implemented
on a mobile robot is explained, introducing the methods used
to detect and estimate the position of multiple people. Then,
the solutions based on the three filters are discussed in de-
tail. Several real experiments are conducted to evaluate their
performance, which is compared in terms of accuracy, ro-
bustness and execution time of the estimation. The results
show that a solution based on the UKF can perform as good
as particle filters and can be often a better choice when com-
putational efficiency is a key issue.
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1 Introduction

In the last decade, several mobile robots have been em-
ployed in exhibitions and public places to entertain visitors,
interacting with them and providing useful information. The
tour-guide robot in Burgard et al. (2002), for example, has
been working in a museum to accompany visitors and pro-
vide them with information about the different exhibits. The
robot was equipped with a laser-based tracking to create
maps of the environments discarding human occlusions, and
to adapt its velocity to the visitors’ motion. Another case
was the interactive mobile robot described in Bellotto and
Hu (2005), which integrated laser and visual data to detect
human legs and faces, moving towards visitors to interact
with them by use of synthesized speech and a touch-screen
interface.

Another field of application for people tracking is auto-
matic or remote surveillance with mobile security robots,
which can be used to monitor wide areas of interest oth-
erwise difficult to cover with fixed sensors. These robots
should be able to detect and track people in restricted zones,
signaling, for examples, the presence of intruders to the
security personnel. Such a task was accomplished by an
internet-based mobile robot in Liu et al. (2005), which used
a PTZ camera to detect and recognize human faces. The se-
curity robot in Treptow et al. (2005), instead, combined ther-
mal vision, to detect and track people, with a normal camera,
to track and recognize faces. Human tracking is also very
important in the new research area of socially assistive ro-
botics (Tapus et al. 2007) to maintain an appropriate spatial
distance between people and robots, when these are engaged
in social interactions.

To achieve full autonomy in mobile robotics, no exter-
nal sensors or computers should be used, otherwise the sys-
tem performance is completely dependent on the working
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environment. With these constraints, people tracking is par-
ticularly challenging and becomes even more difficult if
the hardware resources are limited. Therefore, the compu-
tational efficiency of the tracking system has also to be care-
fully considered during software design.

The main contribution of this paper is an experimental
comparison of different Bayesian estimators, which is im-
portant to select the most appropriate solution for track-
ing people with a fully autonomous mobile robot. Although
some previous work already analyzed the performance of
Kalman and particle filters (Merwe et al. 2000), results have
been obtained only in simulation with synthetic models, or
from batch estimations on limited set of data. These situa-
tions are significantly different from the case here consid-
ered, which deals instead with the difficult problem of real-
time target tracking under computational constraints. The
performance evaluation of these Bayesian estimators, con-
sidering also hardware and software limitations, is of funda-
mental importance for practical applications of modern ser-
vice robots.

Three classic approaches are examined: Extended Kal-
man Filter (EKF), Unscented Kalman Filter (UKF) and
Sampling Importance Resampling (SIR) particle filter.
While the first one is a well known technique devel-
oped long time ago (Kalman 1960), the last two solu-
tions have been proposed more recently and extensively
used only in the last decade (Julier and Uhlmann 1997;
Gordon et al. 1993). The choice of these particular filters
is due to the fact that all of them have been already applied,
somehow, to people tracking with mobile robots. In this con-
text, the performance of each individual technique has been
already described, but not yet compared, in previous robot-
ics literature.

The EKF has been implemented for tracking humans
with mobile robots in the works of Beymer and Konolige
(2001) and Bobruk and Austin (2004), using visual or laser
data respectively. Both the devices have been used in Bel-
lotto and Hu (2009) applying sensor fusion techniques and
UKF estimation to perform people tracking in typical office
environments. Several other approaches have been proposed
using particle filters with laser data and/or vision (Schulz et
al. 2003a; Chakravarty and Jarvis 2006).

To evaluate and compare the effectiveness of each tech-
nique, a common framework has to be set up, on which
quantitative and qualitative experiments can be conducted.
Therefore, in the following sections, a general probabilis-
tic approach for tracking people with a mobile robot is in-
troduced. This solution integrates legs and face detections,
obtained from robot’s laser and camera respectively, which
are fused using a sequential Bayesian filter. Since the com-
parison focuses on multi-target (people) tracking, the same
data association algorithm is applied to all the filtering tech-
niques under consideration.

The choice of the best estimator to use for human track-
ing depends on several factors, among which the following
important ones: linearity/non-linearity of the system, prob-
ability distribution of the uncertainty and, last but not least,
computational efficiency. Whose familiar with the subject
already know that Kalman filters are the most computa-
tional efficient, while particle filters are the most accurate.
The challenge however lies on the design of meaningful ex-
periments so that known facts can be proved on the base
of solid quantitative data. In this paper, accuracy, robustness
and execution time of the three Bayesian filters are analyzed,
showing that a solution based on the UKF not only performs
better than the EKF, but can also be a valid alternative to
particle filters when used for tracking people with a mobile
platform.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the system designed to track people with a
mobile robot. Sections 3, 4 and 5 describe respectively the
implementation of the EKF, UKF and SIR particle filters.
Several experiments are illustrated in Sect. 6 to compare the
performance of the different solutions in real scenarios. Fi-
nally, conclusions and future work are discussed in Sect. 7.

2 People tracking with a mobile robot

In general, tracking is a problem of estimating the position
of a target from noisy sensor measurements. In the pres-
ence of multiple targets, which is the case for people track-
ing, each measurement has also to be assigned to the proper
track. This section introduces the solutions adopted for hu-
man detection, tracking and data association with a mobile
robot. The system used was a Pioneer platform, shown in
Fig. 1, equipped with a SICK laser and a PTZ camera, which
provided data respectively at 5 Hz and 10 fps. The on-board
PC of the robot was a Pentium III 850 MHz with 128 MB of
RAM, running Linux OS.

2.1 Human detection

Two kind of sensors, cameras and laser range finders, are
the most commonly used for tracking people with a mobile
platform (Beymer and Konolige 2001; Schulz et al. 2003a;
Chakravarty and Jarvis 2006). The robot employed in the
current research makes use of both the sensors to recognize
human legs and faces. The detection algorithms, and the ad-
vantage of combining laser and visual information, are de-
scribed in detail in Bellotto and Hu (2009).

The legs detection algorithm is able to recognize different
legs postures on a 180° laser horizontal scan, with a resolu-
tion of 0.5°, returning their direction and distance. The algo-
rithm starts with a smoothing process of the laser readings,
and then detects all the radial edges on the directions of the
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Fig. 1 Robot with laser and camera used for legs and face detection

laser beam. Groups of adjacent edges, possibly generated by
human legs, are extracted using simple geometric relations
and spatial constraints. The mid-points of these groups, cor-
responding to the 2D location of the legs, are finally com-
puted.

Since legs are detected in real-time from a single laser
scan, the algorithm does not need to compensate for the dy-
namics of the robot, as other motion-based techniques do.
The method is also quite robust to cluttered environments
and showed to perform well compared to other laser-based
detection techniques (Bellotto and Hu 2009). An example of
detection is illustrated in Fig. 1, which shows a typical laser
scan from the robot with two lines pointing to the human
legs mid-points.

When in proximity of a person, vision improves human
tracking thanks to face detection. This is based on a popular
algorithm (Viola and Jones 2001) available on the OpenCV
library (Bradski et al. 2005). The solution works in real-
time on a single camera’s frame, 320 × 240, and is color-
independent, which makes it more robust to lighting varia-
tions.

The method is based on a cascade of (weak) classifiers
using particular visual features. Each classifier is trained to
detect faces, from sub-regions of the image, with a high hit
rate. A sub-region can be rejected by the current classifier or
passed to the following one. For a certain number of trained
classifiers, the final false alarm will be therefore very low,
yet keeping a total hit rate close to 100%. Using a pin-hole
camera model, the direction of the face is finally calculated
and used for human tracking, as discussed in Sect. 2.4.

2.2 Bayesian estimation

The most popular methods for dynamic state estimation
belong to the family of recursive Bayesian estimators,

which include Kalman filters (Welch and Bishop 2004;
Julier and Uhlmann 1997) and sequential Monte Carlo es-
timators (Arulampalam et al. 2002), also known as particle
filters. These estimate the target position recursively, com-
bining the expected state information with the current ob-
servations from the sensors.

In the discrete-time domain, for a general tracking appli-
cation, the evolution of the target state can be described by
the following general model:

xk = f(xk−1,wk−1) (1)

where xk is the state vector at the current time step k and
wk−1 is white noise. The relative observations are generally
described by another model with additive noise:

zk = h(xk) + vk (2)

where zk is the observation vector and vk is white noise,
mutually independent from wk−1. The functions f and h can
be non-linear.

If Zk = {z1, . . . , zk} is the set of observations up to time
k, the prior probability density p(xk|Zk−1) can be expressed
as follows:

p(xk|Zk−1) =
∫

p(xk|xk−1,Zk−1)p(xk−1|Zk−1) dxk−1

=
∫

p(xk|xk−1)p(xk−1|Zk−1) dxk−1 (3)

where the transitional p(xk|xk−1,Zk−1) = p(xk|xk−1) is de-
termined by the Markovian prediction model in (1). Then,
applying Bayes’ rule, the posterior density is given by the
following equation:

p(xk|Zk) = p(xk|zk,Zk−1)

= p(zk|xk,Zk−1)p(xk|Zk−1)

p(zk|Zk−1)

= p(zk|xk)p(xk|Zk−1)

p(zk|Zk−1)
(4)

Note that, in the numerator term, p(zk|xk,Zk−1) = p(zk|xk)

because zk is completely described by the observation model
in (2), which depends only on the current state xk and the
noise vk . The denominator is just a normalization factor cal-
culated as follows:

p(zk|Zk−1) =
∫

p(zk|xk)p(xk|Zk−1) dxk (5)

Equations (3) and (4) are called, respectively, prediction
and update, or correction, of the recursive Bayesian estima-
tion. The desired estimate is usually obtained, at the end
of every predict-update iteration, by the minimum mean-
square error value, i.e. the conditional mean x̂k � E[xk|Zk].
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2.3 Prediction

A common solution to approximate human motion, while
walking at a normal speed, is the constant velocity model.
The version here considered is an extension of the latter, al-
ready introduced in Bellotto and Hu (2006), which includes
a state vector formed by the position (xk, yk) and the height
zk of the human subject, plus the relative orientation φk and
velocity vk . The equations of the model are the following:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xk = xk−1 + vk−1δk cosφk−1

yk = yk−1 + vk−1δk sinφk−1

zk = zk−1 + nz
k−1

φk = φk−1 + n
φ
k−1

vk = |vk−1| + nv
k−1

(6)

where δk = tk − tk−1 is the time interval, while nz
k−1, n

φ
k−1

and nv
k−1 are noises. These latter are assumed to be zero-

mean Gaussians with σz = 0.01 m, σφ = π
6 rad and σv =

0.1 m/s respectively. The motion model in (6) is used for
the prediction step of the Bayesian filter, as illustrated in
Fig. 3.

2.4 Sequential update

The observation models described next take into account the
2D location and orientation of the robot given by the odom-
etry. Its cumulative error is not an issue in the current appli-
cation, since the objective of the system is to track humans
relatively to the current robot’s position. The odometry er-
ror between two consecutive estimations is also very small,
and can be safely included in the noise of the observation
models.

Given the location (xR
k , yR

k ) and heading φR
k of the robot,

the absolute position (xL
k , yL

k ) and orientation φL
k of the laser

are calculated as follows:

xL
k = xR

k + Lx cosφR
k

yL
k = yR

k + Lx sinφR
k (7)

φL
k = φR

k

where the constant Lx is the horizontal distance of the laser
from the robot’s center (Ly is zero). Using the quantities
in (7), the observation model for the bearing bk and the dis-
tance rk of the detected legs can be written as follows:
⎧⎪⎨
⎪⎩

bk = tan−1
( yk−yL

k

xk−xL
k

) − φL
k + nb

k

rk =
√

(xk − xL
k )2 + (yk − yL

k )2 + nr
k

(8)

where the noises nb
k and nr

k are zero-mean Gaussians with
standard deviations σb = π

60 rad and σr = 0.1 m.

Similarly, the absolute position (xC
k , yC

k , zC
k ) and orienta-

tion (φC
k , θC

k ) of the camera take into account the horizontal
distance Cx from the robot’s center (Cy is zero), the height
Cz, the pan Cφ and the tilt Cθ . Combining the odometry in-
formation, these can be calculated as follows:

xC
k = xR

k + Cx cosφR
k

yC
k = yR

k + Cx sinφR
k

zC
k = Cz (9)

φC
k = φR

k + Cφ

θC
k = Cθ

The next observation model is relative to the bearing αk and
the elevation βk of the face’s center, plus the elevation γk of
its chin. The latter is relative to the size of the face and is
useful to discriminate false positives or facilitate data asso-
ciation in case of multiple faces. The equations of the model
are the following:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

αk = tan−1
( yk−yC

k

xk−xC
k

) − φC
k + nα

k

βk = − tan−1
[ zk−zC

k√
(xk−xC

k )2+(yk−yC
k )2

] − θC + n
β
k

γk = − tan−1
[ μzk−zC

k√
(xk−xC

k )2+(yk−yC
k )2

] − θC + n
γ

k

(10)

The noises nα
k , n

β
k and n

γ

k are zero-mean Gaussians with
σα = σβ = π

45 rad and σγ = π
30 rad. Note that, in the third

member of (10), the constant μ is chosen so that the product
μzk corresponds to the height of the lower face’s bound, i.e.
approximately the chin. For the latter, the “canon of propor-
tion” of the human figure, as described in Vitruvius (1914),
has been adopted. This considers the average height of a per-
son being 8 times his head, and the distance from the chin
to the nose is 1/3 of the head’s length h, as illustrated in
Fig. 2. Since the face detection is centered on the nose, a
value μ � 0.955 can be easily derived.

The independent measurements provided by legs and
face detection are finally used for a sequential update of the

Fig. 2 Face observation angles, including chin, measured from the
camera
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Fig. 3 Sensor data fusion with sequential estimation

estimation (Bar-Shalom and Li 1995). As shown by the di-
agram in Fig. 3, which illustrates a single iteration of the
filter, legs measurements are the first to be considered, since
more accurate, and then faces. If any of the two observations
is missing, the estimate is updated only by one sensor.

2.5 Data association

In the current system, a gating procedure is first applied
using a validation region for each predicted observation ẑi

(Bar-Shalom and Li 1995), relative to the ith target, so that
a real measurement zj is accepted only if it satisfies the fol-
lowing condition:

(ẑi − zj )
T S−1

ij (ẑi − zj ) < λ2 (11)

where Sij is the covariance matrix of the difference ẑi − zj .
The constant λ is chosen from tables of the chi-square dis-
tribution for a probability PG of the correct measurements
to fall within the validation region. This value depends on
the size of the observation vector and is set to 3.03 for legs
detections and 3.37 for faces.

Instead of solutions like JPDA and MHT, powerful but
computationally expensive, an efficient algorithm based on
nearest-neighbor data association is adopted (Bar-Shalom
and Li 1995). This showed to be a good compromise be-
tween performances and computational cost in case the set
of subjects to track is not too dense (Montemerlo et al. 2002;
Bellotto and Hu 2006), in particular for autonomous robots
with limited processing power. At every time step, two as-
sociation matrices are created, one for the laser and another

for the camera information. The elements of these matrices
contain the following similarity measure (Uhlmann 2001):

dij = 1√
(2π)n|Sij |

exp

[
−1

2
(ẑi − zj )

T S−1
ij (ẑi − zj )

]
(12)

where n is the size of the observation vector, i.e. 2 for legs
detection and 3 for faces.

2.6 Creating and removing tracks

New tracks are created from the sensor readings discarded
during the validation gate procedure or the data association.
Initially, a candidate track is generated by a sequence of
measurements falling inside a certain region, calculated ac-
cording to the maximum distance a person can cover at the
maximum speed of 1.5 m/s. The candidate is promoted to
human track if there are at least 3 readings falling within
this region, each one of which must be received not later
than 0.5 s from the previous one, otherwise the candidate is
removed. Tracks are eventually deleted from the database if
not updated for more than 2 s or if the uncertainty of their
2D position is too big, i.e. the sum of the variances in x and
y is greater than 2 m2.

Note that the procedure for tracks creation is independent
from the particular Bayesian estimator used, therefore its pa-
rameters, equally set for EKF, UKF or SIR filter, do not in-
fluence the experimental comparison. The deletion criteria,
instead, is based on time but also on the estimated covari-
ance of the track, which might therefore be different depend-
ing on the filter used. In practice however, the uncertainty’s
threshold works only as a precaution, and tracks are usually
removed because they exceed the time condition, which is
the same for all the estimators.

3 EKF implementation

The Kalman filter was initially proposed in Kalman (1960)
and, although originally not formulated as such, it has been
later shown to belong to the more general class of Bayesian
estimators (Barker et al. 1994). It was also proved to be op-
timal in case of linear systems with Gaussian noises, for
which the posterior in (4) becomes the following:

p(xk|Zk) = N (xk; x̂k,Pk)

= |2πPk|−1/2 exp

[
−1

2
(xk − x̂k)

T P−1
k (xk − x̂k)

]

(13)

where x̂k and Pk are, respectively, the estimated mean and
covariance of xk .

In case of non-linearities, the EKF provides an approx-
imated solution, applying the same equations to linearized
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system models. This can give good results if the lineariza-
tion is sufficiently accurate to describe the system, but fails
badly if it is not.

Given the state vector xk = [xk, yk, zk,φk, vk]T and the
relative noise wk = [0,0, nz

k, n
φ
k , nv

k]T , the components of
which have already been defined in Sect. 2.3, the linearized
version of the prediction model in (6) has the form:

xk = Fkxk−1 + wk−1 (14)

The Jacobian Fk is calculated as follows:

Fk =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 −vk−1�tk sinφk−1 �tk cosφk−1

0 1 0 vk−1�tk cosφk−1 �tk sinφk−1

0 0 1 0 0

0 0 0 1 0

0 0 0 0 sgn(vk−1)

⎤
⎥⎥⎥⎥⎥⎦

(15)

where �tk = tk − tk−1 is the time interval and sgn(vk−1) is
the algebraic sign of vk−1.

The prediction stage consists in calculating the a priori
estimate x̂−

k and the covariance matrix P−
k of its error:

x̂−
k = f(x̂k−1,0) (16)

P−
k = FkPk−1FT

k + Q (17)

where Q is the covariance of the (additive) process noise:

Q =

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 σ 2

z 0 0
0 0 0 σ 2

φ 0
0 0 0 0 σ 2

v

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

0 0 0 0 0
0 0 0 0 0
0 0 10−4 0 0

0 0 0 π2

81 0
0 0 0 0 10−2

⎤
⎥⎥⎥⎥⎦ (18)

The observation models described in Sect. 2.4 are lin-
earized as follows:

zk = Hkxk + vk (19)

where Hk is the Jacobian of the laser or camera obser-
vation, with relative noise vectors vk ≡ [nb

k, n
r
k]T or vk ≡

[nα
k , n

β
k , n

γ

k ]T . In the first case, given the observation vector
[bk, rk]T and the quantities defined in (8), Hk is defined as
follows:

Hk ≡ HL
k =

⎡
⎢⎣

− yk−yL
k

d2
k

xk−xL
k

d2
k

0 0 0

xk−xL
k

dk

yk−yL
k

dk
0 0 0

⎤
⎥⎦ (20)

with d2
k = (xk − xL

k )2 + (yk − yL
k )2.

For the second one, given the vector [αk,βk, γk]T , the
Jacobian matrix of the model in (10) is the following:

Hk ≡ HC
k

=

⎡
⎢⎢⎢⎢⎢⎢⎣

− yk−yC
k

d2
k

xk−xC
k

d2
k

0 0 0

(xk−xC
k )(zk−zC

k )

r2
k dk

(yk−yC
k )(zk−zC

k )

r2
k dk

− dk

r2
k

0 0

(xk−xC
k )(μzk−zC

k )

l2k dk

(yk−yC
k )(μzk−zC

k )

l2k dk
− dk

l2k
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(21)

with

d2
k = (

xk − xC
k

)2 + (
yk − yC

k

)2

r2
k = d2

k + (
zk − zC

k

)2

l2
k = d2

k + (
μzk − zC

k

)2

The update part includes the calculation of the following
Kalman gain Kk :

Sk = HkP−
k HT

k + R (22)

Kk = P−
k HT

k S−1
k (23)

The quantity Sk in (22) is the innovation covariance and R
is the covariance matrix of the observation noise vk . In case
of laser readings, the latter is set as follows:

R ≡ RL =
[
σ 2

b 0
0 σ 2

r

]
=

[
π2

3600 0
0 10−2

]
(24)

instead for the camera the following matrix is used:

R ≡ RC =
⎡
⎣

σ 2
α 0 0
0 σ 2

β 0
0 0 σ 2

γ

⎤
⎦ =

⎡
⎢⎣

π2

2025 0 0

0 π2

2025 0

0 0 π2

900

⎤
⎥⎦ (25)

Finally, the a posteriori estimate x̂k and the relative error
covariance Pk are computed as follows:

x̂k = x̂−
k + Kk(zk − ẑk) (26)

Pk = P−
k − KkSkKT

k (27)

where the term (zk − ẑk), with ẑk = h(x̂−
k ), is the difference

between real and predicted measurements, also called inno-
vation.

4 UKF implementation

To overcome the problem of the linearization, which could
introduce large errors and require the computation of big
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Jacobian matrices, the UKF makes use of another approx-
imation, called the Unscented Transformation (UT). This is
based on the idea that it is generally easier and more accu-
rate to approximate probability distributions than non-linear
functions. The UT captures mean and covariance of a prob-
ability distribution with carefully chosen weighted points,
called sigma points. These differ from the points of particles
filters in that they are not randomly sampled and do not have
to lie in the interval [0,1].

From the state x of size n, and its error covariance P, the
2n + 1 sigma points X i and associated weights Wi of the
UT are calculated using the following equations (Julier and
Uhlmann 1997):

X 0 = x W0 = ρ/(n + ρ)

X i = x + [√
(n + ρ)P

]
i

Wi = [2(n + ρ)]−1 (28)

X i+n = x − [√
(n + ρ)P

]
i

Wi+n = [2(n + ρ)]−1

where i = 1, . . . , n. The term [√(n + ρ)P]i is the ith col-
umn or row of the matrix square root of P, and ρ is a para-
meter for tuning the higher order moments of the approxi-
mation (n + ρ = 3 for Gaussian distributions).

Mean and covariance of a generic non-linear transforma-
tion y = g(x) are calculated using the sigma points as fol-
lows:

Y i = g(X i ) (29)

y =
2n∑
i=0

WiY i (30)

Pyy =
2n∑
i=0

Wi[Y i − y][Y i − y]T (31)

These equations yield to a projected mean and covariance
that are correct up to the second order, giving better results
than the EKF’s linearization, yet keeping the same compu-
tational complexity.

Given the state vector xk = [xk, yk, zk,φk, vk]T of size
n = 5, the estimation procedure of the UKF consists initially
in an UT. This takes the last estimate x̂k−1 and its relative
covariance Pk−1 to generate, using (28), the 2n + 1 = 11
sigma points X ik−1 . Note that, in this case, the tuning para-
meter assumes a negative value ρ = 3 − n = −2. In Julier et
al. (2000), it is shown that ρ < 0 can lead to a non-positive
semidefinite matrix when the state covariance is calculated
with (31). In order to solve this problem, the authors suggest
to simply add a term [Y0 − ŷ][Y0 − ŷ]T to the sum in (31).

Using the prediction model f(xk−1) defined in (6), the a-
priori estimate x̂−

k and covariance P−
k are computed as fol-

lows:

x̂k−1
UT−→ {X ik−1}10

i=0 (32)

X −
ik

= f(X ik−1) for i = 0, . . . ,10 (33)

x̂−
k =

10∑
i=0

WiX −
ik

(34)

P−
k =

10∑
i=0

Wi

[
X −

ik
− x̂−

k

][
X −

ik
− x̂−

k

]T

+ [
X −

0k
− x̂−

k

][
X −

0k
− x̂−

k

]T + Q (35)

where Q is the covariance of the process noise defined
in (18).

The expected observations for the legs and face detec-
tions are generated using the observation model h(xk), de-
fined respectively in (8) and (10), applied to the sigma points
in (33) as follows:

Z ik = h
(
X −

ik

)
for i = 0, . . . ,10 (36)

ẑk =
10∑
i=0

WiZ ik (37)

Sk =
10∑
i=0

Wi[Z ik − ẑk][Z ik − ẑk]T

+ [Z0k
− ẑk][Z0k

− ẑk]T + R (38)

where ẑk is the predicted observation, Sk is the innovation
covariance and R is the covariance of the observation noise,
defined in (24) for the laser and in (25) for the camera.

The cross-correlation Ck and the gain Kk are computed
using the following formulas:

Ck =
10∑
i=0

Wi

[
X −

ik
− x̂−

k

][Z ik − ẑk]T (39)

Kk = CkS−1
k (40)

Finally, the a-posteriori estimate x̂k and relative covari-
ance Pk are determined applying the same equations (26)
and (27) previously used for the EKF.

5 SIR implementation

Particle filters are recursive Bayesian estimators that make
use of Monte Carlo methods to approximate and transform
probability distributions (Doucet et al. 2001; Arulampalam
et al. 2002; Ristic et al. 2004). The major advantages of such
filters are their independence from the non-linearities of a
system and capability to approximate any kind of probability
distribution, including multimodal cases. The drawback is
that a large number of particles is normally required for a
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good estimation, with a consequent negative effect on the
computational cost.

In particle filters, the posterior of the state, introduced in
(4), is approximated by the weighted sum of N samples xi

k :

p(xk|Zk) ≈
N∑

i=1

wi
kδ

(
xk − xi

k

)
(41)

where δ(·) is the Dirac delta measure. The samples xi
k are

drawn from a known importance density q(xi
k|xi

k−1, zk), and
their weights are calculated recursively as follows:

wi
k ∝ wi

k−1

p(zk|xi
k)p(xi

k|xi
k−1)

q(xi
k|xi

k−1, zk)
(42)

It can be proved that for N → ∞ the approximation in (41)
tends to the true posterior p(xk|Zk).

There are many different implementations of particle fil-
ters, however the SIR algorithm is probably the most popu-
lar, due to its simplicity. This estimator, originally proposed
in Gordon et al. (1993) with the name of “bootstrap” filter,
makes use of the transitional prior as importance density:

q
(
xi
k|xi

k−1, zk

) = p
(
xi
k|xi

k−1

)
(43)

Like for the previous ones, the SIR estimation has an iter-
ative predict-update sequence. The prediction part generates
new particles, from the previous ones, using (1) and samples
drawn from the probability distribution of the state noise.
In the current implementation, the number of samples used
was 1000, similar to other existing solutions (Chakravarty
and Jarvis 2006; Schulz et al. 2003a), and also 500, which
reduces the computational burden but is still sufficient to
track humans correctly. The prior distribution p(xk|xk−1)

is a Gaussian N [xk; f(xk−1),Q], where f(xk−1) is the pre-
diction model defined in (6) and Q is the same covariance
matrix in (18).

Then, as soon as a new measurement is available, the up-
date is performed calculating the new weights of the sam-
ples. The choice of the importance density in (43) simplifies
the calculus of the weights, which are given by the following
formula:

wi
k ∝ wi

k−1p
(
zk|xi

k

)
(44)

The likelihood p(zk|xk) is a Gaussian N [zk;h(xk),R] that
depends on the observation models h(xk) defined in (8) and
(10), for laser and camera respectively, and on the relative
noise covariance R illustrated in (24) and (25).

Weighted samples are finally used to calculate an ap-
proximated posterior with (41). At the end of each iteration,
the SIR algorithm performs also a resample step that elimi-
nates all the particles with very small weights and, from the
remaining ones, generates new samples equally weighted.
A detailed explanation of SIR and other particle filters is
given in Arulampalam et al. (2002) and Ristic et al. (2004).

6 Experimental results

The effectiveness of the tracking system has been tested,
with several experiments in a real environment, comparing
the three solutions based on EKF, UKF and SIR filters. To
achieve maximum performances, the code has been writ-
ten in C/C++ making use of highly optimized libraries for
image processing1 and estimation.2 When running in real-
time on the robot, the maximum update frequency of the
program was approximately 4 Hz, but it could decrease in
case particle filters were used. The test scenario was the in-
door environment illustrated in Fig. 4, which includes sev-
eral offices, connected by a corridor to a laboratory and a
robot arena. Data have been collected tracking 7 different
subjects who were moving in this environment. The results
have been compared in terms of accuracy, robustness and
computational efficiency.

6.1 Tracking accuracy

The accuracy of the estimations has been determined us-
ing the ground-truth position measured in the robot arena.
This is equipped with a marker-based tracking system us-
ing a camera mounted on the ceiling, calibrated to provide
the ground-truth position of the robot and the people around
it. A bird-eye view from the ceiling camera and the relative
observation from the robot are shown in Fig. 5.

Experimental data have been recorded during four similar
trials, for a total length of approximately 5 min (1200 time
steps). These covered various cases in which a single person

Fig. 4 Floor plan of the environment used for the experiments

1Intel IPP—http://developer.intel.com/software/products/ipp.
2Bayes++—http://bayesclasses.sourceforge.net.

http://developer.intel.com/software/products/ipp
http://bayesclasses.sourceforge.net
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(a) Bird-eye view from the ceiling camera of the robot arena. Each
target has a color marker (one more for the robot to get its orientation)

(b) Same situation as observed by the robot. Face and legs detection are
shown on the left. The robot R and the (true) position of the humans,
A, B, and C, are shown on the right

Fig. 5 Example of people tracked in the robot arena

or multiple people were tracked, either with the robot static
or in motion. An example is represented in Fig. 6, which
illustrates the trajectory of the robot, moving at 0.4 m/s,
and the random paths of three people wandering around
it. The data collected from the robot and from the global
tracking system have been used for an off-line comparison
of the accuracy, where the tracking error was given by the
Euclidean distance between the estimated human position,
(x̂k, ŷk), and the relative ground-truth, (x∗

k , y∗
k ). The latter

was obtained tracking the robot with the ceiling camera,
together with the human targets. Then, at every time step,
their absolute position was transformed to the robot’s frame
of reference.

The results of the experiments are summarized in Ta-
ble 1, which reports the root mean square (RMS) of the 2D
position error ek , calculated over all the M tracking steps,
and the relative mean ē, the standard deviation (SD) and the
maximum value. The position error is defined as follows:

ek =
√(

x̂k − x∗
k

)2 + (
ŷk − y∗

k

)2 (45)

Fig. 6 Paths of robot (thick line) and three persons: A (thin line),
B (thin dashed line) and C (thick dashed line)

Table 1 Tracking error

EKF UKF SIR(500) SIR(1000)

RMS [m] 0.439 0.317 0.285 0.280

Mean [m] 0.325 0.261 0.248 0.244

SD [m] 0.296 0.180 0.141 0.138

Max [m] 2.084 1.680 1.291 1.267

The number M is the sum of the duration, in time steps, of
all the human tracks created during these experiments. The
RMS, the mean and the SD were calculated as follows:

RMS =
√∑M

k=1 e2
k

M
(46)

ē =
∑M

k=1 ek

M
(47)

SD =
√√√√ 1

M − 1

M∑
k=1

(ek − ē)2 (48)

The results in Table 1 show that the performances of the
two SIR filters were almost identical, despite the different
number of particles used. Note also that the UKF’s tracking
accuracy, besides being better than the EKF, was also very
close to that one obtained with particle filters.

This is also confirmed by the graphs of the cumulative
distribution function (CDF) for the RMS and the SD of the
error, shown respectively in Figs. 7 and 8. Using the solution
proposed in Colegrove et al. (2003), which defines a practi-
cal method to evaluate the performance of tracking systems
from real data, RMS and SD values are adopted as compar-
ison metrics. These are calculated for the whole length Mt

of each human track t created during the experiments. The
relative RMSt and SDt are reported in the abscissa of the
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Fig. 7 Cumulative distribution
function of the root mean square
error

Fig. 8 Cumulative distribution
function of the error standard
deviation

graphs, each one corresponding to an increment 1/Mt of the
probability in the ordinate. Since the lower the metric value
the better the performance, the CDFs in Figs. 7 and 8 show
that the tracking system based on UKF is better than the
EKF’s one, and is comparable to the SIR solutions.

6.2 Tracking robustness

When comparing different tracking solutions, another essen-
tial factor to be considered is robustness. To evaluate this,
two important parameters are considered here: the number
of tracking errors and the total amount of tracks generated
by the different systems. In addition to the previous data
recorded in the robot arena, several other experiments have
been carried out tracking people who were moving between
the rooms in Fig. 4. Totally, more than 10 min of data have
been collected, and all the generated tracks have been man-
ually labeled.

The number of tracking errors was evaluated considering
only the 2D position for sake of simplicity. Each one of the
following situations was counted as an error: (a) the track
deviates from the correct trajectory of the human target and
is eventually deleted by the system; (b) the track “jumps”
to a static object, adjacent to the path of the person, due to a
false positive (gating error); (c) the track switches to another
person close to the original one (data association error). All
these cases are strictly related to the estimate of the filter and
to the distribution of its uncertainty.

Although this work does not include an exhaustive eval-
uation of the tracking performance under varying sensing
conditions (false positives, occlusions, etc.), intuitively these
will be better handled by the UKF and the SIR particle fil-
ter, rather than the EKF, due to their ability to better model
the propagated probability functions. This is shown, for ex-
ample, in Figs. 9 and 10, where a couple of EKF’s errors
occurred while the robot was following some persons be-
tween different rooms. The correct path of the UKF track
(identical to the SIR case) and the wrong one generated by
the EKF are shown on the left of the figures, together with
the robot’s trajectory. A moment of the wrong tracking with
the EKF is shown in the middle, while the correct estimation
of the UKF is illustrated on the right. In Fig. 9, the tracking
error in the office was caused by the curvilinear trajectory
of the human and the simultaneous motion of the robot, as
shown also in Video 1. In Fig. 10 and relative Video 2, the
EKF failed between the laboratory and the arena as a conse-
quence of a false positive on the legs detection, generated by
a column. These situations were correctly handled instead
by the UKF and the SIR tracking systems.

The chart in Fig. 11, showing the total amount of track-
ing errors, illustrates clearly that the results obtained with
the UKF and the particle filters were much better than the
EKF-based tracking. The non-linearity of the system, in-
deed, made the EKF fail in several occasions, in particu-
lar when both the robot and the person being tracked were
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Fig. 9 Human tracking in Office 1

Fig. 10 Human tracking in the laboratory

Fig. 11 Number of tracking errors with different filters

moving. The performance of the UKF was generally sim-
ilar to the SIR tracking in terms of the number of errors,
but differed on the type. Despite occasional errors due to
some false positives, the major accuracy of particle filters
in representing the probability distribution of the estimate
seemed to be an advantage for data association. However, as
will be shown in Sect. 6.3, a solution based on particle filters

was not feasible for real-time tracking with the current robot
platform.

The previous results were also confirmed by the total
number of tracks generated for each system implementation,
as reported in Fig. 12. Indeed, the more robust and stable is
the estimation, the less likely is the tracking to fail, and con-
sequently the smaller is the number of tracks generated by
the system. Although the whole tracking length was about
the same for all the solutions (approximately 2750 estima-
tion steps), the chart shows that the number of tracks was
higher using the EKF. Instead, even in this case, the values
relative to UKF and SIR particle filters were very close.

6.3 Computational efficiency

It is known that, in general, particle filters are computation-
ally much more demanding than Kalman filters, and that the
time needed for the estimation increases with the number
of samples used. For many applications, this does not rep-
resent a problem, because the number of actual estimations
is limited (e.g. single target tracking) or simply because the
hardware is powerful enough. It might pose a serious con-
straint, however, in case of frequent estimations and limited
computing resources, e.g. for the system currently studied.

In this experiment, the execution time needed by each
filter to perform an estimation (i.e. single iteration of the
process in Fig. 3) was compared while tracking one or more
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Fig. 12 Total amount of tracks generated during the experiments

persons. For simplicity, only legs detections were used to up-
date the track estimates. The detections have been simulated
with static laser data hard-coded in the software, generating
from one to four pairs of legs observable at the same time.
This permitted to have the same inputs constantly available
to the tracking system for all the estimators under compari-
son.

The graph in Fig. 13 shows the average times needed
for an update iteration run on the Pioneer robot, which in-
cludes only the prediction and one filter update, i.e. the first
two blocks in the diagram of Fig. 3. The time spent for legs
detection and additional routines (tracks handling, data as-
sociation, logging, etc.) has not been counted. The results
have been obtained averaging the total estimation time on
100 consecutive time steps, tracking up to 4 target simul-
taneously. The estimation processing used approximately
70% of the CPU and, as expected, had different time du-
rations, depending on the filter adopted for tracking. The
graph shows that the time increased almost linearly with the
number of tracked persons and, for the SIR filter, with the
number of particles.

It is important to note that, while the EKF and UKF solu-
tions were very fast, the ones based on particle filters were
much slower and, in some case, their tracking performance
was drastically limited. For example, during the tracking of
three or more people, the execution time of the SIR with
500 particles was close to 200 ms (i.e. the period of a laser
scan). Since normally there are other tasks to be executed
in addition to the estimation, the SIR tracking system can-
not process the sensor information as fast as it should and,
very often, it is not able to work properly. Indeed, in this ex-
periment, the measurement of the execution time was possi-
ble only because the targets were static, otherwise the SIR-
based tracking would have failed because of the low update

Fig. 13 Estimation time, in logarithmic scale, as function of the num-
ber of persons being tracked. The laser scans period (200 ms) is shown
for reference

frequency (i.e. it could not work in real-time). Same consid-
erations can be done for the SIR with 1000 particles, or con-
sidering a larger number of people. Although other particle
filters computationally more efficient (Schulz et al. 2003b;
Kwok et al. 2004) should be considered in future compar-
isons, the UKF remains generally a faster solution.

7 Conclusions and future work

This paper presented an experimental comparison of peo-
ple tracking systems based on three different Bayesian es-
timators, namely EKF, UKF and SIR particle filter. These
solution makes use of probabilistic sensor fusion techniques
to integrate laser and visual data. Their implementation on
a mobile robot have been described in detail. With several
experiments in real situations, the systems have been com-
pared in terms of accuracy, robustness and computational
efficiency.

On the specific task of real-time people tracking with mo-
bile robots, the results showed that a UKF solution could
perform as good as particle filters. Furthermore, analyzing
the estimation time, the UKF proved to be a better choice
for the current application, in particular when hardware re-
sources are limited. An approach based on this filter could be
generally preferred for autonomous robots with low process-
ing power, for which the computational efficiency is a key
issue.

In the future, it would be interesting to extend this com-
parison to include more recent and efficient particle filters,
possibly using different mobile platforms as well. Their per-
formance could also be evaluated using different data asso-
ciation algorithms to see how these influence people track-
ing. The results of this research are also important for the
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authors’ implementation of an interactive robot performing
simultaneous people tracking and recognition, for which an
accurate and robust real-time estimation is a fundamental
requirement.
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