
Auton Robot (2009) 27: 147–164
DOI 10.1007/s10514-009-9134-y

Online world modeling and path planning for an unmanned
helicopter

Franz Andert · Florian Adolf

Received: 2 February 2009 / Accepted: 3 August 2009 / Published online: 19 August 2009
© Springer Science+Business Media, LLC 2009

Abstract Mission scenarios beyond line of sight or with
limited ground control station access require capabilities for
autonomous safe navigation and necessitate a continuous
extension of existing and potentially outdated information
about obstacles. The presented approach is a novel synthe-
sis of techniques for 3D environment perception and global
path planning. A locally bounded sensor fusion approach
is used to extract sparse obstacles for global incremental
path planning in an anytime fashion. During the flight, a
stereo camera checks the field of view along the flight path
ahead by analyzing depth images. A 3D occupancy grid is
built incrementally. To reduce the high data rate and stor-
age demands of grid-type maps, an approximated polygonal
world model is created. For a compacted representation, it
uses prisms and ground planes. This enables the system to
constantly renew and update its knowledge about obstacles.
An incremental heuristic path planner uses both a-priori in-
formation as well as incremental obstacle updates to assure
a collision-free path at any time. Mapping results from flight
tests show the functionality of onboard world modeling from
real sensor data. Path planning feasibility is demonstrated
within a simulation environment considering world model
changes inside the vehicle’s field of view.

Keywords Unmanned aerial vehicle · Stereo vision ·
Mapping · World modeling · Path planning · Obstacle
avoidance

F. Andert (�) · F. Adolf
German Aerospace Center (DLR), Institute of Flight Systems,
Lilienthalplatz 7, 38108 Braunschweig, Germany
e-mail: franz.andert@dlr.de

F. Adolf
e-mail: florian.adolf@dlr.de

1 Introduction

Operations of unmanned vehicles in urban environments are
of high interest for surveillance and reconnaissance tasks.
However, autonomous and safe operations in such environ-
ments with plenty of obstacles are not simple tasks. Many
small VTOL UAV systems that are suitable for urban op-
erations still rely heavily on the situational awareness of
the remote operator. Since urban scenarios may require the
vehicle to fly without line of sight to the operator, it be-
comes necessary that the vehicle has a sufficient situational
awareness to avoid collisions with unanticipated obstacles.
To achieve the goal of autonomous flight at low altitude in
the vicinity of a-priori unknown obstacles, a collision-free
path towards a desired target position must be maintained.

Flying in unknown terrain is related to obstacle avoid-
ance that is often tackled with reactive behaviors. Especially
on small aircraft, lightweight vision sensors and optical-
flow methods are used (Green et al. 2004; Ruffier and
Franceschini 2005; Zufferey and Floreano 2005; Garratt and
Chahl 2008). Other research activities improve the obstacle
detection capabilities with stereo vision (Hrabar 2008) or
laser scanners (Griffiths et al. 2006). Most reactive obstacle
avoidance methods yield insect-like behaviors with high ac-
celerations and sharp curves. This is not suitable when car-
rying fragile payload and requires high performance image
stabilizers to capture good quality video sequences.

Larger aerial vehicles allow complete autonomous con-
trol due to increased capabilities for carrying more precise
avionics and other payload. Smoother and more useable tra-
jectories in obstacle-prone environments are achieved using
model-predictive control (Shim et al. 2006), collision cone
approaches (Watanabe et al. 2007), or a combination of oc-
cupancy maps and behavioral dynamics of steering (Scherer
et al. 2007).

mailto:franz.andert@dlr.de
mailto:florian.adolf@dlr.de

148 Auton Robot (2009) 27: 147–164

However, reactive and local obstacle avoidance methods
cannot ensure that a desired target is really reached. This
can be solved with global path planning algorithms based
on environmental maps. Aerial applications in known envi-
ronments use probabilistic road maps (Pettersson and Do-
herty 2006) or rapidly-exploring random tree search (Saun-
ders et al. 2005; Bruce and Veloso 2007). In unknown en-
vironments, obstacles have to be detected while flying and
to be considered by the path planner. This requires environ-
mental sensing, mapping, and fast path replanning in real-
time. A combined approach is presented by Hrabar (2008)
where the flight path is initialized based on environmental
data and updated with the help of an occupancy grid map
built incrementally during flight.

This paper presents an approach to fly autonomously in
partially or completely unknown environments. Section 2
introduces the application domain and specifies the require-
ments that lead to the presented approach. Section 3 cov-
ers a mapping procedure based on stereo vision to gener-
ate and update a world model in real-time. To maneuver
around newly detected obstacles, an anytime path planning
approach is presented in Sect. 4. To underline the effective-
ness of this work, Sect. 5 presents mapping tests under real
operational conditions performed with an unmanned heli-
copter, as well as a feasibility demonstration of the proposed
path planner. The work is concluded in Sect. 6.

2 Autonomous flights in a changing environment

2.1 Context and basic idea

An autonomous flight is initially based on a-priori know-
ledge of a three-dimensional environment that can contain
obstacles. A collision-free path can be specified by the UAV
operator that comprises of a set of waypoints at which the
vehicle has to pass through or stop. Such a set of waypoints
defines a task, e.g. to explore a specified area. UAV operators
have an intrinsic need for reduced mission planning com-
plexity when specifying cost-optimal, collision-free paths.
A path planning system automates this translation of user
specified sets of tasks into a sequence of waypoints while
guaranteeing a collision-free path.

While the vehicle is flying along this initial path, it is
gathering new information about obstacles. Probable colli-
sions can be detected and in this case, the flight path has to
be updated. Here, the challenge of generating initial and up-
dated paths in potentially unknown areas is divided into two
problems:

1. Mapping: Interpret sensor data to update the world mo-
del.

2. Path planning: Plan a path based on a world model and
if the world model is updated, repair the path plan effi-
ciently.

Fig. 1 The general sensor-based path planning process divided into a
mapping and a path planning step and different layers of environmental
representation

Figure 1 illustrates the overall process that consists of a
mapping step that identifies objects, and a path planning step
that uses the objects that have been identified or are initially
given. Different types of environment representations opti-
mized for specific tasks are introduced throughout this pa-
per. The world model itself (layer 3 in the figure) acts as
an interface between the two main steps mapping and path
planning. Eventually, the output is a regularly updated and
smoothed path that acts as the set point in flight control.

2.2 Representing the environment

The world model presented in this paper must fulfill require-
ments given by the mapping and the path planning step. As
already presented in Andert and Goormann (2008), a pri-
mary requirement is to determine the required level of de-
tailing to represent the objects. For path planning in outdoor
applications, the important criteria are:

1. small details and knowledge of visual object appearance
are not needed,

2. map boundaries must not be limited to a pre-defined area,
and

3. real-time updates are important for online replanning to
avoid obstacles.

The first criterium implies that it is sufficient to seg-
ment the environment into safe and danger areas that must
be avoided. Array structures like occupancy grids are very
common, but they do not cope with the second criterium
since the memory usage is very high in comparison to other

Auton Robot (2009) 27: 147–164 149

representations. However, grid representations are used for
some local map parts as discussed later. Compressed grid
structures like octrees or polygonal bounding shapes re-
duce the memory requirements, and it was chosen to use
a polygonal feature-based world model to cope with all of
the given constraints. To improve calculation speed as re-
quired in the third criterium, the polygonal complexity must
be minimized.

The world model is designed towards a compact repre-
sentation of urban canyons. In a real scenario like a city,
objects can have any ground shape from the top view, but
it is likely that they have vertical walls. This assumption is
made in a lot of mapping approaches, see e.g. Iocchi et al.
(2000). For this reason, prism shapes are used here to define
danger areas as a kind of bounding box around obstacles.
They can deal with any ground shape without dramatically
increasing the complexity. If walls are not vertical like roofs,
the prism’s volume will be much larger than the real ob-
ject. To improve the modeling of objects, they can be subdi-
vided vertically and represented by multiple prisms. In other
words, the world is split into layers in different heights, and
each layer has its own polygonal 2D obstacle map. This is
sufficient for applications like flight trajectory planning in
urban scenarios (Adolf et al. 2007). Additional complexity
reduction is achieved by separating the floor from other ob-
jects like buildings. The ground is modeled with horizontal
planes and can be understood as a height profile map with
reduced resolution.

2.3 Adaptive path planning

Numerous approaches transform a path search into a graph
search problem using sampling-based metric graphs. How-
ever, the sampling-based free space representation affects
the path search completeness which is the chance to find
a path whenever a solution exists. An appropriate sampling
strategy has to maximize this chance. For the sampling it-
self and when detecting obstructed path segments, a rapid
test against collisions with polygons is important. Essen-
tially, the three computationally critical planning steps are
the collision detection with polygonal obstacles, the sam-
pling strategy and the graph search. This yields the follow-
ing requirements:

– Sampling quality: The world needs to be sampled in such
a way that path search is approximately complete. Espe-
cially in urban terrain it must be possible to find a path
through likely occurring narrow passages.

– Anytime path search results: Due to limited deliberation
time, the planner must provide a path whenever updates
become necessary. A replanning step must always output
a collision-free path. Hence, path optimality has a lower
priority compared to a rapid path computation.

– Execution time: The configuration space must be updated
rapidly.

– World expandability: The configuration space must be ex-
pandable for waypoints that exceed the boundaries of the
currently known world.

Numerous sampling based approaches use global search
graphs representation of free space. The work in Vestka
et al. (1996) uses probabilistic road maps (PRMs). In the-
ory, PRMs are probabilisticly complete for random samples.
With an increasing number of samples, the probability to
find a path converges towards one if at least one solution
exists. The work in Plaku et al. (2005) presents a sampling-
based road map of trees (SRTs) as hybrid of both, fast one
shot path planners using Rapidly-exploring Random Trees
(RRTs) and global path planning using a PRM. It guides
the sampling of the RRT and is more decoupled than sole
road map and sampling-based tree planners. However, this
approach introduces a set of seven additional parameters in
order to make use of existing knowledge about the world.
Since the benefit of SRTs depends on these parameters, it re-
mains unclear whether this set can be generalized for urban
scenarios where little is known about the details beforehand.
Hybrid approaches like SRTs tend to add the burden of an
increased parameter space. Thus, this work focuses on the
global, road map based path planning.

As a result, an online path planning approach is pre-
sented that is based on polygonal obstacle information and
maintains a global road map for anytime heuristic graph
searches. A fast cubic polynomial interpolation is used for
path smoothing to optimize graph search results by mini-
mizing a heuristic-based arrival time estimate.

A-priori obstacle information is considered during the
construction phase of a metric search graph. Using a quasi-
random sampling strategy (Branicky et al. 2001) for ini-
tial road map construction, a minimum number of vertices
is used and path search completeness can be shown, pro-
vided that a knowledge of a minimum corridor width ex-
ists. During flight, a vertex grid structure is used as a search
index for all known obstacle polygons such that rapid, lo-
cally bounded search graph updates are achieved. The con-
nection strategy from Hrabar (2006) is used to search for
neighbor vertices and to determine feasible edge costs to
these vertices. An efficient collision detection (Langer 2006)
is used to perform rapid collision checks for path segments
and graph vertices.

To account for the inherent trade-off between either
longer computation time for optimal paths or instant yet
suboptimal paths, Anytime Dynamic A* (Likhachev et al.
2005) is used to search for paths online. If computation time
and world model update frequency permit, the graph search
yields an optimal solution over time.

150 Auton Robot (2009) 27: 147–164

3 Online world model updating

This section describes the process of how the world model
for path planning is updated. A geodetic map is automat-
ically built onboard the vehicle using stereo-based range
measurements and GPS/INS-based vehicle localization.
Output of the presented algorithm are environmental up-
dates that fit with the presented world model definition.

3.1 Combining grid and feature maps

Optimal sensor data fusion requires an environmental rep-
resentation that is suitable for fast incremental updates and
error handling like noise reduction. Occupancy grids have
turned out to be an efficient way to handle that task. To profit
from their advantages in the world model update procedure,
grid and polygonal representations are combined and the
mapping process works as follows:

1. Represent the area around the vehicle by an occupancy
grid in the map.

2. If a new grid is allocated or the grid is extended, check
whether previously stored features can be inserted.

3. Insert the actual sensor data information into the grid.
4. Find clusters of occupied grid cells and mark them as

single obstacle features.
5. Find out which obstacle features are new and which are

updates of objects that have already been identified in
the previous loop cycle. Preexisting objects may also be
removed.

6. Calculate the shape of each new or updated feature.
7. To insert the next sensor data, go back to step 1.

This approach uses different map types as already illus-
trated in Fig. 1, Sect. 2.1. The occupancy grid map for sen-
sor inputs (layer 0) is partitioned into zones and each zone
is searched for obstacles separately (layer 1). Next, a map
with separate obstacles, but without zone separation is gen-
erated (layer 2), and finally, the prism shapes are extracted
out of them (layer 3). Grid resolution and zone sizes are
user-defined but may not change over time when process-
ing image series.

3.2 Grid mapping

The occupancy grid is created incrementally with classical
methods using the sensor data and the vehicle’s position and
attitude. The world is rasterized with a 3D grid where each
cell stores the log odds probability of being occupied.

3.2.1 Sensor data interpretation

Basically, every depth image pixel acts as single distance
measurement that gives information about objects and free

Fig. 2 Camera-fixed (index: c), vehicle-fixed (index: f), and geodetic
(index: g) coordinate systems

space. The pinhole camera model and perspective transfor-
mations are used to project depth image pixels into object
point coordinates relative to the camera. Object points are
transformed into geodetic coordinates by using a manually
measured camera alignment on the vehicle and the global
vehicle position. The vehicle is localized using differential
GPS, inertial and magnetic sensors that are combined with
an EKF-based navigation solution. The navigation filter pro-
vides a relative localization accuracy of estimative 0.2 m
horizontal and 0.5 m vertical in open terrain. Here, the vehi-
cle is flown in urban terrain without narrow or deep canyons
where the risk of possible satellite signal dropouts as de-
picted by Morales and Tsubouchi (2007) is assumed to be
low. To compensate for GPS failures and eventually to fly
without any satellite navigation, vision-aided flight state es-
timation based on optical flow is developed (Wu et al. 2005).
Such optical navigation is not used here, but it is of high im-
portance for future research. As illustrated by Fig. 2, three
frameworks are used for the required coordinate transforma-
tions.

In the measurement model described here, a depth image
pixel acts as a measurement along a ray through the camera
center and the object coordinate, defined by the pixel coordi-
nate, its depth value, and the geodetic camera pose. To draw
a line with occupancy values into the grid map, a 3D version
of the method from Bresenham (1965) is used. Along this
line, grid cells are filled with log odds of occupancy proba-
bilities, dependent on the depth z and parameterized by the
measured depth zc . It is

l(z, zc) = ln

(
p(z, zc)

1 − p(z, zc)

)
(1)

with occupancy probabilities

p(z, zc)

= pocc(z, zc)

+
(

k

�zc

√
2π

+ 0.5 − pocc(z, zc)

)
e
− 1

2 (
z−zc
�zc

)2
(2)

Auton Robot (2009) 27: 147–164 151

Fig. 3 Measurement Model. Occupancy values with the parameters
k = 0.1 and pfree = 0.35, showing measurements of 10 m (solid), 20 m
(dashed) and 40 m (dotted)

where

pocc(z, zc) =
{

pfree if 0 < z ≤ zc;

0.5 if z > zc.
(3)

Stereo-based measurements offer an error �zc ∝ z2
c that

is considered in the sensor model with depth-dependent oc-
cupancy significance and object thickness. The plot in Fig. 3
shows the resulting occupancy function l(z, zc) for different
measurements.

Depth image processing takes advantages from image
pyramids to improve calculation speed. Especially for near
measurements, neighboring pixels with similar depth values
are probably leading to points of the same grid cell. There
is no need to draw such overlapping lines into the map. Re-
ducing the resolution will provide fast image processing and
a good approximation in comparison to a processing of all
depth image pixels. Result is a temporal occupancy map de-
pendent on a single image.

Incremental map building from image sequences starts
with an empty map. Occupancies are initially unknown and
all cell values set to zero, meaning an occupancy proba-
bility of 0.5. Now, the temporal map from a single im-
age is inserted by adding the cell values. With the fu-
sion of multiple sensor samples, the cell probabilities of
being occupied increase if an obstacle is measured multi-
ple times. Vice versa, the measure of free space will de-
crease the occupancy probability value of a cell. Obstacles
as well as free space become more significant and noise is
reduced. This method is very common and well-documented
in the literature (Moravec and Elfes 1985; Konolige 1997;
Thrun 2002).

3.2.2 The temporary zone-partitioned occupancy grid

Since grids are usually stored as continuous data blocks in
the computer memory, the boundaries of the map must be
known a priori. As already mentioned, one requirement for

Fig. 4 2D view of the global map that is divided into zones. For zones
around the actual camera position, an occupancy grid representation
exists

the world model is unlimited boundaries so that the overall
size can only be assumed and an extension of the map must
be provided. If the vehicle moves outside these preliminary
boundaries, extensive reallocation or shifting methods must
be applied. To avoid shifting a large number of map cells
when moving, the implementation divides the global map
into cuboidal zones. Their position is fixed. Map extension
is done easily by adding new zones.

Appending zones will be limited to the available mem-
ory. In the presented approach, the occupancy grid is only
used for sensor fusion and will be converted to a feature map
as described in Sect. 3.3. Hence, a temporary grid map is
sufficient and the memory limitation is negligible. The data
fusion of the map with one image will only affect the grid
cells in the sensor range, i.e. inside a small environment of
the actual position. There is no need to store grid-based in-
formation outside this environment. This is implemented by
simply removing zones if not needed anymore.

Figure 4 illustrates how the zone partitioning works. The
actual camera and local map position is shown in (a), the
other graphics show possible effects on the map, caused by
the next measurement. Often, rotations (b) or movements
(c) will not have an effect on the zone boundaries. But if the
movement is large enough so that boundaries are crossed
(d), new memory is allocated for these zones. Grid informa-
tion is discarded for zones that fall outside the immediate
vicinity. The size of each zone is chosen dependent on the
sensor range so that new sensor data can change a maximum
of eight zones inside a 2 × 2 × 2 zone cube of the global 3D
map. Only these zones are represented by an occupancy grid
array.

152 Auton Robot (2009) 27: 147–164

3.3 Feature mapping

3.3.1 Extracting and inserting features

In every map zone where a grid exists, features are detected
by segmenting the grid into occupied and free areas, apply-
ing a threshold of minimal occupancy probability to each
cell. Here, the threshold is set to a log odds value of 1.0
which implies that unknown space is not included into the
object map. A single object is a set of occupied cells that are
connected in a 6-neighborhood of the 3D array. These ob-
jects are recognized with a flood fill algorithm. By saving the
minimal and maximal values of the x, y, and z-coordinates
of cells belonging to the object, the bounding box is cal-
culated and put into the global map as it is illustrated in
Fig. 5. Unlike the cell array, these boxes are saved when
the occupancy grid moves and the features are available to
further applications, independent of the existence of a grid
in that zone. The features are detected separately for each
map zone, so that a bounding box will always be inside the
boundaries of one zone. Objects that belong physically to
more than one map zone are represented by multiple fea-
tures.

Saving the bounding boxes leads to a great data reduction
since they do not contain the object shapes. But they will
only be a useful object representation in rather unoccupied
environments, e.g. outdoor scenarios with large free spaces
and single obstacles like trees. Free paths inside the bound-
ing boxes of tunnel or canyon walls will not be found in the
feature map since the whole box is regarded as occupied in
the feature map. As an improvement, polygonal shape de-
tection algorithms are applied, and the shape of each object
is stored together with the box.

To complete the exchange of elements between grid and
feature-based map representations, single objects of the glo-
bal map must be inserted into the grid. This is done when
a new grid zone is allocated and some world map objects
exist there (Fig. 6). First, the global map is searched for
bounding boxes. Then, those grid cells that intersect with
an object shape are marked as occupied by giving them a
log odds probability value equal or greater than the segmen-
tation threshold. The other cells remain unexplored. When

Fig. 5 Features are stored when the grid data is discarded due to heli-
copter movement

removing and re-allocating a map zone, the essential grid-
based information about objects is recovered while discrim-
inable occupancies and free space information are removed.

3.3.2 Merging and tracking objects

Single objects found in the temporary grid zones are limited
to the zone boundaries since each zone is processed sepa-
rately. To build an output map with a reduced number of ob-
jects, the features of different zones are merged if a connec-
tion exists as illustrated in Fig. 7. First, it is checked whether
the bounding box of an object is located at a zone boundary.
If another object box is located at the same boundary from a
different zone, the cell shapes of both objects are tested for
connection. Connected objects are linked together, and the
linkage is not limited to only two objects.

After an update step where sensor data is inserted, the
zones are checked for obstacles again without reference to
the previous state. Since it is useful to know which spe-
cific object has been updated with the actual sensor infor-
mation, the linked objects are tracked. Differential updates
of the polygonal world model become available throughout
the system.

Object tracking is done as follows:

1. Calculate the center of mass of each linked object.
2. For each linked object, try to find a matching object in

the map with linked objects of the previous state. This is
the object with the nearest center of mass determined by
the Euclidean distance (Prassler et al. 2000). To avoid the
matching of objects that are too far away, distances above
a threshold will not result in a match.

Fig. 6 Inserting features to the grid if there are objects inside a new
zone

Fig. 7 Simplified 2D view of merging tangent objects in the parti-
tioned map (a) to linked objects (b) that are not partitioned into zones

Auton Robot (2009) 27: 147–164 153

3. If no match exists for an object of the actual state, give it a
new unique ID. Otherwise, copy the ID from the matched
object.

With object tracking, each linked obstacle in the world
gets a unique ID that remains constant over time, if the track-
ing is successful. The merging and tracking step can be skip-
ped for linked objects whose coordinates are completely out
of the zones where a grid exists since there will be no update.

Due to sensor updates it is possible that a linked object
becomes split. Usually, one of the new objects gets the old
ID, the others receive the new IDs. If multiple linked objects
are merged together over time, one ID is kept and the others
removed.

3.3.3 Horizontal shape slicing

The approach presented in this paper models the shape of
each linked object with a prism (see Sect. 3.3.4) with hor-
izontal bases. Since a bounding prism of complex shapes
may be too rough, the cell-based shape s(x, y, z) is parti-
tioned into horizontal slices with the height of one cell. Sim-
ilar slices are merged and a polygonal shape prism is calcu-
lated for each multi-slice.

A single slice in height z is denoted as sz(x, y) with
sz(x, y) = s(x, y, z). Without loss of generality, z is valid
from 1 to n. Similar consecutive slices are put together to
multi-slices S using Algorithm 1.

The result is a set of multi-slices {S1, . . . , Sm}, see Fig. 8.
The user-specified threshold t used in Algorithm 1 controls
the maximum degree of similarity to merge similar succes-
sive single slices. The extreme case t = 0 puts every single
slice into a separate multi-slice and t = ∞ merges all single
slices together. In the tests presented in this paper, a value of
t = 100 is used which provides suitable results.

Algorithm 1 Create m multi-slices from n single slices
set i = 1, z = 1
create first multi-slice Si : Si = {sz}
for z = 1 to n − 1 do

if
∑
x

∑
y

|sz(x, y) − sz+1(x, y)| < t

then
append slice to the current multi-slice Si = Si ∪
{sz+1}

else
i = i + 1
create a new multi-slice Si : Si = {sz+1}

end if
end for
return m = i and {S1, . . . , Sm}

Fig. 8 Grid shape and bounding box of linked feature (a), single
slices (b) and merged multi-slices (c). Side view of a tree as an ex-
ample

In the next step, the 2D shape is calculated for each multi-
slice Si (1 ≤ i ≤ m). Occupied cells of a multi-slice are cal-
culated through the logical disjunction of all single slices sz
inside Si . It is

Si(x, y) =
{

0, if
∑

sz∈Si
sz(x, y) = 0;

1, otherwise.
(4)

3.3.4 Extraction and approximation of the polygonal shape

Now, algorithms developed for binary images can be applied
to a multi-slice Si since its shape is represented by a binary
2D array. Figure 9 illustrates the process. The polygonal ex-
traction is done in two steps. First, the contour is calculated
with a tracing algorithm (Ren et al. 2002). The main idea
is to start at one edge pixel and search incrementally for the
next edge pixel until the whole contour is covered. Its output
is a list of pixels sorted counterclockwise for outer contours
and clockwise for inner contours. Multiple lists are possible.
Each contour pixel can be interpreted as a polygon vertex by
using the corresponding grid cell center coordinate.

The second step is for data compression and to acceler-
ate later applications. A polygon with a lower number of
vertices is calculated here with the approximation algorithm
presented by Ramer (1972). It is parameterized by a max-
imal distance value that specifies the accuracy of the algo-
rithm. Every point of the original shape has this maximal
distance to the lines defining the approximated shape. In
contrast to the initial contour polygon with all traced pix-
els, the resulting polygon includes only corner pixels of the
contour.

This 2D polygon acts as the ground shape of the right
prism that is calculated for each Si . The prism’s height and
vertical position are determined by the span of single slices
sz ∈ Si . As seen in Fig. 9, the prism shapes can be smaller
than the grid-based shapes since the center coordinates of
the grid cells are used for the shape vertices and an approx-
imation is performed. In obstacle avoidance applications, a
safety distance to the objects must be larger than half a cell
size plus the approximation accuracy to ensure that the grid
cells of each object are completely covered by the polygon
hull.

154 Auton Robot (2009) 27: 147–164

Fig. 9 Shape Extraction, top view. Cell-based shapes (a), contours (b),
approximated polygons with its vertices (c) and final ground shapes (d)

3.4 Ground planes

In addition to the prism-based shape detection of obstacles,
the ground profile is extracted out of the sensor data. This
simplifies the resulting world model since the floor will not
be a shape prism that has to be tracked.

To account for non-flat terrains, a locally bounded ground
plane estimation is performed. These ground plane bound-
aries are defined by the map partitioning as described in
Sect. 3.2.2 but without the vertical separation. This leads to
rectangular 2D zones in the x-y-plane where each zone can
have a different height. The floor plane detection is similar
to classical Hough Transform based approaches, e.g. Okada
et al. (2001), where only the horizontal planes are searched.

The actual sensor data leads to a cloud of points (x, y, z)

in global coordinates. The vehicle’s position must be known
and a calibrated pitch and roll angle measurement is as-
sumed to ensure that a horizontal ground will lead to a hor-
izontal plane in map coordinates. A sampled histogram of
all z-values of these points is built. It acts as a geodetic
1D occupancy grid created separately for each zone where
points are inserted according to the sensor model of section
Sect. 3.2.1. The sampling should be more precise than the
3D occupancy grid. Since all measurements of a horizontal
plane have approximately the same geodetic z-value, planes
lead to significant peaks in the histogram and can be detected
there. If more than one plane is found, the floor is the one
with the lowest height, i.e. with the largest z-value. There
will be no ground plane if no peak with a high confidence is
found.

A height histogram is calculated for each zone by ac-
cumulating these sensor data elements that lead to object
points in that zone. The histogram is built incrementally over
time so that multiple sensor updates can be stored in one
zone if the vehicle stays there. Like the prism shapes, the

ground plane map is initialized empty and built incremen-
tally during flight. The resulting rectangular planes act as a
polygonal obstacle for path planning in the same way as the
prism shapes do. Ground plane extraction is done before oc-
cupancy grid mapping directly from depth image data. To
improve the 3D map calculation speed, image pixels that
lead to the ground level or below are not taken into account
for 3D mapping since they are already interpreted as objects.

4 Online path planning

The following sections present a global, road map based
path planning and discuss its sampling strategy, a feasible
graph search method and a fast method for collision checks.

4.1 Road map sampling strategy

The effectiveness of a road map depends crucially on its cov-
erage and connectivity properties. A good sampling aims
for a good representation of the free configuration space.
The objective is to fly through narrow passages in free space
(e.g. road corridors). Effectively, the sampling has to guar-
antee the completeness for path searches. Moreover, during
online planning, new obstacles may cause new narrow pas-
sages through which no path can be found. Even worse, it
may break the road map’s connectivity when the finish point
lies in a different graph component than the vehicle’s current
position. That’s why the sampling is of a high importance for
the overall path search.

Common PRM implementations use random machine
functions to sample the configuration space. The problem
with a randomization is that any machine implementation
generates a sequence of pseudo-random numbers. This can
lead to relatively large areas of free space that contain no
samples, while other areas are overcrowded with samples
(e.g. Fig. 10b).

A useful measure for the sampling quality are two met-
rics, dispersion and discrepancy. The discrepancy measures
the largest volume estimation error. The dispersion (here:
Euclidean metric) can be considered as the radius of the
largest sphere that fits into free space between samples.
A low dispersion can be used to ensure that any corridor
of a certain width (e.g. street width) will contain samples.

It can be shown that a regular grid has an optimal disper-
sion but poor discrepancy and is known to be prohibitive for
path search in high dimensions (≥3) (LaValle 2006). A PRM
achieves better search performance in high dimensions due
to its irregular sampling neighborhood structure. Accord-
ing to visibility properties in Hsu et al. (2006), this re-
sults in suboptimal visibility. The machine random function
used yields to a non-optimal dispersion and a non-optimal
discrepancy. The path planner based on a Quasi-random

Auton Robot (2009) 27: 147–164 155

Fig. 10 Sampling strategies for the test scenario in top view, (a) LRM,
(b) PRM, (c) QRM-Hammersley

Roadmap (QRM) in Branicky et al. (2001) distributes sam-
ple points using a quasi-random distribution of graph nodes.
It provides an optimal dispersion and an optimal discrep-
ancy. Furthermore, for the QRM it was empirically observed
to provide similar or better performance in terms of the
number of nodes required to generate successful plans. The
same work also highlights the use of Halton/Hammersley se-
quences to produce a regular neighborhood structure along
non-orthogonal axis. This yields to an optimal dispersion
with near-optimal discrepancy.

Literature shows different comparison results between
deterministic and probabilistic sampling sources. In Hsu et
al. (2006) it is concluded that high computational costs for a
high number of dimensions eliminate the advantages of de-
terministic sources over pseudo-random sources. Compared
to path planning in robot manipulation tasks, three dimen-
sions can be considered to mark the lower boundary search

space complexity. Thus both, LRM and QRM can be suit-
able sampling strategies to sample nodes for path search.

The next section evaluates suitable graph search ap-
proaches that can cope with changes in a graph.

4.2 Graph search

Searching in a road map attempts to find a sequence of state
transitions through a graph from the initial state to a goal
state, or it determines that no such sequence exists. As dis-
cussed before, global path search algorithms have the ad-
vantage to be generally complete and to be able to provide
optimal paths. In this context, the path is optimal if the sum
of the transition/edge costs is minimal across all possible se-
quences through the graph. If during the traverse of the path
one or more edge costs in the graph are outdated, the re-
maining fraction of the previously planned path may need
to be updated. As stated before, the immediate output of a
feasible result is more important than cost optimality.

From a graph search perspective, numerous methods ex-
ist that solve path replanning problem using an incremental
heuristic search (assumptive planning).

The basis for many recent approaches is still A* (Hart
et al. 1968) which provides good runtime complexity and is
theoretically well understood.

Further optimizations of A* towards anytime path results
have been developed. Anytime path search algorithms op-
erate under time constraints and improve their solution over
time. Anytime Repairing A* or ARA* (Likhachev et al. 2003)
provides sub-optimality bounds for each successive search
and has been shown to be efficient. Anytime Dynamic A*
or AD* (Likhachev et al. 2005) combines the anytime prop-
erty of ARA* and the plan repair concept from D*-Lite. It
provides bounded solutions in partially-known or dynamic
environments by reusing previous solutions in the same way
as ARA*. It repairs invalidated solutions in the same way as
D* Lite (Ersson and Hu 2001), while being able to provide
anytime solutions.

A number of graph search algorithms exists that ad-
dresses dynamic changes in the edge cost of a graph. Fur-
thermore, anytime capable solutions exist that repair plans
fast over time. However, ARA* does not handle changing
environments. For example, if the vehicle holds incomplete
or imperfect initial information, then the solution will need
to be repaired. Currently that can be made only by highly-
inflated versions of D* or D* Lite. AD* tends to be about 10
percent more costly than the optimal path. However, it can
cope with time constraints and imperfect initial information.
It is able to improve and repair its solution over time.

4.3 Approach

The findings in the previous sections yield the Q-PRM/LRM
method for sampling and road map construction. Further-
more A* is used during the initial path search phase. Since

156 Auton Robot (2009) 27: 147–164

the changes to the graph are happening within the field of
view of the vehicle’s obstacle sensor, the effects on the graph
are limited to be close to the vehicle. Hence, using an in-
cremental replanner will be more efficient than planning
from scratch. Additionally, an anytime planning is desired
such that an anytime incremental replanner such as AD* is
the plan search and repair method of choice. The next sec-
tions describe the collision checking method that is used
throughout all stages of the path planner. The successive
sections describe the path search enhancements for rapid
world model updates, support for non-linear path geome-
tries (e.g. splines) and waypoints exceeding the boundaries
of the known environment.

4.3.1 Collision checking with polygons

Besides the sole path computation, collision checks are
known to be computationally complex operations. During
the road map construction (learning phase) and with new
polygons at world model updates, the path planning has to
deal with the cost which is incurred when connecting nodes.
Since the world model uses an arbitrary polyhedral obstacle
model, each polygonal face of an obstacle is decomposed
into triangles. Thus and without loss of generality, obstacles
are constituted by a set of plane triangles, arbitrarily ori-
ented in three-dimensional space. All polyhedral obstacles
are assumed to be closed surfaces, and also assumed not to
overlap. The helicopter is modeled as a sphere around its
center. The sphere radius is the safety distance to be main-
tained during planning (here: twice length of the rotor blades
plus expected worst case path deviation).

The collision detection presented by Langer (2006) is
used which comprises two different detection methods,
TestNodeInFreeSpace (Algorithm 2) and TestPathIsCol-
lisionFree (Algorithm 3). TestNodeInFreeSpace draws a
straight line from configuration point Q to a point Qn ex-
ceeding the bounds of the current polygon set, e.g. at an
altitude above the maximum allowed for flights. This line
is tested for connection with nearby triangles. If this line
crosses none or an even number of triangles then Q lies
in free space, otherwise it is contained within an obstacle.
Based on work in Eberly (1999), the methods distanceTri,
distanceLines and TestTriangleIntersection reformulate a
triangle T (PA,PB,PC) into barycentric coordinates, in or-
der to minimize the squared distance function of Q to a
point in the triangle. Note that for the method TestTrian-
gleIntersection a full minimization is not necessary when
the minimum lies in the interior of the function domain. If
their interiors cross each other and this distance is zero, the
shortest distance between a point in the line segment and
another in the triangle is the one between points in their
interiors.

Algorithm 2 Test if node Q is in free space
Require: Q.dist = ∞

Qn = Q

Qn.z = maxHeight(C) + 1
numc = 0
for all triangle(PA,PB,PC) IN neighborhood(Q) do

if TestTriangleIntersection(Q,Qn,PA,PB,PC) then
numc = numc + 1

end if
end for
if numc is even then

for all triangle(PA,PB,PC) IN neighborhood(Q) do
if distanceTri((P1,P2), (Q,Qn)) < ds then

return false
else if distanceTri((P1,P2), (Q,Qn)) < Q.dist
then

Q.dist = distanceTri((P1,P2), (Q,Qn))

end if
end for
return true

else
return false

end if

Algorithm 3 Collision test of path segment [Q,Qn]
Require: distmin = min(Q.dist,Qn.dist)

for all triangle(PA,PB,PC) IN neighborhood(Q) do
if TestTriangleIntersection(Q,Qn,PA,PB,PC) then

return false
else

for all segment(P1,P2) IN triangle(PA,PB,PC) do
if distanceLines((P1,P2), (Q,Qn)) < distmin

then
distmin = distanceLines((P1,P2), (Q,Qn))

end if
end for

end if
end for
if ds < distmin then

return true
else

return false
end if

4.3.2 Initial path search

The initial path plan is found using a straight forward imple-
mentation of a road map based path planner. In addition to
the original road map approach, this implementation is en-
hanced with a world model index and a spline-based path
smoothing. The index structure bounds the search for af-
fected regions in the world in case of adding a polygon to

Auton Robot (2009) 27: 147–164 157

the world model. The path smoothing assures that the path
geometry does not contain unnecessary waypoints and sub-
optimal heading changes. Thus, the road map-based path
planning has three main phases:

1. A pre-computation step during which the road map is
generated.

2. A query step that performs a graph search in the gen-
erated road map and outputs a sequence of consecutive,
linear path segments.

3. A post-processing step that smooths the linear path seg-
ments.

In phase 1, an a-priori map is loaded into the world model.
If available, known obstacles (e.g. buildings, line of trees)
are represented as set of approximately dimensioned polyg-
onal objects, including “no-fly” zones of infinite height. The
graph is stored as a node set N and a weighted edge set E.
First, N is filled with n quasi-randomly selected (e.g. Hal-
ton/Hammersley sequenced) nodes in 3D space. Figure 10
shows how different sampling sequences affect the cover-
age for a given urban test scenario. This top view shows the
difficulty that there are street corridors and wide open areas
on the right. The low maximum flight height of 25 m results
in sparse sample distribution and fewer connections com-
pared to the open areas. The maximum allowed flight height
is approximately at the height of the buildings such that few
buildings can be crossed.

Hence, for the same number of samples, LRM and QRM
spread and connect more samples in areas between build-
ings. Again, this underlines that urban scenarios necessitate
an efficient sampling.

These nodes are connected generating the set E. For each
node Q a set of neighbor nodes is chosen and each pair of
nodes (Qn,Q) is connected using a local, straight line (see
Algorithm 3). The collision tests for the local path planner
are performed only for the nodes within a predefined maxi-
mum distance. The nodes in our representation do not have
a heading information so that straight line connections are
sufficient. If the local path has no collisions, both nodes and
the path cost (Euclidean distance) are added to E. To opti-
mize the search for graph edges to be updated, a vertex grid
is added to the world model that has coarse resolution of
10 meters per cell. This extension is used to accelerate the
search for affected graph edges, in case an obstacle is added
or altered during the online path planning phase. If a poly-
gon intersects a cell in this grid, it is added to a list of poly-
gons covered by this cell. Note that the list remains empty if
there is no polygon and thus no memory is occupied for free
space.

In phase 2, the current position of the vehicle is added as
a node and connected to the search graph. Additionally, the
set of user-defined waypoints has to be connected. Any set
of waypoints within a task that cannot be connected within a

Fig. 11 Handling tasks exceeding the boundary (dotted line) of the
known environment: (A) offline search graph, (B) task outside the
a-priori known world, (C) additional samples connecting the task to the
search graph, (D) extended spatial index structure (here: vertex grid)

maximum neighborhood is ignored. Moreover, a necessary
condition for exploration-type mission is the path planning
into the a-priori unknown space of the world model. The
example in Fig. 11 shows how task B exceeds the current
world boundaries. First, the nearest collision-free node to
every task node is determined. From this node a new sam-
ple set C is added at the maximum neighborhood distance.
If possible, these nodes are connected to other nodes in the
existing search graph. Additionally, the vertex grid is ex-
tended such that the new task sets the new boundaries of
the known world’s vertex grid. This operation is performed
without noteworthy computational effort since no obstacles
are known for the unexplored space and thus all polygon
lists are an empty set. This second phase ends with the path
planner’s output of a set of linear path segments.

With phase 3 this initial path is smoothed using a canny
pruning technique and spline segments. The next section de-
scribes this optimization process.

4.3.3 Path smoothing

Path smoothing is necessary, since the road map consists of
straight lines that can render a path unachievable due to in-
stant changes of the vehicle’s heading. First, the path output
from the path planner is likely to be simplified using the visi-
bility domain. A given node Q is removed, if its predecessor
Qp and successor Qs may be connected by a collision-free
path. That way, shorter and smoother linear paths are gener-
ated, with a minimized number of collision checks.

The second step is of more complex nature. The con-
tributed work in Praxedes (2007) addresses path optimiza-
tion of non-linear path geometries. The proposed approach
determines which nodes can be removed from the effec-
tive path (“shortcuts”) and where path segments need addi-
tional nodes (“smoothing”). The implementation uses cubic

158 Auton Robot (2009) 27: 147–164

splines. Since the road map only guarantees collision-free
linear paths between its nodes, the splines need further colli-
sion checks. Hence, a spline is discretized using equidistant
samples along the spline path. Each sample is connected us-
ing a linear segment. These linear segments are then tested
against collisions.

However, for collision-detecting purposes this may yield
more points than necessary. Thus, a subset of points is used
during an initial, coarse collision check, and the test space
is refined as necessary. This is implemented as a recur-
sive function that receives an initial and a final position.
This function determines the maximum deviance between
the spline and the straight line that connects the two given
points. If this maximum deviance is greater than a safety
distance, the function calculates a spline point between the
two initial positions and makes a recursive call. Effectively,
two new sub-intervals have to be analyzed. One between the
start position and the middle spline point, and another one
between the middle spline point and the final position. This
algorithm works well since the implemented collision de-
tection algorithm (Algorithm 3) also computes the distance
to the closest obstacle if there is no collision. Thus, if the
distance from a line to the closest obstacle is smaller than
the maximum deviance of the spline, a collision is also de-
tected. This adaptive method returns a final result within few
iterations. The algorithm scales with the safety distance. It
can be visualized as the radius of a cylinder whose axis is
the straight line between two spline points. If the safety dis-
tance is increased, the algorithm speeds up since the number
of points needed to represent the spline is decreased.

Once a collision has been found, the spline is modified
within a limited number of iterations by “pushing” it to-
wards the straight line path that is known to be collision-
free (Fig. 12a). In case the number of iterations is exceeded,
the affected spline segment between two graph nodes is
substituted with the original straight line from the search
graph (Fig. 12b). After that, two splines are connected to
this straight line segment. The boundary condition for the
new splines is the direction of this new straight line. This ap-
proach is feasible in cases where narrow passages require an
extensive number of iterations to fit a spline onto a straight
line (Praxedes 2007).

4.3.4 Road map updates

The road map covers the a-priori known free space. The cur-
rent world model comprises no-fly zones and static obstacles
for which it is assumed that a “disappearing” is not allowed.
Thus, the focus is on detected obstacles, added to the world
model online. The vertex grid-based spatial index structure
generated during the offline learning phase is the basis for
graph updates. Once a new set of polygons is added to the
world model, the space partitioning allows a fast search of

Fig. 12 Repairing spline trajectories by (a) inserting an additional
spline support point in the middle of the linear connection of the spline
segment’s start and end point, (b) substituting a spline segment with a
straight line

affected graph nodes. First, the bounding intervals on the
x, y, z-axes are determined for a given polygon. In case it
intersects a cell in the vertex grid, it is added to a list of poly-
gons that affect this cell. After this step, a graph update com-
prises a search through all graph edges that are affected by
the respective cell change. It is likely that one or more graph
edges have to be marked as non traversable. This is done
by assigning an infinite edge cost, a special threshold that is
known throughout the planning system. If any edge exceeds
that value it is ignored during graph search. Due to the com-
putational efforts of connecting nodes to the graph, no graph
edges are removed from the graph. Moreover it is possible
that the added obstacle will be removed after some time.
Thus, the edges can be assigned the original costs again.

Furthermore, the vehicle’s current position is added as a
node to the search graph (sampling agent). This node is a
special case in two ways. First, it remains an instantaneous,
temporary node which is removed from the graph after the
path search. This way the vehicle position does not flood the
search graph, but more importantly, it does not slow down
the graph search due to a set of nodes with too short edge
lengths. Second, for this node the current heading is used
with a local planner (Hrabar 2006) that accounts for heading
changes in cost such that sharp turns are only preferred if
necessary. The path query favors the first successive node in
the road map which is within a heading delta ≤ 90◦. Note

Auton Robot (2009) 27: 147–164 159

that neighbor search is performed within the radius of the
maximum edge length defined by the sampling dispersion.
Using the vertex grid, the affected graph edges are found
quickly.

4.3.5 Online path planner

A single update to the road map triggers a single iteration of
the online path planner. Three consecutive phases are exe-
cuted:

1. a reconnect of the vehicle’s state [x, y, z,ψ] to the search
graph,

2. a query step, which consists of a search within the up-
dated road map, and

3. a post-processing for “smoother” paths is performed.

After the free space representation has been updated in
the road map, the current position of the vehicle needs to
be connected to the graph. Since the vehicle is expected
to change the position between consecutive replanning
steps, this implementation chooses the nearest, collision-
free neighbor node of the previous path plan. This step
avoids costly computations of the corresponding path seg-
ment and the exact position on this segment. Especially
with spline segments, this step can become computationally
costly.

As described in the beginning of this section, the AD* al-
gorithm is applied for the path search and plan repair prob-
lem. As long as AD* yields suboptimal results, successive
iterations of this online planning process are executed. AD*
has a potential to waste computational time on plan repairs
although a complete replan would be faster. Hence, it is im-
portant to choose a proper method to decide when replan-
ning from scratch is favorable over plan repairing. In this
implementation, two factors influence the decision. First, the
time that has passed by since the last search tree update (e.g.
≤ 10 seconds). Second, it is taken into account how much
of the search tree has become inconsistent (e.g. ≥ 30 %).
Furthermore, AD* is optimized according to the recommen-
dations in David Ferguson and Stentz (2005) that limits the
expense of reordering the list of unexplored states (OPEN
list) using a priority queue containing states with low key
values and one unordered list containing the states with very
large key values. The states from the unordered lists need to
be considered only if the element at the top of the priority
queue has a larger key value than the state with minimum
key value in these lists.

The online path planning step uses the same set of path
smoothing techniques as described in Sect. 4.3.3. Note that
in the context of this work, the assumption from Hrabar
(2006) is made as well: The helicopter is considered to be
holonomic in the commandable degrees of freedom (x, y, z,
ψ) at low velocities (e.g. ≤ 4 m/s).

As a result, an example of the effective path planning is
illustrated in Fig. 13. The first snapshot (a) shows the ini-
tial mission planned through the set of waypoints from A
to B. In the second scene (b) a newly detected obstacle set is
added to the world model which triggers a replan of the path
segment between the start position and A. Note that the on-
line path planner does not consider subsequent mission tasks
like the path from A to B. In (c) the spline path was mod-
ified due to new boundary conditions: The previous replan
from start to A yields a different path tangent approaching A
resulting in different boundary conditions for the spline be-
tween A and B. Snapshot (d) shows the effective path plan
after the vehicle adapted the paths when it detected previ-
ously unknown obstacles.

5 Experimental results

The presented world modeling and path planning approach
is developed within the ARTIS (Autonomous Rotorcraft
Test bed for Intelligent Systems) research project that deals
with unmanned helicopters. Flying test platforms were in-
troduced by Dittrich et al. (2003) and follow a modular
avionics and simulation concept inspired by the Georgia
Tech GTMax UAV (Johnson and Schrage 2003).

The vehicle used in this work is a model helicopter
(Fig. 14) with a main rotor diameter of 3 meters and a max-
imal take-off weight of 25 kg. It enables the evaluation of a
variety of approaches to adaptive flight control, vision-based
navigation, environment perception and onboard decision
making. Sensor equipment comprises GPS, IMU and mag-
netometer for navigation, sonar altimeter for landing, wire-
less data links, manual R/C and video data links, a telemetry
module and a flight control computer. The image acquisition
and processing equipment are a 30 cm baseline stereo cam-
era (Videre Design STOC) and a separate vision computer
(Intel Pentium 4 Mobile). Camera field of view is approxi-
mately 50◦ × 40◦ and range measurements between 6.50 m
and 40 m are evaluated. The camera system provides a 30 Hz
VGA depth image calculation onboard a FPGA processor
including camera calibration and depth confidence checks.
An additional speck removal filter is implemented to im-
prove the depth image quality.

5.1 Mapping in flight test

The mapping approach is tested in outdoor flights under real
operational conditions. In the presented example, the 3D
grid resolution is set to 0.5 m and zones of each 128×128×
32 cells are built. Height histogram resolution for ground
plane detection is set to 0.1 m. Figure 15 shows an example
how image data is converted to an occupancy grid and even-
tually to a polygonal map according to the method described

160 Auton Robot (2009) 27: 147–164

Fig. 13 Online path planning simulation test scenario: Obstacles are
detected within field of view (FOV). Initial path through waypoints
A–B (a), detected new obstacle obstructing the initial path (b), adapted

spline segment through towards A (c), and effective path performed
through A and B (d)

Fig. 14 The flight test carrier ARTIS

in Sect. 3. Figure 16 illustrates the incremental creation of
the world model with prism shapes and ground planes. Sub-
figure (a) shows the helicopter in an urban terrain in the be-
ginning of the flight. Mapping starts with onboard image ac-
quisition as seen in (b) where confident obstacles and ground
planes of the adjacent zones are already detected. While the
helicopter is directed to fly a path along the houses with a
speed of up to 4.5 m/s (c, d), additional objects and ground
planes of other zones are added to the map until the heli-
copter reaches its ending position (e). By comparing the re-

sulting map with ground truth data derived from aerial im-
ages, it is shown in (f) that visible walls, trees, ground and
the gap between the buildings are identified and represented
in the world model. Calculation speed in the given resolution
is between 15 and 20 Hz on a 3 GHz computer, which is suit-
able for real-time use. The tests also show that the quality of
vision and inertial navigation data on a vibrating vehicle is
good enough to perform robotic mapping approaches on a
helicopter system.

5.2 Path planning performance

The overall planning runtime in the test scenario was as-
sessed using the environment setup described for Fig. 10 in
Sect. 4.3.2, the test mission is shown in Fig. 13. The scenario
includes possible world model changes inside the sensor’s
field of view. Obstacles are set into the world model if they
are 40 meters or closer to the vehicle. The vehicle velocity
is limited to 4 m/s. 20 test variations were performed, and in
each of these tests, a subset of two waypoints was randomly
chosen out of a set of predefined, reachable waypoints. The
path planner always found a valid path.

Auton Robot (2009) 27: 147–164 161

Fig. 15 Example of an intensity (a) and depth image (b) taken within a
helicopter flight. In the depth image, darker areas refer to far distances,
missing or filtered depth values are white. Occupancy grid mapping

and ground plane estimation results (c), overlain prism shapes (d) and
final map output without grid (e). Very small grid cell clusters are fil-
tered during the shape extraction process in order to remove noise

Fig. 16 Incremental map building during a helicopter flight in an ur-
ban area. Helicopter and the safety pilot for supervision in the begin-
ning of the mapping flight (a), snapshots of the mapping process (b–d),

photo at of the helicopter at the ending position (e), top view in compar-
ison with ground truth (f). Buildings are shown with original size, trees
are marked as circles with an increased radius to enhance visibility

162 Auton Robot (2009) 27: 147–164

Tests were performed in a simulation environment on
3.0 GHz Pentium 4 PC yielded an average overall plan up-
date time of 60 milliseconds. The runtime share for the
graph update was 35%, for the incremental graph search
10% and for path smoothing 60%. The remaining time
was used for collision checks and vertex grid updates. Dur-
ing the initial road map construction phase the world sam-
pling results of all three test cases are shown in Fig. 10,
where 278 samples were distributed into the a-priori world
of 780 m × 400 m area with a minimum height above
each ground polygon of 5 m and 25 m maximum height
of the Cartesian reference frame. The maximum height of
25 m above ground yields to sparse distribution of con-
nected samples between the building streets. However, with
a LRM or a QRM sampling the number of samples was
sufficient enough to ensure at least one collision-free path
per corridor. Moreover, during replanning a spline trajectory
could be found every time such that no replacement with
less feasible linear path segments would have been neces-
sary.

The world sampling quality applied to the test environ-
ment yielded very few samples (278) compared to other
application domains for roadmap-based path searches (e.g.
robot manipulation with thousands of samples within the
dexterous workspace). Hence, online sampling, edge up-
dates and graph search take comparably short runtime. To
fit the cubic spline between waypoints, splines are ap-
proximated by linear path segments during every colli-
sion check iteration. This yields a comparably high den-
sity of path segments and a higher number of iterations.
A speed improvement could be achieved by reducing the
number of iterations necessary to determine a collision-free
spline.

The path planner finds collision-free paths between a start
and an end position. However, the closer a new obstacle ob-
structs a path to a goal position, the more impact it has on
the final configuration of the vehicle on that goal position.
This is especially the case for spline-based trajectories (e.g.
Fig. 13c), where the successive spline segment from A to B
is not considered during path smoothing as long as A has not
been reached. It is beyond the scope of this work to address
this scheduling problem since more complex consideration
must be made, e.g. to change the overall order in which user
defined waypoints have to be passed depending on path up-
dates.

6 Summary

This work presents an integrated architecture to navigate a
flying vehicle through partially or totally unknown 3D en-
vironments. It consists of a world modeling step to gather
environmental information and a global path planning step,

based on the continuously updated world model. All algo-
rithms are optimized to run on standard computer hardware
onboard a small aerial vehicle and provide key enabling
techniques for its autonomous navigation in complex envi-
ronments.

World modeling refers to robotic mapping procedures.
Sensor data fusion is performed with an occupancy grid
map, and this map is the basis for polygonal shape extrac-
tion to generate the proper world model. A shape defined
through one or multiple right prisms is calculated for each
cluster of occupied grid cells. The shapes are calculated with
each new sensor data in real-time. Ground detection is pro-
vided separately. As an example, the mapping algorithm is
tested in flight by measuring obstacles with a stereo camera
from an unmanned rotorcraft system and confirm the result-
ing compact map representations of obstacles.

The presented global path planner is suited to find paths
at any time when unforeseen obstacle updates yield world
model changes. The planner uses a deterministic sampling
source and is extended by a vertex grid to constrain the
search for affected graph edges to a minimal volume. This
way, world model updates affect the global roadmap to a
locally bounded minimum. An optimized AD* derivate is
used for incremental path replanning. Furthermore, a spline-
based path smoothing method compensates shortcomings of
sampling based path planning. The path planner implemen-
tation runs on a consumer class computing hardware. Re-
search is underway, to explore runtime behavior on larger
terrain data of about five times the area, and double the
height of the tested environments.

The current state of the system leaves room for optimiza-
tions and relaxing constraints. To extend the flight perfor-
mance, research is underway to relax the holonomic path
planning constraint. Moreover, an online task scheduling is
desirable to avoid situations where the overall mission cost
(e.g. total duration time) is affected due to path replanning.
For example, if the initial plan was to fly from task A to C
over B, it is possible that due to new obstacles it could be
more suitable to fly to task C first and then to task B.

References

Adolf, F., Langer, A., de Melo Pontes e Silva, L., & Thielecke, F.
(2007). Probabilistic roadmaps and ant colony optimization for
UAV mission planning. In 6th IFAC symposium on intelligent au-
tonomous vehicles.

Andert, F., & Goormann, L. (2008). A fast and small 3-d obstacle
model for autonomous applications. In IEEE/RSJ international
conference on intelligent robots and systems (pp. 2883–2889).

Branicky, M. S., LaValle, S. M., Olson, K., & Yang, L. (2001). Quasi-
randomized path planning. In IEEE international conference on
robotics and automation (pp. 1481–1487).

Bresenham, J. E. (1965). Algorithm for computer control of a digital
plotter. IBM Systems Journal, 4(1), 25–30.

Auton Robot (2009) 27: 147–164 163

Bruce, J., & Veloso, M. (2007). Real-time randomized motion plan-
ning for multiple domains. In RoboCup 2006: Robot Soccer World
Cup X (pp. 532–539). Berlin: Springer.

David Ferguson, M. L., & Stentz, A. T. (2005). A guide to heuristic-
based path planning. In Proceedings of the international work-
shop on planning under uncertainty for autonomous systems, in-
ternational conference on automated planning and scheduling
(ICAPS).

Dittrich, J. S., Bernatz, A., & Thielecke, F. (2003). Intelligent systems
research using a small autonomous rotorcraft testbed. In 2nd AIAA
unmanned unlimited conference, workshop and exhibit.

Eberly, D. (1999). Distance between two line segments in 3d. Tech.
rep., Geometric Tools, LLC, http://www.geometrictools.com/.

Ersson, T., & Hu, X. (2001). Path planning and navigation of mobile
robots in unknown environments. In IEEE/RSJ international con-
ference on intelligent robots and systems (pp. 858–864).

Garratt, M. A., & Chahl, J. S. (2008). Vision-based terrain following
for an unmanned rotorcraft. Journal of Field Robotics, 25(4–5),
284–301.

Green, W. E., Oh, P. Y., & Barrows, G. (2004). Flying insect inspired
vision for autonomous aerial robot maneuvers in near-earth envi-
ronments. In IEEE international conference on robotics and au-
tomation (pp. 2347–2352).

Griffiths, S., Saunders, J., & Curtis, A. (2006). Obstacle and terrain
avoidance for miniature aerial vehicles. Robotics and Automation
Magazine, 13(3), 34–43.

Hart, P. E., Nilsson, N. J., & Raphael, B. (1968). A formal basis for
the heuristic determination of minimum cost paths. IEEE Trans-
actions on Systems Science and Cybernetic, 4(2), 100–107.

Hrabar, S. E. (2006). Vision-based three-dimensional navigation for
an autonomous helicopter. Ph.D. thesis, University of Southern
California, Los Angeles, CA, USA, adviser-Gaurav Sukhatme.

Hrabar, S. E. (2008). 3d path planning and stereo-based obstacle avoid-
ance for rotorcraft uavs. In IEEE/RSJ international conference on
intelligent robots and systems (pp. 807–814).

Hsu, D., Latombe, J. C., & Kurniawati, H. (2006). On the probabilis-
tic foundations of probabilistic roadmap planning. International
Journal on Robotics Research, 25(7), 627–643.

Iocchi, L., Konolige, K., & Bajracharya, M. (2000). Visually realistic
mapping of a planar environment with stereo. In Seventh interna-
tional symposium on experimental robotics.

Johnson, E. N., & Schrage, D. P. (2003). The Georgia tech unmanned
aerial research vehicle: Gtmax. In AIAA guidance, navigation and
control conference.

Konolige, K. (1997). Improved occupancy grids for map building. Au-
tonomous Robots, 4, 351–367.

Langer, A. (2006). Three-dimensional path planning for an unmanned
rotorcraft using probabilistic roadmaps. Instituto Tecnológico de
Aeronáutica, São José dos Campos.

LaValle, S. M. (2006). Planning algorithms. Cambridge: Cambridge
University Press. Also available at http://planning.cs.uiuc.edu/.

Likhachev, M., Gordon, G., & Thrun, S. (2003). Ara*: Anytime a*
with provable bounds on sub-optimality. In Advances in neural
information processing systems conference. Cambridge: MIT
Press.

Likhachev, M., Ferguson, D., Gordon, G., Stentz, A., & Thrun, S.
(2005). Anytime dynamic a*: An anytime, replanning algorithm.
In AAAI international conference on automated planning and
scheduling.

Morales, Y., & Tsubouchi, T. (2007). Gps moving performance on
open sky and forested paths. In IEEE/RSJ international confer-
ence on intelligent robots and systems (pp. 3180–3185).

Moravec, H. P., & Elfes, A. (1985). High resolution maps from wide
angle sonar. In IEEE international conference on robotics and au-
tomation (Vol. 2, pp. 116–121).

Okada, K., Kagami, S., Inaba, M., & Inoue, H. (2001). Plane segment
finder: Algorithm, implementation and applications. In IEEE in-
ternational conference on robotics and automation (pp. 2120–
2125).

Pettersson, P. O., & Doherty, P. (2006). Probabilistic roadmap based
path planning for an autonomous unmanned helicopter. Journal
of Intelligent and Fuzzy Systems, 17(4), 395–405.

Plaku, E., Bekris, K. E., Chen, B. Y., Ladd, A. M., & Kavraki, L. E.
(2005). Sampling-based roadmap of trees for parallel motion
planning. IEEE Transactions on Robotics, 21, 597–608.

Prassler, E., Scholz, J., & Elfes, A. (2000). Tracking multiple mov-
ing objects for real-time robot navigation. Autonomous Robots, 8,
105–116.

Praxedes, L. G. (2007). Advanced three-dimensional route planning
under complex constraints. Instituto Tecnológico de Aeronáutica,
São José dos Campos.

Ramer, U. (1972). An iterative procedure for the polygonal approxima-
tion of plane curves. Computer Graphics and Image Processing,
1(3), 244–256.

Ren, M., Yang, J., & Sun, H. (2002). Tracing boundary contours in a
binary image. Image and Vision Computing, 20, 125–131.

Ruffier, F., & Franceschini, N. (2005). Optic flow regulation: the key to
aircraft automatic guidance. Robotics and Autonomous Systems,
50, 177–194.

Saunders, J. B., Call, B., Curtis, A., Beard, R. W., & McLain, T. W.
(2005). Static and dynamic obstacle avoidance in miniature air
vehicles. In AIAA infotech aerospace conference.

Scherer, S., Singh, S., Chamberlain, L., & Saripalli, S. (2007). Flying
fast and low among obstacles. In IEEE international conference
on robotics and automation (pp. 2023–2029).

Shim, D. H., Chung, H., & Sastry, S. S. (2006). Conflict-free navigation
in unknown urban environments. IEEE Robotics and Automation
Magazine, 13(3), 27–33.

Thrun, S. (2002). Robotic mapping: A survey. In G. Lakemeyer &
B. Nebel (Eds.), Exploring artificial intelligence in the new mil-
lennium. San Mateo: Morgan Kaufmann.

Vestka, L. E. K. P., Claude Latombe, J., & Overmars, M. H. (1996).
Probabilistic roadmaps for path planning in high-dimensional
configuration spaces. IEEE Transactions on Robotics and Au-
tomation, 12, 566–580.

Watanabe, Y., Calisey, A. J., & Johnson, E. N. (2007). Vision-based
obstacle avoidance for uavs. In AIAA guidance, navigation, and
control conference.

Wu, A. D., Johnson, E. N., & Proctor, A. A. (2005). Vision-aided in-
ertial navigation for flight control. In AIAA guidance, navigation
and control conference.

Zufferey, J. C., & Floreano, D. (2005). Toward 30-gram autonomous
indoor aircraft: vision-based obstacle avoidance and altitude con-
trol. In IEEE international conference on robotics and automation
(pp. 2594–2599).

Franz Andert received the Diploma
degree in computer science in 2006
from the Humboldt University, Ber-
lin, Germany. He is currently a doc-
toral canditate working at the Ger-
man Aerospace Center (DLR) in
Braunschweig, Germany. His re-
search interests include autonomous
vehicles, computer vision, world
modeling and obstacle avoidance.

http://www.geometrictools.com/
http://planning.cs.uiuc.edu/

164 Auton Robot (2009) 27: 147–164

Florian Adolf undertakes research
in the design and implementation
of Decision Making Systems. Since
2005 he works in as a postgradu-
ate fellow for the Institute of Flight
Systems at the German Aerospace
Center (DLR). Before joining DLR,
he studied computer vision appli-
cations for behavior-based obstacle
avoidance in the Robocup Middle-
Size team AIS/BIT, a project on
“autonomous mobile robotics in
highly dynamic environments”,
which is also known as robot soccer.
He graduated from the Department

of Computer Science at Trier University of Applied Sciences in 2003.
In early 2006 he received a Master of Science in Autonomous Sys-
tems from the Department of Computer Science at Bonn-Rhein-Sieg
University of Applied Sciences.

	Online world modeling and path planning for an unmanned helicopter
	Abstract
	Introduction
	Autonomous flights in a changing environment
	Context and basic idea
	Representing the environment
	Adaptive path planning

	Online world model updating
	Combining grid and feature maps
	Grid mapping
	Sensor data interpretation
	The temporary zone-partitioned occupancy grid

	Feature mapping
	Extracting and inserting features
	Merging and tracking objects
	Horizontal shape slicing
	Extraction and approximation of the polygonal shape

	Ground planes

	Online path planning
	Road map sampling strategy
	Graph search
	Approach
	Collision checking with polygons
	Initial path search
	Path smoothing
	Road map updates
	Online path planner

	Experimental results
	Mapping in flight test
	Path planning performance

	Summary
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

