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Abstract We address the problem of online path planning
for optimal sensing with a mobile robot. The objective of
the robot is to learn the most about its pose and the en-
vironment given time constraints. We use a POMDP with
a utility function that depends on the belief state to model
the finite horizon planning problem. We replan as the ro-
bot progresses throughout the environment. The POMDP is
high-dimensional, continuous, non-differentiable, nonlinear,
non-Gaussian and must be solved in real-time. Most existing
techniques for stochastic planning and reinforcement learn-
ing are therefore inapplicable. To solve this extremely com-
plex problem, we propose a Bayesian optimization method
that dynamically trades off exploration (minimizing uncer-
tainty in unknown parts of the policy space) and exploita-
tion (capitalizing on the current best solution). We demon-
strate our approach with a visually-guide mobile robot. The
solution proposed here is also applicable to other closely-
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1 Introduction

Online path planning is a fundamental and central problem
in mobile robotics. The problem is notoriously hard because
robots have to contend with environments that exhibit com-
plex dynamics and unknown uncertainties. Furthermore, ro-
bots only have access to a restricted set of partial observa-
tions of the world because of their limited field of view and
inherent motor constraints.

In this paper, we focus on an optimal sensing scenario
where the robot must adaptively plan a path so as to gather
observations in an optimal way. More precisely, the objec-
tive is for the robot to maximize the information about its
location and the location of navigation landmarks in the en-
vironment. The main sensor is a simple inexpensive camera.
We adopt a model predictive strategy, in which the robot re-
plans the path as new observations are acquired. The robot
has to achieve the optimal sensing goals while being subject
to limited time and energy budgets, as well as, constraints
imposed by its kinematic and dynamic capabilities.

Note that this problem is the same as the one of dynam-
ically deploying a mobile sensor to learn about an environ-
ment. It is, therefore, of immediate relevance to the fields of
sensor networks, calibration and terrain-aided navigation
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(Bergman 1999; Paris and Le Cadre 2002; Meger et al. 2009;
Hernandez et al. 2004; Singh et al. 2005). Moreover, since
the primary sensor is a camera, this may be also be inter-
preted as an active vision application, where the robot has to
decide where to attend to in order to dynamically understand
a scene.

Online path planning is essential for proper simultane-
ous localization and mapping (SLAM) (Sim and Roy 2005;
Stachniss et al. 2005). Mobile robots must maximize the
size of the explored terrain, but, at the same time, must
ensure that localization errors are minimized. While ex-
ploration is needed to find new features, the robot must
return to places where known landmarks are visible to
maintain reasonable map and pose estimates. Path plan-
ning also plays a key role in the theoretical and practi-
cal convergence of SLAM algorithms (Bailey et al. 2006;
Martinez-Cantin et al. 2006).

Starting with a fixed horizon, we model the path plan-
ning problem with a partially observed Markov decision
process (POMDP), with continuous states and actions. The
complex robot dynamics and environmental coupling intro-
duce nonlinearity, non-Gaussianity and non-differentiability
in the POMDP. Moreover, unlike traditional POMDP mod-
els where the reward is a function of the actions and states
directly, in our application the reward is a function of the
belief state (also known as the information state in control
or the posterior filtering distribution in Bayesian inference).
This distinction creates additional high-dimensional inte-
grals and recursions, which complicate the solution enor-
mously. Utility (reward) functions that depend on the belief
state are commonplace in the field of experimental design
(Chaloner and Verdinelli 1995; Kueck et al. 2006). There,
the formidable computational challenges, which arise when
maximising expectations with respect to these utility func-
tions, are well recognized.

Most existing reinforcement learning techniques are un-
able to cope with our high-dimensional, non-differentiable,
continuous POMDPs (see Riedmiller et al. 2009 in this spe-
cial issue for an introduction to reinforcement learning).
Even a toy problem would require enormous computational
effort. As a result, it is not surprising that most existing ap-
proaches relax the online stochastic path planning problem.
For instance, full observability is assumed in Paris and Le
Cadre (2002) and Sim and Roy (2005), known robot location
and discrete actions are assumed in Leung et al. (2005) and
Singh et al. (2007), a small set of actions and myopic plan-
ning is adopted in Stachniss et al. (2005); Vidal-Calleja et
al. (2006); Bryson and Sukkarieh (2008), and discretization
of the state and/or actions spaces is required in Hernandez
(2004), Kollar and Roy (2008) and Sim and Roy (2005). The
method proposed in this work does not rely on any of the pre-
ceding assumptions. In Singh et al. (2009), a sound way of

exploiting sub-modularity in these planning and sensing do-
mains is proposed. The approach in that publication is how-
ever restricted to off-line path planning and makes use of
discrete state spaces. It is not clear yet how limiting or use-
ful the sub-modularity assumption will prove to be in the
more general problem that we attack here.

We represent the policy of the POMDP with a parame-
terized path. The robot can easily follow this planned path
using either a standard PID controller or any other classi-
cal regulator. The robot replans (recomputes the path) as
it moves through the environment. The complexity of the
model demands the use of simulation techniques to approx-
imate the cost function. However, since the dynamic model
is non-differentiable, one cannot use gradient-based stochas-
tic approximations (Konda and Tsitsiklis 2003; Singh et
al. 2005) or policy gradient methods (Baxter and Bartlett
2001; Peters and Schaal 2008a, 2008b) to update the para-
meters of the policy. Instead, we propose here the adoption
of Bayesian optimization techniques (Mockus et al. 1978;
Jones 2001; Lizotte 2008). Bayesian optimization methods
approximate the expected cost function with a surrogate
function that is cheaper to evaluate: a Gaussian process in
our case. The surrogate function’s mean and covariance are
used to choose the policy parameter values that should be
tried next. After actively selecting a candidate parameter
vector, simulations are conducted to obtain a new estimate of
the expected cost function and the surrogate function is re-
fit. The decision of what policy parameter to try next trades
off exploration (trying parameters where the cost function
is very uncertain) and exploitation (trying parameters where
the cost function is known to be low). This global optimiza-
tion technique has the nice property that it aims to minimize
the number of cost function evaluations; a fundamental re-
quirement for real-time mobile robotics. Moreover, unlike
gradient-based methods, it is likely to do well even in set-
tings where the cost function has many local minima.

2 Goals and model specification

The goal is for a robot to plan a path so as to minimize uncer-
tainty about its pose (location and heading) and the location
of environmental landmarks, which are often used for nav-
igation. The typical setup is illustrated in Fig. 1. Initially,
the robot has a rough probabilistic estimate of its pose and
known landmark locations. As the robot explores, it must
reduce the uncertainty in these variables whose existence is
known. At the same time, it must recruit new landmarks into
its representation of the environment whenever it encounters
them for the first time.

The robot has a limited field of view. It can only observe
landmarks that fall within its camera sight. Even when vi-
sual features are in sight, the robot may fail to detect these
because of sensor limitations.
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Fig. 1 This simulation shows three stages of the robot exploring an
environment. The simulation includes landmarks that the robot does
not know a priori. As soon as the robot observes these landmarks, it
incorporates them into its model of the world. The robot continuously

plans and replans so as to minimize the uncertainty in its pose and in
the location of the known landmarks. The figure also shows the robot’s
limited field of view and the paths that it plans to follow at the three
simulation stages

The path of the robot is parameterized in terms of a finite
set of ordered way-points θ (which are used by a motion
generator to compute a sequence of T commands u1:T ) that
take into account the kinematic and dynamic constrains of
the robot and environment. Every few steps, the robot re-
plans the path using the information gathered in these steps.
This adaptive feedback process is necessary to avoid traps
that open loop algorithms cannot escape. While exploring,
the robot is subject to other constraints such as low en-
ergy consumption, limited time, safety measures and obsta-
cle avoidance. However, for the time being, let us first focus
on the problem of minimizing posterior errors in localization
and mapping as this problem already captures an enormous
degree of complexity.

Having restricted the problem to one of improving the
information in the joint posterior distribution of the robot’s
pose and landmarks, a natural cost function for this T -
step ahead stochastic planning problem is the average mean
square error (AMSE) of the state:

Cπ
AMSE = Ep(x0:T ,y1:T |π)

[
T∑

t=1

λT −t (̂xt − xt )(̂xt − xt )
′
]
, (1)

where λ ∈ [0,1] is a discount factor, π(θ) denotes the policy
(path) parameterized by the way-points θ ∈ R

nθ , xt ∈ R
nx is

the hidden state (robot pose and location of map features)
at time t , y1:T = {y1,y2, . . . ,yT } ∈ R

nyT is the sequence of
observations along the planned trajectory for T steps, u1:T ∈
R

naT is the sequence of actions, and x̂t = Ep(xt |y1:t ,π)[xt ]
is the estimate of the state. The expectation is taken with
respect to the full path distribution:

p(x0:T ,y1:T | π) = p(x0)

T∏
t=1

p(xt | ut ,xt−1)p(yt | xt ,ut ).

We may, alternatively, focus on the uncertainty of the poste-
rior estimates at the end of a planning horizon:

Cπ
AMSE = Ep(xT ,y1:T |π)[(̂xT − xT )(̂xT − xT )′]. (2)

Note that the true states and observations are unknown in
advance and so one has to marginalize over them. Note also
that the cost function is a matrix and must be mapped to a
scalar. This can be done by either taking the trace or determi-
nant of this matrix. This choice of cost function is a sensi-
ble one when the objective is to minimize the uncertainty
in the model parameters (Chaloner and Verdinelli 1995;
Sim and Roy 2005).

The cost function, transition and observation models, and
policy define our POMDP model. This POMDP variant is
simpler than classical POMDPs in that the policy is not
parameterized explicitely in terms of the belief state. On
the other hand, the utility is now a function of the belief
state p(xt | y1:t ,π). The expensive and difficult problem of
estimating the belief state is known as SLAM in robotics
(Durrant-Whyte and Bailey 2006).

3 Solving the POMDP with direct policy search

Since the models are not linear-Gaussian, one cannot use
standard Linear Quadratic Gaussian (LQG) controllers to
solve the problem. Moreover, since the action and state
spaces are high-dimensional and continuous, discretization
as in Tremois and Le Cadre (1999) and many other works
would fail. The discretized POMDP is too large for stochas-
tic dynamic programming techniques derived from the sem-
inal work of Smallwood and Sondik (1973). The fact that
the utility depends on the belief state further complicates the
problem.
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Fig. 2 Simulating future observations using the prior information is
not trivial because of discontinuities in the observation model due to
the limited field of view and occlusion. The observations are generated
by drawing samples from the posterior distributions of the robot pose
and landmark locations. If the landmark samples fall within the simu-
lated field of view, they are detected with a predefined probability. That
is, we incorporate the detection rates of the sensors

To overcome these difficulties, we adopt the direct pol-
icy search method for solving POMDPs (Williams 1992;
Baxter and Bartlett 2001; Ng and Jordan 2000); see also the
papers of Howard et al. (2009); Stolle and Atkeson (2009);
Vlassis et al. (2009) in this special issue. In this approach,
the cost function is approximated with simulations. This is
appealing in our setting because we have reasonable sen-
sor and actuator models, which enable us to simulate tra-
jectories with relatively low variance. Specifically, given M

simulated trajectories, as described in Fig. 3, the cost func-
tion (2) may be approximated with a Monte Carlo average:

Cπ
AMSE ≈ 1

M

M∑
i=1

(̂x(i)
T − x(i)

T )(̂x(i)
T − x(i)

T )′. (3)

In the simulator, the actions are generated by following
the current path (policy) with a simple controller and the
states are sampled according to the transition model. The
observations y are hallucinated using the procedure outlined
in Fig. 2. After the trajectories {x(i)

1:T ,y(i)
1:T }Mi=1 have been ob-

tained, a SLAM filter (EKF, UKF or particle filter) is used
to compute the posterior mean of the belief state x̂(i)

1:T .
In policy search, the approximated cost function is used

to update the policy parameters θ . Typically, this is done
by following stochastic gradients (Baxter and Bartlett 2001;
Peters and Schaal 2006). However, in our domain, the cost
function is not differentiable. Hence, we must come up with
a different approach that does not require differentiabil-
ity. The new approach must also take computation into ac-

Fig. 3 Direct policy search strategy for T -steps ahead planning. Sam-
ples that fail to satisfy time and energy budgets are rejected

count. Note that approximating the cost function with sam-
ples requires that we compute the belief state (i.e. solve the
SLAM problem) for each sample. This is extremely expen-
sive. The new approach must therefore minimize the num-
ber of queries. For these reasons, we chose to carry out
Bayesian optimization to update the parameters. This opti-
mization procedure will be discussed in detail in the follow-
ing section. The overall algorithm for T -steps ahead open-
loop planning is shown in Fig. 3.

As the robot moves along the planned path, it is possible
to use the newly gathered observations to update the pos-
terior distribution of the state. This distribution can then be
used as the prior for subsequent simulations. This process of
replanning is known as open-loop feedback control (OLFC),
see Bertsekas (1995). We can also allow for the planning
horizon to recede. That is, as the robot moves, it keeps
planning T steps ahead of its current position. This control
framework is also known as receding-horizon model predic-
tive control, see Maciejowski (2002) for a review. We will
use the terms open-loop feedback control and model predic-
tive control interchangeably.

4 Bayesian optimization of the policy parameters

The objective of Bayesian optimization is to find the min-
imum of the cost function with as few cost evaluations as
possible (Kushner 1964; Jones et al. 1998; Locatelli 1997;
Mockus et al. 1978). In direct policy search, the evaluation
of the expected cost using Monte Carlo simulations is very
costly. One therefore needs to find a minimum of this func-
tion with as few policy iterations as possible.

Bayesian optimization provides an exploration-exploita-
tion mechanism for finding multiple minima. Unlike tradi-
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tional active learning, where the focus is often only in explo-
ration (e.g. query the points with the maximum variance, en-
tropy or other information-theoretic measures), here the goal
is to balance exploitation and exploration. That is, to save
computation, we only want to approximate the cost function
accurately in regions where it is profitable to do so. We do
not need to approximate it well over the entire state space.

One could apply the Bayesian optimization approach to
learn value functions in areas of interest, say areas of high
value, but we shall not pursue this approach here. Instead,
we will apply the approach to find the minima of the ex-
pected cost as a function of the policy parameters θ .

Bayesian optimization involves three stages. First, a prior
distribution is defined over the object being analyzed. In our
case, the object is the cost function Cπ(·). More precisely,
it is the trace of the AMSE matrix, but we drop the trace
symbol for ease of notation.

Second, a set of N previously gathered measurements
D1:N = {θi,C

π(θi)}Ni=1 is combined with the prior, through
Bayes rule, to obtain the posterior distribution over the ob-
ject. Note that N corresponds to the number of policy search
iterations thus far. At iteration j of policy search, we choose
a parameter value θj and evaluate the corresponding cost
Cπ(θj ).

Finally, the posterior risk is minimized so as to determine
which new parameters θ should be tried next. Mathemati-
cally, the point of maximum expected improvement, as for-
mulated by Mockus et al. (1978), is given by:

θN+1 = arg max
θ

E[max{0,Cπ
min − Cπ(θ)}|D1:N ], (4)

where I (θ) = max{0,Cπ
min − Cπ(θ)} denotes the improve-

ment over a defined standard. Here, our standard is the
best (lowest) value of the cost function thus far, Cπ

min. The
expectation is taken with respect to the posterior distribu-
tion P(Cπ(·)|D1:N). In contrast with the popular worst-case
(minimax) approach, this average-case analysis can provide
faster solutions in many practical domains where one does
not believe that the worst case scenario is very probable.

To implement the first stage of Bayesian optimization, we
place a Gaussian process (GP) prior over the expected cost
function: Cπ(·) ∼ GP(m(·),K(·, ·)), see e.g. Rasmussen
and Williams (2006) for details on Gaussian process regres-
sion. The inherent assumption here is one of smoothness.
Although we actually learn the mean function in the manner
proposed in Martinez-Cantin et al. (2007a), for presentation
clarity let us assume that it is the zero function as it is of-
ten the case in the machine learning literature. For details on
the actual implementation, see Martinez-Cantin (2008). We
adopt the standard Gaussian and Matern kernel functions to
describe the components of the kernel matrix K. The para-
meters of these functions (say kernel width in the Gaussian
case) can be learned by maximum a posteriori inference, but

since in our active learning setting we don’t have many data
points, the priors need to be fairly informative. That is, one
has to look at the data and get a rough estimate of the ex-
pected distance between data points in order to choose the
smoothing kernel width.

It is then easy to obtain an exact expression for the mean,
μ, and variance, σ 2, of the posterior distribution:

μ(θ) = kT K−1Cπ
1:N,

(5)
σ 2(θ) = k(θ, θ) − kT K−1k.

where Cπ
1:N = (Cπ

1 , . . . ,Cπ
N), K denotes the full kernel ma-

trix and k denotes the vector of kernels k(θ, θi) for i =
1, . . . ,N . Since the number of query points is small, the GP
predictions are very easy to compute.

The expectation of the function I (θ) = max{0,Cπ
min −

Cπ(θ)}, with respect to the Gaussian process posterior dis-
tribution N (Cπ(θ);μ(θ), σ 2(θ)), can be computed by inte-
grating by parts:

E(I (θ)) =
∫ I=∞

I=0
I

[
1√

2πσ 2(θ)
e
− (Cπ

min−I−μ(θ))2

2σ2(θ)

]
dI.

This results in the following expression:

EI (θ) =
{

(Cπ
min − μ(θ))�(d) + σ 2(θ)φ(d) if σ 2 > 0

0 if σ 2 = 0,

(6)

where φ and � denote the PDF and CDF of the standard

Normal distribution and d = Cπ
min−μ(θ)

σ 2(θ)
. Finding the maxi-

mum of the expected improvement function is a much eas-
ier problem than the original one because the expected im-
provement function (also known as the infill function) can be
cheaply evaluated. Several refinements of this infill function
have been proposed in Schonlau et al. (1998) and Sasena
(2002). To optimize the expected improvement function, we
used the DIRect algorithm (Jones et al. 1993; Finkel 2003;
Gablonsky 2001), though other methods such as sequential
quadratic programming could also be adopted.

The overall procedure is shown in Fig. 4 and illustrated
in Fig. 5. Many termination criteria are possible, including
time and other computational constraints. When carrying
out direct policy search, the Bayesian optimization approach
has several advantages over the policy gradients method: it
is derivative free, it is less prone to be caught in the first lo-
cal minimum, and it is explicitly designed to minimize the
number of expensive cost function evaluations.

Bayesian optimization has a long history, starting with
the seminal work of Kushner (1964) with one-dimensional
Wiener processes. It has been successfully applied to deriva-
tive-free optimization and experimental design Jones et al.
(1998) and has recently begun to appear in the machine



98 Auton Robot (2009) 27: 93–103

Fig. 4 Bayesian optimization algorithm

Fig. 5 An example of Bayesian optimization. The figure on top shows
a GP approximation of the cost function using 11 simulated values.
In reality, the true expected cost function is unknown. The figure also
shows the expected improvement (infill) of each potential next sam-
pling location in the lower shaded plot. The infill is high where the GP
predicts a low expected cost (exploitation) and where the prediction
uncertainty is high (exploration). Selecting and labelling the point sug-
gested by the highest infill in the top plot produces the GP fit in the plot
shown below

learning literature (Lizotte et al. 2007; Brochu et al. 2007).
There are several consistency proofs for this algorithm in
the one-dimensional setting (Locatelli 1997). There are also
convergence proofs for a simplification of the algorithm us-
ing simplicial partitioning in higher dimensions (Zilinskas
and Zilinskas 2002) and, more recently, for GPs with Matern
kernels in Vazquez and Bect (2008). The question of ob-
taining rates of convergence for these algorithms in high-
dimensions is still open.

5 Simulations

In our simulation setup, the environment is a free space area
with several point features distributed at random (see Fig. 7).
The a priory map is known with very high uncertainty, rang-
ing from 1 to 5 m of standard deviation. The simulated ro-
bot is a hovering aerial vehicle equipped with inertial sen-
sors, a camera and an altimeter. The field of view is lim-
ited to 7 meters. We adopted a detection system that pro-
vides observations every 0.5 seconds. The sensor noise is
Gaussian for both range and bearing, with standard devia-
tions σrange = 0.2 · range and σbearing = 2o. The policy is
given by a set of ordered way-points. The motion commands
are updated by a controller every 0.1 seconds. The controller
guarantees that the robot is heading toward the goal, or hov-
ering over it, for a fixed amount of time.

We compared the behavior of the robot using different
planning and acting horizons:

OLC1 : This is an greedy algorithm that select the most in-
formative way-point ahead in open-loop, i.e., the planning
horizon is 1.

Fig. 6 Evolution of the trace of the state covariance matrix for 15 ran-
dom maps using OLC1, OLC3 and OLFC3, with 99% confidence in-
tervals



Auton Robot (2009) 27: 93–103 99

OLC3 : This is an open loop algorithm that plans with 3
way-points ahead. The planning process is still myopic.

OLFC3 : This is an open loop feedback controller with
receding horizon, i.e., a model predictive controller. The
planning horizon is again 3 way-points, but this time, the
robot only executes 1 step before replanning.

It is obvious that the OLC algorithms have a lower computa-
tional cost. On the other hand, they can get easily trapped in

local minima. As shown in Fig. 6, the open loop approaches
have much higher variance. That is, in some of the runs they
get trapped exploiting small regions of the map and fails to
explore the environment properly. This lack of robustness is
unacceptable, so we favor the OLFC approaches.

We tested our algorithms by simulating several maps as
shown in Fig. 7. We considered two alternative methods for
comparison purposes. The first is a standard heuristic for ex-

Fig. 7 Exploration trajectories for different environments and differ-
ent cost functions. Each row is a different scenario while each column
is a different cost, from left to right: AMSE, MAPSE, Largest Mar-

ginal Heuristic. The landmarks are plotted in blue; the robot, in red.
The ellipses represent the uncertainty threshold at 95%
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Fig. 8 Evolution of the trace of the state covariance matrix for
15 runs with AMSE, MAPSE and Large Marginal Heuristic cost
function using OLFC3. The comparison also shows two posterior
Cramer-Rao bounds on the AMSE cost function

ploration in robotics, which we will refer to as the Largest
Marginal Heuristic approach. Here, the robot follows the
shortest path to the landmark of highest uncertainty. We also
designed an alternative, which we call Maximum a Posteri-
ori Square Error (MAPSE), that uses only one sample of
the cost function at each policy update. In particular, one
uses the maximum a posteriori values of the map and ro-
bot location at the current optimization step and feeds these
into the simulator to obtain a fast estimate of the cost func-
tion. This estimate is used to update the policy parameters
in the Bayesian optimization step. As shown in Fig. 7 this
procedure seems to do as well as the AMSE approach. How-
ever, it is far more efficient computationally because it only
requires one simulation to approximate the cost function.
Figure 8 shows the results of several simulations, where we
have also included the posterior Cramer-Rao Bounds of the
AMSE cost function (Martinez-Cantin et al. 2007b). Clearly
the MAPSE approach is not only efficient (a requirement for
real-time implementation), but also results in the lowest er-
ror. The success of this method is a result of the fact that our
models are fairly accurate and consequently the simulations
have low variance.

Finally, we also tested the MAPSE approach in environ-
ments where not all features are known a priori. By enabling
the robot to augment its map with new features, we were
able to get similar results. Figure 1 shows the results of one
typical simulation run.

6 Experiments with a Pioneer robot

The method presented in this paper has been tested on a Pio-
neer robot with a low-cost web-camera. The map is built us-
ing fiducial landmarks with the ARToolkit Tracker of Kato

Fig. 9 Mobile robot and experimental environment

Fig. 10 Total uncertainty (trace of the full covariance matrix) for the
Pioneer robot

and Billinghurst (1999). The robot and the experimental
setup are shown in Fig. 9. The laptop on top on the robot
is in charge of all computation: image processing, motion
control, planning, SLAM and so on. The navigation is car-
ried out in real-time.

We chose fiducial landmarks for comparison purposes
since, in this case, the algorithms share the same map. Fea-
ture detectors using natural images are not very robust and
consequently are not suitable for accurate comparison and
benchmarking. However, the system was built using the
YARP middleware by Metta et al. (2006) and therefore it al-
lows us to use local feature detectors, such as SIFT or SURF.

Figure 10 shows a comparison of the MAPSE approach
against a random sampling of the way-points. The random
exploration finishes earlier than the active version because,
at that point, the robot is lost and cannot navigate prop-
erly. When this happens, it tries to navigate outside the map
and hits the walls. Figure 11 compares the robot uncertainty
again for the active and random exploration. In the random
exploration, the robot uncertainty is considerably larger.
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Fig. 11 Robot location uncertainty

7 Conclusions

We presented a computationally efficient method for online
path planning. The method was shown to allow a robot to
plan a path so as to explore its environment in an optimal
way. Comparisons against many existing alternatives show
that the method has significant promise. There are many av-
enues for further work: deciding what landmarks are con-
venient for navigation, testing other strategies for recruiting
new landmarks, and allowing for more sophisticated poli-
cies.
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