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Abstract An online asymmetric trajectory generation meth-
od for biped robots is proposed to maintain dynamical pos-
tural stability and increase energy autonomy, based on the
running stability criterion defined in phases. In a support
phase, an asymmetric trajectories for the hip and swing leg
of the biped robots is obtained from an approximated run-
ning model with two springless legs and a spring-loaded
inverted pendulum model so that the zero moment point
should exist inside the safety boundary of a supporting foot,
and the supporting leg should absorb large reaction forces,
take off and fly through the air. The biped robot is under-
actuated with six degrees of under-actuation during flight.
The trajectory generation strategies for the hip and both legs
in a flight phase use the approximated running model and
non-holonomic constraints based on the linear and angular
momenta at the mass center. Next, we present an impedance
control with a force modulation strategy to guarantee a sta-
ble landing on the ground and simultaneously track the de-
sired trajectories where the desired impedance at the hip
link and both legs is specified. A series of computer simu-
lations for two different types of biped robots show that the
proposed running trajectory and impedance control method
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satisfy the two conditions for running stability and make the
biped robot more robust to variations in the desired running
speed, gait transitions between walking and running, and
parametric modeling errors. We have examined the feasibil-
ity of this method with running experiments on a 12-DOF
biped robot without arms. The biped robot could run suc-
cessfully with average forward speed of about 0.3359 [m/s].
Keywords Biped robot · Running stability · Angular
momentum · Asymmetric trajectory · Impedance control

1 Introduction

There is an increasing need for robots to work together
and more closely with human beings. Since human beings
mostly stay in artificial spaces created only for themselves,
robots working in the same space as humans should have
the capability to adapt themselves to artificial environments.
Many artificial elements including stairs and door thresholds
are hazards to robots that move around on wheels. However,
such elements can be successfully and easily dealt with by
biped robots that move more similarly to humans.

Most research on biped robots aims at developing design
and control methods for various motion patterns closer to
human-like movement. Above all, with the need for more
dynamic and rapid motions, it is important for biped robots
to have capabilities like running naturally. Progress in this
direction has many difficulties since biped robots are me-
chanical systems with a changing number of degrees of free-
dom (e.g. due to contact) and under-actuated mechanisms
with non-holonomic constraints. In addition, the control sys-
tem responsible for various maneuvers must also take action
in anticipation of the ballistic phase, in that linear and an-
gular momentum cannot be manipulated once the ballistic
phase begins (Frohlich 1979).
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Despite these difficulties, Raibert and colleagues first
have studied hopping and running robots (Raibert 1986;
Hodgins and Raibert 1991; Hodgins 1991; Playter and Raib-
ert 1992). They built and controlled a series of multi-legged
machines beginning with an one-legged machine driven by
pneumatic and hydraulic actuators using the decoupled con-
trol algorithms and their machines performed various ac-
tions including running up and down on the stairs and som-
ersaults. After their work, these types of robots which are
equipped with a spring mechanism to restore kinetic en-
ergy during a stance phase have been widely studied (Lap-
shin 1991; Ahmadi and Buehler 1997; Francois and Samson
1998; Hyon and Emura 2004). With their elegant mechan-
ical models with compliant elements, complex dynamical
behaviors were achieved by control algorithms which guar-
antee the existence of the Poincaré return map associated
with periodic running gaits and their stability properties for
a running legged robot.

Such stable and energy-efficient control methods have
been applied for various legged robots with revolute joints
and no leg spring to move with symmetry at touch-down
and take-off using a spring-loaded inverted pendulum model
(SLIP model) (Saranli et al. 1998). In multi-body legged ro-
bots where the total center of mass is not located at the hip
joint, it is difficult to calculate the exact flight and stance
trajectories because it requires the explicit solution to the
robot’s equations of motion. Inaccurate knowledge leads
to rapid failure of dynamic running due to under-actuation
and non-holonomic constraint caused by the conservation of
angular momentum in flight. For stable dynamic running,
Chevalereau et al. developed asymptotically stable running
gaits using a hybrid zero dynamics for running of a pla-
nar biped robot with revolute joints, designed without feet
(Chevalereau et al. 2005). To minimize the effect of un-
modeled dynamics, Ikeda et al. proposed a control strategy
of legged robots which realizes differential equations as con-
trolled constraints, i.e., time responses of the position of the
center of mass of the whole robot, the zero angular momen-
tum about the center of mass, and the angular momentum
with respect to the toe which are obtained from the photo-
graph data of the gait motion of a kangaroo (Ikeda et al.
1999). Kajita et al. proposed methods to generate running
trajectories for a humanoid robot using linear and angu-
lar momentum equations of considerable complexity (Kajita
et al. 2002, 2004). The highly successful control concepts
for walking gaits of biped robots have been expanded into
dynamic running using constraints that the ZMP is within
the safety polygon in the support phase and the angular mo-
mentum about the center of mass is almost zero or inside
the limited range in the flight phase (Park and Kwon 2003;
Kwon and Park 2003; Nagasaka et al. 2004).

In our previous studies, to control effectively the under-
actuated mechanical system with a changing number of de-
grees of freedom, the following conditions were addressed:

1) A full running cycle is divided into a support phase and
a flight phase, 2) Non-holonomic constraints are derived
by applying the linear and angular momentum theorem to
the entire robot, and 3) Two legs and body form approx-
imately symmetric configurations with respect to a verti-
cal axis passing through the hip during the flight phase or
stance phase. The analysis of running based on these con-
ditions gives us an effective symmetric running trajectory
for dealing with a biped robot without requiring detailed
solutions to complex formulations (Park and Kwon 2003;
Kwon and Park 2003). However, the control system re-
quires online trajectory modification and additional forces
and torques for periodic or recursive running because two
heavy legs and arms may not be equally spaced about the
center of mass, and foot slipping, joint friction, and model-
ing errors exist in the system, so that the biped robot will not
perform more than a few hops. The locomotion pattern also
deviates from symmetry when the control system purposely
changes running speed and transits gaits.

This paper proposes an asymmetric running trajectory
which is specified at the hip link and both legs of a biped ro-
bot using an approximated running model with two spring-
less legs the mass of which is concentrated at its middle
position. In the flight phase, in order for a biped robot to
touch its foot on the ground exactly after the planed dura-
tion of flight and to rotate about its center of mass through
the planed angle, the trajectories of the hip link and both
legs are obtained from the running model and the modified
linear and angular momentum equations. In running of most
animals, the angular momentum about the center of mass
becomes negative inside the limited range at the beginning
of the touch-down and recovers to certain values, i.e., al-
most zero, before lift-off (Frohlich 1979; Ikeda et al. 1999;
Arikawa and Mita 2002). If the angular momentum about
the center of mass does not recover to the value at the be-
ginning of the flight phase, the steady-state ballistic motions
cannot be achieved. The support phase motions determine
the necessary magnitude of angular momentum for the fol-
lowing flight phase. It is well-established that the arm and
leg motions according to styles or patterns of flight require
specific and significantly different amounts of angular mo-
mentum in order to produce acceptable configurations at
touch-down (Ramey 1973). If the angular momentum pro-
duced at lift-off is not properly matched or inappropriate to
one style of flight, the arm and leg motions according to the
style of flight may result in unstable configurations at touch-
down. Instead of finding the correct amount of angular mo-
mentum required for the style of flight, the leg motions dur-
ing flight are determined by the angular momentum which
is defined at the running model’s center of mass based on
the desired support phase trajectories of the hip link and two
legs.

In the support phase, many of the essential characteris-
tics of the elastic element which stores and releases energy
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in the legs of a human can be captured with a SLIP model.
This model has not only been used to describe and predict
human locomotion, but also to move the leg of a biped robot
like a linear spring (Alexander 1990; Seyfarth et al. 2002;
Papadopoulos and Cherouvim 2004). Such SLIP-like (ball-
like) leg motions which are achieved by elastic operation
of a classical electrical drive in each leg joint of the biped
robot are important for biped robots to reduce the energy
consumption and achieve the stability, and facilitates con-
trol. In order to achieve the SLIP-like motion simultane-
ously with maintenance of stable running according to the
robot’s states at touch-down and lift-off, an asymmetric tra-
jectory is generated from the approximated running model
so that the biped robot bounces like a bouncing elastic ball
during the support phase. The asymmetric trajectories of the
hip link and two legs can be modified online according to
the position and velocity of the hip link at touch-down, gait
transitions and variations in the limited range of the forward
running speed. Energy dissipated by the asymmetric behav-
ior is mainly dependent on locomotion parameters (leg stiff-
ness, hip height, and running speed), which of optimum se-
lection makes the biped robot run with the least energy con-
sumption. A comparison with the total energy indicates that
the asymmetric motion reduces almost the same energy con-
sumption as the SLIP-like motion.

Damage to a biped robot with mechanical gears and elec-
trical motors caused by large external forces could be costly.
Hence it is very important to reduce the external forces by
managing the position and force between robot and envi-
ronment. In typical human running, the leg muscles are re-
peatedly hardened and relaxed to regulate and reduce large
impact, make a supporting leg rebound into the air and move
into the proper position according to movement commands
(McMahon 1984). Foot rotation or leg retraction strategies
have been studied in a similar manner so that biped robots
land on the ground without any damage (Kajita et al. 2005;
Nunez and Nadjar-Gauthier 2005). The same control prop-
erty or role is found in the impedance control that has been
successfully used for robot manipulators or waking robots
in frequent contact with the ground (Lewis et al. 1993; Park
2001). For stable running, an impedance control method
with a force modulation strategy is proposed to comply with
the external environment repeatedly and track the desired
trajectories. The force modulation strategy is used to reduce
drastically the magnitude of external forces exerted on the
foot, since the contact force occurs about two or three times
as large as the total weight of the robot, and may cause vital
damage to the joints and result in a fall. The parameters in
the desired impedance model are determined depending on
the mechanical properties of the original system so that the
gravity potential and kinetic energies are stored and trans-
formed naturally as the limbs move.

The main contribution of this paper is an online trajec-
tory generation method for asymmetrical behaviors and an

impedance control method for stable dynamic running of
biped robots with relatively heavy legs, the mass of which
is homogeneously distributed, based on the defined running
stability. The proper value of angular momentum for flight
can be found easily according to the desired patterns of the
support phase. We also present the results of experiments
that explore use of impedance control in conjunction with
the asymmetric trajectory by a 12-DOF biped robot. The
method we propose here is a realistic, available method that
does not exceed the limits of commercial actuators (e.g. per-
manent magnet DC motors in series with a gear train) by
putting bounds to both joint torque and angular velocity. It
should be noted that this paper is not concerned with the
trajectory generation of biped robots with heavy links, the
mass of which is asymmetrically distributed, although it is a
research topic in bipedal running.

Sections 2 and 3 describe the dynamics and linear and
angular momentum equations of a biped robot, and the sta-
bility criterion for stable running, respectively. Sections 4
and 5 describe the asymmetric trajectory generation method
and the impedance control strategy, respectively. The effec-
tiveness and performance of the proposed running trajectory
and impedance control through a series of computer simu-
lations and experiments are shown in Sect. 6 and Sect. 7,
followed by conclusions in Sect. 8.

2 Modeling of a biped robot

Running biped robots are different from typical robot ma-
nipulators in that they do not have fixed contact points with
the ground and the constraints between both feet and the
ground change repeatedly as they walk and run, as shown
in Fig. 1. The motion equations of a running biped robot
represented by the absolute coordinates, O–XYZ, are de-
scribed by the following equations (Walker and Orin 1982;
Oh and Orin 1986; Fujimoto and Kawamura 1998; Park and
Kim 1998):
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where vectors �̈qr , �̈ql ∈ �ρ , �̈qb ∈ �� and �̈xh ∈ �6 are the joint
acceleration of the right and left legs, the joint acceleration
of the upper body, and the acceleration of the hip link, and

vectors �fr, �fl ∈ �6 are the external force/moment applied at
the right and left feet, respectively.
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The linear momentum �P0 and angular momentum �H0 of

the biped robot represented by the absolute coordinates are

described by

�P0 =
n∑

k=1

mk �̇rgk,

(2)

�H0 =
n∑

k=1

(�rgk × mk �̇rgk + Igk �ωgk)

where �rgk = [xk yk zk]T denotes the position vector from
the origin of the absolute coordinates to the mass center
coordinates of k-th link. In general, the linear and angu-
lar momenta of the robot system about any point are not
conserved since the external forces and moments may arise
from gravitational force, ground contact forces, and unex-
pected disturbances. Transforming (2) into specific momen-
tum equations with respect to the mass center coordinates,
the components (( �PG)x , ( �PG)y , ( �PG)z) of linear momen-
tum �PG and the components (( �HG)x , ( �HG)y , ( �HG)z) of
angular momentum �HG in the frontal, sagittal, and hor-
izontal planes can be written by the following equations:
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Fig. 1 Configuration of a biped robot model and its coordinate sys-
tems used for analysis and simulations. O–XYZ: Absolute coordinates,
H–XH YH ZH : Body center coordinates fixed at the body of the ro-
bot, G–XGYGZG: Mass center coordinates fixed at the mass center of
the robot. The biped robot is equipped with a shock-absorbing elas-
tic pad at its sole. The pad between the sole and the support surface
is modeled as a nonlinear compliant contact model that consists of
nonlinear springs with nonlinear damping. The reaction forces and
moments generated at the foot in contact with the ground are com-
puted by the amount of the pad deformation in computer simulations.
When the pad is compressed, the stiffness and damping coefficient are
1.0 × 104 [N/m] and 80.0 [Ns/m], respectively. The pad has nonlinear
stiffness and damping as it is compressed

where

Xg =
n∑

k=1

mkxk/mg, Yg =
n∑

k=1

mkyk/mg,

Zg =
n∑

k=1

mkzk/mg,

and vector �rk = [xk yk zk]T denotes position vector of k-th
link with mass mk of the n-link biped robot. Inertias Jkx ,
Jky , and Jkz denotes the inertia moments of k-th link repre-
sented by the mass center coordinates in the X-axis, Y -axis,
and Z-axis, respectively, and φ̇kx , φ̇ky , and φ̇kz denotes the
angular velocity of k-th link represented by the mass cen-
ter coordinates in the X-axis, Y -axis, and Z-axis directions,
respectively. The three robot body planes are used to define
robot segment movements. Thus, the sagittal plane (Z–X

plane) divides the robot body into symmetrical right and left
halves, the frontal plane (Y –Z plane) is the vertical plane
at right-angles to the sagittal plane, which divides the robot
body into front and back sections, and the horizontal plane
(X–Y plane) is the vertical plane at right-angles to both the
sagittal plane and the frontal plane.

Basically, walking and running differ in the oscillations
of the body and both legs that occur during each step or
stride (Cavagna et al. 1976; Thorstensson and Roberthson
1987). These differences considered, the phases of a running
cycle are divided into a support phase (or a stance phase)
and a flight phase. The support phase begins at the touch-
down of a freely swinging foot and ends in the lift-off of the
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supporting foot, and the flight phase begins when the exter-
nal force/moment applied at the right and left feet are zero
and both feet are in the air. These phases are separated by
two instantaneous transitions, i.e., touch-down and lift-off.
The instance of touch-down indicates the moment the foot
makes contact with the ground while the instance of lift-off
indicates the moment the foot loses contact with the ground.
The hip link (or base link) denotes the body center coordi-
nate system that moves with the biped robot.

3 Dynamic postural stability for running

We define the running stability as the criterion of the stabil-
ity evaluation for running biped robots.

Definition The running motion for biped robots is said to be
stable if the following conditions are satisfied: The first con-
dition is the ZMP (Zero Moment Point) condition that the
ZMP should exist inside the convex hull of the foot-support
in a support phase. The second condition is the angular mo-
mentum condition that the angular momentum at the mass
center of the robot in a flight phase must be in a limited
range.

Both conditions are discussed in detail in the next sub-
section.

3.1 Support phase

The ZMP concept has been used to evaluate the dynamic
walking stability (Vukobratovic and Juricic 1969). If the
ZMP is inside the contact polygon of the foot on the ground,
the biped robot is said to be stable. Similarly, in order for
running biped robots to run stably, the ZMPs in Appendix A
must be within the safety boundary area so that the biped
robot should land on and then take off the ground.

3.2 Flight phase

The dynamic equations of a biped robot shown in Fig. 1 can
be written as follows:

n∑
k=1

mk �̈rk =
n∑

k=1

mk �g, (5)

n∑
k=1

�̇HOk =
n∑

k=1

�rk × mk �g =
n∑

k=1

�̇HGk +
n∑

k=1

�rk × mk �̈rk (6)

where vectors �̇HOk and �̇HGk denote the rates of change in
angular momentum of k-th link represented by the absolute
coordinates and the mass center coordinates of the biped ro-
bot, respectively; vectors �̈rk and �g = [0 0 −g]T denote the

acceleration of the center of mass of k-th link represented
by the absolute coordinates and the gravitational accelera-
tion, respectively. Equation (5) states that the behavior of
the biped robot obeys the linear momentum after lift-off.

Rearranging (6) with respect to �̇HGk leads to

n∑
k=1

�̇HGk =
n∑

k=1

�rk × mk �g −
n∑

k=1

�rk × mk �̈rk

=
n∑

k=1

�rg × mk �g +
n∑

k=1

�GGk × mk �g

−
n∑

k=1

�rg × mk �̈rk −
n∑

k=1

�GGk × mk �̈rk (7)

where �rk = �rg + �GGk . Inserting (5) and �̇HG = ∑n
k=1

�̇HGk +∑n
k=1

�GGk × mk �̈rk into (7) results in

�̇HG = �0 (8)

where �̇HG denotes the rate of change in angular momen-
tum at the mass center of the biped robot and vector �GGk

denotes the position vector of k-th link represented by the
mass center coordinates. Equation (8) states that if external
forces don’t act on a system of biped robot during the flight
phase, the angular momentum about the center of mass is
conserved and also governs a ballistic (flight) phase. The
conservation law of angular momentum during the ballistic
phase says,

�HG = �� (9)

where vector �� is constant during the flight phase and must
be in a limited range at lift-off in order to make a biped robot
fly stably in the air and to satisfy the ZMP condition of the
running stability when the biped robot lands on the ground.

Proof For a biped robot not to start falling down, the ZMP
should remain inside the convex hull of the supporting foot
in the single support phase. Equation (54) states that the x-
component of the ZMP (Xzmp) is independent of the motion
along the Y -axis. Similarly the y-component of the ZMP
(Yzmp) is independent of the motion along the X-axis. First,
the x-component of the ZMP (Xzmp) must be in between
−lh and lt in the sagittal plane (Z–X plane). Thus,

−lh ≤ Xzmp ≤ lt (10)

where lh(> 0) denotes the length from the center of the sup-
porting foot to the rear safety boundary while lt (> 0) de-
notes the length from the center of the supporting foot to the
fore safety boundary, as shown in Fig. 2. �
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Fig. 2 Front and back boundaries of the x-component of the ZMP.
The front bound lt is a distance from the center of the support foot to
the fore edge while the back bound lh is a distance from the center of
the support foot to the rear edge. Fz and My denote a resultant vertical
force and a moment about Y -axis acting on the foot, respectively. The
ZMP along X-axis is described as Xzmp = −My/Fz . The length and
width of the foot are 0.21 [m] and 0.15 [m], respectively. lt = 0.134 [m]
and lh = 0.076 [m] are used in the simulations and experiments

Inserting (54) into (10) leads to the following inequality
with respect to the range of the rate of change in angular
momentum.

−lhmg(Z̈g + g) ≤ −( �̇H0)y +
n∑

k=1

mkgxk ≤ ltmg(Z̈g + g).

(11)

Substituting ( �̇HG)y + mg(ZgẌg − XgZ̈g) for ( �̇H0)y
of (11) leads to

− ltmg(Z̈g + g) +
n∑

k=1

mkgxk − mg(ZgẌg − XgZ̈g)

≤ ( �̇HG)y

≤ lhmg(Z̈g + g) +
n∑

k=1

mkgxk − mg(ZgẌg − XgZ̈g).

(12)

It is assumed that the robot’s configuration remains un-
changed after impact due to the inelastic impulsive impact
with the ground, the dynamic coupling effects between three
planar motions, i.e., motions in the sagittal plane, frontal

plane, and horizontal plane, is small and ( �̇HG)y,td is equal
to (( �HG)y,td+ − ( �HG)y,td−)/�t at small time �t (= ttd+ −
ttd− � 1) when a biped robot switches from the flight phase
to the support phase. ( �HG)y,td+ denotes the angular mo-
mentum at the moment t = ttd+ after the swing foot touches
the ground while ( �HG)y,td− indicates the angular momen-
tum at the moment t = ttd− before the swing foot touches
the ground. Substituting (( �HG)y,td+ − ( �HG)y,td−)/�t for

( �̇HG)y,td of (12) yields

− lhmg(Z̈g + g)�t + ( �HG)y,td+

−
n∑

k=1

mkgxk�t + mG(ZgẌg − XgZ̈g)�t

≤ ( �HG)y,td−

≤ ( �HG)y,td+ + ltmg(Z̈g + g)�t

−
n∑

k=1

mkgxk�t + mg(ZgẌg − XgZ̈g)�t. (13)

In general, a biped robot is controlled in order not to
rotate around its center of mass during the support phase.
Furthermore its center of mass (or base link) is controlled
to move along the X-axis and Z-axis within a restricted
speed in a predetermined distance, as given in Appen-
dices B and C. Thus, ‖( �HG)y,td+‖ � ‖( �H0)y −mg(ZgẊg −
XgŻg)‖ < α0, ‖Z̈g‖ < α1, and mg(ZgẌg − XgZ̈g) �∑n

k=1 mkgxk (= mggXg) in (4) and (56). Inserting these
equations into (13) leads to

−α2 ≤ ( �HG)y,td− ≤ α3, (14)

where α0, α1, α2, and α3 are positive values which are deter-
mined by the support phase trajectories for the biped robot.
This inequality, (14), states that ( �HG)y about the center of
mass during the flight phase must be within a limited range.
In particular, to make the biped robot run without rotating
about its center of mass in the air, the magnitude of the
angular momentum must be determined to be zero before
the ballistic phase begins according to the desired trajectory
since the angular momentum cannot be manipulated once
the flight phase begins (Frohlich 1979).

Similarly, ( �HG)x about the center of mass in the frontal

plane (Y –Z plane) must be inside a limited range. ( �̇H0)z in
(55) will be given as

( �̇H0)z = XzmpFy − FxYzmp = mg(XzmpŸg − YzmpẌg).

(15)

Substituting ( �̇HG)z + mg(XgŸg − YgẌg) for ( �̇H0)z
of (15) leads to

( �̇HG)z = mg(XzmpŸg − YzmpẌg) − mg(XgŸg − YgẌg).

(16)

When a biped robot switches from the flight phase to the
support phase, substituting (( �HG)z,td+ − ( �HG)z,td−)/�t for

( �̇HG)z of (16) leads to

( �HG)z,td− = ( �HG)z,td+ − mg[(Xzmp − Xg)Ÿg

− (Yzmp − Yg)Ẍg]�t (17)
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where ‖mg[(Xzmp −Xg)Ÿg − (Yzmp −Yg)Ẍg]�t‖ < β1 and
‖( �HG)z,td+‖ < β2, since a biped robot is controlled to fol-
low a running trajectory within a restricted speed in a pre-
determined distance during the support phase, as given in
Appendices B and C. β1 and β2 are positive values which is
determined by the support phase trajectory. This inequality,
(17), states that ( �HG)z must exist within a limited range.

4 Trajectory generation for running

In this section, we explore an asymmetric running trajectory
for a biped robot with relatively heavy legs, based on the
defined running stability criterion. The running trajectories
are specified with respect to the hip link and both feet in the
support and flight phases. It is assumed that a running mo-
tion can be decomposed into two planar motions, i.e., mo-
tions in the sagittal plane and the frontal plane. The robot
system is an under-actuated mechanism with six degrees of
under-actuation during flight. Due to the ballistic motion,
six non-holonomic constraints acting on the generalized co-
ordinates of the robot system can be derived by applying
both the linear momentum theorem and the angular momen-
tum theorem to the entire robot. The flight phase trajectories
of the hip link and two legs are determined by the approx-
imation of the non-holonomic constraints and the running
model with two springless legs the mass of which is concen-
trated at its middle position. There will be inevitably small
deviations between real trajectories and reference trajecto-
ries during the flight phase. They cause the robot to land
at the wrong instance and at the wrong place, and disturb
the steady running patterns for the following support phase.
Such deviations require online adaptive motions of the upper
body, two arms and two legs during the support phase such
that at the end of that support phase the necessary initial con-
ditions for the following flight phase are reached. The online
adaptive motions are achieved by asymmetric behaviors of
the hip link and two legs based on the SLIP-like motion that
reduces the energy consumption.

It is assumed that a collision between foot and ground oc-
curs inelastically, so that the foot after touch-down remains
unchanged on the ground. Actually, the contacting foot may
bounce back from the ground. Such a problem is consid-
ered in the impedance control with a force modulation strat-
egy. Arm action is compensatory and synchronous with the
action of the legs in order to compensate the yaw moment
generated by the swing motions of two legs and the upper
body remains leaned a little toward the vertical axis in or-
der not to rotate about an axis along a line going through its
center of mass.

4.1 Flight phase trajectories

The behavior of a biped robot obeys linear and angular mo-
menta after lift-off as shown in (5) and (8), assuming that

no external forces act on the system during the flight phase.
Translational motion of the robot’s center of mass governed
by the linear momentum describes a parabola even though
joint actuators are driven. The parabola depends only on the
position and velocity of the center of mass at lift-off. Thus,
the biped robot moves entirely under the action of gravity
like a projectile moving through space, once it takes off the
ground. Rotational motion around the robot’s center of mass
is governed by the angular momentum, which is kept con-
stant even though each joint actuator is driven. The magni-
tude of the angular momentum at the center of mass during
the flight phase depends on the position and velocity of all
links with mass distribution, i.e., two legs, upper body and
two arms.

We explore an asymmetric trajectory of the upper body
and relatively heavy legs for a biped robot during flight. Af-
ter determining an asymmetric motion of the hip link, the
leg trajectories are determined by the modified linear and
angular momentum equations with respect to the center of
mass. In order for a biped robot to contact on the ground
exactly after the predetermined duration of flight and to ro-
tate about its center of mass through the planed angle, the
trajectories of the hip link and two legs are obtained from
an approximated running robot model with no leg spring,
which is composed of two links, one for the front leg and
the other for the hind leg, as shown in Fig. 3. The total mass
M of the trunk and upper parts of the robot is lumped at the
hip link, but the masses M1 and M2 are concentrated at the
middle of the left leg and right leg, respectively. The period
of a flight phase is divided into three breakpoints: configura-
tion A at the beginning, configuration B in the middle, and
configuration C at the end of a flight phase. The configura-
tion A denotes the moment the robot lifts off, configuration
B the moment the robot reaches to the highest flight height,
and configuration C the moment the front foot strikes the
ground. The essential characteristics of the ballistic motion
can be captured with the three breakpoints which are used to
reduce the computation time.

The modified components ( �P ′
G)x , ( �P ′

G)y , ( �P ′
G)z of the

linear momentum in (3) with respect to the position and ve-
locity of the hip link (Xj , Yj , Zj ) and two feet (Xij , Yij ,
Zij ) at each configuration are described by the following
equations:

( �P ′
G)x = mg Ẋj = (M + M1/2 + M2/2)Ẋj + M1Ẋ1j /2

+ M2Ẋ2j /2

( �P ′
G)y = mg Ẏ j = (M + M1/2 + M2/2)Ẏj + M1Ẏ1j /2

+ M2Ẏ2j /2

( �P ′
G)z = mg Żj − mggTf (r − 1)/2

= (M + M1/2 + M2/2)Żj + M1Ż1j /2
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Fig. 3 An approximated
running model with two legs in
the sagittal and frontal planes is
embedded into a biped robot
with relatively heavy legs. The
mass of each leg is assumed to
be concentrated at its middle
position. The masses of the
trunk, arms, and head are
lumped at the hip link. This
model moves forward under the
action of gravity, between
configurations A and C, until
foot strike. (Vxf , Vyf , Vzf )
denotes the desired velocity of
the hip link at lift-off and
(ẊC,td , ẎC,td , ŻC,td ) denotes
the actual velocity of the hip
link at touch-down. The plot (b)
shows the configuration of the
hip link and two legs when the
robot system moves into the
positive Y -axis direction. Note
that when the robot switches
from a support phase to a flight
phase, its total mass mg is
divided into three parts, i.e., M ,
M1, and M2, which are used to
control the rate of rotation of the
robot’s center of mass

+ M2Ż2j /2 − mggTf (r − 1)/2

i = 1,2 (left or right foot), j = A (r = 1), B (r = 2),

C (r = 3) (breakpoints) (18)

where mg = M + M1 + M2 and Tf denotes the duration of
the flight phase.

The center of mass of the approximated running model
(Xj , Y j , Zj ) follows a ballistic curve when the robot flies
through the air. The parabolic curve is described by (18).
Thus,

Ẋj = Ẋlo, Ẏ j = Ẏ lo, Żj = Żlo − gTf (r − 1)/2
(19)

where Ẋlo, Ẏ lo, and Żlo denote the initial velocities of the
model’s center of mass.

Similarly, the hip describes a parabola after lift-off, since
the model’s center of mass exists very close to it. Thus,

Ẋj = ẊA(1.0 + 2.0σ(r − 1) − σ(r − 1)2),

Ẏj = ẎA(1.0 + 2.0σ(r − 1) − σ(r − 1)2), (20)

Żj = ŻA − gTf (r − 1)/2

where ẊA, ẎA, and ŻA denote the initial velocities of the

hip link at lift-off which are determined by the desired po-

sition and velocity of the hip link at the end of the sup-

port phase, as given in Sect. 4.2. Even though the veloc-

ity of the center of mass in the X-axis and Y -axis direc-

tions switches to a constant value after lift-off, the velocity

of the hip follows a parabolic curve after lift-off in such a

way as to cause the acceleration of the hip link at lift-off to

be continuous. σ denotes a positive constant value which is

manually tuned. It is assumed that the inertia of each link in

the running model is neglected. The modified components

(( �H ′
G)x , ( �H ′

G)y , ( �H ′
G)z) of the angular momentum in (4) are

described by the following equations:
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( �H ′
G)x = M1/4{(Y1j − Y j )(Ż1j − Żj )

− (Z1j − Zj )(Ẏ1j − Ẏ j )}
+ M2/4{(Y2j − Y j )(Ż2j − Żj )

− (Z2j − Zj )(Ẏ2j − Ẏ j )}
+ M{(Yj − Y j )(Żj − Żj )

− (Zj − Zj)(Ẏj − Ẏ j )},
( �H ′

G)y = M1/4{(Z1j − Zj )(Ẋ1j − Ẋj )

− (X1j − Xj)(Ż1j − Żj )}
+ M2/4{(Z2j − Zj)(Ẋ2j − Ẋj )

(21)

− (X2j − Xj)(Ż2j − Żj )}
+ M{(Zj − Zj)(Ẋj − Ẋj )

− (Xj − Xj)(Żj − Żj )},
( �H ′

G)z = M1/4{(X1j − Xj)(Ẏ1j − Ẏ j )

− (Y1j − Y j )(Ẋ1j − Ẋj )}
+ M2/4{(X2j − Xj)(Ẏ2j − Ẏ j )

− (Y2j − Y j )(Ẋ2j − Ẋj )}
+ M{(Xj − Xj)(Ẏj − Ẏ j )

− (Yj − Y j )(Ẋj − Ẋj )}

where the modified angular momenta, (( �H ′
G)x , ( �H ′

G)y ,
( �H ′

G)z), are set to proper values in order to obtain the po-
sition and velocity of two legs at each configuration. Their
allowable ranges are determined by the support phase trajec-
tories of the hip link and two legs, as given in Sect. 3. The
configurations and speeds of two feet at each breakpoint can
be obtained by (18) and (21), when the hip link follows the
flight phase trajectory given in (20), as shown in parts (a)
and (b) of Fig. 3. The total number of unknown variables
with respect to the breakpoints is equal to the number of
equations in (18) and (21), which represents 18 equations.
Quintic interpolating polynomials are used to specify the po-
sition, velocity, and acceleration at the beginning and end of
path segments which connect the speeds and configurations
of two feet at each breakpoint.

4.2 Support phase trajectories

A spring-like leg motion which operates a supporting leg
like a linear spring within proper conditions is generally
achieved based on the spring-loaded inverted pendulum

Fig. 4 Spring Loaded Inverted Pendulum Model (SLIP model) with
a body of point mass mg and a massless leg spring for running in the
sagittal plane. (a) The leg spring is characterized by the stiffness kleg

and the nominal length l0 which is the leg length at touch-down and
lift-off, and forms an angle ϕ with the vertical axis, while its length
at any time is l. (b) The model moves with symmetry at touch-down
and lift-off during the support phase, and the leg neither rebounds nor
slides after touch-down

model, as shown in Fig. 4. The SLIP model yields symmet-
ric trajectories under the assumption that the robot model is
composed of a body of mass mg and a massless supporting
leg with a linear spring of stiffness kleg , and the ZMP exists
in the center of the supporting foot, as given in Appendix C.
When a SLIP moves symmetrically, its energy is stored in
the leg spring, in the motion of the body mass, and in the
position of the body mass (Raibert 1986). The total energy
Etotal at any time in the sagittal plane should thus be given
by

Etotal = 1/2mg(Ẋ
2 + Ż2)+mggZ +1/2kleg(l0 − l)2. (22)

Inserting X = l sinϕ and Z = l cosϕ into (22) leads to

2Etotal = mg(l̇
2 + 2gl cosϕ + l2ϕ̇2) + kleg(l0 − l)2

= mg(l̇
2 + 2gl cosϕ + l2ϕ̇2)

+ kleg(

√
Hz

2 + (St/2)2 − l)2 (23)

where l0 is equal to
√

Hz
2 + (St/2)2 at touch-down and

lift-off. Equation (23) states that the total energy requires a
proper adjustment of locomotion parameters such as the du-
ration of a support phase Ts , the stiffness of the supporting
leg kleg , the stride of a support phase St , and the height of
the hip link Hz at touch-down and lift-off, depending on the
robot model. Figure 5 shows the total energy curves during
the support phase when the SLIP model follows the sym-
metric trajectory given in Appendix C. The least amount of
the total energy varies according to variations of locomo-
tion parameters. As the vertical height of the hip link Hz

at touch-down and lift-off gets higher, the total energy in-
creases proportionally. Similarly, the longer the stride of the
support phase St is, the larger the total energy gets. It is
important to note that the vertical height of the hip link Z
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Fig. 5 Total energy of the SLIP model during the support phase ac-
cording to variations of locomotion parameters (four variables): the
duration of a support phase Ts , the stiffness of the supporting leg kleg ,
the stride of a support phase St , and the vertical height of the hip link
Hz at touch-down and lift-off. In each diagram (a–d), three variables
are kept constant. All the energy curves are not kept constant during
the support phase when the body of the SLIP model follows the sym-
metric trajectory which is derived from the linearized mathematical
model under an assumption that the angle formed between the vertical
axis and the leg spring varies within a narrow range. If the angle varies

within a wide range, the linearized model needs to add additional en-
ergy to the system by delivering torques through joint actuators. How-
ever, these do not distort the arguing point of this paper. For example,
the vertical height of the hip link of the robot with the total mass mg =
35.0 [kg] used in the simulations is 0.9 [m] when its knee is stretched
fully. When Hz,min = 0.73 [m], Hz,max = 0.82 [m], St,min = 0.2 [m],
St,max = 0.35 [m], the locomotion parameters for the SLIP-like mo-
tion are selected as Ts = 0.4 [s], St = 0.3 [m], kleg = 8500.0 [N/m],
and Hz = 0.8 [m]

between the start and the end of the support phase as well
as the vertical height of the hip link Hz at touch-down and
lift-off should be determined within the allowable range to
prevent a segmented leg of a biped robot from being fully
stretched or being fully folded so that a singular configura-
tion (det(Jl) = 0 or det(Jr) = 0) and the collision between
links do not occur in any case, i.g., Hz,min < Hz or Z <

Hz,max . In addition, the stride of the support phase St should
be determined within the allowable range to avoid a singular
configuration according to the desired forward velocity of

the robot and the chosen foothold compatible with the envi-
ronment, i.g., St,min < St < St,max . The desired velocity of
the robot is determined by (67). Thus,

Vxf = −
√

g/HzSt (1 + eTs

√
g/Hz)

2(1 − eTs

√
g/Hz)

(24)

where the desired velocity of the robot Vxf depends more
on the stride of the robot during a support phase St and
the duration of a support phase Ts than the vertical height
of the hip link Hz at touch-down and lift-off. Plots (c) and
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(d) of Fig. 5 show the curves of the total energy accord-
ing to variations of the stiffness of the supporting leg kleg

and the duration of a support phase Ts . It is obvious that the
smaller the stiffness of the supporting leg kleg is, the lower
the vertical height of the hip link in the middle of the support
phase gets and the more frequently the collision between
links joined to knee joints of the biped robot occurs. There-
fore, the locomotion parameters are determined in this order:
Hz → St → kleg → Ts . The chosen locomotion parameters
are not global optimum solutions but local optimum solu-
tions, since they are constrained by the kinematic structure
and locomotion conditions of the biped robot. Thus, the lo-
comotion parameters leads to a locally optimized trajectory
so that controlling the biped robot close to it reduces energy
consumption. The least amount of the energy consumption
varies according to the robot model and the targeted forward
velocity.

In addition to the symmetric SLIP-like motion which are
determined by the locomotion parameters, bipedal running
requires asymmetric behavior. The asymmetric trajectory is
generated from the SLIP model and the approximated run-
ning model, as shown in Fig. 3. The vertical motion of the
hip link along the Z-axis forces the robot to absorb the large
vertical force caused by an impulsive collision at every foot-
fall and to store the elastic energy in the supporting leg im-
mediately following its impact with the ground, to be re-
leased later as the robot rebounds into the air. The verti-
cal movement along the Z-axis is specified with the SLIP
model in the vertical direction. The response curve of the
mass-spring system, in which the mass (hip link) is sub-
jected to its initial configuration and speed at touch-down,
reaches a maximum compression value in the middle of the
support phase. When the leg spring is shortened to its min-
imum length, energy stored in the leg spring is equal to the
sum of potential energy in the vertical position of the body
mass and kinetic energy in the vertical velocity of the body
mass. Thus,

1/2klegξ
2 = 1/2mgŻ

2
C,td + mggξ. (25)

The maximum depth ξ when the spring is compressed can
be found with (25).

ξ = ( mgg +
√

m2
gg

2 + klegmgŻ
2
C,td )/kleg (26)

where ZC,td and ŻC,td denote the initial vertical position
and velocity of the hip link at touch-down, respectively. Im-
mediately on detecting a foot contact with the ground, the
compression depth ξ is determined depending on the ac-
tual initial vertical velocity of the hip link. Therefore, the
Z-axis trajectory is constrained by the actual position and
velocity of the hip link at touch-down, the movement dis-
tance of the hip link ξ at half duration of the support phase,

and the desired position and velocity of the hip link at take-
off. When the configuration and speed of the hip link at
touch-down and lift-off in the Z-axis direction are chosen
as [ZC,td , ŻC,td ] and [ZA, ŻA], respectively, a fourth in-
terpolating polynomial is chosen to satisfy these constraints.

Z(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4,

a0 = ZC,td , a1 = ŻC,td ,

a2 = (11ZA − 16ξ − 4TsŻC,td + TsŻA)

− 11ZC,td)/T 2
s ,

a3 = (−18ZA + 32ξ + 5TsŻC,td − 3TsŻA)

+ 18ZC,td)/T 3
s ,

a4 = 2.0(4ZA − 8ξ − TsŻC,td + TsŻA) − 4ZC,td)/T 4
s

(27)

where ŻA (= Vzf ) and ZA (= Hz) are the desired vertical
velocity and position of the hip link at lift-off, respectively.
Note that the vertical accelerations of the hip link at touch-
down and lift-off are the same as −g and then are omitted
from the interpolating polynomial.

The configuration, speed, and acceleration of the hip link
at touch-down and lift-off in the X-axis direction are cho-
sen as [XC,td , ẊC,td , ẌC,td ] and [XA, ẊA, ẌA], respec-
tively. The speed of the hip link at lift-off, ẊA, is determined
by (67), which is related to the desired position of the hip
link at lift-off, XA, and the stride of the robot, St . Thus,

ẊA = 1 + eω1Ts

1 − eω1Ts
ωXA (28)

where ω1 = √
g/ZA = √

g/Hz. The configuration and
speed of the hip link in the middle of the support phase
[XCA, ẊCA] are identical to those of the hip link in the
middle of the support phase of the SLIP model. Thus,

XCA = 1

2

(
XA + 1

ω1
ẊA

)
eω1Ts/2

+ 1

2

(
XA − 1

ω1
ẊA

)
e−ω1Ts/2,

(29)

ẊCA = 1

2

(
XA + 1

ω1
ẊA

)
ω1e

ω1Ts/2

− 1

2

(
XA − 1

ω1
ẊA

)
ω1e

−ω1Ts/2.

Therefore, the support phase trajectory of the hip link in
the X-axis direction would be completely determined us-
ing a seventh-order interpolating polynomial as a function
of time t . ẌC,td and ẌA are set at zero, since no distinct
advantage results from different chosen values. Similarly,
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the configuration, speed, and acceleration of the hip link at
touch-down and lift-off in the Y -axis direction are chosen as
[YC,td , ẎC,td , ŸC,td ] and [YA, ẎA, ŸA], respectively. The
speed of the hip link at lift-off, ẎA, is determined based on
the desired position of the hip link at lift-off, YA. Thus,

ẎA = 1 − eω1Ts

1 + eω1Ts
ω1YA. (30)

The support phase trajectory of the hip link in the Y -
axis direction would be completely determined using a fifth-
order interpolating polynomial as a function of time t :

Y(t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5,

a0 = YC,td , a1 = ẎC,td , a2 = ŸC,td/2.0,

a3 = (20.0YA − 20.0YC,td − (8.0ẎA + 12.0ẎC,td )Ts

− T 2
s (3.0ŸC,td − ŸA))/2.0T 3

s ,

a4 = (30.0YC,td − 30.0YA + (14.0ẎA + 16.0ẎC,td )Ts

+ T 2
s (3.0ŸC,td − 2.0ŸA))/2.0T 4

s ,

a5 = (12.0YA − 12.0YC,td − 6.0ẎA + 6.0ẎC,td )Ts

− T 2
s (ŸC,td − ŸA))/2.0T 5

s (31)

where ŸC,td = 0.0, ŸA = 0.0.
The configurations and speeds of a freely swing foot at

the beginning and end of the support phase become identi-
cal to those of a rear foot (left foot) at the end of the flight
phase and a front foot (right foot) at the beginning of the
flight phase, respectively, as given in Sect. 4.1. Quintic in-
terpolating polynomials for a swing foot [Xsf , Ysf , Zsf ]
are chosen to satisfy these conditions. When the configu-
ration, speed, and acceleration of the swing foot at touch-
down and lift-off are chosen as [Z1C,td , Ż1C,td , Z̈1C,td ]
and [Z2A, Ż2A, Z̈2A], respectively, the tracking function
for Zsf during the support phase would be as a function of
time t :

Zsf (t) = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5,

a0 = Z1C,td , a1 = Ż1C,td , a2 = 1/2Z̈1C,td ,

a3 = (20Z2A − 20Z1C,td − (8Ż2A + 12Ż1C,td )Ts

− (3Z̈1C,td − Z̈2A)T 2
s )/2T 3

s ,

a4 = (30Z2A − 30Z1C,td + (14Ż2A + 16Ż1C,td )Ts

+ (3Z̈1C,td − 2Z̈2A)T 2
s )/2T 4

s ,

a5 = (12Z2A − 12Z1C,td − (6Ż2A + 6Ż1C,td )Ts

− (Z̈1C,td − Z̈2A)T 2
s )/2T 5

s (32)

where Z̈2A = −g, and Z̈1C,td = 0.0. The polynomial func-
tion for Xsf (t) can be found as a function of time t in the

Fig. 6 Total energy comparison among three models: SLIP model,
asymmetric model, and model in which the velocity of the hip link in
the X-axis direction is kept constant and moves like a bouncing elastic
ball in the vertical direction (a kind of asymmetric model). Ts = 0.4 [s],
St = 0.3 [m], kleg = 8500 [N/m], and Hz = 0.8 [m] are used

same manner. The backward velocity of a front foot (right
foot) at the end of the flight phase with respect to the hip is
determined to be matched to the backward velocity of the
ground. Thus, Ẋ2C,td ≈ 0.0. In addition, Ysf (t) is kept con-
stant during the support phase if the control system does not
change direction.

In brief, the asymmetric trajectory can be modified online
according to the initial states of the biped robot at touch-
down and lift-off, and the desired running speed. By com-
parison with the total energy at any time during a support
phase, the asymmetric trajectory has almost the same en-
ergy curve as the other models, as shown in Fig. 6(a). The
model in which the horizontal velocity of the hip link in the
X-axis direction is kept constant and varies according to the
velocity of the robot at touch-down is a kind of asymmet-
ric model, but is not suitable to purposely transit gaits and
change the desired horizontal velocity.

4.3 Nonslip condition

A running biped robot may slip on smooth surfaces or rela-
tively high friction surfaces since its foot is moving fast with
respect to the ground at touch-down and lift off. In general,
the robot control system can not detect and avoid or prepare
for this dangerous situation, and the robot will almost always
immediately fall to the ground. This paper does not put its
focus on any strategy to overcome foot slipping of biped ro-
bots on a suddenly encountered slippery surface (Boone and
Hodgins 1997; Kwon and Park 2002). Rather, it pays an at-
tention to a highly effective asymmetric trajectory in order
to prevent or minimize foot slips and maintain steady-state
running.
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Fig. 7 When a foot is in contact
with the ground in the sagittal
plane, it creates a force ft with
tangential component fh and
normal component fv on the
ground

Slipping occurs when the tangential component fh ∈ �1

of the external force exerted on the foot exceeds the max-
imum force of the static friction force, which is propor-
tional to the normal component fv ∈ �1 of the external
force. Under this interaction, Coulomb’s law states that slip-
ping begins when |fh| > μs |fv|, and slipping occurs when
|fh| = μd |fv|. μs and μd denotes the static coefficient and
dynamic coefficient of friction that are a function of the ma-
terials which are in contact. This implies that the range of the
tangential force which can be applied at a contact is given by

|fh| ≤ μs |fv| (33)

where | ∗ | denotes the absolute value of scalar ∗. Interpret-
ing (33) geometrically leads to

θ = tan−1 |fh|/|fv| < tan−1 μs |fv|/|fv| = tan−1 μs (34)

where θ is the angle between the foot’s force ft and the
normal force fv and should be limited so that the supporting
foot should not slip at a contact between its sole and the
ground. Therefore, the running trajectory must be satisfied
with (34). In the sagittal plane,

θ = tan−1 |mgẌg|
|mg(Z̈g + g)| < tan−1 μs (35)

where fh = Fx = mgẌg and fv = Fz = mg(Z̈g + g) in (55)
under the assumption that no external force exists except at
the soles, as shown in Fig. 7. Equation (35) states that the
larger the magnitude of Z̈g gets and the smaller the mag-
nitude of Ẍg becomes, the lower the risk for slipping gets,
and also |Ẍg| < μs |Z̈g + g|. It is important that the nor-
mal component fv of the external force after touch-down is
sufficiently large so that a foot does not slip at a contact be-
tween its sole and the ground. Hence, the downward vertical
acceleration of the front foot at the end of the flight phase
Z̈2C,td is selected to be 1.5 times larger than the gravity
acceleration, if |Z̈g| ≥ g. On the other hand, the horizon-
tal acceleration of the foot at touch-down Ẍ2C,td based on
|Ẍg| < μs |Z̈g + g| is chosen to be zero.

5 Impedance controller for running

For stable running, the supporting foot in the support phase
must not move on the ground whereas both freely swing-

ing feet in the flight phase should be in the air and must not
strike the ground. And the supporting (front) leg must reduce
large impact forces generated at the moment of contacting
with the ground and does not bounce back from the ground.
This situation means that a controller for running of biped
robots should be able to manage elegantly the large external
forces and track the desired trajectories. Considering these
characteristics, an impedance controller is designed and ap-
plied according to each phase.

The supporting leg of the support phase must support the
total weight of the biped robot and push ahead the hip and
upper body. This part is controlled based on the desired im-
pedance model of the hip link specified with respect to the
supporting foot on the ground. Also, the freely swinging leg
and upper body must move relatively from the hind to the
front of the hip link in the forward direction. These two parts
are controlled based on the desired impedance models of the
swing foot and upper body specified with respect to the hip
link under the assumption that the hip link follows its prede-
termined trajectory according to its desired impedance char-
acteristics as shown in part (a) of Fig. 8. In the flight phase,
two feet are in the air. The two swing feet are compressed
into following the desired trajectory on the basis of the hip
link. Thus, the impedance models of the two feet and upper
body which are to be controlled are defined from the hip link
as shown in part (b) of Fig. 8.

For notational convenience, in the following sections the
impedance control laws for the legs will be driven under the
assumption that the right leg is supporting and the left leg is
swinging in the support phase. In addition, the left leg is in
front of the right leg in the flight phase. It is assumed that
each foot is equipped with force sensors and the body con-
tains a acceleration sensor, three Gyro sensors and absolute
position sensors.

5.1 Impedance control for the support phase

The impedance control of the swing left leg is obtained from
the relationship between the joint velocity �̇ql ∈ �6 of the left
leg and the velocity vector �̇xlf ∈ �6 of the left foot repre-
sented by the absolute coordinates in Fig. 1.

�̈xlf = �̈xh + R0 �̈xh
lf + ��l (36)

where

�̇xlf =
[ �̇x0

lf

�ω0
lf

]
, �̇xh =

[
�̇x0
h

�ω0
h

]
,

�̇xh
lf =

[ �̇xh
lf

�ωh
lf

]
= Jl �̇ql, �̈xh

lf = Jl �̈ql + J̇l �̇ql,
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Fig. 8 Four limbs and body of a biped robot in the flight and sup-
port phases are modeled as mechanical impedances with correspond-
ing stiffness, mass and damping terms. The mechanical impedance is
adjusted to follow the predetermined trajectory and control the contact
force between the foot and the environment

��l =
[

2 �ω0
h × R0

h �̇xh
lf + �̇ω0

h × R0
h�xh

lf + �ω0
h × ( �ω0

h × R0
h�xh

lf )

�ω0
h × R0

h �ωh
lf

]
,

R0 =
[

R0
h 03×3

03×3 R0
h

]
,

and R0
h ∈ �3×3 is the orientation matrix of the body center

coordinates represented by the absolute coordinates. Vectors
�̇x0
lf ∈ �3 and �ω0

lf ∈ �3 indicate the linear velocity and angu-
lar velocity of the left foot, respectively. Assuming that we
are away from workspace singularities or singular configu-
rations so that the determinant of the Jacobian matrix is not
equal to zero, the inverse acceleration transformation equa-
tion is derived from (36).

�̈ql = (R0Jl)
−1( �̈xlf − �̈xh − R0J̇l �̇ql − ��l) (37)

where Jl ∈ �6×6 and �̇xh
lf ∈ �6 are the Jacobian matrix and

velocity vector of the left foot with respect to body center co-
ordinates, respectively. Suppose that the desired impedance
model of the swing left leg is defined as the following equa-
tion:

ML
¨̃xlf + DL

˙̃xlf + ELx̃lf = �0 or
(38)

�̈xlf = �̈xlf,d − M−1
L (DL

˙̃xlf + ELx̃lf )

where ˙̃xlf = �̇xlf − �̇xlf,d and superscript ‘d’ denotes the de-
sired value. The desired mass, damping, and stiffness ma-
trices (ML, DL and EL) are assumed to be constant and
positive definite. Substituting (37) and (38) into the torque
equation related to the left leg in (1), the torque vector of
the left leg is obtained to follow asymptotically the desired

impedance characteristics.

�τl = Hl(R0Jl)
−1( �̈xlf,d − M−1

L (DL
˙̃xlf + ELx̃lf )

− �̈xh − R0J̇l �̇ql − ��l) + Dl
�fl + Kl �̈xh + Ll. (39)

Next, the joint torque of the right leg is computed using
the predefined impedance model of the hip link and (1). The
torque equations related to the left leg and upper body in (1)
are transformed into the following equations:

�̈ql = H−1
l (�τl − Kl �̈xh − Dl

�fl − Ll),

(40)
�̈qb = H−1

b (�τb − Kb �̈xh − Lb).

The linear and angular accelerations of the supporting
foot must be equal to zero so that the foot is fixed on the
ground, regardless of the external forces at its landing on the
ground. A constraint equation with zero linear and angular
accelerations of the supporting foot is derived from (36).

Ar �̈qr + Br �̈xh + Cr = �0 or �̈qr = −A−1
r (Cr + Br �̈xh) (41)

where Ar , Br and Cr are the coefficient matrices. Insert-
ing (40) and (41) into the lower part equation of (1) leads
to

R̃ �̈xh + S̃ + Pr
�fr = �0 (42)

where

R̃ = R − QrA
−1
r Br − QlH

−1
l Kl − QbH

−1
b Kb,

S̃ = S + QlH
−1
l (�τl − Dl

�fl − Ll) + QbH
−1
b (�τb − Lb)

− QRA−1
r Cr .

Suppose the desired impedance of the hip link at its cen-
ter is

Mh
¨̃xh + Dh

˙̃xh + Ehx̃h = �0 or
(43)

ẍh = ẍh,d − M−1
h (Dh

˙̃xh + Ehx̃h)

where ˙̃xh = �̇xh − �̇xh,d . The desired mass, damping, and stiff-
ness matrices about the hip link (Mh, Dh and Eh) are as-
sumed to be constant and positive definite. This equation
implies that the hip follows asymptotically the desired tra-
jectory. Substituting (42) and (43) into the torque equation
related to the right leg in (1), the joint torque of the support-
ing right leg results in

�τr = (Kr − HrA
−1
r Br − DrP

−1
r R̃)(ẍh,d − M−1

h (Dh
˙̃xh

+ Ehx̃h)) + Lr − HrA
−1
r Cr − DrP

−1
r S̃. (44)
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5.2 Impedance control for the flight phase

The joint torque for the rear right leg in order for the biped
robot to take off on the ground is computed using the im-
pedance model predefined from the hip link and (1). The
torque equations related to the right leg and upper body
in (1) are transformed into the following equations:

�̈ql = H−1
l (�τl − Kl �̈xh − Dl

�fl − Ll),

(45)
�̈qb = H−1

b (�τb − Kb �̈xh − Lb).

Substituting (45) into the lower part equation of (1) leads
to

R̃ �̈xh + S̃ + Qr �̈qr = �0 (46)

where

R̃ = R − QlH
−1
l Kl − QbH

−1
b Kb,

S̃ = S + QlH
−1
l (�τl − Ll) + QbH

−1
b (�τb − Lb)

+ (Pl − QlH
−1
l Dl) �fl + Pr

�fr .

Suppose the desired impedance of the rear right leg is

MR
¨̃xrf + DR

˙̃xrf + ERx̃rf = − �fr or
(47)

ẍrf = ẍrf,d + M−1
R (− �fr − DR

˙̃xrf − ERx̃rf )

where ˙̃xrf = �̇xrf − �̇xrf,d . MR , DR and ER denote the de-
sired mass, damping ratio and stiffness about the rear right
leg, respectively. This equation implies that the swing right
leg follows asymptotically the desired trajectory. Similarly,
the inverse acceleration transformation is obtained from the
relationship between the joint velocity �̇qr ∈ �6 of the right
leg and the Cartesian velocity vector �̇xrf ∈ �6 of the right
foot about O in Fig. 1. Thus,

�̈qr = (R0Jr)
−1( �̈xrf − �̈xh − R0J̇r �̇xrf − ��r) (48)

where Jr ∈ �6×6 is the Jacobian matrix of the right foot with
respect to the hip. Finally, substituting (46), (47) and (48)
into the torque equation related to the right leg in (1) leads
to

�τr = (Hr − KrR̃
−1Qr)(R0Jr)

−1( �̈xrf,d

+ M−1
R (− �fr − DR

˙̃xrf − ERx̃rf )

− �̈xh − R0J̇r �̇xrf − ��r) + Dr
�fr − KrR̃

−1S̃ + Lr.

(49)

Immediately on switching from a support phase to a flight
phase, the supporting foot of the biped robot does not leave
off the ground. Thus, the external force vector �fr applied at
the right foot is not zero until the foot takes off the ground.

Next, the impedance controller for the swinging and land-
ing front left leg has the same mechanism as the left leg of
the support phase except that the force modulation strategy
is included so that the left foot does not bounce back from
the ground after touch-down. In order to reduce and modu-
late the large reaction force at the landing foot on the ground,
the desired vertical force fv,d is obtained from the actual
vertical force fv . Thus,

fv,d =
⎧⎨
⎩

fv − �f, fv > mg + δ,

mg, mg − δ ≤ fv ≤ mg + δ,

fv, fv < mg − δ

(50)

where �f and δ denote the reduction rate and boundary
value, respectively, which are used to phase down the ver-
tical reaction force over a control period. The desired im-
pedance model for the swinging and landing front left leg is
described as the following equation:

ML
¨̃xlf + DL

˙̃xlf + ELx̃lf = �fl,d − �fl (51)

where

�fl,d = [
0 0 fv,d 0 0 0

]T

and �fl,d denotes the desired external force vector applied at
the left foot. Notice that �fl,d − �fl is zero when the left foot
is in the air. The parameters used in the desired impedance
model are determined depending on the mechanical proper-
ties of the original system. The mass and stiffness compo-
nents of the impedance model for the leg are selected to be
equal to those in the SLIP model which reflects specifically
the mechanical properties of the biped robot. The damping
coefficients are determined such that the overall system is
critically damped. The impedance parameters for the hip are
selected to be 2 times larger than those of the foot such that
the impact shock at touch-down should be appropriately ab-

Table 1 Physical parameters of
the biped robot model used in
the simulations

Link Length (cm) Mass (kg) Link Length (cm) Mass (kg)

Link 0 (waist) 20 6.0 Link 5 (ankle) 5 1.0

Link 1 5 1.0 Link 6 (foot) 15 1.5

Link 2 5 1.0 Waist-head 35 7.0

Link 3 (thigh) 30 2.5 Left arm 50 2.0

Link 4 (knee) 30 2.5 Right arm 50 2.0
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sorbed and the bouncing of the foot from the ground can be
prevented. Thus,

Mh = diag(b0, b0, b0, b0, b0, b0),

Dh = diag(d0, d0, d0, d0, d0, d0),

Eh = diag(e0, e0, e0, e0, e0, e0)

where b0 = 2mg [kg] or [kgm2], e0 = 2kleg [N/m] or [Nm],
and d0 = 2

√
b0e0. And ML = MR = 1/2Mh, EL = ER =

1/2Eh, and DL = DR = diag(d0/2, d0/2, d0/2, d0/2,

d0/2, d0/2).

6 Simulations

6.1 Simulations without modeling error

Running of a 19-DOF biped robot is simulated for the effec-
tiveness and performance evaluation of the proposed asym-
metric trajectory and impedance controller. The biped robot
has a total of 19 degrees of freedom, as shown in Fig. 1.
Each leg has 6 degrees of freedom, two joints at the ankle,
one joint at the knee, and three joints at the hip and the up-
per body has 7 degrees of freedom. The specification of the
biped robot model with two legs of mass 9.5 [kg] used in
the simulations is listed in Table 1. The parameters used to
generate the flight phase trajectories are shown in Table 2.
The control period of the computer simulation is 0.002 [s].

During running, biped robots must interact iteratively
with the external environment. In particular, when a foot

Table 2 Parameters used in the simulations

M 16.0 kg Tf 0.08, 0.09, 1.0 s

M1 9.5 kg δ 50 N

M2 9.5 kg �f 100 N

Ts 0.5, 0.45, 0.4 s σ 1/12

of the freely swinging leg makes an initial contact with the
ground, a large impact force may always be generated. To
protect force sensors and joints from the touch-down im-
pact force, many biped robots are equipped with some kinds
of shock-absorbing elastic pads at their soles (Yamaguchi
et al. 1995). The pads in the support surface are modeled
as nonlinear springs and nonlinear dampers, as shown in
Fig. 1. The stiffness and damping coefficient are chosen to
reflect the nonlinear characteristics of the elastic pad. This
nonlinear complaint model with Coulomb friction allows ro-
tating of the foot on the ground (Marhefka and Orin 1999;
Kwon and Park 2002).

In the computer simulations performed without model-
ing error, the biped robot runs on a flat solid ground. Fig-
ure 9 shows a stick diagram from computer simulations of
a 19-DOF biped robot when the average forward speed for
running is about 0.774 [m/s] with Tf = 0.1 [s], Ts = 0.4 [s],
St = 0.3 [m], and kleg = 8500.0 [N/m], as given in Sect. 4.
The biped robot moves up and down with a full running cy-
cle of about 0.5 [s] and a maximum flight height of about
0.814 [m]. The vertical height of the hip link Hz is 0.80 [m]
at the moment the biped robot leaves off the ground. During
support phases, the rear foot of the biped robot pushes for-
ward its body and front leg. At the same time, the vertical
rebound of the hip cause the foot to fly in the air. In Fig. 9,
the peak foot clearance during flight is about 0.05 [m]. The
vertical position of the foot as a function of its horizontal
position would have to be altered so that it does not collide
with the ground. The impedance control with the force mod-
ulation strategy and the downward movement of the body
along the vertical direction make the support foot fixed on
the ground until the biped robot leaves off the ground.

Figure 10 shows how the components of linear and angu-
lar momenta about the mass center of the robot in (2) vary
in the flight and support phases when the magnitude of the
modified angular momentum about the mass center of the

Fig. 9 Stick diagram of a biped
robot with the average forward
speed of 0.774 [m/s] in the
sagittal plane. The maximum
forward speed of the robot is
about 0.9 [m/s]. The solid lines
illustrate ballistic motions of the
biped robot in the flight phase
while the dashed lines illustrate
bouncing motions of the biped
robot in the support phase. The
biped robot is equipped with
shock-absorbing elastic pads at
its soles. The depth of the pad is
0.01 [m]. The pad is compressed
just after the foot makes contact
with the ground. The shortest
distance between the sole and
the ground is about 0.005 [m]
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Fig. 10 Linear and angular momenta. In these figures, the vertical dotted lines represent the instances of touch-down and lift-off

robot is set to an allowable value, i.e., �H ′
G = �0, when α0 =

0.02 [Nms], α1 = 15.0 [m/s2], α2 = 0.2777 [Nms], α3 =
0.4421 [Nms], β1 = 0.0159 [Nms], and β2 = 0.0 [Nms].
The biped robot flies in the air at times 6.215 [s] to 6.3 [s]
and 6.715 [s] to 6.8 [s]. The real flight time is not equal
to the desired value, since the supporting foot of the biped
robot does not leave off the ground until the springs and
dampers used in the compliant model restitute to their rest
length after switching from a support phase to a flight phase.
In these figures, the z-component of linear momentum de-
creases linearly due to the gravitational force and the com-
ponents of angular momentum about the mass center of the
robot remain unchanged within a limited scope during flight.
In particular, the y-component of angular momentum about
the mass center of the robot during the support phase varies
within a wider range than the other components of angular
momentum, since the robot rotates largely around its cen-
ter of mass in the sagittal plane, if it does not change di-
rection. Simulations of three different running patterns with
respect to the flight time, Tf , as shown in Fig. 11, show
that the y-components of angular momentum vary similarly.
They become negative after touch-down in the support phase
and recover close to almost zero before lift-off in the sup-
port phase, and then remain constant within a limited range,
|( �HG)y | ≤ 0.4421 [Nms], after flight.

Figure 12 shows that the ZMP stays inside the safety
boundary of the footprint in the horizontal plane (X–Y

plane). The ZMP oscillates from back to front after touch-
down and then becomes steady in the center of the footprint,
but does not exist when the two feet in the air. Figure 13
shows how the ground reaction forces change as the loco-
motion proceeds. The peak of the ground reaction forces felt

Fig. 11 y-components of angular momentum according to three dif-
ferent running patterns. First, the dashed line denotes the y-component
of angular momentum when Tf = 0.08 [s]. The dash-dotted line de-
notes the y-component of angular momentum when Tf = 0.09 [s].
The solid line denotes the y-component of angular momentum when
Tf = 0.1 [s]. The duration of the support phase, Ts = 0.4 [s], is all the
same

at a supporting foot when times 6.3 [s] and 6.32 [s] in the
initial stage of the support phase is due to the fact that the
supporting foot starts to support the total weight of the biped
robot. The peak of the force at the supporting foot is reduced
drastically according to the desired impedance characteris-
tics. As a result, part (b) of Fig. 10 and Fig. 12 show that the
running stability conditions are satisfied.
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Fig. 12 ZMP trajectory in the
horizontal plane (X–Y plane).
The rectangles denote footprints

6.2 Gait transitions

The developed strategy was tested in case of transiting pur-
posely gaits. An asymmetric running pattern including a gait
transition between walking and running has been simulated.
The locomotion parameters are given as follows:

Walking pattern

– Hz = 0.8 [m], Stride = 0.3 [m], and Period = 0.1 [s].
Running pattern

– Hz = 0.8 [m], Tf = 0.1 [s], Ts = 0.4 [s], St = 0.3 [m],
kleg = 8500.0 [N/m], and �H ′

G = �0.

Initially, the biped robot stands still with its two feet on
the ground. Then it lifts its left foot in the sagittal plane
and starts moving forward along the desired trajectory at the
average forward speed of 0.3 [m/s]. A transition between
walking and running occurs after 6 steps, and the biped ro-
bot starts running forward at the average forward speed of
0.774 [m/s]. After 16 running cycles, a transition between
running and walking occurs again, and the biped robot starts
walking forward at the average speed of 0.3 [m/s].

Figure 14 illustrates the phase portraits of the position
and velocity of the hip link including walk to run gait and
run to walk gait transitions. First, the graph (a) of Fig. 14
shows that the hip link in the X-axis direction moves like
an inverted-pendulum in both walking and running, even
though two gaits have large differences in the period and
magnitude of the oscillation. The graph (b) of Fig. 14 shows
the lateral swinging motion of the hip link in a clock-wise
fashion. The graph (c) of Fig. 14 shows the vertical bounc-
ing motion of the hip link in a clock-wise fashion. The inner
point describes that the hip link is fixed at a constant height
during normal walking, and the outer distorted circles de-
scribe the vertical bouncing motion of the hip link during
normal running. The curved-lines connecting the inner point

Fig. 13 Vertical reaction forces exerted on both feet. The ground re-
action force reaches about twice the total weight of the biped robot at
times 6.3 [s] and 6.32 [s] and then is reduced drastically

to the outer distorted circles describe the vertical oscillations
of the hip link during gait transitions.

Next, a transition between two steady running patterns
was considered to prove the effectiveness of the developed
strategy for running. The locomotion parameters with re-
spect to two running patterns are chosen as follows:

Running pattern 1

– Vxf = 0.6 [m/s], Hz = 0.8 [m], Tf = 0.08 [s], Ts =
0.5 [s], St = 0.3 [m], kleg = 8500.0 [N/m], and �H ′

G = �0.

Running pattern 2

– Vxf = 0.7 [m/s], Hz = 0.8 [m], Tf = 0.09 [s], Ts =
0.45 [s], St = 0.3 [m], kleg = 8500.0 [N/m], and �H ′

G = �0
where the flight time of the pattern 2 is longer more than that
of the pattern 1 while the duration of the support phase for
the pattern 1 is longer. Hence, the running speed from the
pattern 1 to the pattern 2 is increased by about 17 percent.
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Fig. 14 Phase plots of the hip link: walk to run gait and run to walk
gait transitions. Each diagram represents the reciprocal relationship be-
tween the position and velocity of the hip link. Note that position is

plotted on the abscissa, velocity is on the ordinate, and the action ad-
vances in a clockwise direction in (b) and (c). The starting point indi-
cates the starting spot from rest

Fig. 15 Phase plots of the hip link: a transition between two steady
running patterns. Each diagram represents the reciprocal relationship
between the position and velocity of the hip link. Note that position

is plotted on the abscissa, velocity is on the ordinate, and the action
advances in a clockwise direction in (b) and (c)

The transition between the pattern 1 and the pattern 2 occurs
during the support phase such that at the end of that support
phase the necessary initial conditions for the flight phase of
the pattern 2 are reached. Figure 15 shows the phase por-
traits of the position and velocity of the hip link including
a transition between two steady running patterns. After the
flight phase of the pattern 1, the average forward speed of
the robot is switched gradually from 0.6 [m/s] to 0.7 [m/s]
during the following support phase, and the steady-state
running for the pattern 2 at the average forward speed of
0.7 [m/s] is attained before lift-off. Each plot shows that the
phase portrait oscillates largely just after touch-down and
then is converged into a periodic orbit.

6.3 Actuator limits

Motion performances of a biped robot strongly depend
on performances of the actuators. Thus, the actuator dy-
namics and limits are typically limiting constraints in run-
ning locomotion. In general, permanent magnet DC mo-
tors in series with a gear train are used as the actuators

Fig. 16 Model of a DC motor in series with a gear train. τm and θm

denote the torque and angular velocity of a motor, respectively. Vb and
L denote the back electro-motive-force voltage and inductance of a
motor, respectively

for a multi-DOF humanoid robot (Nagasaki et al. 2003;
Spong and Vidyasagar 1989; Arikawa and Mita 2002). The
actuator dynamics about the armature voltage Vk and arma-
ture current ik of k-th revolute joint can be derived from the
simplified model of a DC motor in series with a gear train,
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Fig. 17 Motor current and
voltage at each joint of the right
leg for running

Fig. 18 Motor current and
voltage at each joint of the right
leg for walking

as shown in Fig. 16. Thus,

ik = jm

ηkT

ϑ̈k + bm

ηkT

ϑ̇k + η

kT

υk,

Vk = jmra

ηkT

ϑ̈k +
(

bmra

ηkT

+ kb

η

)
ϑ̇k + ηra

kT

υk, (52)

k = 1,2, . . . , n

where η denotes the gear reduction ratio (1/110, 1/120,

1/128, 1/160) which is one of the important design para-
meters. It is assumed that the inductance in the armature cir-
cuit is neglected and the gear train transmits the power un-

changed. jm denotes the sum of the DC motor and gear train
inertias; bm denotes the sum of viscous-friction coefficients
of the DC motor and gear; kT , kb, and ra denote the torque
constant, back electro-motive force constant, and armature
resistance of the motor, respectively; ϑ̇k and υk denote the
angular velocity and torque of k-th joint, respectively. The
parameters of all actuators are based on the commercial DC
motor (Maxon Motor co., http://www.maxonmotor.com).
Thus, jm : (0.0134+0.054)×10−3 [kgm2], bm : 2.68042×
10−5 [Nms], kT : 0.0604 [Nm/A], kb : 0.0603 [Vs/rad],
and ra : 1.16 [�]. The maximum torque is mainly deter-
mined by the maximum current imax which is restricted

http://www.maxonmotor.com
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by the capability of the DC motor driver while the max-
imum speed is mainly determined by the maximum volt-
age Vmax which is dependent on the power supply voltage.
imax = 20.0 [A] and Vmax = 48.0 [V] from the specification
of commercial motor drivers are used to evaluate the actua-
tor limits in the simulation. Figure 17 shows that the motor
current and voltage needed for the right leg for running does
not exceed the actuator limits. The maximum motor current
needed in running is about 1.5 times larger than that in walk-
ing, as illustrated in Figs. 17 and 18. In particular, the knee
pitch joint needs relatively large motor current because it
must absorb the large vertical force caused by an impulsive
collision at every footfall and make the biped robot rebound
into the air. Also, it needs high motor voltage in order to
make a front leg move into the desired landing position dur-
ing the flight phase.

Fig. 19 Components trajectories of the angular momentum at the mass
center of the biped robot. The control system has a deviation of ± 25
percent in the parameters of links

6.4 Simulation with parametric modeling error

The proposed method was successful in the simulations in-
cluding the 6-DOF contact model with static friction coef-
ficient μs = 0.5. In addition, the robustness test of the pro-
posed method is performed with respect to parametric mod-
eling error. A deviation of ± 25 percent in the masses and
inertias of links between the simulation model and the con-
trol model used in the impedance controller is introduced,
since accurate values of the parameters of links are typically
unknown even to manufacturers of a robot, and determin-
ing the parameters from computer design tools and exper-
imental measurements is generally difficult. It is important
to note that the parametric modeling error leads to errors in
the configuration and speed of the robot at the instance of
touch-down and also generates the large impact force at the
supporting foot.

Figure 19 shows how the components of the angular mo-
mentum at the mass center vary, when the control system for
running of a biped robot has the parametric modeling errors.
A biped robot walks along the desired trajectory with the
forward walking speed of 0.3 m/s. After a gait transition
between walking and running, the biped robot runs with a
average forward speed of 0.774 [m/s]. The biped robot flies
in the air at times 6.23 [s] to 6.3 [s] and 6.73 [s] to 6.8 [s].
Even though the duration of the flight phase becomes far
shorter than the planned value, the components of the angu-
lar momentum at the mass center of the biped robot are kept
constant within an allowable range during flight. The allow-
able range of the angular momentum which is defined ac-
cording to the desired motion patterns of the support phase is
|( �HG)y | ≤ 0.4421 [Nms]. Figure 20 shows phase-plane evo-
lutions of the position and velocity of the hip link bouncing
and swinging with the average speed of 0.774 [m/s], after
a walk to run gait transition. Even though a marked devia-
tion from normal running occurs just after the gait transition,
the plots (a)–(c) of Fig. 20 indicate that each phase portrait
converges into periodic orbits.

Fig. 20 Phase plane diagrams of the hip link bouncing and swinging after a walk to run gait transition. The control system has a deviation of
± 25% in the parameters of links. Each diagram represents the reciprocal relationship between the position and velocity of the hip link
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Fig. 21 A 12-DOF biped robot and control architecture for running
experiments. The control system consists of a PMAC motor control
board, a DAQ board, and a Desktop PC. The DAQ board handles ana-
log signal output from FSR force sensors (pressure sensors) and Gyro
sensors

Table 3 Physical parameters of the biped robot model used in the sim-
ulation and experiment

Link Length (cm) Mass (kg)

Link 0 (waist-upperbody) 18 15.9518

Link 1 0.1235 1.8460783

Link 2 0.0 0.0

Link 3 (thigh) 0.26 2.9653

Link 4 (shin) 0.255 3.4435

Link 5 (ankle) 0.0 0.0

Link 6 (foot) 0.08565 1.2693

Table 4 Parameters used in the simulation and experiment

M 16.0 kg Tf 0.06 s

M1 9.5 kg δ 50 N

M2 9.5 kg �f 100 N

Ts 0.46 s σ 1/12

7 Running experiments

In order to verify that the proposed method is versatile
enough for biped robots different in kinematic structures,
running simulations and experiments are done with a 12-
DOF biped robot of mass 35.0 [kg] without both arms, as
shown in Fig. 21. Each leg of the biped robot has 6 degrees
of freedom, two joints at the ankle, one joint at the knee, and
three joints at the hip. The specification of the biped robot
model is listed in Table 3. The leg weighs 9.5 [kg] due to
permanent magnet DC motors in series with a gear train. It
is important to note that this robot model without both arms
is different from the link length of the robot model used in
the previous sections.

As a counterweight, swinging both arms helps balance
the upright body while running. At the same time, moving

Fig. 22 Curves of angular momentum at the mass center in the simu-
lation of the 12-DOF biped robot

the upper limbs back and forth rhythmically with the legs
prevents the supporting foot from rotating about the verti-
cal axis. Without swinging arms, the swinging motion of
two legs with relatively heavy mass generates a rotation of
the upper body and legs around the vertical axis. In order
to compensate the yaw moment during a support phase, the
hip of the biped robot is controlled to rotate about the ver-
tical axis synchronously with the action of the swing leg.
Hence,

( �̇ω0
h)z = 2M2|Ysf |

Ihz

Ẍsf (53)

where Ihz denotes the inertia moment of the hip about the
vertical axis with respect to the absolute coordinates.

The control period is set to 0.00264 [s] since it takes
about 0.00164 [s] to capture data from force sensors and
Gyro sensors and about 0.001 [s] to calculate input torques
from the control method. When comparing to the data cap-
ture time, the calculation time for the control input is con-
siderably short, which makes the control method applied on-
line.

The vertical height of the hip is 0.7242 [m] with knee
stretched fully. The allowable ranges of the locomotion para-
meters for a support phase are chosen as Hz,min = 0.61 [m],
Hz,max = 0.71 [m], St,min = 0.1 [m], and St,max = 0.2 [m].
The locomotion parameters are determined by the same
method given in Sect. 4. Thus, Ts = 0.46 [s], St = 0.15 [m],
Hz = 0.693 [m] and kleg = 7500.0 [N/m]. The parameters
used in the fight phase trajectories are given in Table 4. Fig-
ures 22 and 23 show graphs of the angular momentum and
the ZMP during normal running in the simulation of the 12-
DOF biped robot, respectively. As a result, these plots show
that they does not move out of the predefined stability re-
gion.
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Fig. 23 ZMP trajectory in the
simulation of the 12-DOF biped
robot. The rectangles denote
footprints in the horizontal
plane (X–Y plane)

Fig. 24 Phase plane diagrams of the hip link bouncing and swinging
in the simulation of the 12-DOF biped robot. Each diagram represents
the reciprocal relationship between the position and velocity of the hip

link. Note that position is plotted on the abscissa, velocity is on the
ordinate, and the action advances in a clockwise direction in (b) and (c)

Fig. 25 Phase plane diagrams of the hip link bouncing and swinging
in the experiment of the 12-DOF biped robot. Each diagram represents
the reciprocal relationship between the position and velocity of the hip

link. Note that position is plotted on the abscissa, velocity is on the
ordinate, and the action advances in a clockwise direction in (b) and (c)

Figure 24 shows the phase plane diagrams of the hip

in the simulation of the 12-DOF biped robot. The vertical

height of the hip link Hz is 0.693 [m] at the moment the

biped robot leaves off the ground with the maximum flight

height of about 0.698 [m]. The peak foot clearance is about

0.04 [m], as the robot runs at the average speed of about

0.3359 [m/s]. In these phase portraits, the hip of the ro-

bot bounces and swings along the forward velocity which
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Fig. 26 ZMP trajectory in the
experiment of the 12-DOF biped
robot. The rectangles denote
footprints in the horizontal
plane (X–Y plane)

Fig. 27 Consecutive snapshots
of the 12-DOF biped robot with
running gaits. Vinyl flooring is
used to protect the FSR force
sensors and harmonic drivers
from the impact force exerted on
the foot. The snapshots are
spaced at 0.1 [s]

is chosen to be suited to the link length and mass of the ro-
bot model.

In the experiments, encoders were used to measure joint
angles and velocities of revolute joints. In order to obtain
the velocity and acceleration of the hip link, the measured
joint angles and velocities are differentiated and double-
differentiated, respectively, by a digital differentiating fil-
ter. However, the need to differentiate the velocity numer-
ically to find the acceleration greatly amplifies whatever
noise is present. The joint encoders are easily contaminated
with noise in harsh environments. Therefore, Kalman esti-
mators are used to estimate the optimum steady state posi-
tion, velocity, and acceleration of a biped robot moving with
a constant acceleration perturbed by a zero mean plant noise
which accounts for maneuvers or other random factors (Ra-

machandra 2000). Similarly, the orientation of the robot is
estimated from the raw voltage outputs of Gyro sensors us-
ing Kalman estimators.

Figure 25 shows phase-plane evolutions of the hip link
bouncing and swinging in the flight and support phases for
a average speed of about 0.3359 [m/s]. Initially, the biped
robot stands still with its feet on the ground. Then the left
foot is lifted first and the biped robot starts to walk forward
along the desired trajectory at the average forward speed
of 0.1776 [m/s]. The speed transition between walking and
running occurs after 3 steps, and the biped robot starts run-
ning forward at the average speed of 0.3359 [m/s]. After
6 running cycles, the speed transition between walking and
running occurs, and the biped robot starts to walk forward at
the average speed of 0.1776 [m/s]. After 7 steps, it comes
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to a stop and then stands with its two feet on the ground.
When the vertical force measured from force sensors be-
comes larger than about mg g/100.0 [N] after touchdown,
the control system of the biped robot has a phase switch
from a flight phase to a support phase. This is due to the fact
that it is difficult to measure exactly the instance of touch-
down.

A supporting leg of the robot is flexible due to elastic
deformations of links and revolute joints, even though the
robot was built for experimental verification of the dynamic
simulations. The revolute joint is actuated by a permanent
magnet DC motor-pulley-single stage timing belt-pulley-
harmonic driver system. The flexibility of the supporting leg
is briefly modeled into an inverted pendulum model with a
rotational spring. If the stiffness of the rotational spring is
determined experimentally, the support phase trajectory of
the hip link is modified to compensate the elastic deforma-
tion of the supporting leg. When comparing the phase por-
trait of Fig. 25(b) to the corresponding graph of Fig. 24(b),
it can be seen that the hip link of the robot is controlled to
move within a wider range than that in the simulations. In
addition, the force of friction slows the revolute joint down
as it rotates. The effect of the joint friction is determined
experimentally, and then it is added to (52).

The ZMP is calculated using the force data that are mea-
sured by six pressure sensors mounted at the sole of the
robot during the support phase, as given in Appendix A.
Figure 26 shows the ZMP trajectory in the horizontal plane
(X–Y plane). The ZMP does not move from the rear edge to
the fore edge of the support foot, since the robot flies in the
air without toe joints, as can be seen on the front area of the
footprint in the plot. The ZMP stays inside the boundary of
the footprint in the horizontal plane (X–Y plane) as the lo-
comotion proceeds. Figure 27 shows consecutive snapshots
of the 12-DOF biped robot running without both arms.

8 Conclusions

Symmetric running makes control of the robot simple and
easy. In the case of biped robots with relatively heavy legs
and arms, large deviations from symmetry occur frequently
in the instances of touch-down and lift-off. The control sys-
tem requires a lot of works to eliminate the large error and
to recover to the normal and symmetric pattern. Such recov-
ery works may increases energy consumption. It is effective
to exploit asymmetry that can provide balanced steady-state
running patterns and reduce energy consumption. We pro-
posed an trajectory generation method to make the biped
robot run asymmetrically. The method was achieved by the
asymmetric motion of the hip link and two legs based on
the SLIP-like motion as well as the approximated running

model with two legs. The asymmetric motion reduces en-
ergy consumption so that joint power for running of the ro-
bot does not exceed the allowable limit of the commercial
actuator and driver system. It did not lead to the least energy
consumption, but to the locally-optimized energy consump-
tion.

The trajectory generation strategy was implemented on
a model with heavy articulated legs, arms and vertically
placed upper body with its center of mass which is not lo-
cated at the hip link. During flight, the angular momentum
is conserved. If the feet are controlled to move to a desired
position during flight, the upper body with its larger mass
and inertia in comparison with the legs inevitably rotates
around the mass center. Control of the body rotation was ac-
complished by using the approximated running model and
simplified equations of the linear and angular momenta. The
essential characteristics in biped running could be captured
with the approximated running model with two springless
legs in order to avoid the rotation of the upper body dur-
ing flight. Applying properly chosen values for the angular
momentum to the running model clearly resulted in good
performance.

The running stability criterion based on the ZMP and the
angular momentum was used to ensure that the generated
asymmetrical trajectories guarantee a high level of dynam-
ical postural stability for the robot. The ZMP criterion is
quantified by the distance of the ZMP to the boundaries of
a stability region so that one step does not cause the system
to tip over entirely before the next step. In the case of the
angular momentum, it cannot be manipulated once the flight
phase begins. The allowable range of angular momentum at
the mass center of the biped robot for flight was determined
according to the desired trajectory of the support phase after
touch-down or before lift-off. The proper value of the angu-
lar momentum chosen in the predefined stability region was
reached just before lift-off.

The trajectory generation strategies were developed with
respect to two different types of biped robots. The effec-
tiveness of the developed strategies was verified by a vari-
ety of computer simulations, showing that they are effec-
tive regardless of the kinematic differences of the two biped
robots. Experiments indicated that the 12-DOF biped ro-
bot balanced while running at the average forward speed of
about 0.3359 [m/s] on the Vinyl flooring. An interesting as-
pect of these methods is that the locomotion parameters for
the asymmetric pattern is determined to be properly matched
to kinematic structure and locomotion condition of the ro-
bot. The computation time needed for generating feasible
trajectories and implementing the impedance control is rela-
tively short. The methods can be applied to the experiments
online.

In general, quantitative measures of the angular momen-
tum at the mass center of the biped robot can be obtained
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from force data measured by foot force sensors at the mo-
ment of lift-off combined with motion data measured by
Gyro sensors and acceleration sensors after lift-off. How-
ever, it is difficult to quantify the angular momentum ex-
actly online due to kinematic modeling errors and properly
uncompensated sensor errors. As a future work, further con-
tinuing studies are required to estimate the angular momen-
tum online and to find the correct amount of the angular mo-
mentum required for the style of flight. In addition, we will
study an online control of the measured angular momentum
for running of biped robots on uneven surface.

Appendix A: Zero moment point (ZMP)

The ZMP is simply the center of the pressure (COP), nor-
mal to the sole, applied at the soles by the ground. The re-
sultant ground normal force can be represented by a single
force at that point without any associated moment. By de-
finition, the ZMP should remain inside the convex hull of
the foot-support in the single support phase. Under the as-
sumption that no external force nor external moment exists
except at the soles, its relationship with dynamic variables of
the biped robot can be also easily obtained as the following
equation:

Xzmp =
∑n

k=1 mk (−ẍkzk + (z̈k + g)xk) − Ikyφ̈ky∑n
k=1 mi (z̈k + g)

= −( �̇H0)y + ∑n
k=1(mkgxk)∑n

k=1 mk (z̈k + g)
,

(54)

Yzmp =
∑n

k=1 mk (−ÿkzk + (z̈k + g)yk) + Ikxφ̈kx∑n
k=1 mk (z̈k + g)

= ( �̇H0)x + ∑n
k=1(mkgyk)∑n

k=1 mk (z̈k + g)

where

( �H0)x =
n∑

k=1

(−mkẏkzk + mkżkyk + Ikxφ̇kx),

( �H0)y =
n∑

k=1

(mi ẋkzk − mkżkxk + Ikyφ̇ky),

and g is the gravity, i.e., 9.8 [m/s2]. Each element of the
linear and angular momenta is derived using the Newton’s
law and (54).

x : ( �̇P0)x =
n∑

k=1

mkẍk = Fx

y : ( �̇P0)y =
n∑

k=1

mkÿk = Fy

z : ( �̇P0)z =
n∑

k=1

mkz̈k = Fz −
n∑

k=1

mkg

(55)

�x : ( �̇H0)x = Yzmp · Fz −
n∑

k=1

mkgyk

�y : ( �̇H0)y = −Xzmp · Fz +
n∑

k=1

mkgxk

�z : ( �̇H0)z = XzmpFy − FxYzmp

where Fx , Fy and Fz are the contact forces exerted on a
supporting foot. Ikx , and Iky denotes the inertia moments
of k-th link represented by the absolute coordinates in the
X-axis, and Y -axis, respectively. These equations state that
each element of the rate of change in angular momentum
with respect to the absolute coordinates is directly related
to the ZMPs, contact forces, and gravitational force. In gen-
eral, the ZMPs are directly measurable with a force/torque
sensor installed at the ankle, or pressure sensors installed
at the sole. In this paper, six pressure sensors located at
the four corners and middle of a foot in the shape of a
square are used, since they are light, thin and reliable even
if a variety of sensors including 6-dof force/torque sen-
sors, load cells and strain gauges can be employed under
the foot to obtain the ZMP information (Li et al. 1991;
Erbatur et al. 2002).

Appendix B: Inverted pendulum model (IPM)

The IPM assumes that the total mass of the body is concen-
trated at the hip (base link) as an inverted pendulum (Park
and Kim 1998). From this model, we can easily derive the
moment equation about the ZMP.

�rh × (mg �̈rh) = �rh × (mg �g) (56)

where �rh = [X Y Z]T denotes the position of the hip link,
and mg is the mass of the biped robot excluding the swing
leg. Equation (56) is described by the following equation:

mg

⎡
⎣

Y Z̈ − ZŸ

ZẌ − XZ̈

XŸ − YẌ

⎤
⎦ = mg

⎡
⎣

−gY

gX

0

⎤
⎦ . (57)

Assuming that Z = Hz = constant (the height of the hip
link from the ground) in (56),

Ẍ − ω2X = 0, Ÿ − ω2Y = 0 (58)

where ω = √
g/Hz. The solutions of (58) are

X(t) = C1e
ωt + C2e

−ωt , Y (t) = D1e
ωt + D2e

−ωt

for 0 ≤ t ≤ Ts (59)
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where

C1 = 1

2

(
X(0) + 1

ω
Ẋ(0)

)
, C2 = 1

2

(
X(0) − 1

ω
Ẋ(0)

)
,

D1 = 1

2

(
Y(0) + 1

ω
Ẏ (0)

)
, D2 = 1

2

(
Y(0) − 1

ω
Ẏ (0)

)
,

and variables X(0) and Ẋ(0) are the initial position and the
initial velocity in the X-axis direction, respectively, while
variables Y(0) and Ẏ (0) are the initial position and the initial
velocity in the Y -axis direction, respectively. In addition, Ts

is the duration of the support phase. It is important to note
that an assumption is that the height of the hip link from the
ground is kept constant to get the analytical solution without
difficulty. Such approximation will be valid since the period
of a support phase is relatively short.

If the biped robot has a steady, symmetric and repeatable
pattern, the following repeatability conditions should be sat-
isfied.

X(0) = −X(Ts), Ẋ(0) = Ẋ(Ts),

(60)
Y(0) = Y(Ts), Ẏ (0) = −Ẏ (Ts).

The initial velocities of the hip link can be found by (60)
and (59). Thus,

Ẋ(0) = 1 + eωTs

1 − eωTs
ωX(0), Ẏ (0) = 1 − eωTs

1 + eωTs
ωY (0).

(61)

Appendix C: Spring loaded inverted pendulum model
(SLIPM)

A spring loaded inverted pedulum model which is approx-
imatedly embedded into a biped robot in the sagittal plane
is shown in Fig. 4 (Papadopoulos and Cherouvim 2004). It
is assumed that the total mass of the body and swing leg is
concentrated at the hip (base link) and that the supporting
leg is a massless spring with a nominal length l0. In the fig-
ure, the leg stiffness kleg is the stiffness of a linear spring
and St is the stride of the biped robot in the support phase.

The equations of motion for this model in the sagittal
plane using �rh × (mg �̈rh) = �rh × (mg �g) in (56) and mg �̈rh =
mg �g+kleg(�rh(0)−�rh) is derived as the following equations:

mgl
2ϕ̈ cos2 ψ + 2mgll̇ϕ̇ cos2 ψ − 2mgl

2ψ̇ϕ̇ cosψ sinψ

− mggl sinϕ cosψ = 0,

mgl
2ψ̈ + 2mgll̇ψ̇ − mggl cosϕ sinψ

+ mgl
2ϕ̇2 cosψ sinψ = 0, (62)

mgl̈ − mglψ̇
2 − mglϕ̇

2 cos2(ψ) + kleg(l − l0)

+ mgg cosϕ cosψ = 0

where �rh(0) denotes the initial position of the base link, and
the leg forms an angle ϕ with the vertical axis in the sagit-
tal plane and an angle ψ with the vertical axis in the frontal
plane while the length of the leg at any moment in time is l.
And X = l cosψ sinϕ, Y = l cosψ , and Z = l cosψ cosϕ.
For small ϕ, the equations of motion in (62) can be lin-
earized. Thus, linear mathematical models for the nonlinear
equations of (62) in the neighborhood of the normal operat-
ing point ϕ = 0, ψ = 0, and l = l0 are given by

l0ϕ̈ − gϕ = 0,

l0ψ̈ − gψ = 0, (63)

mgl̈ + kleg(l − l0) + mgg = 0.

The solutions of (63) are

ϕ(t) = E1e
ω1t + E2e

−ω1t ,

ψ(t) = E3e
ω1t + E4e

−ω1t ,

(64)
l(t) = mgg/kleg cos (ω2t) + √

mg/kleg l̇(0) sin (ω2t)

+ l0 − mgg/kleg for 0 ≤ t ≤ Ts

where

E1 = ϕ(0)

2
+ ϕ̇(0)

2
√

g/l0
, E2 = ϕ(0)

2
− ϕ̇(0)

2
√

g/l0
,

ω1 = √
g/l0,

E3 = ψ(0)

2
+ ψ̇(0)

2
√

g/l0
, E4 = ψ(0)

2
− ψ̇(0)

2
√

g/l0
,

ω2 = √
kleg/mg, l0 = l(0) =

√
Hz

2 + (St/2)2,

St = −2Hz tan (ϕ(0)),

and variables ϕ(0) and ϕ̇(0) are the initial angle and the ini-
tial angular velocity about the vertical axis in the sagittal
plane, respectively. Variables ψ(0) and ψ̇(0) are the initial
angle and the initial angular velocity about the vertical axis
in the frontal plane, respectively

Running is composed of a symmetric part and an asym-
metric part. Symmetric running states that the two legs and
body form approximately symmetric configurations with re-
spect to a vertical axis passing through the hip during a flight
phase or support phase. Asymmetric running deviates from
symmetry.

C.1 Symmetric running

If the biped robot has a steady, symmetric and repeatable
pattern, the following repeatability conditions should be sat-
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isfied in the sagittal plane. Thus,

ϕ(0) = −ϕ(Ts), ϕ̇(0) = ϕ̇(Ts),

(65)
l(0) = l(Ts), l̇(0) = −l̇(Ts).

where the biped robot touches the ground at times 0 and
Ts + Tf . Applying (65) to (64) leads to the initial velocities
of the hip link at touch-down in the sagittal plane. Thus,

ϕ̇(0) = 1 + eω1Ts

1 − eω1Ts
ω1ϕ(0),

(66)

l̇(0) = g
√

mg/kleg sin (ω2Ts)

1 + cos (ω2Ts)
.

For symmetric running, the trajectory of the hip link
(X,Z) in the sagittal plane is obtained by inserting X(t) =
l(t) sinϕ(t), Z(t) = l(t) cosϕ(t), and (66) into (64) during
a support phase.

X(t) = (mgg/kleg cos (ω2t) + √
mg/kleg l̇(0) sin (ω2t)

+ l0 − mgg/kleg) sin (E1e
ω1t + E2e

−ω1t ),

Z(t) = (mgg/kleg cos (ω2t) + √
mg/kleg l̇(0) sin (ω2t)

(67)

+ l0 − mgg/kleg) cos (E1e
ω1t + E2e

−ω1t )

for 0 ≤ t ≤ Ts.

In the frontal plane (Y,Z), the Y -axis trajectory of the base
link of the biped robot is obtained in the same way.

C.2 Asymmetric running

We should not expect to see perfect symmetry in running of
biped robots since the control system to provide balanced
steady-state behavior should compensate for energy losses
due to joint friction, external forces, and uncertainties (Raib-
ert 1986). The biped robot should move asymmetrically in

order to maintain stable locomotion, to purposely transit
gaits, and to increase power autonomy. Asymmetric running
deviates symmetry. Hence, it has difficulty in satisfying re-
peatability conditions for a steady, asymmetric and repeat-
able pattern.

For example, the body forms an asymmetric configura-
tions with respect to a vertical axis passing through the hip
during a support phase or flight phase. Thus,

ϕ(0) = −γ1ϕ(Ts) = γ1ϕ(Ts + Tf ),

ϕ̇(0) = γ2ϕ̇(Ts) = γ2ϕ̇(Ts + Tf ),

(68)
l(0) = γ3l(Ts) = γ3l(Ts + Tf ),

l̇(0) = −γ4 l̇(Ts) = γ4 l̇(Ts + Tf )

where parameters γ1, γ2, γ3, and γ4 are determined by the
configuration and speed of the body at touch-down. The
body trajectory of the biped robot (X,Z) in the sagittal
plane is obtained by inserting X(t) = l(t) sinϕ(t), Z(t) =
l(t) cosϕ(t), and (68) into (64). However, this asymmetric
trajectory cannot provide a repeatable pattern for running
due to velocity discontinuity at times 0 (touch-down) and
Ts + Tf (touch-down).

Asymmetric running should satisfy not only the repeata-
bility condition but also the running stability. In order to
meet these necessary conditions, asymmetric behavior of a
biped robot including gait transition and change of speed is
divided into trajectory segments, and then asymmetric tra-
jectories are constructed using polynomial functions to con-
catenate these trajectory segments, as given in Sect. 4.

Nomenclature

The subscript ‘f’ corresponds to the flight phase and the sub-
script ‘s’ corresponds to the stance phase. And subscripts ‘r’,
‘l’, ‘b’, and ‘h’ denote the right leg of ρ-joints, left leg of ρ-
joints, and upper body of �-joints, the hip link, respectively.
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Symbol Meaning Defined

O–XYZ Absolute coordinates Fig. 1

H − XH YH ZH Body center coordinates fixed at the body of the robot Fig. 1

G − XGYGZG Mass center coordinates fixed at the mass center of the robot Fig. 1

�̈qr , �̈ql ∈ �ρ Joint acceleration of the right and left legs (1)

�̈qb ∈ �� Joint acceleration of the upper body (1)

�̈xh ∈ �6 Actual acceleration of the hip link (1)

�̇xh,d Desired acceleration of the hip link (43)
�fr , �fl ∈ �6 External force/moment applied at the right and left feet (1)

Hr,Hl ∈ �ρ×ρ Inertia matrices of the left and right legs (1)

R ∈ �6×6 Inertia matrix of the hip link (1)

Kr,Kl ∈ �ρ×6 Inertia matrices of the left and right legs (1)

Qr,Ql ∈ �6×ρ Inertia matrices of the hip (1)

Hb ∈ ��×�,Kb ∈ ��×6 Inertia matrices of the upper body and the hip link (1)

Qb ∈ �6×� Inertia matrices of the upper body and the hip (1)

D,P ∈ �6×6 Jacobians of the left and right feet (1)

Lr,Ll ∈ �ρ,Lb ∈ ��, S ∈ �6 Coriolis/centripetal and gravitational forces (1)

�τl, �τr ∈ �ρ, �τb ∈ �� Joint torques of the left leg, right leg and upper body (1)

Igk Inertia tensor of k-th link (2)

�ωgk Angular velocity of k-th link with respect to the absolute coordinates (2)

�x0
h Linear velocity of the hip link with respect to the absolute coordinates (2)

�ω0
h Angular velocity of the hip link with respect to the absolute coordinates (2)

�P0 Linear momentum represented by the absolute coordinates (2)
�H0 Angular momentum represented by the absolute coordinates (2)
�PG = [( �PG)x ( �PG)y ( �PG)z]T Linear momentum at the mass center of the robot (3)
�HG = [( �HG)x ( �HG)y ( �HG)z]T Angular momentum at the mass center of the robot (4)

�rg = [Xg Yg Zg]T Position vector of the center of mass (4)

�rh = [X Y Z]T Position vector of the hip link (56)

mg Total mass of a biped robot (4)

mk Mass of k-th link (3)

�rk = [xk yk zk]T Position vector of k-th link represented by the absolute coordinates (3)

Jkx , Jky , Jkz Inertia moments of k-th link about the mass center coordinates (4)

φ̇kx , φ̇ky , φ̇kz Angular velocities of k-th link about the mass center coordinates (4)
�̇HOk Rate of change in angular momentum of k-th link (6)
�̇HGk Rate of change in angular momentum of k-th link about the mass center (6)

�̈rk Acceleration of the center of mass of k-th link about the absolute coordinates (6)

�g = [0 0 −g]T Gravitational acceleration (6)

Xzmp, Yzmp x-component and y-component of the ZMP (10)

lh Length from the center of the foot to the rear safety boundary (10)

lt Length from the center of the foot to the fore safety boundary (10)

( �HG)y,td+ Angular momentum at the moment t = ttd+ after touch-down (13)

( �HG)y,td− Angular momentum at the moment t = ttd− before touch-down (13)

α0, α1, α2, α3 Positive values which is determined by support phase trajectories (14)

β1, β2 Positive values which is determined by support phase trajectories (17)

Vxf , Vyf , Vzf Desired velocity of the hip link at lift-off Fig. 3

ẊC , ẎC , ŻC Desired velocity of the hip link at touch-down in the running model Fig. 3

ẊC,td , ẎC,td , ŻC,td Actual velocity of the hip link at touch-down Fig. 3

M Total mass of the trunk and upper parts of the robot Fig. 3

M1 Mass concentrated at the middle of the left leg Fig. 3

M2 Mass concentrated at the middle of the right leg Fig. 3

( �P ′
G)x, ( �P ′

G)y, ( �P ′
G)z Modified components of linear momentum (18)
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Symbol Meaning Defined

(Xj , Yj , Zj ) Position of the hip link of each breakpoint in the running model Fig. 3

(Xij , Yij , Zij ) Foot position of each breakpoint in the running model Fig. 3

Tf Duration of the flight phase (18)

(Xj , Y j , Zj ) Center of mass of the running model (19)

Ẋlo, Ẏ lo, Żlo Initial velocities of the model’s center of mass (19)

ẊA, ẎA, ŻA Initial position of the hip link in the running model Fig. 3

σ Value which arises from insisting on continuous acceleration lift-off (20)

l0 Nominal length which is the leg length at touch-down and lift-off Fig. 4

l Leg length at any time Fig. 4

ϕ Angle with the vertical axis in the sagittal plane Fig. 4

ψ Angle with the vertical axis in the frontal plane Fig. 4

Ts Duration of a support phase Fig. 5

kleg Stiffness of a supporting leg Fig. 5

Hz Vertical height of the hip link at touch-down and lift-off Fig. 5

St Stride of a support phase Fig. 5

Hz,min Lower limit of Hz to avoid the collision between links Sect. 4.2

Hz,max Upper limit of Hz to avoid the singular configuration Sect. 4.2

St,min Lower limit of St determined by the desired forward velocity of the robot Sect. 4.2

[XCA, ẊCA] Configuration and speed of the hip link in the middle of the support phase (29)

[Xsf , Ysf , Zsf ] Position of a swing foot during the support phase (32)

Z1C,td Actual vertical position of a swing foot at touch-down (32)

fh ∈ �1 Tangential component of the external force generated by the ground (33)

fv ∈ �1 Normal component of the external force generated by the ground (33)

fv,d ∈ �1 Normal component of the external force generated by the ground (50)
�fl,d Desired external force vector applied at the left foot (51)

μs , μd Static coefficient and dynamic coefficient of friction (33), (34)

θ Angle between the foot’s force ft and the normal force fv (34)

�̇xlf ∈ �6 Velocity of the left foot about O (36)

�̇xrf ∈ �6 Actual velocity of the right foot represented by the absolute coordinates (47)

�̇xrf,d ∈ �6 Desired velocity of the right foot represented by the absolute coordinates (47)

R0
h ∈ �3×3 Orientation matrix of the body center coordinate system (36)

�̇x0
lf ∈ �3, �ω0

lf ∈ �3 Linear velocity and angular velocity of the left foot (36)

Jl ∈ �6×6 Jacobian matrix of the left foot with respect to the hip (37)

Jr ∈ �6×6 Jacobian matrix of the right foot with respect to the hip (37)

�̇xh
lf ∈ �6 Velocity vector of the left foot with respect to the hip (37)

(ML, DL, EL) Desired mass, damping, and stiffness matrices about the left leg (38)

Mh, Dh, Eh Desired mass, damping ratio and stiffness matrices about the hip link (43)

MR , DR , ER Desired mass, damping ratio and stiffness about the rear right leg (47)

�f , δ Reduction rate and boundary value for force modulation (50)

Vk Armature voltage of k-th revolute joint (52)

ik Armature current of k-th revolute joint (52)

η Gear reduction ratio (52)

jm Sum of the DC motor and gear train inertias (52)

bm Sum of viscous-friction coefficients of the DC motor and gear (52)

kT Torque constant of the motor (52)

kb Back electro-motive force constant of the motor (52)

ra Armature resistance of the motor (52)

imax , Vmax Maximum current, maximum voltage (52)

Fx , Fy , Fz External forces generating at the supporting foot (55)

Ikx , Iky , Ikz Inertia moments of k-th link represented by the absolute coordinates (54)
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