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Abstract Many autonomous ground vehicle (AGV) mis-
sions, such as those related to agricultural applications,
search and rescue, or reconnaissance and surveillance, re-
quire the vehicle to operate in difficult outdoor terrains such
as sand, mud, or snow. To ensure the safety and performance
of AGVs on these terrains, a terrain-dependent driving and
control system can be implemented. A key first step in im-
plementing this system is autonomous terrain classification.
It has recently been shown that the magnitude of the spatial
frequency response of the terrain is an effective terrain sig-
nature. Furthermore, since the spatial frequency response is
mapped by an AGV’s vibration transfer function to the fre-
quency response of the vibration measurements, the mag-
nitude of the latter frequency responses also serve as a ter-
rain signature. Hence, this paper focuses on terrain classifi-
cation using vibration measurements. Classification is per-
formed using a probabilistic neural network, which can be
implemented online at relatively high computational speeds.
The algorithm is applied experimentally to both an ATRV-Jr
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and an eXperimental Unmanned Vehicle (XUV) at multiple
speeds. The experimental results show the efficacy of the
proposed approach.
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1 Introduction

Autonomous ground vehicles (AGVs) are expected to op-
erate in collaboration with manned vehicles in operations
including agricultural applications, search and rescue mis-
sions, reconnaissance and surveillance, supply and logistics,
etc. These situations may require the vehicle to traverse a
variety of off-road terrains that can have an affect on the
vehicle performance. Therefore, terrain-based adjustments
to the vehicle driving rules (Allen 2002; Delong 2000) and
control system (Vanderwerp 2005) can improve its perfor-
mance and prevent the robot from becoming disabled. As an
illustration of off-road driving rules in loose sand, the turn
radius of a vehicle should be limited and the vehicle should
not be allowed to lose momentum (Allen 2002). A terrain-
dependent control system is currently available for the Land
Rover LR3 (Vanderwerp 2005). This Terrain Response Sys-
tem allows the driver to manually adjust the vehicle’s control
system, including traction control, anti-lock braking, throttle
response, transmission shift schedule and differential lock-
ing, to achieve improved vehicle handling and performance
on four sets of terrains: asphalt, grass/gravel/snow, mud and
ruts, and sand.

The first step in automating terrain-dependent driving
rules and control systems is automated terrain classifica-
tion. Initially, research for terrain classification focused al-
most exclusively on applying vision-based algorithms to in-
fer the traversability and class of the terrain (Howard and
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Seraji 2001; Vandapel et al. 2004). The purpose was to iden-
tify the terrain prior to traversal to avoid hazardous terrains
and obstacles. For example, Howard and Seraji introduced
the Fuzzy Traversability Index Algorithm, which used vi-
sual intensity levels to determine the terrain characteristics
such as the roughness, slope, and discontinuity (Howard and
Seraji 2001). These characteristics are used to determine
whether the terrain is traversable in relation to the presence
of ditches, rocks, or extreme slopes. Detection of the terrain
characteristics becomes difficult and unreliable when the ef-
fects of shadows affect the ability to distinguish between the
terrain surface and obstacles located on the terrain. Another
classification method by Vandapel avoids the effects of vari-
ability in light intensity by the use of statistical properties of
3D ladar sensor data to detect the surrounding terrains (Van-
dapel et al. 2004). This method applied off-line statistical
analysis techniques to ladar sensor data to segment a scene
into three classes: vegetation, terrain rocks, and thin wires
or tree branches.

More recent vision-based algorithms have focused on
classification of the specific terrain (Angelova et al. 2007;
Bradley et al. 2004; Lu et al. 2008) such as gravel, sand,
grass, etc., which is the subject of this paper. However,
vision-based methods by themselves can be unreliable. For
example, if a surface is covered by a thin layer of leaves or
the vision sensor is obstructed, vision-based algorithms may
have difficulty. These methods may also have difficulty in
distinguishing between terrains that look very similar, but
are very different from a control perspective, e.g., loose dry
sand vs. wet sand or dry pavement vs. wet pavement. Human
drivers handle these ambiguities, hence increasing their ac-
curacy in terrain classification, by relying on feel in addition
to sight. The goal of this research is to enable AGVs to have
a similar sense of feel by developing terrain classification
based on proprioceptive sensors such as accelerometers and
gyroscopic rate sensors. Hence, this research complements
existing terrain classification approaches based on vision.

Past research in terrain classification through feel char-
acterized the terrain by estimating its cohesion and inter-
nal friction from measured parameters of the vertical load,
torque, wheel sinkage, wheel angular speed, and wheel lin-
ear speed (Iagnemma et al. 2002, 2004). These measure-
ments were used in simplified forms of classical terrame-
chanics equations to estimate terrain parameters for plan-
etary rovers, which were compared to stored parameters of
known terrains. The equations on which the method is based
are effective at low speeds and may encounter issues in para-
meter measurements such as wheel sinkage in non-granular
type terrains. There have been efforts to improve the estima-
tion for use on higher speed vehicles by incorporating vision
and auditory based classification with the terrain parameter
estimation technique (Iagnemma and Dubowsky 2002).

This paper presents a method that characterizes the ter-
rain by the measured frequency response of the vehicle vi-
brations. It assumes that the vehicle vibrations are corre-
lated to the terrain type and the terrain signature is given
by the magnitude frequency responses of the vibration sen-
sors. An offline set of frequency response data previously
recorded from each terrain type is statistically compared to
the online measured frequency response data using a prob-
abilistic neural network (PNN); a match between the two
sets is used to estimate the current terrain. In previous re-
search the frequency response approach, which was initially
suggested in (Iagnemma and Dubowsky 2002) and first de-
veloped in (Sadhukan and Moore 2003; Sadhukhan 2004;
DuPont et al. 2005), treated the vehicle as a particle with
only one degree of freedom. This classification was carried
out statistically using a PNN. Similar results for classifying
sand, dirt, and gravel were obtained by applying linear dis-
criminant analysis to the power spectral density of vibration
data (Brooks et al. 2002). However, treating the vehicle as
a particle results in poor performance at certain speeds and
on certain terrains, especially when the vibration amplitudes
are low.

Recent research also classified and characterized the ter-
rain using individual types of sensor modalities (Ojeda et
al. 2006). The experiments were conducted using Activme-
dia’s skid steered Pioneer 2 AT robot platform, with sen-
sor modalities that included an inertial navigation system,
motor current sensors, encoders and a microphone sensor.
These sensors measured the vehicle responses as the robot
traversed grass, sand, gravel, and pavement. Experiments
were conducted using data collected as the robot traversed
along a 4 m × 4 m square path at a single speed of 30 cm/s.
A multilayered feed-forward network classification system
was applied to the extracted discrete Fourier transform fre-
quency components from each individual sensor modality
to return a terrain type. Implementation of this approach re-
quires a separate neural network for each sensor modality.
In this aspect, each network would return a separate terrain
type, which requires an additional classification fusion algo-
rithm to provide an overall resulting terrain type. The fusion
of data from all sensor modalities into a single multilay-
ered feed-forward neural network results in a considerable
increase in memory and computation requirements, which
will result in slow classification.

It has recently been shown that the terrain signature is
contained in the magnitude of the spatial frequency response
of the terrain (Lu et al. 2008). The terrain can be viewed
as providing time-varying inputs to the wheels of the ve-
hicle. The frequency responses of these inputs are directly
related to the spatial frequency response of the terrain and
are mapped via the vehicle’s vibration transfer function to
the frequency responses of the vibration sensors. The result
is the magnitude of these latter frequency responses serve
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as speed-dependent terrain signatures. This paper assumes
that the vibration transfer function is unknown and focuses
on terrain classification using vibration sensors. A classifica-
tion approach based on using the vibration transfer function
is given in (Collins and Coyle 2008).

In contrast to previous research, the algorithm developed
in this paper models the vehicle as a vibration system with
three degrees of freedom. The Fast Fourier Transform (FFT)
is applied to extract the magnitude frequency components,
which together serve as the terrain signature feature vector.
The classification is carried out statistically on these signa-
ture features using a PNN, which can be implemented on-
line with relatively fast computations. The developed clas-
sification algorithm is implemented experimentally on both
an ATRV-Jr and an eXperimental Unmanned Vehicle (XUV)
at multiple speeds to show the efficacy of the proposed ap-
proach.

This paper is organized as follows. Section 2 presents
the proposed terrain classification approach. Section 3
presents experimental results. Section 4 discusses mech-
anisms for improving the algorithm performance. Finally,
Sect. 5 presents conclusions.

2 The proposed vibration-based classification approach

This section first considers the basic concepts and assump-
tions for the proposed vibration-based classification scheme.
It then details the proposed method, which uses a PNN as
the classifier. Subsequently, the basic operation of the PNN
is described.

2.1 Basic concepts and assumptions for vibration-based
classification

An unmanned ground vehicle can be modeled as a vibrating
system (von Scheidt et al. 1999) with base excitation as illus-
trated in Fig. 1, which shows the body-centered x-y-z axes.
Due to the irregular surface of the terrain, time-varying ver-
tical displacements X1(t), X2(t), X3(t), and X4(t) occur at
each of the wheels. If these displacements can be measured,
then they could be used for terrain classification. However,
these displacements are difficult or impossible to measure
in real time. Instead the vibration of the vehicle as a single
body can be measured using proprioceptive sensors, such
as those available as part of an internal navigational unit
(Sukarrieh 2000). The vibration due to the vertical wheel
displacements is completely characterized by the vertical,
roll, and pitch motions and here are considered to be the
vertical acceleration z̈(t), the pitch rate ωy(t), and the roll
rate ωx(t).

A numerical model for the system of Fig. 1 was obtained
using four simplifying assumptions. First, the center of grav-
ity is located in the geometric center of the robot. Second,

Fig. 1 Vehicle Model: A vibrating system with base excitation

the body mass includes the mass of the tires. Third, the mo-
tion is limited to small angles, which enabled the develop-
ment of a linear model. Lastly, the tires maintain contact
with the ground and the tire geometry is ignored. Based on
these assumptions the system reduces to the model,
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where m is the mass of the robot, Ix and Iy are respectively
the mass moment of inertias about the x-axis and y-axis, and
c and k are respectively the damping and spring constants of
the tires.

The terrain signature is given by |X(jω)| as shown in
(Lu et al. 2008). However, it is impossible or extremely dif-
ficult to directly measure |X(jω)| using proprioceptive sen-
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sors. What may be obtained is the frequency responses cor-
responding to the vibration measurements z̈(t), ωy(t) and
ωx(t). Denote the magnitudes of the corresponding FFTs by
the column vectors fz̈, fωx and fωy . Then, it is assumed in
this paper that the terrain signature is the feature vector

t =
⎡
⎣

fz̈
fωx

fωy

⎤
⎦ . (3)

Of course, t is dependent upon the transfer function G(s),
which is assumed unknown in this paper. Changes to the
body of the vehicle, such as load variations or tire pressure,
will lead to changes in G(jω), which will in turn lead to
a change in the signature vector t. As an illustration, con-
sider the case in which results from (Wong 2001) are used
to choose the mass, stiffness and damping parameters in (2)
to correspond to the ATRV-Jr, which has a specified maxi-
mum load capacity of 25 kg. Figure 3 shows the variations
in the magnitude of four of the elements of G(jω) as the

Fig. 2 iRobot ATRV-Jr robot platform

carried load, assumed to be concentrated above the center of
gravity, varies from 0 kg to 25 kg. Obviously, these varia-
tions have the potential to effect classification based on t.

In classifying the traversed terrain there are two possible
ways to address the affects of a changing load. The most
straightforward approach is to collect additional samples to
train the algorithm under multiple expected load conditions.
However for a robot with a large range of carrying capac-
ity this could result in an unreasonably large training set.
A second approach is to amplify or attenuate the elements
of t based on the known load and tire pressures. If a reli-
able analytical model of the vehicle is known, this approach
is preferable since the training set would require a reduced
number of samples without significantly affecting the on-
line classification time. Research on these approaches is cur-
rently being conducted, but is not presented in this paper.

2.2 The proposed algorithm

The four fundamental elements of statistical based classifi-
cation are the choice of the sensor inputs, preprocessing of
the sensor data, feature extraction, and classification (Jain et
al. 2000). As shown in Fig. 4, in this research the sensor in-
puts were the vehicle speed and the vibration measurements
(z̈, ωy , and ωx ) over a fixed time interval. These measure-
ments were obtained from an inertial navigation unit. The
preprocessing of the data involved taking the FFT of the vi-
bration measurements. The magnitude of the combined FFT
vectors in t was extracted as the features to be used for clas-
sification. Actual classification was then accomplished using
a PNN that was trained at the measured speed.

Figures 5, 6, and 7 display examples of the magnitudes
of the FFTs obtained for the ATRV-Jr traveling at a constant
speed of 0.5 m/s over the following surfaces: packed gravel,
loose gravel, sparse grass, tall grass, asphalt, and beach sand.

Fig. 3 An example of the
changes in magnitude of G(jω)

along z̈ for changes in vehicle’s
load mass
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Fig. 4 The speed dependent
classification system

Fig. 5 The magnitude frequency response of the x-axis rotation rate
as the vehicle traveled over the six terrains

Fig. 6 The magnitude frequency response of the y-axis rotation rate
as the vehicle traveled over the six terrains

Each terrain produced a substantially unique FFT magnitude
in the frequency range [3,30] Hz. However, for visual clar-
ification the figures only show the responses in the interval
[3,12] Hz. The FFT magnitudes of Figs. 5, 6, and 7 respec-

Fig. 7 The magnitude frequency response of the z-axis acceleration
as the vehicle traveled over the six terrains

tively define the vectors fz̈, fωx and fωy , which as discussed
above are the single terrain feature vector t, defined by (3).
To train the PNN the feature vector t is computed using mul-
tiple samples at various speeds along the different terrains.
This data is stored in the PNN memory as the preprocessed
training data.

The online classification procedure corresponds to deter-
mining a best fit for a new unknown input test vector t within
a region of a high dimensional vector space. To enable some
visualization of the classification process, Fig. 8 shows the
elements of the feature vectors fz̈, fωx and fωy corresponding
to the frequency of 7.5195 Hz; this frequency was chosen
because the magnitude frequency responses of Figs. 5, 6,
and 7 tend to have high amplitude at this frequency. In par-
ticular, Fig. 8 shows a scatterplot representation for the six
terrains with five samples for each terrain. The data clus-
tering for each of the terrains is evident in Fig. 8. There
is clearly some separation between terrains, which is espe-
cially evident for asphalt, packed gravel, loose gravel, and
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sparse grass. It is also evident that beach sand and tall grass
appear to be closely adjoined. Note that the actual dimension
of the feature vector t is 831 (= 277 × 3). In general, more
separation between these two terrains is seen in this higher
dimensional space. However, as seen below in Table 1, even
in the higher dimensional space, tall grass is occasionally
mistaken for sand.

2.3 Probabilistic neural network classification

This section describes how the PNN was used to classify an
unknown test feature vector t as a particular terrain. Several
tools such as the backpropagation multilayer perceptron,
support vector machines, and other similar methods for pat-
tern classification could have been used (Michie et al. 1994;
Tsoukalas and Uhrig 1997). The PNN was chosen because
of its simplicity, robustness to noise, fast online training, and
fast online classification (Specht 1990a).

The PNN (Specht 1990a, 1990b) is a pattern classifier
that applies classical Bayes optimal decision theory. The

Fig. 8 Terrain vector space point cloud representation using the dom-
inant frequency 7.5195 Hz of along all the terrains

Bayes decision rule states that an unknown vector t is as-
signed to class ci of a two category case as

hiliP (ci |t) > hj ljP (cj |t), i �= j, (4)

where hk is the prior probability of occurrence, lk is the
loss associated with misclassifying an object to class k, and
P(ck|t) is the probability density function (pdf) of t belong-
ing to class k. The PNN simplifies this decision rule by as-
suming that the prior probability hk and the loss function lk
are equal for all categories; therefore, the decision is based
entirely on the pdf, which reduces (4) to

P(ci |t) > P (cj |t), ∀i �= j. (5)

A known limitation of (5) is that the pdf of t for all
classes is not known, meaning (5) cannot be directly im-
plemented. The PNN avoids this problem by applying the
Parzen-windows approach, which uses random samples of
the classes in conjunction with the unknown test sample to
approximate the probability distribution functions (Parzen
1962; Murthy 1965, 1966; Cacoullous 1966). The feed-
forward neural network structure of the PNN classifier,
shown in Fig. 9, consist of an input layer, pattern layer, sum-
mation layer, and output layer. The input layer distributes
the unknown test input vector t to the pattern layer after ap-
plying a weight that is the training vector j of class i as tij
yielding

zi
j = tT tij , (6)

where zi
j represents the input to each pattern neuron j of

class i.
The exponential function exp[−(zi

j − 1)/σ 2] is applied

to the input zi
j as the nonlinear activation function instead

of the commonly known sigmoid function used by typ-
ical multi-layered feed-forward networks. This activation

Fig. 9 The structure of
probabilistic neural network
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function represents a Gaussian distribution centered at each
training vector for each class. The summation layer applies a
unit scaled weight to each neuron received from the pattern
layer and sums the inputs corresponding to the class of the
training features. The summation layer applies the Parzen-
window estimator to compute the probability of a given in-
put t belonging to a class ci , with the nonlinear exponential
as the window function. This results in the approximation,

P(ci |t) = 1

(2π)
N
2 σNni

ni∑
j=1

exp

[−(zi
j − 1)

σ 2

]
, (7)

where σ > 0 is known as the smoothing parameter defining
the window width, N is the dimension of the input vectors,
and ni is the number of sample patterns in class i. This rep-
resents an average of density estimates for each class that
is then scaled by the reciprocal of the window function vol-
ume. The output layer uses the calculation of the pdf from
the summation layer, and applies the decision rule of (5) to
select the class with highest probability.

An issue associated with applying the PNN classifier is
choosing a suitable estimate of the smoothing parameter σ .
This parameter defines the decision boundaries between the
trained categories. As σ increases, the decision boundaries
becomes highly linear and can result in an overlap of closely
related classes. On the other hand, a value of σ too small re-
sults in very non-linear boundaries behaving as the nearest
neighbor classifier, which does not result in optimal class
separation. It is not difficult to find a suitable value of σ

and the misclassification rate is not significantly impacted
with small changes (Specht 1988). There exist different ap-
proaches to choosing a suitable smoothing parameter σ such
as the hold-one-out cross-validation approach, in which σ

is selected to maximize the performance across all classes
within a predefined range for given test inputs. The inputs
consist of cyclically removing one training data sample to
use as a testing input or having an entirely separate cross-
validation dataset. In these initial experiments, the smooth-
ing parameter was chosen empirically, but future experi-
ments will implement the cross-validation technique.

3 Field experimentation

The classification algorithm described in Sect. 2 was pro-
grammed in Matlab and implemented off-line. It was first
applied to data collected from the ATRV-Jr, a differentially
steered vehicle that has no suspension system, weighs about
50 kg, and has a maximum traversal speed of 1.4 m/s. Next,
the classification algorithm was applied to data collected on
the much larger XUV, a four wheel steered vehicle with an
independent suspension system on each wheel that weighs
approximately 1150 kg and has a maximum speed of about
40 mph, although the experiments were limited to speeds not
exceeding 20 mph.

3.1 Experiments and results for the ATRV-Jr

The ATRV-Jr, shown in Fig. 2, was equipped with an on-
board computer powered by a Pentium 3 800 MHz proces-
sor running the Red Hat Linux 6.2 operating system. Al-
though various sensors were mounted on the ATRV-Jr robot
platform, this classification research focused on data mea-
sured from the inertial measurement unit (IMU). As shown
in Fig. 10, the IMU is mounted within the body of the robot
centered underneath the onboard computer; it measures the
vehicle’s translational accelerations and the rotational veloc-
ities of the vehicle about the body fixed coordinate axes.

As shown in Fig. 11, the robot was commanded to tra-
verse six different terrains: asphalt, packed gravel, loose
gravel, tall grass, sparse grass, and beach sand. For each ter-
rain the IMU recorded z̈, ωy , and ωx at ground speeds of
0.5 m/s and 1 m/s in 10-second intervals at a sample rate of
200 Hz resulting in 2000 time domain samples. A uniform
windowed FFT was applied to each 10-second time signal
and the magnitude frequency components were extracted.
The transformation produced magnitudes at 277 of the total
2048 frequency points along each axes within the frequency
range [3,30] Hz. This frequency range contained the domi-

Fig. 10 Crossbow IMU sensor for measuring gyro rates and accelera-
tions along the vehicle’s principal axes

Fig. 11 Robot traversing a asphalt, b packed gravel, c loose gravel,
d tall grass, e sparse grass, and f sand
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Table 1 Terrain classification
results at 0.5 m/s Tested Terrain Detected Terrain

Packed Gravel Loose Gravel Sparse Grass Tall Grass Asphalt Sand

Packed Gravel 100%

Loose Gravel 26.7% 73.3%

Sparse Grass 100%

Tall Grass 93.3% 6.7%

Asphalt 100%

Sand 100%

Table 2 Terrain classification
results at 1 m/s Tested Terrain Detected Terrain

Packed Gravel Loose Gravel Sparse Grass Tall Grass Asphalt Sand

Packed Gravel 86.7% 13.3%

Loose Gravel 26.7% 73.3%

Sparse Grass 93.3% 6.7%

Tall Grass 100%

Asphalt 100%

Sand 100%

nant signature magnitude components across all the terrains.
This resulted in a 831-dimensional feature vector for each
terrain. These vectors were stored in memory as the training
data for the PNN classifier.

Testing the algorithm consisted of inputting additional
data of the robot traversing the test terrains for 150 seconds
and measuring z̈, ωy , and ωx at the same sample rate as the
training data. This data was also divided into 10 second seg-
ments and the frequency components were extracted similar
to that of the training data. Each of the test samples were
applied as inputs to the classification system to calculate the
probability that the test feature vector belongs to a partic-
ular trained class. The algorithm produced 15 resulting ter-
rain classifications given that the 150 second feature vector
is evaluated every 10 seconds.

Tables 1 and 2 present the classification results at the
speeds of 0.5 m/s and 1 m/s, respectively, for all of the ter-
rains. The results show a high ability to distinguish between
the trained terrains. For example, at 0.5 m/s speed, the algo-
rithm classified five of the six terrains with greater than 90%
accuracy. At 1.0 m/s these same five terrains were classified
with greater than 85% accuracy. Tall grass misclassified one
of the input samples as beach sand at 0.5 m/s, but provided a
perfect classification at 1 m/s. Although at 0.5 m/s, one sam-
ple of the sparse grass was misclassified as tall grass, the
algorithm did classify this sample as a grass terrain. Simi-
lar classifications results were evident in distinguishing be-
tween the gravel terrains. In general the loose gravel pro-
vided more tire sinkage than the packed gravel. However,
this effect was not consistent throughout the loose gravel

area. As a result, the classification algorithm sometimes con-
fused the two types of gravel surfaces. The asphalt and sand
terrains resulted in perfect classification performance.

It should be noted that since the goal of this research is
to alter the robot’s driving and control based on terrain, it
is not necessary to distinguish between all terrain types. In-
stead, it is sufficient to distinguish between terrain classes
that require unique driving rules and control. For exam-
ple, since the loose and packed gravel are nearly identical,
they may not require dissimilar control. Nevertheless, they
were treated separately in these experiments to test the algo-
rithm’s ability to distinguish between terrains that are nearly
identical in appearance and roughness.

3.2 Experiments and results for the XUV

The required XUV data was provided by its Inertial Refer-
ence Unit (IRU), which measured the rotation rates and ac-
celerations about the three axes, at an update rate of 50 Hz.
The XUV traversed asphalt, gravel, grass, mud and dirt at
speeds of 5 mph, 8 mph, 11 mph, 14 mph, 17 mph, and
20 mph. With the goal of classifying terrains that require
dissimilar control strategies, the grass and gravel terrains
were combined into one terrain type, consistent with the
Land Rover Terrain Response System (Vanderwerp 2005).
Hence, the number of terrain types considered was actually
four: asphalt, gravel/grass, mud and dirt. The data collection
for the XUV differed substantially from the data collection
for the ATRV-Jr in that some of the data was collected while
the vehicle was accelerating. This was necessitated by limits
on the traversable distance at the experimental test grounds.
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Fig. 12 XUV Robot traversing a asphalt, b mud, and c dirt, d gravel,
e and grass, respectively

Fig. 13 The results of applying the speed dependent classification sys-
tem on data collected from the XUV robot platform

Figure 13 shows the results of applying the classification
system on the data collected and divided into 2 second sam-
ples. The number of samples varied depending on the speed
and terrain traversed.

The terrain classification accuracy was in the range
[70%,100%] for each of the terrain/speed combinations ex-
cept one (dirt at 20 mph which was classified at 65% accu-
racy). It is important to note that unlike the ATRV-Jr which
has no suspension, the XUV suspension effectively damps
outs some of the vibration signatures that would otherwise
be significant for classification. The classification of mud
improved as the speed increased due to the influence of the
ruts on the angular velocities during data collection.

4 Discussion on algorithm improvements

Common classification systems involve an offline training
procedure and online classification. The classification pre-
sented here applies a training procedure that can be imple-
mented online although it was implemented offline in Mat-
lab in this research. The effective preprocessing of this train-

ing data is conducted offline and stored within the system
memory. In Matlab, this classification system’s “online pro-
cedure” resulted in an average of 150 ms processing time
to return the resulting terrain of a 10 second sample. This
computation time will reduce considerably when developed
in a real-time environment for actual implementation. This
computation time can also be reduced by using a reduced set
of training samples and reducing the dimensions of the fea-
ture vector. This dimension reduction has been performed
by using the Principal Component Analysis feature extrac-
tion technique (DuPont et al. 2006). In addition, research
presented in (DuPont et al. 2006) reduced the sample time
segments from 10 seconds to 2 seconds.

Additional algorithm improvements can be obtained by
estimating the smoothing parameter σ using approaches
such as jackknifing and cross-validation (Masters 1993).
This estimation procedure would be included within the of-
fline processing of the training data and would not affect the
online computational time.

Improving the classification performance may also be
achieved by the inclusion of additional sensor features that
provide additional characteristics of the terrain. These sen-
sors may include measurement of wheel slip, which will
help to distinguish high slip terrains such as mud, ice and
snow from lower slip terrains.

The addition of an unclassifiable threshold technique is
also needed to distinguish terrains that the PNN classifier
has not been trained to recognize (Washburne et al. 1993).
These terrains should be reported as unclassifiable. How-
ever, in the current implementation, the algorithm returns a
classification based on training classes with the largest prob-
ability . This can result in false positive detection instead of
the preferred reporting of an unknown result.

5 Conclusions

This article focused on the development of an AGV terrain
classification algorithm that applied the probabilistic neural
network classifier on the extracted frequency responses of
terrain induced vehicle vibrations. This inherently fast al-
gorithm shows promise in the explicit identification of var-
ious terrains. Experiments on an ATRV-Jr, a vehicle with-
out a suspension system, revealed high performance results
in classifying six traversed terrains at different speeds. In
addition, the classification algorithm was applied to data
extracted from the XUV, a much larger vehicle that has a
suspension system, which tends to reduce the magnitude
and hence the observability of the terrain vibration signa-
tures. Although, the classification system produced reason-
able performance, the addition of other sensor measurement
features, such as wheel slip, should improve the classifica-
tion accuracy. Future research should also include the imple-
mentation of a probability confidence threshold to indicate
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the reliability of the classification decision, which should re-
duce false positive identifications.
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